qemu/fpu/softfloat-specialize.h
<<
>>
Prefs
   1/*
   2 * QEMU float support
   3 *
   4 * The code in this source file is derived from release 2a of the SoftFloat
   5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
   6 * some later contributions) are provided under that license, as detailed below.
   7 * It has subsequently been modified by contributors to the QEMU Project,
   8 * so some portions are provided under:
   9 *  the SoftFloat-2a license
  10 *  the BSD license
  11 *  GPL-v2-or-later
  12 *
  13 * Any future contributions to this file after December 1st 2014 will be
  14 * taken to be licensed under the Softfloat-2a license unless specifically
  15 * indicated otherwise.
  16 */
  17
  18/*
  19===============================================================================
  20This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
  21Arithmetic Package, Release 2a.
  22
  23Written by John R. Hauser.  This work was made possible in part by the
  24International Computer Science Institute, located at Suite 600, 1947 Center
  25Street, Berkeley, California 94704.  Funding was partially provided by the
  26National Science Foundation under grant MIP-9311980.  The original version
  27of this code was written as part of a project to build a fixed-point vector
  28processor in collaboration with the University of California at Berkeley,
  29overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
  30is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
  31arithmetic/SoftFloat.html'.
  32
  33THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
  34has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
  35TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
  36PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
  37AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
  38
  39Derivative works are acceptable, even for commercial purposes, so long as
  40(1) they include prominent notice that the work is derivative, and (2) they
  41include prominent notice akin to these four paragraphs for those parts of
  42this code that are retained.
  43
  44===============================================================================
  45*/
  46
  47/* BSD licensing:
  48 * Copyright (c) 2006, Fabrice Bellard
  49 * All rights reserved.
  50 *
  51 * Redistribution and use in source and binary forms, with or without
  52 * modification, are permitted provided that the following conditions are met:
  53 *
  54 * 1. Redistributions of source code must retain the above copyright notice,
  55 * this list of conditions and the following disclaimer.
  56 *
  57 * 2. Redistributions in binary form must reproduce the above copyright notice,
  58 * this list of conditions and the following disclaimer in the documentation
  59 * and/or other materials provided with the distribution.
  60 *
  61 * 3. Neither the name of the copyright holder nor the names of its contributors
  62 * may be used to endorse or promote products derived from this software without
  63 * specific prior written permission.
  64 *
  65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
  69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
  73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  75 * THE POSSIBILITY OF SUCH DAMAGE.
  76 */
  77
  78/* Portions of this work are licensed under the terms of the GNU GPL,
  79 * version 2 or later. See the COPYING file in the top-level directory.
  80 */
  81
  82/* Define for architectures which deviate from IEEE in not supporting
  83 * signaling NaNs (so all NaNs are treated as quiet).
  84 */
  85#if defined(TARGET_XTENSA)
  86#define NO_SIGNALING_NANS 1
  87#endif
  88
  89/* Define how the architecture discriminates signaling NaNs.
  90 * This done with the most significant bit of the fraction.
  91 * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
  92 * the msb must be zero.  MIPS is (so far) unique in supporting both the
  93 * 2008 revision and backward compatibility with their original choice.
  94 * Thus for MIPS we must make the choice at runtime.
  95 */
  96static inline flag snan_bit_is_one(float_status *status)
  97{
  98#if defined(TARGET_MIPS)
  99    return status->snan_bit_is_one;
 100#elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4)
 101    return 1;
 102#else
 103    return 0;
 104#endif
 105}
 106
 107/*----------------------------------------------------------------------------
 108| For the deconstructed floating-point with fraction FRAC, return true
 109| if the fraction represents a signalling NaN; otherwise false.
 110*----------------------------------------------------------------------------*/
 111
 112static bool parts_is_snan_frac(uint64_t frac, float_status *status)
 113{
 114#ifdef NO_SIGNALING_NANS
 115    return false;
 116#else
 117    flag msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
 118    return msb == snan_bit_is_one(status);
 119#endif
 120}
 121
 122/*----------------------------------------------------------------------------
 123| The pattern for a default generated deconstructed floating-point NaN.
 124*----------------------------------------------------------------------------*/
 125
 126static FloatParts parts_default_nan(float_status *status)
 127{
 128    bool sign = 0;
 129    uint64_t frac;
 130
 131#if defined(TARGET_SPARC) || defined(TARGET_M68K)
 132    /* !snan_bit_is_one, set all bits */
 133    frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
 134#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
 135    || defined(TARGET_MICROBLAZE)
 136    /* !snan_bit_is_one, set sign and msb */
 137    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
 138    sign = 1;
 139#elif defined(TARGET_HPPA)
 140    /* snan_bit_is_one, set msb-1.  */
 141    frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
 142#else
 143    /* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
 144     * S390, SH4, TriCore, and Xtensa.  I cannot find documentation
 145     * for Unicore32; the choice from the original commit is unchanged.
 146     * Our other supported targets, CRIS, LM32, Moxie, Nios2, and Tile,
 147     * do not have floating-point.
 148     */
 149    if (snan_bit_is_one(status)) {
 150        /* set all bits other than msb */
 151        frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
 152    } else {
 153        /* set msb */
 154        frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
 155    }
 156#endif
 157
 158    return (FloatParts) {
 159        .cls = float_class_qnan,
 160        .sign = sign,
 161        .exp = INT_MAX,
 162        .frac = frac
 163    };
 164}
 165
 166/*----------------------------------------------------------------------------
 167| Returns a quiet NaN from a signalling NaN for the deconstructed
 168| floating-point parts.
 169*----------------------------------------------------------------------------*/
 170
 171static FloatParts parts_silence_nan(FloatParts a, float_status *status)
 172{
 173#ifdef NO_SIGNALING_NANS
 174    g_assert_not_reached();
 175#elif defined(TARGET_HPPA)
 176    a.frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
 177    a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
 178#else
 179    if (snan_bit_is_one(status)) {
 180        return parts_default_nan(status);
 181    } else {
 182        a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
 183    }
 184#endif
 185    a.cls = float_class_qnan;
 186    return a;
 187}
 188
 189/*----------------------------------------------------------------------------
 190| The pattern for a default generated extended double-precision NaN.
 191*----------------------------------------------------------------------------*/
 192floatx80 floatx80_default_nan(float_status *status)
 193{
 194    floatx80 r;
 195
 196    /* None of the targets that have snan_bit_is_one use floatx80.  */
 197    assert(!snan_bit_is_one(status));
 198#if defined(TARGET_M68K)
 199    r.low = LIT64(0xFFFFFFFFFFFFFFFF);
 200    r.high = 0x7FFF;
 201#else
 202    /* X86 */
 203    r.low = LIT64(0xC000000000000000);
 204    r.high = 0xFFFF;
 205#endif
 206    return r;
 207}
 208
 209/*----------------------------------------------------------------------------
 210| The pattern for a default generated extended double-precision inf.
 211*----------------------------------------------------------------------------*/
 212
 213#define floatx80_infinity_high 0x7FFF
 214#if defined(TARGET_M68K)
 215#define floatx80_infinity_low  LIT64(0x0000000000000000)
 216#else
 217#define floatx80_infinity_low  LIT64(0x8000000000000000)
 218#endif
 219
 220const floatx80 floatx80_infinity
 221    = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
 222
 223/*----------------------------------------------------------------------------
 224| Raises the exceptions specified by `flags'.  Floating-point traps can be
 225| defined here if desired.  It is currently not possible for such a trap
 226| to substitute a result value.  If traps are not implemented, this routine
 227| should be simply `float_exception_flags |= flags;'.
 228*----------------------------------------------------------------------------*/
 229
 230void float_raise(uint8_t flags, float_status *status)
 231{
 232    status->float_exception_flags |= flags;
 233}
 234
 235/*----------------------------------------------------------------------------
 236| Internal canonical NaN format.
 237*----------------------------------------------------------------------------*/
 238typedef struct {
 239    flag sign;
 240    uint64_t high, low;
 241} commonNaNT;
 242
 243/*----------------------------------------------------------------------------
 244| Returns 1 if the half-precision floating-point value `a' is a quiet
 245| NaN; otherwise returns 0.
 246*----------------------------------------------------------------------------*/
 247
 248int float16_is_quiet_nan(float16 a_, float_status *status)
 249{
 250#ifdef NO_SIGNALING_NANS
 251    return float16_is_any_nan(a_);
 252#else
 253    uint16_t a = float16_val(a_);
 254    if (snan_bit_is_one(status)) {
 255        return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
 256    } else {
 257        return ((a & ~0x8000) >= 0x7C80);
 258    }
 259#endif
 260}
 261
 262/*----------------------------------------------------------------------------
 263| Returns 1 if the half-precision floating-point value `a' is a signaling
 264| NaN; otherwise returns 0.
 265*----------------------------------------------------------------------------*/
 266
 267int float16_is_signaling_nan(float16 a_, float_status *status)
 268{
 269#ifdef NO_SIGNALING_NANS
 270    return 0;
 271#else
 272    uint16_t a = float16_val(a_);
 273    if (snan_bit_is_one(status)) {
 274        return ((a & ~0x8000) >= 0x7C80);
 275    } else {
 276        return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
 277    }
 278#endif
 279}
 280
 281/*----------------------------------------------------------------------------
 282| Returns 1 if the single-precision floating-point value `a' is a quiet
 283| NaN; otherwise returns 0.
 284*----------------------------------------------------------------------------*/
 285
 286int float32_is_quiet_nan(float32 a_, float_status *status)
 287{
 288#ifdef NO_SIGNALING_NANS
 289    return float32_is_any_nan(a_);
 290#else
 291    uint32_t a = float32_val(a_);
 292    if (snan_bit_is_one(status)) {
 293        return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
 294    } else {
 295        return ((uint32_t)(a << 1) >= 0xFF800000);
 296    }
 297#endif
 298}
 299
 300/*----------------------------------------------------------------------------
 301| Returns 1 if the single-precision floating-point value `a' is a signaling
 302| NaN; otherwise returns 0.
 303*----------------------------------------------------------------------------*/
 304
 305int float32_is_signaling_nan(float32 a_, float_status *status)
 306{
 307#ifdef NO_SIGNALING_NANS
 308    return 0;
 309#else
 310    uint32_t a = float32_val(a_);
 311    if (snan_bit_is_one(status)) {
 312        return ((uint32_t)(a << 1) >= 0xFF800000);
 313    } else {
 314        return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
 315    }
 316#endif
 317}
 318
 319/*----------------------------------------------------------------------------
 320| Returns the result of converting the single-precision floating-point NaN
 321| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 322| exception is raised.
 323*----------------------------------------------------------------------------*/
 324
 325static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
 326{
 327    commonNaNT z;
 328
 329    if (float32_is_signaling_nan(a, status)) {
 330        float_raise(float_flag_invalid, status);
 331    }
 332    z.sign = float32_val(a) >> 31;
 333    z.low = 0;
 334    z.high = ((uint64_t)float32_val(a)) << 41;
 335    return z;
 336}
 337
 338/*----------------------------------------------------------------------------
 339| Returns the result of converting the canonical NaN `a' to the single-
 340| precision floating-point format.
 341*----------------------------------------------------------------------------*/
 342
 343static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
 344{
 345    uint32_t mantissa = a.high >> 41;
 346
 347    if (status->default_nan_mode) {
 348        return float32_default_nan(status);
 349    }
 350
 351    if (mantissa) {
 352        return make_float32(
 353            (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
 354    } else {
 355        return float32_default_nan(status);
 356    }
 357}
 358
 359/*----------------------------------------------------------------------------
 360| Select which NaN to propagate for a two-input operation.
 361| IEEE754 doesn't specify all the details of this, so the
 362| algorithm is target-specific.
 363| The routine is passed various bits of information about the
 364| two NaNs and should return 0 to select NaN a and 1 for NaN b.
 365| Note that signalling NaNs are always squashed to quiet NaNs
 366| by the caller, by calling floatXX_silence_nan() before
 367| returning them.
 368|
 369| aIsLargerSignificand is only valid if both a and b are NaNs
 370| of some kind, and is true if a has the larger significand,
 371| or if both a and b have the same significand but a is
 372| positive but b is negative. It is only needed for the x87
 373| tie-break rule.
 374*----------------------------------------------------------------------------*/
 375
 376static int pickNaN(FloatClass a_cls, FloatClass b_cls,
 377                   flag aIsLargerSignificand)
 378{
 379#if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
 380    /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
 381     * the first of:
 382     *  1. A if it is signaling
 383     *  2. B if it is signaling
 384     *  3. A (quiet)
 385     *  4. B (quiet)
 386     * A signaling NaN is always quietened before returning it.
 387     */
 388    /* According to MIPS specifications, if one of the two operands is
 389     * a sNaN, a new qNaN has to be generated. This is done in
 390     * floatXX_silence_nan(). For qNaN inputs the specifications
 391     * says: "When possible, this QNaN result is one of the operand QNaN
 392     * values." In practice it seems that most implementations choose
 393     * the first operand if both operands are qNaN. In short this gives
 394     * the following rules:
 395     *  1. A if it is signaling
 396     *  2. B if it is signaling
 397     *  3. A (quiet)
 398     *  4. B (quiet)
 399     * A signaling NaN is always silenced before returning it.
 400     */
 401    if (is_snan(a_cls)) {
 402        return 0;
 403    } else if (is_snan(b_cls)) {
 404        return 1;
 405    } else if (is_qnan(a_cls)) {
 406        return 0;
 407    } else {
 408        return 1;
 409    }
 410#elif defined(TARGET_PPC) || defined(TARGET_XTENSA) || defined(TARGET_M68K)
 411    /* PowerPC propagation rules:
 412     *  1. A if it sNaN or qNaN
 413     *  2. B if it sNaN or qNaN
 414     * A signaling NaN is always silenced before returning it.
 415     */
 416    /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
 417     * 3.4 FLOATING-POINT INSTRUCTION DETAILS
 418     * If either operand, but not both operands, of an operation is a
 419     * nonsignaling NaN, then that NaN is returned as the result. If both
 420     * operands are nonsignaling NaNs, then the destination operand
 421     * nonsignaling NaN is returned as the result.
 422     * If either operand to an operation is a signaling NaN (SNaN), then the
 423     * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
 424     * is set in the FPCR ENABLE byte, then the exception is taken and the
 425     * destination is not modified. If the SNaN exception enable bit is not
 426     * set, setting the SNaN bit in the operand to a one converts the SNaN to
 427     * a nonsignaling NaN. The operation then continues as described in the
 428     * preceding paragraph for nonsignaling NaNs.
 429     */
 430    if (is_nan(a_cls)) {
 431        return 0;
 432    } else {
 433        return 1;
 434    }
 435#else
 436    /* This implements x87 NaN propagation rules:
 437     * SNaN + QNaN => return the QNaN
 438     * two SNaNs => return the one with the larger significand, silenced
 439     * two QNaNs => return the one with the larger significand
 440     * SNaN and a non-NaN => return the SNaN, silenced
 441     * QNaN and a non-NaN => return the QNaN
 442     *
 443     * If we get down to comparing significands and they are the same,
 444     * return the NaN with the positive sign bit (if any).
 445     */
 446    if (is_snan(a_cls)) {
 447        if (is_snan(b_cls)) {
 448            return aIsLargerSignificand ? 0 : 1;
 449        }
 450        return is_qnan(b_cls) ? 1 : 0;
 451    } else if (is_qnan(a_cls)) {
 452        if (is_snan(b_cls) || !is_qnan(b_cls)) {
 453            return 0;
 454        } else {
 455            return aIsLargerSignificand ? 0 : 1;
 456        }
 457    } else {
 458        return 1;
 459    }
 460#endif
 461}
 462
 463/*----------------------------------------------------------------------------
 464| Select which NaN to propagate for a three-input operation.
 465| For the moment we assume that no CPU needs the 'larger significand'
 466| information.
 467| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
 468*----------------------------------------------------------------------------*/
 469static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
 470                         bool infzero, float_status *status)
 471{
 472#if defined(TARGET_ARM)
 473    /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
 474     * the default NaN
 475     */
 476    if (infzero && is_qnan(c_cls)) {
 477        float_raise(float_flag_invalid, status);
 478        return 3;
 479    }
 480
 481    /* This looks different from the ARM ARM pseudocode, because the ARM ARM
 482     * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
 483     */
 484    if (is_snan(c_cls)) {
 485        return 2;
 486    } else if (is_snan(a_cls)) {
 487        return 0;
 488    } else if (is_snan(b_cls)) {
 489        return 1;
 490    } else if (is_qnan(c_cls)) {
 491        return 2;
 492    } else if (is_qnan(a_cls)) {
 493        return 0;
 494    } else {
 495        return 1;
 496    }
 497#elif defined(TARGET_MIPS)
 498    /* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns
 499     * the default NaN
 500     */
 501    if (infzero) {
 502        float_raise(float_flag_invalid, status);
 503        return 3;
 504    }
 505
 506    if (snan_bit_is_one(status)) {
 507        /* Prefer sNaN over qNaN, in the a, b, c order. */
 508        if (is_snan(a_cls)) {
 509            return 0;
 510        } else if (is_snan(b_cls)) {
 511            return 1;
 512        } else if (is_snan(c_cls)) {
 513            return 2;
 514        } else if (is_qnan(a_cls)) {
 515            return 0;
 516        } else if (is_qnan(b_cls)) {
 517            return 1;
 518        } else {
 519            return 2;
 520        }
 521    } else {
 522        /* Prefer sNaN over qNaN, in the c, a, b order. */
 523        if (is_snan(c_cls)) {
 524            return 2;
 525        } else if (is_snan(a_cls)) {
 526            return 0;
 527        } else if (is_snan(b_cls)) {
 528            return 1;
 529        } else if (is_qnan(c_cls)) {
 530            return 2;
 531        } else if (is_qnan(a_cls)) {
 532            return 0;
 533        } else {
 534            return 1;
 535        }
 536    }
 537#elif defined(TARGET_PPC)
 538    /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
 539     * to return an input NaN if we have one (ie c) rather than generating
 540     * a default NaN
 541     */
 542    if (infzero) {
 543        float_raise(float_flag_invalid, status);
 544        return 2;
 545    }
 546
 547    /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
 548     * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
 549     */
 550    if (is_nan(a_cls)) {
 551        return 0;
 552    } else if (is_nan(c_cls)) {
 553        return 2;
 554    } else {
 555        return 1;
 556    }
 557#else
 558    /* A default implementation: prefer a to b to c.
 559     * This is unlikely to actually match any real implementation.
 560     */
 561    if (is_nan(a_cls)) {
 562        return 0;
 563    } else if (is_nan(b_cls)) {
 564        return 1;
 565    } else {
 566        return 2;
 567    }
 568#endif
 569}
 570
 571/*----------------------------------------------------------------------------
 572| Takes two single-precision floating-point values `a' and `b', one of which
 573| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
 574| signaling NaN, the invalid exception is raised.
 575*----------------------------------------------------------------------------*/
 576
 577static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
 578{
 579    flag aIsLargerSignificand;
 580    uint32_t av, bv;
 581    FloatClass a_cls, b_cls;
 582
 583    /* This is not complete, but is good enough for pickNaN.  */
 584    a_cls = (!float32_is_any_nan(a)
 585             ? float_class_normal
 586             : float32_is_signaling_nan(a, status)
 587             ? float_class_snan
 588             : float_class_qnan);
 589    b_cls = (!float32_is_any_nan(b)
 590             ? float_class_normal
 591             : float32_is_signaling_nan(b, status)
 592             ? float_class_snan
 593             : float_class_qnan);
 594
 595    av = float32_val(a);
 596    bv = float32_val(b);
 597
 598    if (is_snan(a_cls) || is_snan(b_cls)) {
 599        float_raise(float_flag_invalid, status);
 600    }
 601
 602    if (status->default_nan_mode) {
 603        return float32_default_nan(status);
 604    }
 605
 606    if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
 607        aIsLargerSignificand = 0;
 608    } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
 609        aIsLargerSignificand = 1;
 610    } else {
 611        aIsLargerSignificand = (av < bv) ? 1 : 0;
 612    }
 613
 614    if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
 615        if (is_snan(b_cls)) {
 616            return float32_silence_nan(b, status);
 617        }
 618        return b;
 619    } else {
 620        if (is_snan(a_cls)) {
 621            return float32_silence_nan(a, status);
 622        }
 623        return a;
 624    }
 625}
 626
 627/*----------------------------------------------------------------------------
 628| Returns 1 if the double-precision floating-point value `a' is a quiet
 629| NaN; otherwise returns 0.
 630*----------------------------------------------------------------------------*/
 631
 632int float64_is_quiet_nan(float64 a_, float_status *status)
 633{
 634#ifdef NO_SIGNALING_NANS
 635    return float64_is_any_nan(a_);
 636#else
 637    uint64_t a = float64_val(a_);
 638    if (snan_bit_is_one(status)) {
 639        return (((a >> 51) & 0xFFF) == 0xFFE)
 640            && (a & 0x0007FFFFFFFFFFFFULL);
 641    } else {
 642        return ((a << 1) >= 0xFFF0000000000000ULL);
 643    }
 644#endif
 645}
 646
 647/*----------------------------------------------------------------------------
 648| Returns 1 if the double-precision floating-point value `a' is a signaling
 649| NaN; otherwise returns 0.
 650*----------------------------------------------------------------------------*/
 651
 652int float64_is_signaling_nan(float64 a_, float_status *status)
 653{
 654#ifdef NO_SIGNALING_NANS
 655    return 0;
 656#else
 657    uint64_t a = float64_val(a_);
 658    if (snan_bit_is_one(status)) {
 659        return ((a << 1) >= 0xFFF0000000000000ULL);
 660    } else {
 661        return (((a >> 51) & 0xFFF) == 0xFFE)
 662            && (a & LIT64(0x0007FFFFFFFFFFFF));
 663    }
 664#endif
 665}
 666
 667/*----------------------------------------------------------------------------
 668| Returns the result of converting the double-precision floating-point NaN
 669| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 670| exception is raised.
 671*----------------------------------------------------------------------------*/
 672
 673static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
 674{
 675    commonNaNT z;
 676
 677    if (float64_is_signaling_nan(a, status)) {
 678        float_raise(float_flag_invalid, status);
 679    }
 680    z.sign = float64_val(a) >> 63;
 681    z.low = 0;
 682    z.high = float64_val(a) << 12;
 683    return z;
 684}
 685
 686/*----------------------------------------------------------------------------
 687| Returns the result of converting the canonical NaN `a' to the double-
 688| precision floating-point format.
 689*----------------------------------------------------------------------------*/
 690
 691static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
 692{
 693    uint64_t mantissa = a.high >> 12;
 694
 695    if (status->default_nan_mode) {
 696        return float64_default_nan(status);
 697    }
 698
 699    if (mantissa) {
 700        return make_float64(
 701              (((uint64_t) a.sign) << 63)
 702            | LIT64(0x7FF0000000000000)
 703            | (a.high >> 12));
 704    } else {
 705        return float64_default_nan(status);
 706    }
 707}
 708
 709/*----------------------------------------------------------------------------
 710| Takes two double-precision floating-point values `a' and `b', one of which
 711| is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
 712| signaling NaN, the invalid exception is raised.
 713*----------------------------------------------------------------------------*/
 714
 715static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
 716{
 717    flag aIsLargerSignificand;
 718    uint64_t av, bv;
 719    FloatClass a_cls, b_cls;
 720
 721    /* This is not complete, but is good enough for pickNaN.  */
 722    a_cls = (!float64_is_any_nan(a)
 723             ? float_class_normal
 724             : float64_is_signaling_nan(a, status)
 725             ? float_class_snan
 726             : float_class_qnan);
 727    b_cls = (!float64_is_any_nan(b)
 728             ? float_class_normal
 729             : float64_is_signaling_nan(b, status)
 730             ? float_class_snan
 731             : float_class_qnan);
 732
 733    av = float64_val(a);
 734    bv = float64_val(b);
 735
 736    if (is_snan(a_cls) || is_snan(b_cls)) {
 737        float_raise(float_flag_invalid, status);
 738    }
 739
 740    if (status->default_nan_mode) {
 741        return float64_default_nan(status);
 742    }
 743
 744    if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
 745        aIsLargerSignificand = 0;
 746    } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
 747        aIsLargerSignificand = 1;
 748    } else {
 749        aIsLargerSignificand = (av < bv) ? 1 : 0;
 750    }
 751
 752    if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
 753        if (is_snan(b_cls)) {
 754            return float64_silence_nan(b, status);
 755        }
 756        return b;
 757    } else {
 758        if (is_snan(a_cls)) {
 759            return float64_silence_nan(a, status);
 760        }
 761        return a;
 762    }
 763}
 764
 765/*----------------------------------------------------------------------------
 766| Returns 1 if the extended double-precision floating-point value `a' is a
 767| quiet NaN; otherwise returns 0. This slightly differs from the same
 768| function for other types as floatx80 has an explicit bit.
 769*----------------------------------------------------------------------------*/
 770
 771int floatx80_is_quiet_nan(floatx80 a, float_status *status)
 772{
 773#ifdef NO_SIGNALING_NANS
 774    return floatx80_is_any_nan(a);
 775#else
 776    if (snan_bit_is_one(status)) {
 777        uint64_t aLow;
 778
 779        aLow = a.low & ~0x4000000000000000ULL;
 780        return ((a.high & 0x7FFF) == 0x7FFF)
 781            && (aLow << 1)
 782            && (a.low == aLow);
 783    } else {
 784        return ((a.high & 0x7FFF) == 0x7FFF)
 785            && (LIT64(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
 786    }
 787#endif
 788}
 789
 790/*----------------------------------------------------------------------------
 791| Returns 1 if the extended double-precision floating-point value `a' is a
 792| signaling NaN; otherwise returns 0. This slightly differs from the same
 793| function for other types as floatx80 has an explicit bit.
 794*----------------------------------------------------------------------------*/
 795
 796int floatx80_is_signaling_nan(floatx80 a, float_status *status)
 797{
 798#ifdef NO_SIGNALING_NANS
 799    return 0;
 800#else
 801    if (snan_bit_is_one(status)) {
 802        return ((a.high & 0x7FFF) == 0x7FFF)
 803            && ((a.low << 1) >= 0x8000000000000000ULL);
 804    } else {
 805        uint64_t aLow;
 806
 807        aLow = a.low & ~LIT64(0x4000000000000000);
 808        return ((a.high & 0x7FFF) == 0x7FFF)
 809            && (uint64_t)(aLow << 1)
 810            && (a.low == aLow);
 811    }
 812#endif
 813}
 814
 815/*----------------------------------------------------------------------------
 816| Returns a quiet NaN from a signalling NaN for the extended double-precision
 817| floating point value `a'.
 818*----------------------------------------------------------------------------*/
 819
 820floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
 821{
 822    /* None of the targets that have snan_bit_is_one use floatx80.  */
 823    assert(!snan_bit_is_one(status));
 824    a.low |= LIT64(0xC000000000000000);
 825    return a;
 826}
 827
 828/*----------------------------------------------------------------------------
 829| Returns the result of converting the extended double-precision floating-
 830| point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
 831| invalid exception is raised.
 832*----------------------------------------------------------------------------*/
 833
 834static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
 835{
 836    floatx80 dflt;
 837    commonNaNT z;
 838
 839    if (floatx80_is_signaling_nan(a, status)) {
 840        float_raise(float_flag_invalid, status);
 841    }
 842    if (a.low >> 63) {
 843        z.sign = a.high >> 15;
 844        z.low = 0;
 845        z.high = a.low << 1;
 846    } else {
 847        dflt = floatx80_default_nan(status);
 848        z.sign = dflt.high >> 15;
 849        z.low = 0;
 850        z.high = dflt.low << 1;
 851    }
 852    return z;
 853}
 854
 855/*----------------------------------------------------------------------------
 856| Returns the result of converting the canonical NaN `a' to the extended
 857| double-precision floating-point format.
 858*----------------------------------------------------------------------------*/
 859
 860static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
 861{
 862    floatx80 z;
 863
 864    if (status->default_nan_mode) {
 865        return floatx80_default_nan(status);
 866    }
 867
 868    if (a.high >> 1) {
 869        z.low = LIT64(0x8000000000000000) | a.high >> 1;
 870        z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
 871    } else {
 872        z = floatx80_default_nan(status);
 873    }
 874    return z;
 875}
 876
 877/*----------------------------------------------------------------------------
 878| Takes two extended double-precision floating-point values `a' and `b', one
 879| of which is a NaN, and returns the appropriate NaN result.  If either `a' or
 880| `b' is a signaling NaN, the invalid exception is raised.
 881*----------------------------------------------------------------------------*/
 882
 883floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
 884{
 885    flag aIsLargerSignificand;
 886    FloatClass a_cls, b_cls;
 887
 888    /* This is not complete, but is good enough for pickNaN.  */
 889    a_cls = (!floatx80_is_any_nan(a)
 890             ? float_class_normal
 891             : floatx80_is_signaling_nan(a, status)
 892             ? float_class_snan
 893             : float_class_qnan);
 894    b_cls = (!floatx80_is_any_nan(b)
 895             ? float_class_normal
 896             : floatx80_is_signaling_nan(b, status)
 897             ? float_class_snan
 898             : float_class_qnan);
 899
 900    if (is_snan(a_cls) || is_snan(b_cls)) {
 901        float_raise(float_flag_invalid, status);
 902    }
 903
 904    if (status->default_nan_mode) {
 905        return floatx80_default_nan(status);
 906    }
 907
 908    if (a.low < b.low) {
 909        aIsLargerSignificand = 0;
 910    } else if (b.low < a.low) {
 911        aIsLargerSignificand = 1;
 912    } else {
 913        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
 914    }
 915
 916    if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
 917        if (is_snan(b_cls)) {
 918            return floatx80_silence_nan(b, status);
 919        }
 920        return b;
 921    } else {
 922        if (is_snan(a_cls)) {
 923            return floatx80_silence_nan(a, status);
 924        }
 925        return a;
 926    }
 927}
 928
 929/*----------------------------------------------------------------------------
 930| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
 931| NaN; otherwise returns 0.
 932*----------------------------------------------------------------------------*/
 933
 934int float128_is_quiet_nan(float128 a, float_status *status)
 935{
 936#ifdef NO_SIGNALING_NANS
 937    return float128_is_any_nan(a);
 938#else
 939    if (snan_bit_is_one(status)) {
 940        return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
 941            && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
 942    } else {
 943        return ((a.high << 1) >= 0xFFFF000000000000ULL)
 944            && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
 945    }
 946#endif
 947}
 948
 949/*----------------------------------------------------------------------------
 950| Returns 1 if the quadruple-precision floating-point value `a' is a
 951| signaling NaN; otherwise returns 0.
 952*----------------------------------------------------------------------------*/
 953
 954int float128_is_signaling_nan(float128 a, float_status *status)
 955{
 956#ifdef NO_SIGNALING_NANS
 957    return 0;
 958#else
 959    if (snan_bit_is_one(status)) {
 960        return ((a.high << 1) >= 0xFFFF000000000000ULL)
 961            && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
 962    } else {
 963        return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
 964            && (a.low || (a.high & LIT64(0x00007FFFFFFFFFFF)));
 965    }
 966#endif
 967}
 968
 969/*----------------------------------------------------------------------------
 970| Returns a quiet NaN from a signalling NaN for the quadruple-precision
 971| floating point value `a'.
 972*----------------------------------------------------------------------------*/
 973
 974float128 float128_silence_nan(float128 a, float_status *status)
 975{
 976#ifdef NO_SIGNALING_NANS
 977    g_assert_not_reached();
 978#else
 979    if (snan_bit_is_one(status)) {
 980        return float128_default_nan(status);
 981    } else {
 982        a.high |= LIT64(0x0000800000000000);
 983        return a;
 984    }
 985#endif
 986}
 987
 988/*----------------------------------------------------------------------------
 989| Returns the result of converting the quadruple-precision floating-point NaN
 990| `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 991| exception is raised.
 992*----------------------------------------------------------------------------*/
 993
 994static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
 995{
 996    commonNaNT z;
 997
 998    if (float128_is_signaling_nan(a, status)) {
 999        float_raise(float_flag_invalid, status);
1000    }
1001    z.sign = a.high >> 63;
1002    shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
1003    return z;
1004}
1005
1006/*----------------------------------------------------------------------------
1007| Returns the result of converting the canonical NaN `a' to the quadruple-
1008| precision floating-point format.
1009*----------------------------------------------------------------------------*/
1010
1011static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
1012{
1013    float128 z;
1014
1015    if (status->default_nan_mode) {
1016        return float128_default_nan(status);
1017    }
1018
1019    shift128Right(a.high, a.low, 16, &z.high, &z.low);
1020    z.high |= (((uint64_t)a.sign) << 63) | LIT64(0x7FFF000000000000);
1021    return z;
1022}
1023
1024/*----------------------------------------------------------------------------
1025| Takes two quadruple-precision floating-point values `a' and `b', one of
1026| which is a NaN, and returns the appropriate NaN result.  If either `a' or
1027| `b' is a signaling NaN, the invalid exception is raised.
1028*----------------------------------------------------------------------------*/
1029
1030static float128 propagateFloat128NaN(float128 a, float128 b,
1031                                     float_status *status)
1032{
1033    flag aIsLargerSignificand;
1034    FloatClass a_cls, b_cls;
1035
1036    /* This is not complete, but is good enough for pickNaN.  */
1037    a_cls = (!float128_is_any_nan(a)
1038             ? float_class_normal
1039             : float128_is_signaling_nan(a, status)
1040             ? float_class_snan
1041             : float_class_qnan);
1042    b_cls = (!float128_is_any_nan(b)
1043             ? float_class_normal
1044             : float128_is_signaling_nan(b, status)
1045             ? float_class_snan
1046             : float_class_qnan);
1047
1048    if (is_snan(a_cls) || is_snan(b_cls)) {
1049        float_raise(float_flag_invalid, status);
1050    }
1051
1052    if (status->default_nan_mode) {
1053        return float128_default_nan(status);
1054    }
1055
1056    if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
1057        aIsLargerSignificand = 0;
1058    } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
1059        aIsLargerSignificand = 1;
1060    } else {
1061        aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
1062    }
1063
1064    if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
1065        if (is_snan(b_cls)) {
1066            return float128_silence_nan(b, status);
1067        }
1068        return b;
1069    } else {
1070        if (is_snan(a_cls)) {
1071            return float128_silence_nan(a, status);
1072        }
1073        return a;
1074    }
1075}
1076