qemu/target/i386/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright (C) 2006-2008 Qumranet Technologies
   5 * Copyright IBM, Corp. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qapi/error.h"
  17#include <sys/ioctl.h>
  18#include <sys/utsname.h>
  19
  20#include <linux/kvm.h>
  21#include "standard-headers/asm-x86/kvm_para.h"
  22
  23#include "qemu-common.h"
  24#include "cpu.h"
  25#include "sysemu/sysemu.h"
  26#include "sysemu/hw_accel.h"
  27#include "sysemu/kvm_int.h"
  28#include "kvm_i386.h"
  29#include "hyperv.h"
  30#include "hyperv-proto.h"
  31
  32#include "exec/gdbstub.h"
  33#include "qemu/host-utils.h"
  34#include "qemu/config-file.h"
  35#include "qemu/error-report.h"
  36#include "hw/i386/pc.h"
  37#include "hw/i386/apic.h"
  38#include "hw/i386/apic_internal.h"
  39#include "hw/i386/apic-msidef.h"
  40#include "hw/i386/intel_iommu.h"
  41#include "hw/i386/x86-iommu.h"
  42
  43#include "hw/pci/pci.h"
  44#include "hw/pci/msi.h"
  45#include "hw/pci/msix.h"
  46#include "migration/blocker.h"
  47#include "exec/memattrs.h"
  48#include "trace.h"
  49
  50//#define DEBUG_KVM
  51
  52#ifdef DEBUG_KVM
  53#define DPRINTF(fmt, ...) \
  54    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  55#else
  56#define DPRINTF(fmt, ...) \
  57    do { } while (0)
  58#endif
  59
  60#define MSR_KVM_WALL_CLOCK  0x11
  61#define MSR_KVM_SYSTEM_TIME 0x12
  62
  63/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
  64 * 255 kvm_msr_entry structs */
  65#define MSR_BUF_SIZE 4096
  66
  67const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  68    KVM_CAP_INFO(SET_TSS_ADDR),
  69    KVM_CAP_INFO(EXT_CPUID),
  70    KVM_CAP_INFO(MP_STATE),
  71    KVM_CAP_LAST_INFO
  72};
  73
  74static bool has_msr_star;
  75static bool has_msr_hsave_pa;
  76static bool has_msr_tsc_aux;
  77static bool has_msr_tsc_adjust;
  78static bool has_msr_tsc_deadline;
  79static bool has_msr_feature_control;
  80static bool has_msr_misc_enable;
  81static bool has_msr_smbase;
  82static bool has_msr_bndcfgs;
  83static int lm_capable_kernel;
  84static bool has_msr_hv_hypercall;
  85static bool has_msr_hv_crash;
  86static bool has_msr_hv_reset;
  87static bool has_msr_hv_vpindex;
  88static bool hv_vpindex_settable;
  89static bool has_msr_hv_runtime;
  90static bool has_msr_hv_synic;
  91static bool has_msr_hv_stimer;
  92static bool has_msr_hv_frequencies;
  93static bool has_msr_hv_reenlightenment;
  94static bool has_msr_xss;
  95static bool has_msr_spec_ctrl;
  96static bool has_msr_virt_ssbd;
  97static bool has_msr_smi_count;
  98static bool has_msr_arch_capabs;
  99
 100static uint32_t has_architectural_pmu_version;
 101static uint32_t num_architectural_pmu_gp_counters;
 102static uint32_t num_architectural_pmu_fixed_counters;
 103
 104static int has_xsave;
 105static int has_xcrs;
 106static int has_pit_state2;
 107
 108static bool has_msr_mcg_ext_ctl;
 109
 110static struct kvm_cpuid2 *cpuid_cache;
 111static struct kvm_msr_list *kvm_feature_msrs;
 112
 113int kvm_has_pit_state2(void)
 114{
 115    return has_pit_state2;
 116}
 117
 118bool kvm_has_smm(void)
 119{
 120    return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
 121}
 122
 123bool kvm_has_adjust_clock_stable(void)
 124{
 125    int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
 126
 127    return (ret == KVM_CLOCK_TSC_STABLE);
 128}
 129
 130bool kvm_allows_irq0_override(void)
 131{
 132    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
 133}
 134
 135static bool kvm_x2apic_api_set_flags(uint64_t flags)
 136{
 137    KVMState *s = KVM_STATE(current_machine->accelerator);
 138
 139    return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
 140}
 141
 142#define MEMORIZE(fn, _result) \
 143    ({ \
 144        static bool _memorized; \
 145        \
 146        if (_memorized) { \
 147            return _result; \
 148        } \
 149        _memorized = true; \
 150        _result = fn; \
 151    })
 152
 153static bool has_x2apic_api;
 154
 155bool kvm_has_x2apic_api(void)
 156{
 157    return has_x2apic_api;
 158}
 159
 160bool kvm_enable_x2apic(void)
 161{
 162    return MEMORIZE(
 163             kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
 164                                      KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
 165             has_x2apic_api);
 166}
 167
 168bool kvm_hv_vpindex_settable(void)
 169{
 170    return hv_vpindex_settable;
 171}
 172
 173static int kvm_get_tsc(CPUState *cs)
 174{
 175    X86CPU *cpu = X86_CPU(cs);
 176    CPUX86State *env = &cpu->env;
 177    struct {
 178        struct kvm_msrs info;
 179        struct kvm_msr_entry entries[1];
 180    } msr_data;
 181    int ret;
 182
 183    if (env->tsc_valid) {
 184        return 0;
 185    }
 186
 187    msr_data.info.nmsrs = 1;
 188    msr_data.entries[0].index = MSR_IA32_TSC;
 189    env->tsc_valid = !runstate_is_running();
 190
 191    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
 192    if (ret < 0) {
 193        return ret;
 194    }
 195
 196    assert(ret == 1);
 197    env->tsc = msr_data.entries[0].data;
 198    return 0;
 199}
 200
 201static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
 202{
 203    kvm_get_tsc(cpu);
 204}
 205
 206void kvm_synchronize_all_tsc(void)
 207{
 208    CPUState *cpu;
 209
 210    if (kvm_enabled()) {
 211        CPU_FOREACH(cpu) {
 212            run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
 213        }
 214    }
 215}
 216
 217static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
 218{
 219    struct kvm_cpuid2 *cpuid;
 220    int r, size;
 221
 222    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 223    cpuid = g_malloc0(size);
 224    cpuid->nent = max;
 225    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
 226    if (r == 0 && cpuid->nent >= max) {
 227        r = -E2BIG;
 228    }
 229    if (r < 0) {
 230        if (r == -E2BIG) {
 231            g_free(cpuid);
 232            return NULL;
 233        } else {
 234            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
 235                    strerror(-r));
 236            exit(1);
 237        }
 238    }
 239    return cpuid;
 240}
 241
 242/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
 243 * for all entries.
 244 */
 245static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
 246{
 247    struct kvm_cpuid2 *cpuid;
 248    int max = 1;
 249
 250    if (cpuid_cache != NULL) {
 251        return cpuid_cache;
 252    }
 253    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
 254        max *= 2;
 255    }
 256    cpuid_cache = cpuid;
 257    return cpuid;
 258}
 259
 260static const struct kvm_para_features {
 261    int cap;
 262    int feature;
 263} para_features[] = {
 264    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
 265    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
 266    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
 267    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
 268};
 269
 270static int get_para_features(KVMState *s)
 271{
 272    int i, features = 0;
 273
 274    for (i = 0; i < ARRAY_SIZE(para_features); i++) {
 275        if (kvm_check_extension(s, para_features[i].cap)) {
 276            features |= (1 << para_features[i].feature);
 277        }
 278    }
 279
 280    return features;
 281}
 282
 283static bool host_tsx_blacklisted(void)
 284{
 285    int family, model, stepping;\
 286    char vendor[CPUID_VENDOR_SZ + 1];
 287
 288    host_vendor_fms(vendor, &family, &model, &stepping);
 289
 290    /* Check if we are running on a Haswell host known to have broken TSX */
 291    return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
 292           (family == 6) &&
 293           ((model == 63 && stepping < 4) ||
 294            model == 60 || model == 69 || model == 70);
 295}
 296
 297/* Returns the value for a specific register on the cpuid entry
 298 */
 299static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
 300{
 301    uint32_t ret = 0;
 302    switch (reg) {
 303    case R_EAX:
 304        ret = entry->eax;
 305        break;
 306    case R_EBX:
 307        ret = entry->ebx;
 308        break;
 309    case R_ECX:
 310        ret = entry->ecx;
 311        break;
 312    case R_EDX:
 313        ret = entry->edx;
 314        break;
 315    }
 316    return ret;
 317}
 318
 319/* Find matching entry for function/index on kvm_cpuid2 struct
 320 */
 321static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
 322                                                 uint32_t function,
 323                                                 uint32_t index)
 324{
 325    int i;
 326    for (i = 0; i < cpuid->nent; ++i) {
 327        if (cpuid->entries[i].function == function &&
 328            cpuid->entries[i].index == index) {
 329            return &cpuid->entries[i];
 330        }
 331    }
 332    /* not found: */
 333    return NULL;
 334}
 335
 336uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
 337                                      uint32_t index, int reg)
 338{
 339    struct kvm_cpuid2 *cpuid;
 340    uint32_t ret = 0;
 341    uint32_t cpuid_1_edx;
 342    bool found = false;
 343
 344    cpuid = get_supported_cpuid(s);
 345
 346    struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
 347    if (entry) {
 348        found = true;
 349        ret = cpuid_entry_get_reg(entry, reg);
 350    }
 351
 352    /* Fixups for the data returned by KVM, below */
 353
 354    if (function == 1 && reg == R_EDX) {
 355        /* KVM before 2.6.30 misreports the following features */
 356        ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
 357    } else if (function == 1 && reg == R_ECX) {
 358        /* We can set the hypervisor flag, even if KVM does not return it on
 359         * GET_SUPPORTED_CPUID
 360         */
 361        ret |= CPUID_EXT_HYPERVISOR;
 362        /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
 363         * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
 364         * and the irqchip is in the kernel.
 365         */
 366        if (kvm_irqchip_in_kernel() &&
 367                kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
 368            ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
 369        }
 370
 371        /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
 372         * without the in-kernel irqchip
 373         */
 374        if (!kvm_irqchip_in_kernel()) {
 375            ret &= ~CPUID_EXT_X2APIC;
 376        }
 377
 378        if (enable_cpu_pm) {
 379            int disable_exits = kvm_check_extension(s,
 380                                                    KVM_CAP_X86_DISABLE_EXITS);
 381
 382            if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
 383                ret |= CPUID_EXT_MONITOR;
 384            }
 385        }
 386    } else if (function == 6 && reg == R_EAX) {
 387        ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
 388    } else if (function == 7 && index == 0 && reg == R_EBX) {
 389        if (host_tsx_blacklisted()) {
 390            ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
 391        }
 392    } else if (function == 0x80000001 && reg == R_ECX) {
 393        /*
 394         * It's safe to enable TOPOEXT even if it's not returned by
 395         * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
 396         * us to keep CPU models including TOPOEXT runnable on older kernels.
 397         */
 398        ret |= CPUID_EXT3_TOPOEXT;
 399    } else if (function == 0x80000001 && reg == R_EDX) {
 400        /* On Intel, kvm returns cpuid according to the Intel spec,
 401         * so add missing bits according to the AMD spec:
 402         */
 403        cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
 404        ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
 405    } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
 406        /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
 407         * be enabled without the in-kernel irqchip
 408         */
 409        if (!kvm_irqchip_in_kernel()) {
 410            ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
 411        }
 412    } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
 413        ret |= 1U << KVM_HINTS_REALTIME;
 414        found = 1;
 415    }
 416
 417    /* fallback for older kernels */
 418    if ((function == KVM_CPUID_FEATURES) && !found) {
 419        ret = get_para_features(s);
 420    }
 421
 422    return ret;
 423}
 424
 425uint32_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
 426{
 427    struct {
 428        struct kvm_msrs info;
 429        struct kvm_msr_entry entries[1];
 430    } msr_data;
 431    uint32_t ret;
 432
 433    if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
 434        return 0;
 435    }
 436
 437    /* Check if requested MSR is supported feature MSR */
 438    int i;
 439    for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
 440        if (kvm_feature_msrs->indices[i] == index) {
 441            break;
 442        }
 443    if (i == kvm_feature_msrs->nmsrs) {
 444        return 0; /* if the feature MSR is not supported, simply return 0 */
 445    }
 446
 447    msr_data.info.nmsrs = 1;
 448    msr_data.entries[0].index = index;
 449
 450    ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
 451    if (ret != 1) {
 452        error_report("KVM get MSR (index=0x%x) feature failed, %s",
 453            index, strerror(-ret));
 454        exit(1);
 455    }
 456
 457    return msr_data.entries[0].data;
 458}
 459
 460
 461typedef struct HWPoisonPage {
 462    ram_addr_t ram_addr;
 463    QLIST_ENTRY(HWPoisonPage) list;
 464} HWPoisonPage;
 465
 466static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
 467    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
 468
 469static void kvm_unpoison_all(void *param)
 470{
 471    HWPoisonPage *page, *next_page;
 472
 473    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
 474        QLIST_REMOVE(page, list);
 475        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
 476        g_free(page);
 477    }
 478}
 479
 480static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
 481{
 482    HWPoisonPage *page;
 483
 484    QLIST_FOREACH(page, &hwpoison_page_list, list) {
 485        if (page->ram_addr == ram_addr) {
 486            return;
 487        }
 488    }
 489    page = g_new(HWPoisonPage, 1);
 490    page->ram_addr = ram_addr;
 491    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
 492}
 493
 494static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
 495                                     int *max_banks)
 496{
 497    int r;
 498
 499    r = kvm_check_extension(s, KVM_CAP_MCE);
 500    if (r > 0) {
 501        *max_banks = r;
 502        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
 503    }
 504    return -ENOSYS;
 505}
 506
 507static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
 508{
 509    CPUState *cs = CPU(cpu);
 510    CPUX86State *env = &cpu->env;
 511    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
 512                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
 513    uint64_t mcg_status = MCG_STATUS_MCIP;
 514    int flags = 0;
 515
 516    if (code == BUS_MCEERR_AR) {
 517        status |= MCI_STATUS_AR | 0x134;
 518        mcg_status |= MCG_STATUS_EIPV;
 519    } else {
 520        status |= 0xc0;
 521        mcg_status |= MCG_STATUS_RIPV;
 522    }
 523
 524    flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
 525    /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
 526     * guest kernel back into env->mcg_ext_ctl.
 527     */
 528    cpu_synchronize_state(cs);
 529    if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
 530        mcg_status |= MCG_STATUS_LMCE;
 531        flags = 0;
 532    }
 533
 534    cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
 535                       (MCM_ADDR_PHYS << 6) | 0xc, flags);
 536}
 537
 538static void hardware_memory_error(void)
 539{
 540    fprintf(stderr, "Hardware memory error!\n");
 541    exit(1);
 542}
 543
 544void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
 545{
 546    X86CPU *cpu = X86_CPU(c);
 547    CPUX86State *env = &cpu->env;
 548    ram_addr_t ram_addr;
 549    hwaddr paddr;
 550
 551    /* If we get an action required MCE, it has been injected by KVM
 552     * while the VM was running.  An action optional MCE instead should
 553     * be coming from the main thread, which qemu_init_sigbus identifies
 554     * as the "early kill" thread.
 555     */
 556    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
 557
 558    if ((env->mcg_cap & MCG_SER_P) && addr) {
 559        ram_addr = qemu_ram_addr_from_host(addr);
 560        if (ram_addr != RAM_ADDR_INVALID &&
 561            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
 562            kvm_hwpoison_page_add(ram_addr);
 563            kvm_mce_inject(cpu, paddr, code);
 564            return;
 565        }
 566
 567        fprintf(stderr, "Hardware memory error for memory used by "
 568                "QEMU itself instead of guest system!\n");
 569    }
 570
 571    if (code == BUS_MCEERR_AR) {
 572        hardware_memory_error();
 573    }
 574
 575    /* Hope we are lucky for AO MCE */
 576}
 577
 578static int kvm_inject_mce_oldstyle(X86CPU *cpu)
 579{
 580    CPUX86State *env = &cpu->env;
 581
 582    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
 583        unsigned int bank, bank_num = env->mcg_cap & 0xff;
 584        struct kvm_x86_mce mce;
 585
 586        env->exception_injected = -1;
 587
 588        /*
 589         * There must be at least one bank in use if an MCE is pending.
 590         * Find it and use its values for the event injection.
 591         */
 592        for (bank = 0; bank < bank_num; bank++) {
 593            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
 594                break;
 595            }
 596        }
 597        assert(bank < bank_num);
 598
 599        mce.bank = bank;
 600        mce.status = env->mce_banks[bank * 4 + 1];
 601        mce.mcg_status = env->mcg_status;
 602        mce.addr = env->mce_banks[bank * 4 + 2];
 603        mce.misc = env->mce_banks[bank * 4 + 3];
 604
 605        return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
 606    }
 607    return 0;
 608}
 609
 610static void cpu_update_state(void *opaque, int running, RunState state)
 611{
 612    CPUX86State *env = opaque;
 613
 614    if (running) {
 615        env->tsc_valid = false;
 616    }
 617}
 618
 619unsigned long kvm_arch_vcpu_id(CPUState *cs)
 620{
 621    X86CPU *cpu = X86_CPU(cs);
 622    return cpu->apic_id;
 623}
 624
 625#ifndef KVM_CPUID_SIGNATURE_NEXT
 626#define KVM_CPUID_SIGNATURE_NEXT                0x40000100
 627#endif
 628
 629static bool hyperv_hypercall_available(X86CPU *cpu)
 630{
 631    return cpu->hyperv_vapic ||
 632           (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
 633}
 634
 635static bool hyperv_enabled(X86CPU *cpu)
 636{
 637    CPUState *cs = CPU(cpu);
 638    return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
 639           (hyperv_hypercall_available(cpu) ||
 640            cpu->hyperv_time  ||
 641            cpu->hyperv_relaxed_timing ||
 642            cpu->hyperv_crash ||
 643            cpu->hyperv_reset ||
 644            cpu->hyperv_vpindex ||
 645            cpu->hyperv_runtime ||
 646            cpu->hyperv_synic ||
 647            cpu->hyperv_stimer ||
 648            cpu->hyperv_reenlightenment ||
 649            cpu->hyperv_tlbflush ||
 650            cpu->hyperv_ipi);
 651}
 652
 653static int kvm_arch_set_tsc_khz(CPUState *cs)
 654{
 655    X86CPU *cpu = X86_CPU(cs);
 656    CPUX86State *env = &cpu->env;
 657    int r;
 658
 659    if (!env->tsc_khz) {
 660        return 0;
 661    }
 662
 663    r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
 664        kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
 665        -ENOTSUP;
 666    if (r < 0) {
 667        /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
 668         * TSC frequency doesn't match the one we want.
 669         */
 670        int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 671                       kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
 672                       -ENOTSUP;
 673        if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
 674            warn_report("TSC frequency mismatch between "
 675                        "VM (%" PRId64 " kHz) and host (%d kHz), "
 676                        "and TSC scaling unavailable",
 677                        env->tsc_khz, cur_freq);
 678            return r;
 679        }
 680    }
 681
 682    return 0;
 683}
 684
 685static bool tsc_is_stable_and_known(CPUX86State *env)
 686{
 687    if (!env->tsc_khz) {
 688        return false;
 689    }
 690    return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
 691        || env->user_tsc_khz;
 692}
 693
 694static int hyperv_handle_properties(CPUState *cs)
 695{
 696    X86CPU *cpu = X86_CPU(cs);
 697    CPUX86State *env = &cpu->env;
 698
 699    if (cpu->hyperv_relaxed_timing) {
 700        env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
 701    }
 702    if (cpu->hyperv_vapic) {
 703        env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
 704        env->features[FEAT_HYPERV_EAX] |= HV_APIC_ACCESS_AVAILABLE;
 705    }
 706    if (cpu->hyperv_time) {
 707        if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) <= 0) {
 708            fprintf(stderr, "Hyper-V clocksources "
 709                    "(requested by 'hv-time' cpu flag) "
 710                    "are not supported by kernel\n");
 711            return -ENOSYS;
 712        }
 713        env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
 714        env->features[FEAT_HYPERV_EAX] |= HV_TIME_REF_COUNT_AVAILABLE;
 715        env->features[FEAT_HYPERV_EAX] |= HV_REFERENCE_TSC_AVAILABLE;
 716    }
 717    if (cpu->hyperv_frequencies) {
 718        if (!has_msr_hv_frequencies) {
 719            fprintf(stderr, "Hyper-V frequency MSRs "
 720                    "(requested by 'hv-frequencies' cpu flag) "
 721                    "are not supported by kernel\n");
 722            return -ENOSYS;
 723        }
 724        env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_FREQUENCY_MSRS;
 725        env->features[FEAT_HYPERV_EDX] |= HV_FREQUENCY_MSRS_AVAILABLE;
 726    }
 727    if (cpu->hyperv_crash) {
 728        if (!has_msr_hv_crash) {
 729            fprintf(stderr, "Hyper-V crash MSRs "
 730                    "(requested by 'hv-crash' cpu flag) "
 731                    "are not supported by kernel\n");
 732            return -ENOSYS;
 733        }
 734        env->features[FEAT_HYPERV_EDX] |= HV_GUEST_CRASH_MSR_AVAILABLE;
 735    }
 736    if (cpu->hyperv_reenlightenment) {
 737        if (!has_msr_hv_reenlightenment) {
 738            fprintf(stderr,
 739                    "Hyper-V Reenlightenment MSRs "
 740                    "(requested by 'hv-reenlightenment' cpu flag) "
 741                    "are not supported by kernel\n");
 742            return -ENOSYS;
 743        }
 744        env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
 745    }
 746    env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
 747    if (cpu->hyperv_reset) {
 748        if (!has_msr_hv_reset) {
 749            fprintf(stderr, "Hyper-V reset MSR "
 750                    "(requested by 'hv-reset' cpu flag) "
 751                    "is not supported by kernel\n");
 752            return -ENOSYS;
 753        }
 754        env->features[FEAT_HYPERV_EAX] |= HV_RESET_AVAILABLE;
 755    }
 756    if (cpu->hyperv_vpindex) {
 757        if (!has_msr_hv_vpindex) {
 758            fprintf(stderr, "Hyper-V VP_INDEX MSR "
 759                    "(requested by 'hv-vpindex' cpu flag) "
 760                    "is not supported by kernel\n");
 761            return -ENOSYS;
 762        }
 763        env->features[FEAT_HYPERV_EAX] |= HV_VP_INDEX_AVAILABLE;
 764    }
 765    if (cpu->hyperv_runtime) {
 766        if (!has_msr_hv_runtime) {
 767            fprintf(stderr, "Hyper-V VP_RUNTIME MSR "
 768                    "(requested by 'hv-runtime' cpu flag) "
 769                    "is not supported by kernel\n");
 770            return -ENOSYS;
 771        }
 772        env->features[FEAT_HYPERV_EAX] |= HV_VP_RUNTIME_AVAILABLE;
 773    }
 774    if (cpu->hyperv_synic) {
 775        unsigned int cap = KVM_CAP_HYPERV_SYNIC;
 776        if (!cpu->hyperv_synic_kvm_only) {
 777            if (!cpu->hyperv_vpindex) {
 778                fprintf(stderr, "Hyper-V SynIC "
 779                        "(requested by 'hv-synic' cpu flag) "
 780                        "requires Hyper-V VP_INDEX ('hv-vpindex')\n");
 781            return -ENOSYS;
 782            }
 783            cap = KVM_CAP_HYPERV_SYNIC2;
 784        }
 785
 786        if (!has_msr_hv_synic || !kvm_check_extension(cs->kvm_state, cap)) {
 787            fprintf(stderr, "Hyper-V SynIC (requested by 'hv-synic' cpu flag) "
 788                    "is not supported by kernel\n");
 789            return -ENOSYS;
 790        }
 791
 792        env->features[FEAT_HYPERV_EAX] |= HV_SYNIC_AVAILABLE;
 793    }
 794    if (cpu->hyperv_stimer) {
 795        if (!has_msr_hv_stimer) {
 796            fprintf(stderr, "Hyper-V timers aren't supported by kernel\n");
 797            return -ENOSYS;
 798        }
 799        env->features[FEAT_HYPERV_EAX] |= HV_SYNTIMERS_AVAILABLE;
 800    }
 801    return 0;
 802}
 803
 804static int hyperv_init_vcpu(X86CPU *cpu)
 805{
 806    CPUState *cs = CPU(cpu);
 807    int ret;
 808
 809    if (cpu->hyperv_vpindex && !hv_vpindex_settable) {
 810        /*
 811         * the kernel doesn't support setting vp_index; assert that its value
 812         * is in sync
 813         */
 814        struct {
 815            struct kvm_msrs info;
 816            struct kvm_msr_entry entries[1];
 817        } msr_data = {
 818            .info.nmsrs = 1,
 819            .entries[0].index = HV_X64_MSR_VP_INDEX,
 820        };
 821
 822        ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
 823        if (ret < 0) {
 824            return ret;
 825        }
 826        assert(ret == 1);
 827
 828        if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
 829            error_report("kernel's vp_index != QEMU's vp_index");
 830            return -ENXIO;
 831        }
 832    }
 833
 834    if (cpu->hyperv_synic) {
 835        uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
 836            KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
 837        ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
 838        if (ret < 0) {
 839            error_report("failed to turn on HyperV SynIC in KVM: %s",
 840                         strerror(-ret));
 841            return ret;
 842        }
 843
 844        if (!cpu->hyperv_synic_kvm_only) {
 845            ret = hyperv_x86_synic_add(cpu);
 846            if (ret < 0) {
 847                error_report("failed to create HyperV SynIC: %s",
 848                             strerror(-ret));
 849                return ret;
 850            }
 851        }
 852    }
 853
 854    return 0;
 855}
 856
 857static Error *invtsc_mig_blocker;
 858static Error *vmx_mig_blocker;
 859
 860#define KVM_MAX_CPUID_ENTRIES  100
 861
 862int kvm_arch_init_vcpu(CPUState *cs)
 863{
 864    struct {
 865        struct kvm_cpuid2 cpuid;
 866        struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
 867    } QEMU_PACKED cpuid_data;
 868    X86CPU *cpu = X86_CPU(cs);
 869    CPUX86State *env = &cpu->env;
 870    uint32_t limit, i, j, cpuid_i;
 871    uint32_t unused;
 872    struct kvm_cpuid_entry2 *c;
 873    uint32_t signature[3];
 874    uint16_t evmcs_version;
 875    int kvm_base = KVM_CPUID_SIGNATURE;
 876    int r;
 877    Error *local_err = NULL;
 878
 879    memset(&cpuid_data, 0, sizeof(cpuid_data));
 880
 881    cpuid_i = 0;
 882
 883    r = kvm_arch_set_tsc_khz(cs);
 884    if (r < 0) {
 885        goto fail;
 886    }
 887
 888    /* vcpu's TSC frequency is either specified by user, or following
 889     * the value used by KVM if the former is not present. In the
 890     * latter case, we query it from KVM and record in env->tsc_khz,
 891     * so that vcpu's TSC frequency can be migrated later via this field.
 892     */
 893    if (!env->tsc_khz) {
 894        r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 895            kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
 896            -ENOTSUP;
 897        if (r > 0) {
 898            env->tsc_khz = r;
 899        }
 900    }
 901
 902    /* Paravirtualization CPUIDs */
 903    if (hyperv_enabled(cpu)) {
 904        c = &cpuid_data.entries[cpuid_i++];
 905        c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
 906        if (!cpu->hyperv_vendor_id) {
 907            memcpy(signature, "Microsoft Hv", 12);
 908        } else {
 909            size_t len = strlen(cpu->hyperv_vendor_id);
 910
 911            if (len > 12) {
 912                error_report("hv-vendor-id truncated to 12 characters");
 913                len = 12;
 914            }
 915            memset(signature, 0, 12);
 916            memcpy(signature, cpu->hyperv_vendor_id, len);
 917        }
 918        c->eax = cpu->hyperv_evmcs ?
 919            HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
 920        c->ebx = signature[0];
 921        c->ecx = signature[1];
 922        c->edx = signature[2];
 923
 924        c = &cpuid_data.entries[cpuid_i++];
 925        c->function = HV_CPUID_INTERFACE;
 926        memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
 927        c->eax = signature[0];
 928        c->ebx = 0;
 929        c->ecx = 0;
 930        c->edx = 0;
 931
 932        c = &cpuid_data.entries[cpuid_i++];
 933        c->function = HV_CPUID_VERSION;
 934        c->eax = 0x00001bbc;
 935        c->ebx = 0x00060001;
 936
 937        c = &cpuid_data.entries[cpuid_i++];
 938        c->function = HV_CPUID_FEATURES;
 939        r = hyperv_handle_properties(cs);
 940        if (r) {
 941            return r;
 942        }
 943        c->eax = env->features[FEAT_HYPERV_EAX];
 944        c->ebx = env->features[FEAT_HYPERV_EBX];
 945        c->edx = env->features[FEAT_HYPERV_EDX];
 946
 947        c = &cpuid_data.entries[cpuid_i++];
 948        c->function = HV_CPUID_ENLIGHTMENT_INFO;
 949        if (cpu->hyperv_relaxed_timing) {
 950            c->eax |= HV_RELAXED_TIMING_RECOMMENDED;
 951        }
 952        if (cpu->hyperv_vapic) {
 953            c->eax |= HV_APIC_ACCESS_RECOMMENDED;
 954        }
 955        if (cpu->hyperv_tlbflush) {
 956            if (kvm_check_extension(cs->kvm_state,
 957                                    KVM_CAP_HYPERV_TLBFLUSH) <= 0) {
 958                fprintf(stderr, "Hyper-V TLB flush support "
 959                        "(requested by 'hv-tlbflush' cpu flag) "
 960                        " is not supported by kernel\n");
 961                return -ENOSYS;
 962            }
 963            c->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
 964            c->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
 965        }
 966        if (cpu->hyperv_ipi) {
 967            if (kvm_check_extension(cs->kvm_state,
 968                                    KVM_CAP_HYPERV_SEND_IPI) <= 0) {
 969                fprintf(stderr, "Hyper-V IPI send support "
 970                        "(requested by 'hv-ipi' cpu flag) "
 971                        " is not supported by kernel\n");
 972                return -ENOSYS;
 973            }
 974            c->eax |= HV_CLUSTER_IPI_RECOMMENDED;
 975            c->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
 976        }
 977        if (cpu->hyperv_evmcs) {
 978            if (kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
 979                                    (uintptr_t)&evmcs_version)) {
 980                fprintf(stderr, "Hyper-V Enlightened VMCS "
 981                        "(requested by 'hv-evmcs' cpu flag) "
 982                        "is not supported by kernel\n");
 983                return -ENOSYS;
 984            }
 985            c->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
 986        }
 987        c->ebx = cpu->hyperv_spinlock_attempts;
 988
 989        c = &cpuid_data.entries[cpuid_i++];
 990        c->function = HV_CPUID_IMPLEMENT_LIMITS;
 991
 992        c->eax = cpu->hv_max_vps;
 993        c->ebx = 0x40;
 994
 995        kvm_base = KVM_CPUID_SIGNATURE_NEXT;
 996        has_msr_hv_hypercall = true;
 997
 998        if (cpu->hyperv_evmcs) {
 999            __u32 function;
1000
1001            /* Create zeroed 0x40000006..0x40000009 leaves */
1002            for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1003                 function < HV_CPUID_NESTED_FEATURES; function++) {
1004                c = &cpuid_data.entries[cpuid_i++];
1005                c->function = function;
1006            }
1007
1008            c = &cpuid_data.entries[cpuid_i++];
1009            c->function = HV_CPUID_NESTED_FEATURES;
1010            c->eax = evmcs_version;
1011        }
1012    }
1013
1014    if (cpu->expose_kvm) {
1015        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1016        c = &cpuid_data.entries[cpuid_i++];
1017        c->function = KVM_CPUID_SIGNATURE | kvm_base;
1018        c->eax = KVM_CPUID_FEATURES | kvm_base;
1019        c->ebx = signature[0];
1020        c->ecx = signature[1];
1021        c->edx = signature[2];
1022
1023        c = &cpuid_data.entries[cpuid_i++];
1024        c->function = KVM_CPUID_FEATURES | kvm_base;
1025        c->eax = env->features[FEAT_KVM];
1026        c->edx = env->features[FEAT_KVM_HINTS];
1027    }
1028
1029    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1030
1031    for (i = 0; i <= limit; i++) {
1032        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1033            fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1034            abort();
1035        }
1036        c = &cpuid_data.entries[cpuid_i++];
1037
1038        switch (i) {
1039        case 2: {
1040            /* Keep reading function 2 till all the input is received */
1041            int times;
1042
1043            c->function = i;
1044            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1045                       KVM_CPUID_FLAG_STATE_READ_NEXT;
1046            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1047            times = c->eax & 0xff;
1048
1049            for (j = 1; j < times; ++j) {
1050                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1051                    fprintf(stderr, "cpuid_data is full, no space for "
1052                            "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1053                    abort();
1054                }
1055                c = &cpuid_data.entries[cpuid_i++];
1056                c->function = i;
1057                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1058                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1059            }
1060            break;
1061        }
1062        case 4:
1063        case 0xb:
1064        case 0xd:
1065            for (j = 0; ; j++) {
1066                if (i == 0xd && j == 64) {
1067                    break;
1068                }
1069                c->function = i;
1070                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1071                c->index = j;
1072                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1073
1074                if (i == 4 && c->eax == 0) {
1075                    break;
1076                }
1077                if (i == 0xb && !(c->ecx & 0xff00)) {
1078                    break;
1079                }
1080                if (i == 0xd && c->eax == 0) {
1081                    continue;
1082                }
1083                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1084                    fprintf(stderr, "cpuid_data is full, no space for "
1085                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1086                    abort();
1087                }
1088                c = &cpuid_data.entries[cpuid_i++];
1089            }
1090            break;
1091        case 0x14: {
1092            uint32_t times;
1093
1094            c->function = i;
1095            c->index = 0;
1096            c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1097            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1098            times = c->eax;
1099
1100            for (j = 1; j <= times; ++j) {
1101                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1102                    fprintf(stderr, "cpuid_data is full, no space for "
1103                                "cpuid(eax:0x14,ecx:0x%x)\n", j);
1104                    abort();
1105                }
1106                c = &cpuid_data.entries[cpuid_i++];
1107                c->function = i;
1108                c->index = j;
1109                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1110                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1111            }
1112            break;
1113        }
1114        default:
1115            c->function = i;
1116            c->flags = 0;
1117            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1118            break;
1119        }
1120    }
1121
1122    if (limit >= 0x0a) {
1123        uint32_t eax, edx;
1124
1125        cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1126
1127        has_architectural_pmu_version = eax & 0xff;
1128        if (has_architectural_pmu_version > 0) {
1129            num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1130
1131            /* Shouldn't be more than 32, since that's the number of bits
1132             * available in EBX to tell us _which_ counters are available.
1133             * Play it safe.
1134             */
1135            if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1136                num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1137            }
1138
1139            if (has_architectural_pmu_version > 1) {
1140                num_architectural_pmu_fixed_counters = edx & 0x1f;
1141
1142                if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1143                    num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1144                }
1145            }
1146        }
1147    }
1148
1149    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1150
1151    for (i = 0x80000000; i <= limit; i++) {
1152        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1153            fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1154            abort();
1155        }
1156        c = &cpuid_data.entries[cpuid_i++];
1157
1158        switch (i) {
1159        case 0x8000001d:
1160            /* Query for all AMD cache information leaves */
1161            for (j = 0; ; j++) {
1162                c->function = i;
1163                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1164                c->index = j;
1165                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1166
1167                if (c->eax == 0) {
1168                    break;
1169                }
1170                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1171                    fprintf(stderr, "cpuid_data is full, no space for "
1172                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1173                    abort();
1174                }
1175                c = &cpuid_data.entries[cpuid_i++];
1176            }
1177            break;
1178        default:
1179            c->function = i;
1180            c->flags = 0;
1181            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1182            break;
1183        }
1184    }
1185
1186    /* Call Centaur's CPUID instructions they are supported. */
1187    if (env->cpuid_xlevel2 > 0) {
1188        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1189
1190        for (i = 0xC0000000; i <= limit; i++) {
1191            if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1192                fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1193                abort();
1194            }
1195            c = &cpuid_data.entries[cpuid_i++];
1196
1197            c->function = i;
1198            c->flags = 0;
1199            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1200        }
1201    }
1202
1203    cpuid_data.cpuid.nent = cpuid_i;
1204
1205    if (((env->cpuid_version >> 8)&0xF) >= 6
1206        && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1207           (CPUID_MCE | CPUID_MCA)
1208        && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1209        uint64_t mcg_cap, unsupported_caps;
1210        int banks;
1211        int ret;
1212
1213        ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1214        if (ret < 0) {
1215            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1216            return ret;
1217        }
1218
1219        if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1220            error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1221                         (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1222            return -ENOTSUP;
1223        }
1224
1225        unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1226        if (unsupported_caps) {
1227            if (unsupported_caps & MCG_LMCE_P) {
1228                error_report("kvm: LMCE not supported");
1229                return -ENOTSUP;
1230            }
1231            warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1232                        unsupported_caps);
1233        }
1234
1235        env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1236        ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1237        if (ret < 0) {
1238            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1239            return ret;
1240        }
1241    }
1242
1243    qemu_add_vm_change_state_handler(cpu_update_state, env);
1244
1245    c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1246    if (c) {
1247        has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1248                                  !!(c->ecx & CPUID_EXT_SMX);
1249    }
1250
1251    if ((env->features[FEAT_1_ECX] & CPUID_EXT_VMX) && !vmx_mig_blocker) {
1252        error_setg(&vmx_mig_blocker,
1253                   "Nested VMX virtualization does not support live migration yet");
1254        r = migrate_add_blocker(vmx_mig_blocker, &local_err);
1255        if (local_err) {
1256            error_report_err(local_err);
1257            error_free(vmx_mig_blocker);
1258            return r;
1259        }
1260    }
1261
1262    if (env->mcg_cap & MCG_LMCE_P) {
1263        has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1264    }
1265
1266    if (!env->user_tsc_khz) {
1267        if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1268            invtsc_mig_blocker == NULL) {
1269            error_setg(&invtsc_mig_blocker,
1270                       "State blocked by non-migratable CPU device"
1271                       " (invtsc flag)");
1272            r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1273            if (local_err) {
1274                error_report_err(local_err);
1275                error_free(invtsc_mig_blocker);
1276                return r;
1277            }
1278        }
1279    }
1280
1281    if (cpu->vmware_cpuid_freq
1282        /* Guests depend on 0x40000000 to detect this feature, so only expose
1283         * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1284        && cpu->expose_kvm
1285        && kvm_base == KVM_CPUID_SIGNATURE
1286        /* TSC clock must be stable and known for this feature. */
1287        && tsc_is_stable_and_known(env)) {
1288
1289        c = &cpuid_data.entries[cpuid_i++];
1290        c->function = KVM_CPUID_SIGNATURE | 0x10;
1291        c->eax = env->tsc_khz;
1292        /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1293         * APIC_BUS_CYCLE_NS */
1294        c->ebx = 1000000;
1295        c->ecx = c->edx = 0;
1296
1297        c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1298        c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1299    }
1300
1301    cpuid_data.cpuid.nent = cpuid_i;
1302
1303    cpuid_data.cpuid.padding = 0;
1304    r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1305    if (r) {
1306        goto fail;
1307    }
1308
1309    if (has_xsave) {
1310        env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1311    }
1312    cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1313
1314    if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1315        has_msr_tsc_aux = false;
1316    }
1317
1318    r = hyperv_init_vcpu(cpu);
1319    if (r) {
1320        goto fail;
1321    }
1322
1323    return 0;
1324
1325 fail:
1326    migrate_del_blocker(invtsc_mig_blocker);
1327    return r;
1328}
1329
1330void kvm_arch_reset_vcpu(X86CPU *cpu)
1331{
1332    CPUX86State *env = &cpu->env;
1333
1334    env->xcr0 = 1;
1335    if (kvm_irqchip_in_kernel()) {
1336        env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1337                                          KVM_MP_STATE_UNINITIALIZED;
1338    } else {
1339        env->mp_state = KVM_MP_STATE_RUNNABLE;
1340    }
1341
1342    if (cpu->hyperv_synic) {
1343        int i;
1344        for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1345            env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1346        }
1347
1348        hyperv_x86_synic_reset(cpu);
1349    }
1350}
1351
1352void kvm_arch_do_init_vcpu(X86CPU *cpu)
1353{
1354    CPUX86State *env = &cpu->env;
1355
1356    /* APs get directly into wait-for-SIPI state.  */
1357    if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1358        env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1359    }
1360}
1361
1362static int kvm_get_supported_feature_msrs(KVMState *s)
1363{
1364    int ret = 0;
1365
1366    if (kvm_feature_msrs != NULL) {
1367        return 0;
1368    }
1369
1370    if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1371        return 0;
1372    }
1373
1374    struct kvm_msr_list msr_list;
1375
1376    msr_list.nmsrs = 0;
1377    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1378    if (ret < 0 && ret != -E2BIG) {
1379        error_report("Fetch KVM feature MSR list failed: %s",
1380            strerror(-ret));
1381        return ret;
1382    }
1383
1384    assert(msr_list.nmsrs > 0);
1385    kvm_feature_msrs = (struct kvm_msr_list *) \
1386        g_malloc0(sizeof(msr_list) +
1387                 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1388
1389    kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1390    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1391
1392    if (ret < 0) {
1393        error_report("Fetch KVM feature MSR list failed: %s",
1394            strerror(-ret));
1395        g_free(kvm_feature_msrs);
1396        kvm_feature_msrs = NULL;
1397        return ret;
1398    }
1399
1400    return 0;
1401}
1402
1403static int kvm_get_supported_msrs(KVMState *s)
1404{
1405    static int kvm_supported_msrs;
1406    int ret = 0;
1407
1408    /* first time */
1409    if (kvm_supported_msrs == 0) {
1410        struct kvm_msr_list msr_list, *kvm_msr_list;
1411
1412        kvm_supported_msrs = -1;
1413
1414        /* Obtain MSR list from KVM.  These are the MSRs that we must
1415         * save/restore */
1416        msr_list.nmsrs = 0;
1417        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1418        if (ret < 0 && ret != -E2BIG) {
1419            return ret;
1420        }
1421        /* Old kernel modules had a bug and could write beyond the provided
1422           memory. Allocate at least a safe amount of 1K. */
1423        kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1424                                              msr_list.nmsrs *
1425                                              sizeof(msr_list.indices[0])));
1426
1427        kvm_msr_list->nmsrs = msr_list.nmsrs;
1428        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1429        if (ret >= 0) {
1430            int i;
1431
1432            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1433                switch (kvm_msr_list->indices[i]) {
1434                case MSR_STAR:
1435                    has_msr_star = true;
1436                    break;
1437                case MSR_VM_HSAVE_PA:
1438                    has_msr_hsave_pa = true;
1439                    break;
1440                case MSR_TSC_AUX:
1441                    has_msr_tsc_aux = true;
1442                    break;
1443                case MSR_TSC_ADJUST:
1444                    has_msr_tsc_adjust = true;
1445                    break;
1446                case MSR_IA32_TSCDEADLINE:
1447                    has_msr_tsc_deadline = true;
1448                    break;
1449                case MSR_IA32_SMBASE:
1450                    has_msr_smbase = true;
1451                    break;
1452                case MSR_SMI_COUNT:
1453                    has_msr_smi_count = true;
1454                    break;
1455                case MSR_IA32_MISC_ENABLE:
1456                    has_msr_misc_enable = true;
1457                    break;
1458                case MSR_IA32_BNDCFGS:
1459                    has_msr_bndcfgs = true;
1460                    break;
1461                case MSR_IA32_XSS:
1462                    has_msr_xss = true;
1463                    break;
1464                case HV_X64_MSR_CRASH_CTL:
1465                    has_msr_hv_crash = true;
1466                    break;
1467                case HV_X64_MSR_RESET:
1468                    has_msr_hv_reset = true;
1469                    break;
1470                case HV_X64_MSR_VP_INDEX:
1471                    has_msr_hv_vpindex = true;
1472                    break;
1473                case HV_X64_MSR_VP_RUNTIME:
1474                    has_msr_hv_runtime = true;
1475                    break;
1476                case HV_X64_MSR_SCONTROL:
1477                    has_msr_hv_synic = true;
1478                    break;
1479                case HV_X64_MSR_STIMER0_CONFIG:
1480                    has_msr_hv_stimer = true;
1481                    break;
1482                case HV_X64_MSR_TSC_FREQUENCY:
1483                    has_msr_hv_frequencies = true;
1484                    break;
1485                case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1486                    has_msr_hv_reenlightenment = true;
1487                    break;
1488                case MSR_IA32_SPEC_CTRL:
1489                    has_msr_spec_ctrl = true;
1490                    break;
1491                case MSR_VIRT_SSBD:
1492                    has_msr_virt_ssbd = true;
1493                    break;
1494                case MSR_IA32_ARCH_CAPABILITIES:
1495                    has_msr_arch_capabs = true;
1496                    break;
1497                }
1498            }
1499        }
1500
1501        g_free(kvm_msr_list);
1502    }
1503
1504    return ret;
1505}
1506
1507static Notifier smram_machine_done;
1508static KVMMemoryListener smram_listener;
1509static AddressSpace smram_address_space;
1510static MemoryRegion smram_as_root;
1511static MemoryRegion smram_as_mem;
1512
1513static void register_smram_listener(Notifier *n, void *unused)
1514{
1515    MemoryRegion *smram =
1516        (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1517
1518    /* Outer container... */
1519    memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1520    memory_region_set_enabled(&smram_as_root, true);
1521
1522    /* ... with two regions inside: normal system memory with low
1523     * priority, and...
1524     */
1525    memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1526                             get_system_memory(), 0, ~0ull);
1527    memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1528    memory_region_set_enabled(&smram_as_mem, true);
1529
1530    if (smram) {
1531        /* ... SMRAM with higher priority */
1532        memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1533        memory_region_set_enabled(smram, true);
1534    }
1535
1536    address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1537    kvm_memory_listener_register(kvm_state, &smram_listener,
1538                                 &smram_address_space, 1);
1539}
1540
1541int kvm_arch_init(MachineState *ms, KVMState *s)
1542{
1543    uint64_t identity_base = 0xfffbc000;
1544    uint64_t shadow_mem;
1545    int ret;
1546    struct utsname utsname;
1547
1548    has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1549    has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1550    has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1551
1552    hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
1553
1554    ret = kvm_get_supported_msrs(s);
1555    if (ret < 0) {
1556        return ret;
1557    }
1558
1559    kvm_get_supported_feature_msrs(s);
1560
1561    uname(&utsname);
1562    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
1563
1564    /*
1565     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1566     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
1567     * Since these must be part of guest physical memory, we need to allocate
1568     * them, both by setting their start addresses in the kernel and by
1569     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1570     *
1571     * Older KVM versions may not support setting the identity map base. In
1572     * that case we need to stick with the default, i.e. a 256K maximum BIOS
1573     * size.
1574     */
1575    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
1576        /* Allows up to 16M BIOSes. */
1577        identity_base = 0xfeffc000;
1578
1579        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
1580        if (ret < 0) {
1581            return ret;
1582        }
1583    }
1584
1585    /* Set TSS base one page after EPT identity map. */
1586    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
1587    if (ret < 0) {
1588        return ret;
1589    }
1590
1591    /* Tell fw_cfg to notify the BIOS to reserve the range. */
1592    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
1593    if (ret < 0) {
1594        fprintf(stderr, "e820_add_entry() table is full\n");
1595        return ret;
1596    }
1597    qemu_register_reset(kvm_unpoison_all, NULL);
1598
1599    shadow_mem = machine_kvm_shadow_mem(ms);
1600    if (shadow_mem != -1) {
1601        shadow_mem /= 4096;
1602        ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
1603        if (ret < 0) {
1604            return ret;
1605        }
1606    }
1607
1608    if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
1609        object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
1610        pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
1611        smram_machine_done.notify = register_smram_listener;
1612        qemu_add_machine_init_done_notifier(&smram_machine_done);
1613    }
1614
1615    if (enable_cpu_pm) {
1616        int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
1617        int ret;
1618
1619/* Work around for kernel header with a typo. TODO: fix header and drop. */
1620#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
1621#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
1622#endif
1623        if (disable_exits) {
1624            disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
1625                              KVM_X86_DISABLE_EXITS_HLT |
1626                              KVM_X86_DISABLE_EXITS_PAUSE);
1627        }
1628
1629        ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
1630                                disable_exits);
1631        if (ret < 0) {
1632            error_report("kvm: guest stopping CPU not supported: %s",
1633                         strerror(-ret));
1634        }
1635    }
1636
1637    return 0;
1638}
1639
1640static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1641{
1642    lhs->selector = rhs->selector;
1643    lhs->base = rhs->base;
1644    lhs->limit = rhs->limit;
1645    lhs->type = 3;
1646    lhs->present = 1;
1647    lhs->dpl = 3;
1648    lhs->db = 0;
1649    lhs->s = 1;
1650    lhs->l = 0;
1651    lhs->g = 0;
1652    lhs->avl = 0;
1653    lhs->unusable = 0;
1654}
1655
1656static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1657{
1658    unsigned flags = rhs->flags;
1659    lhs->selector = rhs->selector;
1660    lhs->base = rhs->base;
1661    lhs->limit = rhs->limit;
1662    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
1663    lhs->present = (flags & DESC_P_MASK) != 0;
1664    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
1665    lhs->db = (flags >> DESC_B_SHIFT) & 1;
1666    lhs->s = (flags & DESC_S_MASK) != 0;
1667    lhs->l = (flags >> DESC_L_SHIFT) & 1;
1668    lhs->g = (flags & DESC_G_MASK) != 0;
1669    lhs->avl = (flags & DESC_AVL_MASK) != 0;
1670    lhs->unusable = !lhs->present;
1671    lhs->padding = 0;
1672}
1673
1674static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
1675{
1676    lhs->selector = rhs->selector;
1677    lhs->base = rhs->base;
1678    lhs->limit = rhs->limit;
1679    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
1680                 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
1681                 (rhs->dpl << DESC_DPL_SHIFT) |
1682                 (rhs->db << DESC_B_SHIFT) |
1683                 (rhs->s * DESC_S_MASK) |
1684                 (rhs->l << DESC_L_SHIFT) |
1685                 (rhs->g * DESC_G_MASK) |
1686                 (rhs->avl * DESC_AVL_MASK);
1687}
1688
1689static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
1690{
1691    if (set) {
1692        *kvm_reg = *qemu_reg;
1693    } else {
1694        *qemu_reg = *kvm_reg;
1695    }
1696}
1697
1698static int kvm_getput_regs(X86CPU *cpu, int set)
1699{
1700    CPUX86State *env = &cpu->env;
1701    struct kvm_regs regs;
1702    int ret = 0;
1703
1704    if (!set) {
1705        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
1706        if (ret < 0) {
1707            return ret;
1708        }
1709    }
1710
1711    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
1712    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
1713    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
1714    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
1715    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
1716    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
1717    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
1718    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
1719#ifdef TARGET_X86_64
1720    kvm_getput_reg(&regs.r8, &env->regs[8], set);
1721    kvm_getput_reg(&regs.r9, &env->regs[9], set);
1722    kvm_getput_reg(&regs.r10, &env->regs[10], set);
1723    kvm_getput_reg(&regs.r11, &env->regs[11], set);
1724    kvm_getput_reg(&regs.r12, &env->regs[12], set);
1725    kvm_getput_reg(&regs.r13, &env->regs[13], set);
1726    kvm_getput_reg(&regs.r14, &env->regs[14], set);
1727    kvm_getput_reg(&regs.r15, &env->regs[15], set);
1728#endif
1729
1730    kvm_getput_reg(&regs.rflags, &env->eflags, set);
1731    kvm_getput_reg(&regs.rip, &env->eip, set);
1732
1733    if (set) {
1734        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
1735    }
1736
1737    return ret;
1738}
1739
1740static int kvm_put_fpu(X86CPU *cpu)
1741{
1742    CPUX86State *env = &cpu->env;
1743    struct kvm_fpu fpu;
1744    int i;
1745
1746    memset(&fpu, 0, sizeof fpu);
1747    fpu.fsw = env->fpus & ~(7 << 11);
1748    fpu.fsw |= (env->fpstt & 7) << 11;
1749    fpu.fcw = env->fpuc;
1750    fpu.last_opcode = env->fpop;
1751    fpu.last_ip = env->fpip;
1752    fpu.last_dp = env->fpdp;
1753    for (i = 0; i < 8; ++i) {
1754        fpu.ftwx |= (!env->fptags[i]) << i;
1755    }
1756    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
1757    for (i = 0; i < CPU_NB_REGS; i++) {
1758        stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
1759        stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
1760    }
1761    fpu.mxcsr = env->mxcsr;
1762
1763    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
1764}
1765
1766#define XSAVE_FCW_FSW     0
1767#define XSAVE_FTW_FOP     1
1768#define XSAVE_CWD_RIP     2
1769#define XSAVE_CWD_RDP     4
1770#define XSAVE_MXCSR       6
1771#define XSAVE_ST_SPACE    8
1772#define XSAVE_XMM_SPACE   40
1773#define XSAVE_XSTATE_BV   128
1774#define XSAVE_YMMH_SPACE  144
1775#define XSAVE_BNDREGS     240
1776#define XSAVE_BNDCSR      256
1777#define XSAVE_OPMASK      272
1778#define XSAVE_ZMM_Hi256   288
1779#define XSAVE_Hi16_ZMM    416
1780#define XSAVE_PKRU        672
1781
1782#define XSAVE_BYTE_OFFSET(word_offset) \
1783    ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
1784
1785#define ASSERT_OFFSET(word_offset, field) \
1786    QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1787                      offsetof(X86XSaveArea, field))
1788
1789ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
1790ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
1791ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
1792ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
1793ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
1794ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
1795ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
1796ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
1797ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
1798ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
1799ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
1800ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
1801ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
1802ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
1803ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
1804
1805static int kvm_put_xsave(X86CPU *cpu)
1806{
1807    CPUX86State *env = &cpu->env;
1808    X86XSaveArea *xsave = env->xsave_buf;
1809
1810    if (!has_xsave) {
1811        return kvm_put_fpu(cpu);
1812    }
1813    x86_cpu_xsave_all_areas(cpu, xsave);
1814
1815    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
1816}
1817
1818static int kvm_put_xcrs(X86CPU *cpu)
1819{
1820    CPUX86State *env = &cpu->env;
1821    struct kvm_xcrs xcrs = {};
1822
1823    if (!has_xcrs) {
1824        return 0;
1825    }
1826
1827    xcrs.nr_xcrs = 1;
1828    xcrs.flags = 0;
1829    xcrs.xcrs[0].xcr = 0;
1830    xcrs.xcrs[0].value = env->xcr0;
1831    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1832}
1833
1834static int kvm_put_sregs(X86CPU *cpu)
1835{
1836    CPUX86State *env = &cpu->env;
1837    struct kvm_sregs sregs;
1838
1839    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1840    if (env->interrupt_injected >= 0) {
1841        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1842                (uint64_t)1 << (env->interrupt_injected % 64);
1843    }
1844
1845    if ((env->eflags & VM_MASK)) {
1846        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1847        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1848        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1849        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1850        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1851        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1852    } else {
1853        set_seg(&sregs.cs, &env->segs[R_CS]);
1854        set_seg(&sregs.ds, &env->segs[R_DS]);
1855        set_seg(&sregs.es, &env->segs[R_ES]);
1856        set_seg(&sregs.fs, &env->segs[R_FS]);
1857        set_seg(&sregs.gs, &env->segs[R_GS]);
1858        set_seg(&sregs.ss, &env->segs[R_SS]);
1859    }
1860
1861    set_seg(&sregs.tr, &env->tr);
1862    set_seg(&sregs.ldt, &env->ldt);
1863
1864    sregs.idt.limit = env->idt.limit;
1865    sregs.idt.base = env->idt.base;
1866    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1867    sregs.gdt.limit = env->gdt.limit;
1868    sregs.gdt.base = env->gdt.base;
1869    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1870
1871    sregs.cr0 = env->cr[0];
1872    sregs.cr2 = env->cr[2];
1873    sregs.cr3 = env->cr[3];
1874    sregs.cr4 = env->cr[4];
1875
1876    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1877    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
1878
1879    sregs.efer = env->efer;
1880
1881    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1882}
1883
1884static void kvm_msr_buf_reset(X86CPU *cpu)
1885{
1886    memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
1887}
1888
1889static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
1890{
1891    struct kvm_msrs *msrs = cpu->kvm_msr_buf;
1892    void *limit = ((void *)msrs) + MSR_BUF_SIZE;
1893    struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
1894
1895    assert((void *)(entry + 1) <= limit);
1896
1897    entry->index = index;
1898    entry->reserved = 0;
1899    entry->data = value;
1900    msrs->nmsrs++;
1901}
1902
1903static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
1904{
1905    kvm_msr_buf_reset(cpu);
1906    kvm_msr_entry_add(cpu, index, value);
1907
1908    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
1909}
1910
1911void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
1912{
1913    int ret;
1914
1915    ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
1916    assert(ret == 1);
1917}
1918
1919static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1920{
1921    CPUX86State *env = &cpu->env;
1922    int ret;
1923
1924    if (!has_msr_tsc_deadline) {
1925        return 0;
1926    }
1927
1928    ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1929    if (ret < 0) {
1930        return ret;
1931    }
1932
1933    assert(ret == 1);
1934    return 0;
1935}
1936
1937/*
1938 * Provide a separate write service for the feature control MSR in order to
1939 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1940 * before writing any other state because forcibly leaving nested mode
1941 * invalidates the VCPU state.
1942 */
1943static int kvm_put_msr_feature_control(X86CPU *cpu)
1944{
1945    int ret;
1946
1947    if (!has_msr_feature_control) {
1948        return 0;
1949    }
1950
1951    ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
1952                          cpu->env.msr_ia32_feature_control);
1953    if (ret < 0) {
1954        return ret;
1955    }
1956
1957    assert(ret == 1);
1958    return 0;
1959}
1960
1961static int kvm_put_msrs(X86CPU *cpu, int level)
1962{
1963    CPUX86State *env = &cpu->env;
1964    int i;
1965    int ret;
1966
1967    kvm_msr_buf_reset(cpu);
1968
1969    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1970    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1971    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1972    kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
1973    if (has_msr_star) {
1974        kvm_msr_entry_add(cpu, MSR_STAR, env->star);
1975    }
1976    if (has_msr_hsave_pa) {
1977        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
1978    }
1979    if (has_msr_tsc_aux) {
1980        kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
1981    }
1982    if (has_msr_tsc_adjust) {
1983        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
1984    }
1985    if (has_msr_misc_enable) {
1986        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
1987                          env->msr_ia32_misc_enable);
1988    }
1989    if (has_msr_smbase) {
1990        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
1991    }
1992    if (has_msr_smi_count) {
1993        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
1994    }
1995    if (has_msr_bndcfgs) {
1996        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1997    }
1998    if (has_msr_xss) {
1999        kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2000    }
2001    if (has_msr_spec_ctrl) {
2002        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2003    }
2004    if (has_msr_virt_ssbd) {
2005        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2006    }
2007
2008#ifdef TARGET_X86_64
2009    if (lm_capable_kernel) {
2010        kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2011        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2012        kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2013        kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2014    }
2015#endif
2016
2017    /* If host supports feature MSR, write down. */
2018    if (has_msr_arch_capabs) {
2019        kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2020                          env->features[FEAT_ARCH_CAPABILITIES]);
2021    }
2022
2023    /*
2024     * The following MSRs have side effects on the guest or are too heavy
2025     * for normal writeback. Limit them to reset or full state updates.
2026     */
2027    if (level >= KVM_PUT_RESET_STATE) {
2028        kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2029        kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2030        kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2031        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2032            kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2033        }
2034        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2035            kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2036        }
2037        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2038            kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2039        }
2040        if (has_architectural_pmu_version > 0) {
2041            if (has_architectural_pmu_version > 1) {
2042                /* Stop the counter.  */
2043                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2044                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2045            }
2046
2047            /* Set the counter values.  */
2048            for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2049                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2050                                  env->msr_fixed_counters[i]);
2051            }
2052            for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2053                kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2054                                  env->msr_gp_counters[i]);
2055                kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2056                                  env->msr_gp_evtsel[i]);
2057            }
2058            if (has_architectural_pmu_version > 1) {
2059                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2060                                  env->msr_global_status);
2061                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2062                                  env->msr_global_ovf_ctrl);
2063
2064                /* Now start the PMU.  */
2065                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2066                                  env->msr_fixed_ctr_ctrl);
2067                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2068                                  env->msr_global_ctrl);
2069            }
2070        }
2071        /*
2072         * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2073         * only sync them to KVM on the first cpu
2074         */
2075        if (current_cpu == first_cpu) {
2076            if (has_msr_hv_hypercall) {
2077                kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2078                                  env->msr_hv_guest_os_id);
2079                kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2080                                  env->msr_hv_hypercall);
2081            }
2082            if (cpu->hyperv_time) {
2083                kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2084                                  env->msr_hv_tsc);
2085            }
2086            if (cpu->hyperv_reenlightenment) {
2087                kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2088                                  env->msr_hv_reenlightenment_control);
2089                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2090                                  env->msr_hv_tsc_emulation_control);
2091                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2092                                  env->msr_hv_tsc_emulation_status);
2093            }
2094        }
2095        if (cpu->hyperv_vapic) {
2096            kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2097                              env->msr_hv_vapic);
2098        }
2099        if (has_msr_hv_crash) {
2100            int j;
2101
2102            for (j = 0; j < HV_CRASH_PARAMS; j++)
2103                kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2104                                  env->msr_hv_crash_params[j]);
2105
2106            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2107        }
2108        if (has_msr_hv_runtime) {
2109            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2110        }
2111        if (cpu->hyperv_vpindex && hv_vpindex_settable) {
2112            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2113                              hyperv_vp_index(CPU(cpu)));
2114        }
2115        if (cpu->hyperv_synic) {
2116            int j;
2117
2118            kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2119
2120            kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2121                              env->msr_hv_synic_control);
2122            kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2123                              env->msr_hv_synic_evt_page);
2124            kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2125                              env->msr_hv_synic_msg_page);
2126
2127            for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2128                kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2129                                  env->msr_hv_synic_sint[j]);
2130            }
2131        }
2132        if (has_msr_hv_stimer) {
2133            int j;
2134
2135            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2136                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2137                                env->msr_hv_stimer_config[j]);
2138            }
2139
2140            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2141                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2142                                env->msr_hv_stimer_count[j]);
2143            }
2144        }
2145        if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2146            uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2147
2148            kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2149            kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2150            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2151            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2152            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2153            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2154            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2155            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2156            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2157            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2158            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2159            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2160            for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2161                /* The CPU GPs if we write to a bit above the physical limit of
2162                 * the host CPU (and KVM emulates that)
2163                 */
2164                uint64_t mask = env->mtrr_var[i].mask;
2165                mask &= phys_mask;
2166
2167                kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2168                                  env->mtrr_var[i].base);
2169                kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2170            }
2171        }
2172        if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2173            int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2174                                                    0x14, 1, R_EAX) & 0x7;
2175
2176            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2177                            env->msr_rtit_ctrl);
2178            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2179                            env->msr_rtit_status);
2180            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2181                            env->msr_rtit_output_base);
2182            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2183                            env->msr_rtit_output_mask);
2184            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2185                            env->msr_rtit_cr3_match);
2186            for (i = 0; i < addr_num; i++) {
2187                kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2188                            env->msr_rtit_addrs[i]);
2189            }
2190        }
2191
2192        /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2193         *       kvm_put_msr_feature_control. */
2194    }
2195    if (env->mcg_cap) {
2196        int i;
2197
2198        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2199        kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2200        if (has_msr_mcg_ext_ctl) {
2201            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2202        }
2203        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2204            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2205        }
2206    }
2207
2208    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2209    if (ret < 0) {
2210        return ret;
2211    }
2212
2213    if (ret < cpu->kvm_msr_buf->nmsrs) {
2214        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2215        error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2216                     (uint32_t)e->index, (uint64_t)e->data);
2217    }
2218
2219    assert(ret == cpu->kvm_msr_buf->nmsrs);
2220    return 0;
2221}
2222
2223
2224static int kvm_get_fpu(X86CPU *cpu)
2225{
2226    CPUX86State *env = &cpu->env;
2227    struct kvm_fpu fpu;
2228    int i, ret;
2229
2230    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
2231    if (ret < 0) {
2232        return ret;
2233    }
2234
2235    env->fpstt = (fpu.fsw >> 11) & 7;
2236    env->fpus = fpu.fsw;
2237    env->fpuc = fpu.fcw;
2238    env->fpop = fpu.last_opcode;
2239    env->fpip = fpu.last_ip;
2240    env->fpdp = fpu.last_dp;
2241    for (i = 0; i < 8; ++i) {
2242        env->fptags[i] = !((fpu.ftwx >> i) & 1);
2243    }
2244    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
2245    for (i = 0; i < CPU_NB_REGS; i++) {
2246        env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2247        env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
2248    }
2249    env->mxcsr = fpu.mxcsr;
2250
2251    return 0;
2252}
2253
2254static int kvm_get_xsave(X86CPU *cpu)
2255{
2256    CPUX86State *env = &cpu->env;
2257    X86XSaveArea *xsave = env->xsave_buf;
2258    int ret;
2259
2260    if (!has_xsave) {
2261        return kvm_get_fpu(cpu);
2262    }
2263
2264    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
2265    if (ret < 0) {
2266        return ret;
2267    }
2268    x86_cpu_xrstor_all_areas(cpu, xsave);
2269
2270    return 0;
2271}
2272
2273static int kvm_get_xcrs(X86CPU *cpu)
2274{
2275    CPUX86State *env = &cpu->env;
2276    int i, ret;
2277    struct kvm_xcrs xcrs;
2278
2279    if (!has_xcrs) {
2280        return 0;
2281    }
2282
2283    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
2284    if (ret < 0) {
2285        return ret;
2286    }
2287
2288    for (i = 0; i < xcrs.nr_xcrs; i++) {
2289        /* Only support xcr0 now */
2290        if (xcrs.xcrs[i].xcr == 0) {
2291            env->xcr0 = xcrs.xcrs[i].value;
2292            break;
2293        }
2294    }
2295    return 0;
2296}
2297
2298static int kvm_get_sregs(X86CPU *cpu)
2299{
2300    CPUX86State *env = &cpu->env;
2301    struct kvm_sregs sregs;
2302    int bit, i, ret;
2303
2304    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
2305    if (ret < 0) {
2306        return ret;
2307    }
2308
2309    /* There can only be one pending IRQ set in the bitmap at a time, so try
2310       to find it and save its number instead (-1 for none). */
2311    env->interrupt_injected = -1;
2312    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
2313        if (sregs.interrupt_bitmap[i]) {
2314            bit = ctz64(sregs.interrupt_bitmap[i]);
2315            env->interrupt_injected = i * 64 + bit;
2316            break;
2317        }
2318    }
2319
2320    get_seg(&env->segs[R_CS], &sregs.cs);
2321    get_seg(&env->segs[R_DS], &sregs.ds);
2322    get_seg(&env->segs[R_ES], &sregs.es);
2323    get_seg(&env->segs[R_FS], &sregs.fs);
2324    get_seg(&env->segs[R_GS], &sregs.gs);
2325    get_seg(&env->segs[R_SS], &sregs.ss);
2326
2327    get_seg(&env->tr, &sregs.tr);
2328    get_seg(&env->ldt, &sregs.ldt);
2329
2330    env->idt.limit = sregs.idt.limit;
2331    env->idt.base = sregs.idt.base;
2332    env->gdt.limit = sregs.gdt.limit;
2333    env->gdt.base = sregs.gdt.base;
2334
2335    env->cr[0] = sregs.cr0;
2336    env->cr[2] = sregs.cr2;
2337    env->cr[3] = sregs.cr3;
2338    env->cr[4] = sregs.cr4;
2339
2340    env->efer = sregs.efer;
2341
2342    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
2343    x86_update_hflags(env);
2344
2345    return 0;
2346}
2347
2348static int kvm_get_msrs(X86CPU *cpu)
2349{
2350    CPUX86State *env = &cpu->env;
2351    struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
2352    int ret, i;
2353    uint64_t mtrr_top_bits;
2354
2355    kvm_msr_buf_reset(cpu);
2356
2357    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
2358    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
2359    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
2360    kvm_msr_entry_add(cpu, MSR_PAT, 0);
2361    if (has_msr_star) {
2362        kvm_msr_entry_add(cpu, MSR_STAR, 0);
2363    }
2364    if (has_msr_hsave_pa) {
2365        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
2366    }
2367    if (has_msr_tsc_aux) {
2368        kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
2369    }
2370    if (has_msr_tsc_adjust) {
2371        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
2372    }
2373    if (has_msr_tsc_deadline) {
2374        kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
2375    }
2376    if (has_msr_misc_enable) {
2377        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
2378    }
2379    if (has_msr_smbase) {
2380        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
2381    }
2382    if (has_msr_smi_count) {
2383        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
2384    }
2385    if (has_msr_feature_control) {
2386        kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
2387    }
2388    if (has_msr_bndcfgs) {
2389        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
2390    }
2391    if (has_msr_xss) {
2392        kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
2393    }
2394    if (has_msr_spec_ctrl) {
2395        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
2396    }
2397    if (has_msr_virt_ssbd) {
2398        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
2399    }
2400    if (!env->tsc_valid) {
2401        kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
2402        env->tsc_valid = !runstate_is_running();
2403    }
2404
2405#ifdef TARGET_X86_64
2406    if (lm_capable_kernel) {
2407        kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
2408        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
2409        kvm_msr_entry_add(cpu, MSR_FMASK, 0);
2410        kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
2411    }
2412#endif
2413    kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
2414    kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
2415    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2416        kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
2417    }
2418    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2419        kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
2420    }
2421    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2422        kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
2423    }
2424    if (has_architectural_pmu_version > 0) {
2425        if (has_architectural_pmu_version > 1) {
2426            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2427            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2428            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
2429            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
2430        }
2431        for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2432            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
2433        }
2434        for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2435            kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
2436            kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
2437        }
2438    }
2439
2440    if (env->mcg_cap) {
2441        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
2442        kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
2443        if (has_msr_mcg_ext_ctl) {
2444            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
2445        }
2446        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2447            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
2448        }
2449    }
2450
2451    if (has_msr_hv_hypercall) {
2452        kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
2453        kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
2454    }
2455    if (cpu->hyperv_vapic) {
2456        kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
2457    }
2458    if (cpu->hyperv_time) {
2459        kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
2460    }
2461    if (cpu->hyperv_reenlightenment) {
2462        kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
2463        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
2464        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
2465    }
2466    if (has_msr_hv_crash) {
2467        int j;
2468
2469        for (j = 0; j < HV_CRASH_PARAMS; j++) {
2470            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
2471        }
2472    }
2473    if (has_msr_hv_runtime) {
2474        kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
2475    }
2476    if (cpu->hyperv_synic) {
2477        uint32_t msr;
2478
2479        kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
2480        kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
2481        kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
2482        for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
2483            kvm_msr_entry_add(cpu, msr, 0);
2484        }
2485    }
2486    if (has_msr_hv_stimer) {
2487        uint32_t msr;
2488
2489        for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2490             msr++) {
2491            kvm_msr_entry_add(cpu, msr, 0);
2492        }
2493    }
2494    if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2495        kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
2496        kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
2497        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
2498        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
2499        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
2500        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
2501        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
2502        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
2503        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
2504        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
2505        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
2506        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
2507        for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2508            kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
2509            kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
2510        }
2511    }
2512
2513    if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2514        int addr_num =
2515            kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
2516
2517        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
2518        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
2519        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
2520        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
2521        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
2522        for (i = 0; i < addr_num; i++) {
2523            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
2524        }
2525    }
2526
2527    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
2528    if (ret < 0) {
2529        return ret;
2530    }
2531
2532    if (ret < cpu->kvm_msr_buf->nmsrs) {
2533        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2534        error_report("error: failed to get MSR 0x%" PRIx32,
2535                     (uint32_t)e->index);
2536    }
2537
2538    assert(ret == cpu->kvm_msr_buf->nmsrs);
2539    /*
2540     * MTRR masks: Each mask consists of 5 parts
2541     * a  10..0: must be zero
2542     * b  11   : valid bit
2543     * c n-1.12: actual mask bits
2544     * d  51..n: reserved must be zero
2545     * e  63.52: reserved must be zero
2546     *
2547     * 'n' is the number of physical bits supported by the CPU and is
2548     * apparently always <= 52.   We know our 'n' but don't know what
2549     * the destinations 'n' is; it might be smaller, in which case
2550     * it masks (c) on loading. It might be larger, in which case
2551     * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2552     * we're migrating to.
2553     */
2554
2555    if (cpu->fill_mtrr_mask) {
2556        QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
2557        assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
2558        mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
2559    } else {
2560        mtrr_top_bits = 0;
2561    }
2562
2563    for (i = 0; i < ret; i++) {
2564        uint32_t index = msrs[i].index;
2565        switch (index) {
2566        case MSR_IA32_SYSENTER_CS:
2567            env->sysenter_cs = msrs[i].data;
2568            break;
2569        case MSR_IA32_SYSENTER_ESP:
2570            env->sysenter_esp = msrs[i].data;
2571            break;
2572        case MSR_IA32_SYSENTER_EIP:
2573            env->sysenter_eip = msrs[i].data;
2574            break;
2575        case MSR_PAT:
2576            env->pat = msrs[i].data;
2577            break;
2578        case MSR_STAR:
2579            env->star = msrs[i].data;
2580            break;
2581#ifdef TARGET_X86_64
2582        case MSR_CSTAR:
2583            env->cstar = msrs[i].data;
2584            break;
2585        case MSR_KERNELGSBASE:
2586            env->kernelgsbase = msrs[i].data;
2587            break;
2588        case MSR_FMASK:
2589            env->fmask = msrs[i].data;
2590            break;
2591        case MSR_LSTAR:
2592            env->lstar = msrs[i].data;
2593            break;
2594#endif
2595        case MSR_IA32_TSC:
2596            env->tsc = msrs[i].data;
2597            break;
2598        case MSR_TSC_AUX:
2599            env->tsc_aux = msrs[i].data;
2600            break;
2601        case MSR_TSC_ADJUST:
2602            env->tsc_adjust = msrs[i].data;
2603            break;
2604        case MSR_IA32_TSCDEADLINE:
2605            env->tsc_deadline = msrs[i].data;
2606            break;
2607        case MSR_VM_HSAVE_PA:
2608            env->vm_hsave = msrs[i].data;
2609            break;
2610        case MSR_KVM_SYSTEM_TIME:
2611            env->system_time_msr = msrs[i].data;
2612            break;
2613        case MSR_KVM_WALL_CLOCK:
2614            env->wall_clock_msr = msrs[i].data;
2615            break;
2616        case MSR_MCG_STATUS:
2617            env->mcg_status = msrs[i].data;
2618            break;
2619        case MSR_MCG_CTL:
2620            env->mcg_ctl = msrs[i].data;
2621            break;
2622        case MSR_MCG_EXT_CTL:
2623            env->mcg_ext_ctl = msrs[i].data;
2624            break;
2625        case MSR_IA32_MISC_ENABLE:
2626            env->msr_ia32_misc_enable = msrs[i].data;
2627            break;
2628        case MSR_IA32_SMBASE:
2629            env->smbase = msrs[i].data;
2630            break;
2631        case MSR_SMI_COUNT:
2632            env->msr_smi_count = msrs[i].data;
2633            break;
2634        case MSR_IA32_FEATURE_CONTROL:
2635            env->msr_ia32_feature_control = msrs[i].data;
2636            break;
2637        case MSR_IA32_BNDCFGS:
2638            env->msr_bndcfgs = msrs[i].data;
2639            break;
2640        case MSR_IA32_XSS:
2641            env->xss = msrs[i].data;
2642            break;
2643        default:
2644            if (msrs[i].index >= MSR_MC0_CTL &&
2645                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
2646                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
2647            }
2648            break;
2649        case MSR_KVM_ASYNC_PF_EN:
2650            env->async_pf_en_msr = msrs[i].data;
2651            break;
2652        case MSR_KVM_PV_EOI_EN:
2653            env->pv_eoi_en_msr = msrs[i].data;
2654            break;
2655        case MSR_KVM_STEAL_TIME:
2656            env->steal_time_msr = msrs[i].data;
2657            break;
2658        case MSR_CORE_PERF_FIXED_CTR_CTRL:
2659            env->msr_fixed_ctr_ctrl = msrs[i].data;
2660            break;
2661        case MSR_CORE_PERF_GLOBAL_CTRL:
2662            env->msr_global_ctrl = msrs[i].data;
2663            break;
2664        case MSR_CORE_PERF_GLOBAL_STATUS:
2665            env->msr_global_status = msrs[i].data;
2666            break;
2667        case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
2668            env->msr_global_ovf_ctrl = msrs[i].data;
2669            break;
2670        case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
2671            env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
2672            break;
2673        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
2674            env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
2675            break;
2676        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
2677            env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
2678            break;
2679        case HV_X64_MSR_HYPERCALL:
2680            env->msr_hv_hypercall = msrs[i].data;
2681            break;
2682        case HV_X64_MSR_GUEST_OS_ID:
2683            env->msr_hv_guest_os_id = msrs[i].data;
2684            break;
2685        case HV_X64_MSR_APIC_ASSIST_PAGE:
2686            env->msr_hv_vapic = msrs[i].data;
2687            break;
2688        case HV_X64_MSR_REFERENCE_TSC:
2689            env->msr_hv_tsc = msrs[i].data;
2690            break;
2691        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2692            env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
2693            break;
2694        case HV_X64_MSR_VP_RUNTIME:
2695            env->msr_hv_runtime = msrs[i].data;
2696            break;
2697        case HV_X64_MSR_SCONTROL:
2698            env->msr_hv_synic_control = msrs[i].data;
2699            break;
2700        case HV_X64_MSR_SIEFP:
2701            env->msr_hv_synic_evt_page = msrs[i].data;
2702            break;
2703        case HV_X64_MSR_SIMP:
2704            env->msr_hv_synic_msg_page = msrs[i].data;
2705            break;
2706        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
2707            env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
2708            break;
2709        case HV_X64_MSR_STIMER0_CONFIG:
2710        case HV_X64_MSR_STIMER1_CONFIG:
2711        case HV_X64_MSR_STIMER2_CONFIG:
2712        case HV_X64_MSR_STIMER3_CONFIG:
2713            env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
2714                                msrs[i].data;
2715            break;
2716        case HV_X64_MSR_STIMER0_COUNT:
2717        case HV_X64_MSR_STIMER1_COUNT:
2718        case HV_X64_MSR_STIMER2_COUNT:
2719        case HV_X64_MSR_STIMER3_COUNT:
2720            env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
2721                                msrs[i].data;
2722            break;
2723        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2724            env->msr_hv_reenlightenment_control = msrs[i].data;
2725            break;
2726        case HV_X64_MSR_TSC_EMULATION_CONTROL:
2727            env->msr_hv_tsc_emulation_control = msrs[i].data;
2728            break;
2729        case HV_X64_MSR_TSC_EMULATION_STATUS:
2730            env->msr_hv_tsc_emulation_status = msrs[i].data;
2731            break;
2732        case MSR_MTRRdefType:
2733            env->mtrr_deftype = msrs[i].data;
2734            break;
2735        case MSR_MTRRfix64K_00000:
2736            env->mtrr_fixed[0] = msrs[i].data;
2737            break;
2738        case MSR_MTRRfix16K_80000:
2739            env->mtrr_fixed[1] = msrs[i].data;
2740            break;
2741        case MSR_MTRRfix16K_A0000:
2742            env->mtrr_fixed[2] = msrs[i].data;
2743            break;
2744        case MSR_MTRRfix4K_C0000:
2745            env->mtrr_fixed[3] = msrs[i].data;
2746            break;
2747        case MSR_MTRRfix4K_C8000:
2748            env->mtrr_fixed[4] = msrs[i].data;
2749            break;
2750        case MSR_MTRRfix4K_D0000:
2751            env->mtrr_fixed[5] = msrs[i].data;
2752            break;
2753        case MSR_MTRRfix4K_D8000:
2754            env->mtrr_fixed[6] = msrs[i].data;
2755            break;
2756        case MSR_MTRRfix4K_E0000:
2757            env->mtrr_fixed[7] = msrs[i].data;
2758            break;
2759        case MSR_MTRRfix4K_E8000:
2760            env->mtrr_fixed[8] = msrs[i].data;
2761            break;
2762        case MSR_MTRRfix4K_F0000:
2763            env->mtrr_fixed[9] = msrs[i].data;
2764            break;
2765        case MSR_MTRRfix4K_F8000:
2766            env->mtrr_fixed[10] = msrs[i].data;
2767            break;
2768        case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
2769            if (index & 1) {
2770                env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
2771                                                               mtrr_top_bits;
2772            } else {
2773                env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
2774            }
2775            break;
2776        case MSR_IA32_SPEC_CTRL:
2777            env->spec_ctrl = msrs[i].data;
2778            break;
2779        case MSR_VIRT_SSBD:
2780            env->virt_ssbd = msrs[i].data;
2781            break;
2782        case MSR_IA32_RTIT_CTL:
2783            env->msr_rtit_ctrl = msrs[i].data;
2784            break;
2785        case MSR_IA32_RTIT_STATUS:
2786            env->msr_rtit_status = msrs[i].data;
2787            break;
2788        case MSR_IA32_RTIT_OUTPUT_BASE:
2789            env->msr_rtit_output_base = msrs[i].data;
2790            break;
2791        case MSR_IA32_RTIT_OUTPUT_MASK:
2792            env->msr_rtit_output_mask = msrs[i].data;
2793            break;
2794        case MSR_IA32_RTIT_CR3_MATCH:
2795            env->msr_rtit_cr3_match = msrs[i].data;
2796            break;
2797        case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2798            env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
2799            break;
2800        }
2801    }
2802
2803    return 0;
2804}
2805
2806static int kvm_put_mp_state(X86CPU *cpu)
2807{
2808    struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
2809
2810    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2811}
2812
2813static int kvm_get_mp_state(X86CPU *cpu)
2814{
2815    CPUState *cs = CPU(cpu);
2816    CPUX86State *env = &cpu->env;
2817    struct kvm_mp_state mp_state;
2818    int ret;
2819
2820    ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
2821    if (ret < 0) {
2822        return ret;
2823    }
2824    env->mp_state = mp_state.mp_state;
2825    if (kvm_irqchip_in_kernel()) {
2826        cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
2827    }
2828    return 0;
2829}
2830
2831static int kvm_get_apic(X86CPU *cpu)
2832{
2833    DeviceState *apic = cpu->apic_state;
2834    struct kvm_lapic_state kapic;
2835    int ret;
2836
2837    if (apic && kvm_irqchip_in_kernel()) {
2838        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
2839        if (ret < 0) {
2840            return ret;
2841        }
2842
2843        kvm_get_apic_state(apic, &kapic);
2844    }
2845    return 0;
2846}
2847
2848static int kvm_put_vcpu_events(X86CPU *cpu, int level)
2849{
2850    CPUState *cs = CPU(cpu);
2851    CPUX86State *env = &cpu->env;
2852    struct kvm_vcpu_events events = {};
2853
2854    if (!kvm_has_vcpu_events()) {
2855        return 0;
2856    }
2857
2858    events.exception.injected = (env->exception_injected >= 0);
2859    events.exception.nr = env->exception_injected;
2860    events.exception.has_error_code = env->has_error_code;
2861    events.exception.error_code = env->error_code;
2862
2863    events.interrupt.injected = (env->interrupt_injected >= 0);
2864    events.interrupt.nr = env->interrupt_injected;
2865    events.interrupt.soft = env->soft_interrupt;
2866
2867    events.nmi.injected = env->nmi_injected;
2868    events.nmi.pending = env->nmi_pending;
2869    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
2870
2871    events.sipi_vector = env->sipi_vector;
2872    events.flags = 0;
2873
2874    if (has_msr_smbase) {
2875        events.smi.smm = !!(env->hflags & HF_SMM_MASK);
2876        events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
2877        if (kvm_irqchip_in_kernel()) {
2878            /* As soon as these are moved to the kernel, remove them
2879             * from cs->interrupt_request.
2880             */
2881            events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
2882            events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
2883            cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
2884        } else {
2885            /* Keep these in cs->interrupt_request.  */
2886            events.smi.pending = 0;
2887            events.smi.latched_init = 0;
2888        }
2889        /* Stop SMI delivery on old machine types to avoid a reboot
2890         * on an inward migration of an old VM.
2891         */
2892        if (!cpu->kvm_no_smi_migration) {
2893            events.flags |= KVM_VCPUEVENT_VALID_SMM;
2894        }
2895    }
2896
2897    if (level >= KVM_PUT_RESET_STATE) {
2898        events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
2899        if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
2900            events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
2901        }
2902    }
2903
2904    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
2905}
2906
2907static int kvm_get_vcpu_events(X86CPU *cpu)
2908{
2909    CPUX86State *env = &cpu->env;
2910    struct kvm_vcpu_events events;
2911    int ret;
2912
2913    if (!kvm_has_vcpu_events()) {
2914        return 0;
2915    }
2916
2917    memset(&events, 0, sizeof(events));
2918    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
2919    if (ret < 0) {
2920       return ret;
2921    }
2922    env->exception_injected =
2923       events.exception.injected ? events.exception.nr : -1;
2924    env->has_error_code = events.exception.has_error_code;
2925    env->error_code = events.exception.error_code;
2926
2927    env->interrupt_injected =
2928        events.interrupt.injected ? events.interrupt.nr : -1;
2929    env->soft_interrupt = events.interrupt.soft;
2930
2931    env->nmi_injected = events.nmi.injected;
2932    env->nmi_pending = events.nmi.pending;
2933    if (events.nmi.masked) {
2934        env->hflags2 |= HF2_NMI_MASK;
2935    } else {
2936        env->hflags2 &= ~HF2_NMI_MASK;
2937    }
2938
2939    if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
2940        if (events.smi.smm) {
2941            env->hflags |= HF_SMM_MASK;
2942        } else {
2943            env->hflags &= ~HF_SMM_MASK;
2944        }
2945        if (events.smi.pending) {
2946            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2947        } else {
2948            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2949        }
2950        if (events.smi.smm_inside_nmi) {
2951            env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
2952        } else {
2953            env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
2954        }
2955        if (events.smi.latched_init) {
2956            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2957        } else {
2958            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2959        }
2960    }
2961
2962    env->sipi_vector = events.sipi_vector;
2963
2964    return 0;
2965}
2966
2967static int kvm_guest_debug_workarounds(X86CPU *cpu)
2968{
2969    CPUState *cs = CPU(cpu);
2970    CPUX86State *env = &cpu->env;
2971    int ret = 0;
2972    unsigned long reinject_trap = 0;
2973
2974    if (!kvm_has_vcpu_events()) {
2975        if (env->exception_injected == 1) {
2976            reinject_trap = KVM_GUESTDBG_INJECT_DB;
2977        } else if (env->exception_injected == 3) {
2978            reinject_trap = KVM_GUESTDBG_INJECT_BP;
2979        }
2980        env->exception_injected = -1;
2981    }
2982
2983    /*
2984     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2985     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2986     * by updating the debug state once again if single-stepping is on.
2987     * Another reason to call kvm_update_guest_debug here is a pending debug
2988     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2989     * reinject them via SET_GUEST_DEBUG.
2990     */
2991    if (reinject_trap ||
2992        (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
2993        ret = kvm_update_guest_debug(cs, reinject_trap);
2994    }
2995    return ret;
2996}
2997
2998static int kvm_put_debugregs(X86CPU *cpu)
2999{
3000    CPUX86State *env = &cpu->env;
3001    struct kvm_debugregs dbgregs;
3002    int i;
3003
3004    if (!kvm_has_debugregs()) {
3005        return 0;
3006    }
3007
3008    for (i = 0; i < 4; i++) {
3009        dbgregs.db[i] = env->dr[i];
3010    }
3011    dbgregs.dr6 = env->dr[6];
3012    dbgregs.dr7 = env->dr[7];
3013    dbgregs.flags = 0;
3014
3015    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3016}
3017
3018static int kvm_get_debugregs(X86CPU *cpu)
3019{
3020    CPUX86State *env = &cpu->env;
3021    struct kvm_debugregs dbgregs;
3022    int i, ret;
3023
3024    if (!kvm_has_debugregs()) {
3025        return 0;
3026    }
3027
3028    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3029    if (ret < 0) {
3030        return ret;
3031    }
3032    for (i = 0; i < 4; i++) {
3033        env->dr[i] = dbgregs.db[i];
3034    }
3035    env->dr[4] = env->dr[6] = dbgregs.dr6;
3036    env->dr[5] = env->dr[7] = dbgregs.dr7;
3037
3038    return 0;
3039}
3040
3041int kvm_arch_put_registers(CPUState *cpu, int level)
3042{
3043    X86CPU *x86_cpu = X86_CPU(cpu);
3044    int ret;
3045
3046    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3047
3048    if (level >= KVM_PUT_RESET_STATE) {
3049        ret = kvm_put_msr_feature_control(x86_cpu);
3050        if (ret < 0) {
3051            return ret;
3052        }
3053    }
3054
3055    if (level == KVM_PUT_FULL_STATE) {
3056        /* We don't check for kvm_arch_set_tsc_khz() errors here,
3057         * because TSC frequency mismatch shouldn't abort migration,
3058         * unless the user explicitly asked for a more strict TSC
3059         * setting (e.g. using an explicit "tsc-freq" option).
3060         */
3061        kvm_arch_set_tsc_khz(cpu);
3062    }
3063
3064    ret = kvm_getput_regs(x86_cpu, 1);
3065    if (ret < 0) {
3066        return ret;
3067    }
3068    ret = kvm_put_xsave(x86_cpu);
3069    if (ret < 0) {
3070        return ret;
3071    }
3072    ret = kvm_put_xcrs(x86_cpu);
3073    if (ret < 0) {
3074        return ret;
3075    }
3076    ret = kvm_put_sregs(x86_cpu);
3077    if (ret < 0) {
3078        return ret;
3079    }
3080    /* must be before kvm_put_msrs */
3081    ret = kvm_inject_mce_oldstyle(x86_cpu);
3082    if (ret < 0) {
3083        return ret;
3084    }
3085    ret = kvm_put_msrs(x86_cpu, level);
3086    if (ret < 0) {
3087        return ret;
3088    }
3089    ret = kvm_put_vcpu_events(x86_cpu, level);
3090    if (ret < 0) {
3091        return ret;
3092    }
3093    if (level >= KVM_PUT_RESET_STATE) {
3094        ret = kvm_put_mp_state(x86_cpu);
3095        if (ret < 0) {
3096            return ret;
3097        }
3098    }
3099
3100    ret = kvm_put_tscdeadline_msr(x86_cpu);
3101    if (ret < 0) {
3102        return ret;
3103    }
3104    ret = kvm_put_debugregs(x86_cpu);
3105    if (ret < 0) {
3106        return ret;
3107    }
3108    /* must be last */
3109    ret = kvm_guest_debug_workarounds(x86_cpu);
3110    if (ret < 0) {
3111        return ret;
3112    }
3113    return 0;
3114}
3115
3116int kvm_arch_get_registers(CPUState *cs)
3117{
3118    X86CPU *cpu = X86_CPU(cs);
3119    int ret;
3120
3121    assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
3122
3123    ret = kvm_get_vcpu_events(cpu);
3124    if (ret < 0) {
3125        goto out;
3126    }
3127    /*
3128     * KVM_GET_MPSTATE can modify CS and RIP, call it before
3129     * KVM_GET_REGS and KVM_GET_SREGS.
3130     */
3131    ret = kvm_get_mp_state(cpu);
3132    if (ret < 0) {
3133        goto out;
3134    }
3135    ret = kvm_getput_regs(cpu, 0);
3136    if (ret < 0) {
3137        goto out;
3138    }
3139    ret = kvm_get_xsave(cpu);
3140    if (ret < 0) {
3141        goto out;
3142    }
3143    ret = kvm_get_xcrs(cpu);
3144    if (ret < 0) {
3145        goto out;
3146    }
3147    ret = kvm_get_sregs(cpu);
3148    if (ret < 0) {
3149        goto out;
3150    }
3151    ret = kvm_get_msrs(cpu);
3152    if (ret < 0) {
3153        goto out;
3154    }
3155    ret = kvm_get_apic(cpu);
3156    if (ret < 0) {
3157        goto out;
3158    }
3159    ret = kvm_get_debugregs(cpu);
3160    if (ret < 0) {
3161        goto out;
3162    }
3163    ret = 0;
3164 out:
3165    cpu_sync_bndcs_hflags(&cpu->env);
3166    return ret;
3167}
3168
3169void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
3170{
3171    X86CPU *x86_cpu = X86_CPU(cpu);
3172    CPUX86State *env = &x86_cpu->env;
3173    int ret;
3174
3175    /* Inject NMI */
3176    if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3177        if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3178            qemu_mutex_lock_iothread();
3179            cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3180            qemu_mutex_unlock_iothread();
3181            DPRINTF("injected NMI\n");
3182            ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
3183            if (ret < 0) {
3184                fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
3185                        strerror(-ret));
3186            }
3187        }
3188        if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
3189            qemu_mutex_lock_iothread();
3190            cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
3191            qemu_mutex_unlock_iothread();
3192            DPRINTF("injected SMI\n");
3193            ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
3194            if (ret < 0) {
3195                fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
3196                        strerror(-ret));
3197            }
3198        }
3199    }
3200
3201    if (!kvm_pic_in_kernel()) {
3202        qemu_mutex_lock_iothread();
3203    }
3204
3205    /* Force the VCPU out of its inner loop to process any INIT requests
3206     * or (for userspace APIC, but it is cheap to combine the checks here)
3207     * pending TPR access reports.
3208     */
3209    if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
3210        if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
3211            !(env->hflags & HF_SMM_MASK)) {
3212            cpu->exit_request = 1;
3213        }
3214        if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
3215            cpu->exit_request = 1;
3216        }
3217    }
3218
3219    if (!kvm_pic_in_kernel()) {
3220        /* Try to inject an interrupt if the guest can accept it */
3221        if (run->ready_for_interrupt_injection &&
3222            (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
3223            (env->eflags & IF_MASK)) {
3224            int irq;
3225
3226            cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
3227            irq = cpu_get_pic_interrupt(env);
3228            if (irq >= 0) {
3229                struct kvm_interrupt intr;
3230
3231                intr.irq = irq;
3232                DPRINTF("injected interrupt %d\n", irq);
3233                ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
3234                if (ret < 0) {
3235                    fprintf(stderr,
3236                            "KVM: injection failed, interrupt lost (%s)\n",
3237                            strerror(-ret));
3238                }
3239            }
3240        }
3241
3242        /* If we have an interrupt but the guest is not ready to receive an
3243         * interrupt, request an interrupt window exit.  This will
3244         * cause a return to userspace as soon as the guest is ready to
3245         * receive interrupts. */
3246        if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
3247            run->request_interrupt_window = 1;
3248        } else {
3249            run->request_interrupt_window = 0;
3250        }
3251
3252        DPRINTF("setting tpr\n");
3253        run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
3254
3255        qemu_mutex_unlock_iothread();
3256    }
3257}
3258
3259MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
3260{
3261    X86CPU *x86_cpu = X86_CPU(cpu);
3262    CPUX86State *env = &x86_cpu->env;
3263
3264    if (run->flags & KVM_RUN_X86_SMM) {
3265        env->hflags |= HF_SMM_MASK;
3266    } else {
3267        env->hflags &= ~HF_SMM_MASK;
3268    }
3269    if (run->if_flag) {
3270        env->eflags |= IF_MASK;
3271    } else {
3272        env->eflags &= ~IF_MASK;
3273    }
3274
3275    /* We need to protect the apic state against concurrent accesses from
3276     * different threads in case the userspace irqchip is used. */
3277    if (!kvm_irqchip_in_kernel()) {
3278        qemu_mutex_lock_iothread();
3279    }
3280    cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
3281    cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
3282    if (!kvm_irqchip_in_kernel()) {
3283        qemu_mutex_unlock_iothread();
3284    }
3285    return cpu_get_mem_attrs(env);
3286}
3287
3288int kvm_arch_process_async_events(CPUState *cs)
3289{
3290    X86CPU *cpu = X86_CPU(cs);
3291    CPUX86State *env = &cpu->env;
3292
3293    if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
3294        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
3295        assert(env->mcg_cap);
3296
3297        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
3298
3299        kvm_cpu_synchronize_state(cs);
3300
3301        if (env->exception_injected == EXCP08_DBLE) {
3302            /* this means triple fault */
3303            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3304            cs->exit_request = 1;
3305            return 0;
3306        }
3307        env->exception_injected = EXCP12_MCHK;
3308        env->has_error_code = 0;
3309
3310        cs->halted = 0;
3311        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
3312            env->mp_state = KVM_MP_STATE_RUNNABLE;
3313        }
3314    }
3315
3316    if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
3317        !(env->hflags & HF_SMM_MASK)) {
3318        kvm_cpu_synchronize_state(cs);
3319        do_cpu_init(cpu);
3320    }
3321
3322    if (kvm_irqchip_in_kernel()) {
3323        return 0;
3324    }
3325
3326    if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
3327        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
3328        apic_poll_irq(cpu->apic_state);
3329    }
3330    if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3331         (env->eflags & IF_MASK)) ||
3332        (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3333        cs->halted = 0;
3334    }
3335    if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
3336        kvm_cpu_synchronize_state(cs);
3337        do_cpu_sipi(cpu);
3338    }
3339    if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
3340        cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
3341        kvm_cpu_synchronize_state(cs);
3342        apic_handle_tpr_access_report(cpu->apic_state, env->eip,
3343                                      env->tpr_access_type);
3344    }
3345
3346    return cs->halted;
3347}
3348
3349static int kvm_handle_halt(X86CPU *cpu)
3350{
3351    CPUState *cs = CPU(cpu);
3352    CPUX86State *env = &cpu->env;
3353
3354    if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3355          (env->eflags & IF_MASK)) &&
3356        !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3357        cs->halted = 1;
3358        return EXCP_HLT;
3359    }
3360
3361    return 0;
3362}
3363
3364static int kvm_handle_tpr_access(X86CPU *cpu)
3365{
3366    CPUState *cs = CPU(cpu);
3367    struct kvm_run *run = cs->kvm_run;
3368
3369    apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
3370                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
3371                                                           : TPR_ACCESS_READ);
3372    return 1;
3373}
3374
3375int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3376{
3377    static const uint8_t int3 = 0xcc;
3378
3379    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
3380        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
3381        return -EINVAL;
3382    }
3383    return 0;
3384}
3385
3386int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3387{
3388    uint8_t int3;
3389
3390    if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
3391        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
3392        return -EINVAL;
3393    }
3394    return 0;
3395}
3396
3397static struct {
3398    target_ulong addr;
3399    int len;
3400    int type;
3401} hw_breakpoint[4];
3402
3403static int nb_hw_breakpoint;
3404
3405static int find_hw_breakpoint(target_ulong addr, int len, int type)
3406{
3407    int n;
3408
3409    for (n = 0; n < nb_hw_breakpoint; n++) {
3410        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
3411            (hw_breakpoint[n].len == len || len == -1)) {
3412            return n;
3413        }
3414    }
3415    return -1;
3416}
3417
3418int kvm_arch_insert_hw_breakpoint(target_ulong addr,
3419                                  target_ulong len, int type)
3420{
3421    switch (type) {
3422    case GDB_BREAKPOINT_HW:
3423        len = 1;
3424        break;
3425    case GDB_WATCHPOINT_WRITE:
3426    case GDB_WATCHPOINT_ACCESS:
3427        switch (len) {
3428        case 1:
3429            break;
3430        case 2:
3431        case 4:
3432        case 8:
3433            if (addr & (len - 1)) {
3434                return -EINVAL;
3435            }
3436            break;
3437        default:
3438            return -EINVAL;
3439        }
3440        break;
3441    default:
3442        return -ENOSYS;
3443    }
3444
3445    if (nb_hw_breakpoint == 4) {
3446        return -ENOBUFS;
3447    }
3448    if (find_hw_breakpoint(addr, len, type) >= 0) {
3449        return -EEXIST;
3450    }
3451    hw_breakpoint[nb_hw_breakpoint].addr = addr;
3452    hw_breakpoint[nb_hw_breakpoint].len = len;
3453    hw_breakpoint[nb_hw_breakpoint].type = type;
3454    nb_hw_breakpoint++;
3455
3456    return 0;
3457}
3458
3459int kvm_arch_remove_hw_breakpoint(target_ulong addr,
3460                                  target_ulong len, int type)
3461{
3462    int n;
3463
3464    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
3465    if (n < 0) {
3466        return -ENOENT;
3467    }
3468    nb_hw_breakpoint--;
3469    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
3470
3471    return 0;
3472}
3473
3474void kvm_arch_remove_all_hw_breakpoints(void)
3475{
3476    nb_hw_breakpoint = 0;
3477}
3478
3479static CPUWatchpoint hw_watchpoint;
3480
3481static int kvm_handle_debug(X86CPU *cpu,
3482                            struct kvm_debug_exit_arch *arch_info)
3483{
3484    CPUState *cs = CPU(cpu);
3485    CPUX86State *env = &cpu->env;
3486    int ret = 0;
3487    int n;
3488
3489    if (arch_info->exception == 1) {
3490        if (arch_info->dr6 & (1 << 14)) {
3491            if (cs->singlestep_enabled) {
3492                ret = EXCP_DEBUG;
3493            }
3494        } else {
3495            for (n = 0; n < 4; n++) {
3496                if (arch_info->dr6 & (1 << n)) {
3497                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
3498                    case 0x0:
3499                        ret = EXCP_DEBUG;
3500                        break;
3501                    case 0x1:
3502                        ret = EXCP_DEBUG;
3503                        cs->watchpoint_hit = &hw_watchpoint;
3504                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3505                        hw_watchpoint.flags = BP_MEM_WRITE;
3506                        break;
3507                    case 0x3:
3508                        ret = EXCP_DEBUG;
3509                        cs->watchpoint_hit = &hw_watchpoint;
3510                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3511                        hw_watchpoint.flags = BP_MEM_ACCESS;
3512                        break;
3513                    }
3514                }
3515            }
3516        }
3517    } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
3518        ret = EXCP_DEBUG;
3519    }
3520    if (ret == 0) {
3521        cpu_synchronize_state(cs);
3522        assert(env->exception_injected == -1);
3523
3524        /* pass to guest */
3525        env->exception_injected = arch_info->exception;
3526        env->has_error_code = 0;
3527    }
3528
3529    return ret;
3530}
3531
3532void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
3533{
3534    const uint8_t type_code[] = {
3535        [GDB_BREAKPOINT_HW] = 0x0,
3536        [GDB_WATCHPOINT_WRITE] = 0x1,
3537        [GDB_WATCHPOINT_ACCESS] = 0x3
3538    };
3539    const uint8_t len_code[] = {
3540        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3541    };
3542    int n;
3543
3544    if (kvm_sw_breakpoints_active(cpu)) {
3545        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
3546    }
3547    if (nb_hw_breakpoint > 0) {
3548        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
3549        dbg->arch.debugreg[7] = 0x0600;
3550        for (n = 0; n < nb_hw_breakpoint; n++) {
3551            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
3552            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
3553                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
3554                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
3555        }
3556    }
3557}
3558
3559static bool host_supports_vmx(void)
3560{
3561    uint32_t ecx, unused;
3562
3563    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
3564    return ecx & CPUID_EXT_VMX;
3565}
3566
3567#define VMX_INVALID_GUEST_STATE 0x80000021
3568
3569int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
3570{
3571    X86CPU *cpu = X86_CPU(cs);
3572    uint64_t code;
3573    int ret;
3574
3575    switch (run->exit_reason) {
3576    case KVM_EXIT_HLT:
3577        DPRINTF("handle_hlt\n");
3578        qemu_mutex_lock_iothread();
3579        ret = kvm_handle_halt(cpu);
3580        qemu_mutex_unlock_iothread();
3581        break;
3582    case KVM_EXIT_SET_TPR:
3583        ret = 0;
3584        break;
3585    case KVM_EXIT_TPR_ACCESS:
3586        qemu_mutex_lock_iothread();
3587        ret = kvm_handle_tpr_access(cpu);
3588        qemu_mutex_unlock_iothread();
3589        break;
3590    case KVM_EXIT_FAIL_ENTRY:
3591        code = run->fail_entry.hardware_entry_failure_reason;
3592        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
3593                code);
3594        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
3595            fprintf(stderr,
3596                    "\nIf you're running a guest on an Intel machine without "
3597                        "unrestricted mode\n"
3598                    "support, the failure can be most likely due to the guest "
3599                        "entering an invalid\n"
3600                    "state for Intel VT. For example, the guest maybe running "
3601                        "in big real mode\n"
3602                    "which is not supported on less recent Intel processors."
3603                        "\n\n");
3604        }
3605        ret = -1;
3606        break;
3607    case KVM_EXIT_EXCEPTION:
3608        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
3609                run->ex.exception, run->ex.error_code);
3610        ret = -1;
3611        break;
3612    case KVM_EXIT_DEBUG:
3613        DPRINTF("kvm_exit_debug\n");
3614        qemu_mutex_lock_iothread();
3615        ret = kvm_handle_debug(cpu, &run->debug.arch);
3616        qemu_mutex_unlock_iothread();
3617        break;
3618    case KVM_EXIT_HYPERV:
3619        ret = kvm_hv_handle_exit(cpu, &run->hyperv);
3620        break;
3621    case KVM_EXIT_IOAPIC_EOI:
3622        ioapic_eoi_broadcast(run->eoi.vector);
3623        ret = 0;
3624        break;
3625    default:
3626        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
3627        ret = -1;
3628        break;
3629    }
3630
3631    return ret;
3632}
3633
3634bool kvm_arch_stop_on_emulation_error(CPUState *cs)
3635{
3636    X86CPU *cpu = X86_CPU(cs);
3637    CPUX86State *env = &cpu->env;
3638
3639    kvm_cpu_synchronize_state(cs);
3640    return !(env->cr[0] & CR0_PE_MASK) ||
3641           ((env->segs[R_CS].selector  & 3) != 3);
3642}
3643
3644void kvm_arch_init_irq_routing(KVMState *s)
3645{
3646    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
3647        /* If kernel can't do irq routing, interrupt source
3648         * override 0->2 cannot be set up as required by HPET.
3649         * So we have to disable it.
3650         */
3651        no_hpet = 1;
3652    }
3653    /* We know at this point that we're using the in-kernel
3654     * irqchip, so we can use irqfds, and on x86 we know
3655     * we can use msi via irqfd and GSI routing.
3656     */
3657    kvm_msi_via_irqfd_allowed = true;
3658    kvm_gsi_routing_allowed = true;
3659
3660    if (kvm_irqchip_is_split()) {
3661        int i;
3662
3663        /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3664           MSI routes for signaling interrupts to the local apics. */
3665        for (i = 0; i < IOAPIC_NUM_PINS; i++) {
3666            if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
3667                error_report("Could not enable split IRQ mode.");
3668                exit(1);
3669            }
3670        }
3671    }
3672}
3673
3674int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
3675{
3676    int ret;
3677    if (machine_kernel_irqchip_split(ms)) {
3678        ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
3679        if (ret) {
3680            error_report("Could not enable split irqchip mode: %s",
3681                         strerror(-ret));
3682            exit(1);
3683        } else {
3684            DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3685            kvm_split_irqchip = true;
3686            return 1;
3687        }
3688    } else {
3689        return 0;
3690    }
3691}
3692
3693/* Classic KVM device assignment interface. Will remain x86 only. */
3694int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
3695                          uint32_t flags, uint32_t *dev_id)
3696{
3697    struct kvm_assigned_pci_dev dev_data = {
3698        .segnr = dev_addr->domain,
3699        .busnr = dev_addr->bus,
3700        .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
3701        .flags = flags,
3702    };
3703    int ret;
3704
3705    dev_data.assigned_dev_id =
3706        (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
3707
3708    ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
3709    if (ret < 0) {
3710        return ret;
3711    }
3712
3713    *dev_id = dev_data.assigned_dev_id;
3714
3715    return 0;
3716}
3717
3718int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
3719{
3720    struct kvm_assigned_pci_dev dev_data = {
3721        .assigned_dev_id = dev_id,
3722    };
3723
3724    return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
3725}
3726
3727static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
3728                                   uint32_t irq_type, uint32_t guest_irq)
3729{
3730    struct kvm_assigned_irq assigned_irq = {
3731        .assigned_dev_id = dev_id,
3732        .guest_irq = guest_irq,
3733        .flags = irq_type,
3734    };
3735
3736    if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
3737        return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
3738    } else {
3739        return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
3740    }
3741}
3742
3743int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
3744                           uint32_t guest_irq)
3745{
3746    uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
3747        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
3748
3749    return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
3750}
3751
3752int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
3753{
3754    struct kvm_assigned_pci_dev dev_data = {
3755        .assigned_dev_id = dev_id,
3756        .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
3757    };
3758
3759    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
3760}
3761
3762static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
3763                                     uint32_t type)
3764{
3765    struct kvm_assigned_irq assigned_irq = {
3766        .assigned_dev_id = dev_id,
3767        .flags = type,
3768    };
3769
3770    return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
3771}
3772
3773int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
3774{
3775    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
3776        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
3777}
3778
3779int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
3780{
3781    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
3782                                              KVM_DEV_IRQ_GUEST_MSI, virq);
3783}
3784
3785int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
3786{
3787    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
3788                                                KVM_DEV_IRQ_HOST_MSI);
3789}
3790
3791bool kvm_device_msix_supported(KVMState *s)
3792{
3793    /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3794     * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3795    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
3796}
3797
3798int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
3799                                 uint32_t nr_vectors)
3800{
3801    struct kvm_assigned_msix_nr msix_nr = {
3802        .assigned_dev_id = dev_id,
3803        .entry_nr = nr_vectors,
3804    };
3805
3806    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
3807}
3808
3809int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
3810                               int virq)
3811{
3812    struct kvm_assigned_msix_entry msix_entry = {
3813        .assigned_dev_id = dev_id,
3814        .gsi = virq,
3815        .entry = vector,
3816    };
3817
3818    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
3819}
3820
3821int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
3822{
3823    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
3824                                              KVM_DEV_IRQ_GUEST_MSIX, 0);
3825}
3826
3827int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
3828{
3829    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
3830                                                KVM_DEV_IRQ_HOST_MSIX);
3831}
3832
3833int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
3834                             uint64_t address, uint32_t data, PCIDevice *dev)
3835{
3836    X86IOMMUState *iommu = x86_iommu_get_default();
3837
3838    if (iommu) {
3839        int ret;
3840        MSIMessage src, dst;
3841        X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
3842
3843        if (!class->int_remap) {
3844            return 0;
3845        }
3846
3847        src.address = route->u.msi.address_hi;
3848        src.address <<= VTD_MSI_ADDR_HI_SHIFT;
3849        src.address |= route->u.msi.address_lo;
3850        src.data = route->u.msi.data;
3851
3852        ret = class->int_remap(iommu, &src, &dst, dev ? \
3853                               pci_requester_id(dev) : \
3854                               X86_IOMMU_SID_INVALID);
3855        if (ret) {
3856            trace_kvm_x86_fixup_msi_error(route->gsi);
3857            return 1;
3858        }
3859
3860        route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
3861        route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
3862        route->u.msi.data = dst.data;
3863    }
3864
3865    return 0;
3866}
3867
3868typedef struct MSIRouteEntry MSIRouteEntry;
3869
3870struct MSIRouteEntry {
3871    PCIDevice *dev;             /* Device pointer */
3872    int vector;                 /* MSI/MSIX vector index */
3873    int virq;                   /* Virtual IRQ index */
3874    QLIST_ENTRY(MSIRouteEntry) list;
3875};
3876
3877/* List of used GSI routes */
3878static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
3879    QLIST_HEAD_INITIALIZER(msi_route_list);
3880
3881static void kvm_update_msi_routes_all(void *private, bool global,
3882                                      uint32_t index, uint32_t mask)
3883{
3884    int cnt = 0;
3885    MSIRouteEntry *entry;
3886    MSIMessage msg;
3887    PCIDevice *dev;
3888
3889    /* TODO: explicit route update */
3890    QLIST_FOREACH(entry, &msi_route_list, list) {
3891        cnt++;
3892        dev = entry->dev;
3893        if (!msix_enabled(dev) && !msi_enabled(dev)) {
3894            continue;
3895        }
3896        msg = pci_get_msi_message(dev, entry->vector);
3897        kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
3898    }
3899    kvm_irqchip_commit_routes(kvm_state);
3900    trace_kvm_x86_update_msi_routes(cnt);
3901}
3902
3903int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
3904                                int vector, PCIDevice *dev)
3905{
3906    static bool notify_list_inited = false;
3907    MSIRouteEntry *entry;
3908
3909    if (!dev) {
3910        /* These are (possibly) IOAPIC routes only used for split
3911         * kernel irqchip mode, while what we are housekeeping are
3912         * PCI devices only. */
3913        return 0;
3914    }
3915
3916    entry = g_new0(MSIRouteEntry, 1);
3917    entry->dev = dev;
3918    entry->vector = vector;
3919    entry->virq = route->gsi;
3920    QLIST_INSERT_HEAD(&msi_route_list, entry, list);
3921
3922    trace_kvm_x86_add_msi_route(route->gsi);
3923
3924    if (!notify_list_inited) {
3925        /* For the first time we do add route, add ourselves into
3926         * IOMMU's IEC notify list if needed. */
3927        X86IOMMUState *iommu = x86_iommu_get_default();
3928        if (iommu) {
3929            x86_iommu_iec_register_notifier(iommu,
3930                                            kvm_update_msi_routes_all,
3931                                            NULL);
3932        }
3933        notify_list_inited = true;
3934    }
3935    return 0;
3936}
3937
3938int kvm_arch_release_virq_post(int virq)
3939{
3940    MSIRouteEntry *entry, *next;
3941    QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
3942        if (entry->virq == virq) {
3943            trace_kvm_x86_remove_msi_route(virq);
3944            QLIST_REMOVE(entry, list);
3945            g_free(entry);
3946            break;
3947        }
3948    }
3949    return 0;
3950}
3951
3952int kvm_arch_msi_data_to_gsi(uint32_t data)
3953{
3954    abort();
3955}
3956