qemu/hw/arm/boot.c
<<
>>
Prefs
   1/*
   2 * ARM kernel loader.
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu/error-report.h"
  12#include "qapi/error.h"
  13#include <libfdt.h>
  14#include "hw/hw.h"
  15#include "hw/arm/arm.h"
  16#include "hw/arm/linux-boot-if.h"
  17#include "sysemu/kvm.h"
  18#include "sysemu/sysemu.h"
  19#include "sysemu/numa.h"
  20#include "hw/boards.h"
  21#include "hw/loader.h"
  22#include "elf.h"
  23#include "sysemu/device_tree.h"
  24#include "qemu/config-file.h"
  25#include "qemu/option.h"
  26#include "exec/address-spaces.h"
  27#include "qemu/units.h"
  28
  29/* Kernel boot protocol is specified in the kernel docs
  30 * Documentation/arm/Booting and Documentation/arm64/booting.txt
  31 * They have different preferred image load offsets from system RAM base.
  32 */
  33#define KERNEL_ARGS_ADDR 0x100
  34#define KERNEL_LOAD_ADDR 0x00010000
  35#define KERNEL64_LOAD_ADDR 0x00080000
  36
  37#define ARM64_TEXT_OFFSET_OFFSET    8
  38#define ARM64_MAGIC_OFFSET          56
  39
  40#define BOOTLOADER_MAX_SIZE         (4 * KiB)
  41
  42AddressSpace *arm_boot_address_space(ARMCPU *cpu,
  43                                     const struct arm_boot_info *info)
  44{
  45    /* Return the address space to use for bootloader reads and writes.
  46     * We prefer the secure address space if the CPU has it and we're
  47     * going to boot the guest into it.
  48     */
  49    int asidx;
  50    CPUState *cs = CPU(cpu);
  51
  52    if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
  53        asidx = ARMASIdx_S;
  54    } else {
  55        asidx = ARMASIdx_NS;
  56    }
  57
  58    return cpu_get_address_space(cs, asidx);
  59}
  60
  61typedef enum {
  62    FIXUP_NONE = 0,     /* do nothing */
  63    FIXUP_TERMINATOR,   /* end of insns */
  64    FIXUP_BOARDID,      /* overwrite with board ID number */
  65    FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
  66    FIXUP_ARGPTR,       /* overwrite with pointer to kernel args */
  67    FIXUP_ENTRYPOINT,   /* overwrite with kernel entry point */
  68    FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
  69    FIXUP_BOOTREG,      /* overwrite with boot register address */
  70    FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
  71    FIXUP_MAX,
  72} FixupType;
  73
  74typedef struct ARMInsnFixup {
  75    uint32_t insn;
  76    FixupType fixup;
  77} ARMInsnFixup;
  78
  79static const ARMInsnFixup bootloader_aarch64[] = {
  80    { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
  81    { 0xaa1f03e1 }, /* mov x1, xzr */
  82    { 0xaa1f03e2 }, /* mov x2, xzr */
  83    { 0xaa1f03e3 }, /* mov x3, xzr */
  84    { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
  85    { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
  86    { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
  87    { 0 }, /* .word @DTB Higher 32-bits */
  88    { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
  89    { 0 }, /* .word @Kernel Entry Higher 32-bits */
  90    { 0, FIXUP_TERMINATOR }
  91};
  92
  93/* A very small bootloader: call the board-setup code (if needed),
  94 * set r0-r2, then jump to the kernel.
  95 * If we're not calling boot setup code then we don't copy across
  96 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
  97 */
  98
  99static const ARMInsnFixup bootloader[] = {
 100    { 0xe28fe004 }, /* add     lr, pc, #4 */
 101    { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
 102    { 0, FIXUP_BOARD_SETUP },
 103#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
 104    { 0xe3a00000 }, /* mov     r0, #0 */
 105    { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
 106    { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
 107    { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
 108    { 0, FIXUP_BOARDID },
 109    { 0, FIXUP_ARGPTR },
 110    { 0, FIXUP_ENTRYPOINT },
 111    { 0, FIXUP_TERMINATOR }
 112};
 113
 114/* Handling for secondary CPU boot in a multicore system.
 115 * Unlike the uniprocessor/primary CPU boot, this is platform
 116 * dependent. The default code here is based on the secondary
 117 * CPU boot protocol used on realview/vexpress boards, with
 118 * some parameterisation to increase its flexibility.
 119 * QEMU platform models for which this code is not appropriate
 120 * should override write_secondary_boot and secondary_cpu_reset_hook
 121 * instead.
 122 *
 123 * This code enables the interrupt controllers for the secondary
 124 * CPUs and then puts all the secondary CPUs into a loop waiting
 125 * for an interprocessor interrupt and polling a configurable
 126 * location for the kernel secondary CPU entry point.
 127 */
 128#define DSB_INSN 0xf57ff04f
 129#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
 130
 131static const ARMInsnFixup smpboot[] = {
 132    { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
 133    { 0xe59f0028 }, /* ldr r0, bootreg_addr */
 134    { 0xe3a01001 }, /* mov r1, #1 */
 135    { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
 136    { 0xe3a010ff }, /* mov r1, #0xff */
 137    { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
 138    { 0, FIXUP_DSB },   /* dsb */
 139    { 0xe320f003 }, /* wfi */
 140    { 0xe5901000 }, /* ldr     r1, [r0] */
 141    { 0xe1110001 }, /* tst     r1, r1 */
 142    { 0x0afffffb }, /* beq     <wfi> */
 143    { 0xe12fff11 }, /* bx      r1 */
 144    { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
 145    { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
 146    { 0, FIXUP_TERMINATOR }
 147};
 148
 149static void write_bootloader(const char *name, hwaddr addr,
 150                             const ARMInsnFixup *insns, uint32_t *fixupcontext,
 151                             AddressSpace *as)
 152{
 153    /* Fix up the specified bootloader fragment and write it into
 154     * guest memory using rom_add_blob_fixed(). fixupcontext is
 155     * an array giving the values to write in for the fixup types
 156     * which write a value into the code array.
 157     */
 158    int i, len;
 159    uint32_t *code;
 160
 161    len = 0;
 162    while (insns[len].fixup != FIXUP_TERMINATOR) {
 163        len++;
 164    }
 165
 166    code = g_new0(uint32_t, len);
 167
 168    for (i = 0; i < len; i++) {
 169        uint32_t insn = insns[i].insn;
 170        FixupType fixup = insns[i].fixup;
 171
 172        switch (fixup) {
 173        case FIXUP_NONE:
 174            break;
 175        case FIXUP_BOARDID:
 176        case FIXUP_BOARD_SETUP:
 177        case FIXUP_ARGPTR:
 178        case FIXUP_ENTRYPOINT:
 179        case FIXUP_GIC_CPU_IF:
 180        case FIXUP_BOOTREG:
 181        case FIXUP_DSB:
 182            insn = fixupcontext[fixup];
 183            break;
 184        default:
 185            abort();
 186        }
 187        code[i] = tswap32(insn);
 188    }
 189
 190    assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
 191
 192    rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
 193
 194    g_free(code);
 195}
 196
 197static void default_write_secondary(ARMCPU *cpu,
 198                                    const struct arm_boot_info *info)
 199{
 200    uint32_t fixupcontext[FIXUP_MAX];
 201    AddressSpace *as = arm_boot_address_space(cpu, info);
 202
 203    fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
 204    fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
 205    if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 206        fixupcontext[FIXUP_DSB] = DSB_INSN;
 207    } else {
 208        fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
 209    }
 210
 211    write_bootloader("smpboot", info->smp_loader_start,
 212                     smpboot, fixupcontext, as);
 213}
 214
 215void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
 216                                            const struct arm_boot_info *info,
 217                                            hwaddr mvbar_addr)
 218{
 219    AddressSpace *as = arm_boot_address_space(cpu, info);
 220    int n;
 221    uint32_t mvbar_blob[] = {
 222        /* mvbar_addr: secure monitor vectors
 223         * Default unimplemented and unused vectors to spin. Makes it
 224         * easier to debug (as opposed to the CPU running away).
 225         */
 226        0xeafffffe, /* (spin) */
 227        0xeafffffe, /* (spin) */
 228        0xe1b0f00e, /* movs pc, lr ;SMC exception return */
 229        0xeafffffe, /* (spin) */
 230        0xeafffffe, /* (spin) */
 231        0xeafffffe, /* (spin) */
 232        0xeafffffe, /* (spin) */
 233        0xeafffffe, /* (spin) */
 234    };
 235    uint32_t board_setup_blob[] = {
 236        /* board setup addr */
 237        0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
 238        0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
 239        0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
 240        0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
 241        0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
 242        0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
 243        0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
 244        0xe1a0f001, /* mov     pc, r1                 ;return */
 245    };
 246
 247    /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
 248    assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
 249
 250    /* check that these blobs don't overlap */
 251    assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
 252          || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
 253
 254    for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
 255        mvbar_blob[n] = tswap32(mvbar_blob[n]);
 256    }
 257    rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
 258                          mvbar_addr, as);
 259
 260    for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
 261        board_setup_blob[n] = tswap32(board_setup_blob[n]);
 262    }
 263    rom_add_blob_fixed_as("board-setup", board_setup_blob,
 264                          sizeof(board_setup_blob), info->board_setup_addr, as);
 265}
 266
 267static void default_reset_secondary(ARMCPU *cpu,
 268                                    const struct arm_boot_info *info)
 269{
 270    AddressSpace *as = arm_boot_address_space(cpu, info);
 271    CPUState *cs = CPU(cpu);
 272
 273    address_space_stl_notdirty(as, info->smp_bootreg_addr,
 274                               0, MEMTXATTRS_UNSPECIFIED, NULL);
 275    cpu_set_pc(cs, info->smp_loader_start);
 276}
 277
 278static inline bool have_dtb(const struct arm_boot_info *info)
 279{
 280    return info->dtb_filename || info->get_dtb;
 281}
 282
 283#define WRITE_WORD(p, value) do { \
 284    address_space_stl_notdirty(as, p, value, \
 285                               MEMTXATTRS_UNSPECIFIED, NULL);  \
 286    p += 4;                       \
 287} while (0)
 288
 289static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
 290{
 291    int initrd_size = info->initrd_size;
 292    hwaddr base = info->loader_start;
 293    hwaddr p;
 294
 295    p = base + KERNEL_ARGS_ADDR;
 296    /* ATAG_CORE */
 297    WRITE_WORD(p, 5);
 298    WRITE_WORD(p, 0x54410001);
 299    WRITE_WORD(p, 1);
 300    WRITE_WORD(p, 0x1000);
 301    WRITE_WORD(p, 0);
 302    /* ATAG_MEM */
 303    /* TODO: handle multiple chips on one ATAG list */
 304    WRITE_WORD(p, 4);
 305    WRITE_WORD(p, 0x54410002);
 306    WRITE_WORD(p, info->ram_size);
 307    WRITE_WORD(p, info->loader_start);
 308    if (initrd_size) {
 309        /* ATAG_INITRD2 */
 310        WRITE_WORD(p, 4);
 311        WRITE_WORD(p, 0x54420005);
 312        WRITE_WORD(p, info->initrd_start);
 313        WRITE_WORD(p, initrd_size);
 314    }
 315    if (info->kernel_cmdline && *info->kernel_cmdline) {
 316        /* ATAG_CMDLINE */
 317        int cmdline_size;
 318
 319        cmdline_size = strlen(info->kernel_cmdline);
 320        address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
 321                            (const uint8_t *)info->kernel_cmdline,
 322                            cmdline_size + 1);
 323        cmdline_size = (cmdline_size >> 2) + 1;
 324        WRITE_WORD(p, cmdline_size + 2);
 325        WRITE_WORD(p, 0x54410009);
 326        p += cmdline_size * 4;
 327    }
 328    if (info->atag_board) {
 329        /* ATAG_BOARD */
 330        int atag_board_len;
 331        uint8_t atag_board_buf[0x1000];
 332
 333        atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
 334        WRITE_WORD(p, (atag_board_len + 8) >> 2);
 335        WRITE_WORD(p, 0x414f4d50);
 336        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
 337                            atag_board_buf, atag_board_len);
 338        p += atag_board_len;
 339    }
 340    /* ATAG_END */
 341    WRITE_WORD(p, 0);
 342    WRITE_WORD(p, 0);
 343}
 344
 345static void set_kernel_args_old(const struct arm_boot_info *info,
 346                                AddressSpace *as)
 347{
 348    hwaddr p;
 349    const char *s;
 350    int initrd_size = info->initrd_size;
 351    hwaddr base = info->loader_start;
 352
 353    /* see linux/include/asm-arm/setup.h */
 354    p = base + KERNEL_ARGS_ADDR;
 355    /* page_size */
 356    WRITE_WORD(p, 4096);
 357    /* nr_pages */
 358    WRITE_WORD(p, info->ram_size / 4096);
 359    /* ramdisk_size */
 360    WRITE_WORD(p, 0);
 361#define FLAG_READONLY   1
 362#define FLAG_RDLOAD     4
 363#define FLAG_RDPROMPT   8
 364    /* flags */
 365    WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
 366    /* rootdev */
 367    WRITE_WORD(p, (31 << 8) | 0);       /* /dev/mtdblock0 */
 368    /* video_num_cols */
 369    WRITE_WORD(p, 0);
 370    /* video_num_rows */
 371    WRITE_WORD(p, 0);
 372    /* video_x */
 373    WRITE_WORD(p, 0);
 374    /* video_y */
 375    WRITE_WORD(p, 0);
 376    /* memc_control_reg */
 377    WRITE_WORD(p, 0);
 378    /* unsigned char sounddefault */
 379    /* unsigned char adfsdrives */
 380    /* unsigned char bytes_per_char_h */
 381    /* unsigned char bytes_per_char_v */
 382    WRITE_WORD(p, 0);
 383    /* pages_in_bank[4] */
 384    WRITE_WORD(p, 0);
 385    WRITE_WORD(p, 0);
 386    WRITE_WORD(p, 0);
 387    WRITE_WORD(p, 0);
 388    /* pages_in_vram */
 389    WRITE_WORD(p, 0);
 390    /* initrd_start */
 391    if (initrd_size) {
 392        WRITE_WORD(p, info->initrd_start);
 393    } else {
 394        WRITE_WORD(p, 0);
 395    }
 396    /* initrd_size */
 397    WRITE_WORD(p, initrd_size);
 398    /* rd_start */
 399    WRITE_WORD(p, 0);
 400    /* system_rev */
 401    WRITE_WORD(p, 0);
 402    /* system_serial_low */
 403    WRITE_WORD(p, 0);
 404    /* system_serial_high */
 405    WRITE_WORD(p, 0);
 406    /* mem_fclk_21285 */
 407    WRITE_WORD(p, 0);
 408    /* zero unused fields */
 409    while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
 410        WRITE_WORD(p, 0);
 411    }
 412    s = info->kernel_cmdline;
 413    if (s) {
 414        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
 415                            (const uint8_t *)s, strlen(s) + 1);
 416    } else {
 417        WRITE_WORD(p, 0);
 418    }
 419}
 420
 421static void fdt_add_psci_node(void *fdt)
 422{
 423    uint32_t cpu_suspend_fn;
 424    uint32_t cpu_off_fn;
 425    uint32_t cpu_on_fn;
 426    uint32_t migrate_fn;
 427    ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
 428    const char *psci_method;
 429    int64_t psci_conduit;
 430    int rc;
 431
 432    psci_conduit = object_property_get_int(OBJECT(armcpu),
 433                                           "psci-conduit",
 434                                           &error_abort);
 435    switch (psci_conduit) {
 436    case QEMU_PSCI_CONDUIT_DISABLED:
 437        return;
 438    case QEMU_PSCI_CONDUIT_HVC:
 439        psci_method = "hvc";
 440        break;
 441    case QEMU_PSCI_CONDUIT_SMC:
 442        psci_method = "smc";
 443        break;
 444    default:
 445        g_assert_not_reached();
 446    }
 447
 448    /*
 449     * If /psci node is present in provided DTB, assume that no fixup
 450     * is necessary and all PSCI configuration should be taken as-is
 451     */
 452    rc = fdt_path_offset(fdt, "/psci");
 453    if (rc >= 0) {
 454        return;
 455    }
 456
 457    qemu_fdt_add_subnode(fdt, "/psci");
 458    if (armcpu->psci_version == 2) {
 459        const char comp[] = "arm,psci-0.2\0arm,psci";
 460        qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 461
 462        cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
 463        if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
 464            cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
 465            cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
 466            migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
 467        } else {
 468            cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
 469            cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
 470            migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
 471        }
 472    } else {
 473        qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
 474
 475        cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
 476        cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
 477        cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
 478        migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
 479    }
 480
 481    /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
 482     * to the instruction that should be used to invoke PSCI functions.
 483     * However, the device tree binding uses 'method' instead, so that is
 484     * what we should use here.
 485     */
 486    qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
 487
 488    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
 489    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
 490    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
 491    qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
 492}
 493
 494int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
 495                 hwaddr addr_limit, AddressSpace *as)
 496{
 497    void *fdt = NULL;
 498    int size, rc, n = 0;
 499    uint32_t acells, scells;
 500    char *nodename;
 501    unsigned int i;
 502    hwaddr mem_base, mem_len;
 503    char **node_path;
 504    Error *err = NULL;
 505
 506    if (binfo->dtb_filename) {
 507        char *filename;
 508        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
 509        if (!filename) {
 510            fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
 511            goto fail;
 512        }
 513
 514        fdt = load_device_tree(filename, &size);
 515        if (!fdt) {
 516            fprintf(stderr, "Couldn't open dtb file %s\n", filename);
 517            g_free(filename);
 518            goto fail;
 519        }
 520        g_free(filename);
 521    } else {
 522        fdt = binfo->get_dtb(binfo, &size);
 523        if (!fdt) {
 524            fprintf(stderr, "Board was unable to create a dtb blob\n");
 525            goto fail;
 526        }
 527    }
 528
 529    if (addr_limit > addr && size > (addr_limit - addr)) {
 530        /* Installing the device tree blob at addr would exceed addr_limit.
 531         * Whether this constitutes failure is up to the caller to decide,
 532         * so just return 0 as size, i.e., no error.
 533         */
 534        g_free(fdt);
 535        return 0;
 536    }
 537
 538    acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
 539                                   NULL, &error_fatal);
 540    scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
 541                                   NULL, &error_fatal);
 542    if (acells == 0 || scells == 0) {
 543        fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
 544        goto fail;
 545    }
 546
 547    if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
 548        /* This is user error so deserves a friendlier error message
 549         * than the failure of setprop_sized_cells would provide
 550         */
 551        fprintf(stderr, "qemu: dtb file not compatible with "
 552                "RAM size > 4GB\n");
 553        goto fail;
 554    }
 555
 556    /* nop all root nodes matching /memory or /memory@unit-address */
 557    node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
 558    if (err) {
 559        error_report_err(err);
 560        goto fail;
 561    }
 562    while (node_path[n]) {
 563        if (g_str_has_prefix(node_path[n], "/memory")) {
 564            qemu_fdt_nop_node(fdt, node_path[n]);
 565        }
 566        n++;
 567    }
 568    g_strfreev(node_path);
 569
 570    if (nb_numa_nodes > 0) {
 571        mem_base = binfo->loader_start;
 572        for (i = 0; i < nb_numa_nodes; i++) {
 573            mem_len = numa_info[i].node_mem;
 574            nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
 575            qemu_fdt_add_subnode(fdt, nodename);
 576            qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
 577            rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
 578                                              acells, mem_base,
 579                                              scells, mem_len);
 580            if (rc < 0) {
 581                fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
 582                        i);
 583                goto fail;
 584            }
 585
 586            qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
 587            mem_base += mem_len;
 588            g_free(nodename);
 589        }
 590    } else {
 591        nodename = g_strdup_printf("/memory@%" PRIx64, binfo->loader_start);
 592        qemu_fdt_add_subnode(fdt, nodename);
 593        qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
 594
 595        rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
 596                                          acells, binfo->loader_start,
 597                                          scells, binfo->ram_size);
 598        if (rc < 0) {
 599            fprintf(stderr, "couldn't set %s reg\n", nodename);
 600            goto fail;
 601        }
 602        g_free(nodename);
 603    }
 604
 605    rc = fdt_path_offset(fdt, "/chosen");
 606    if (rc < 0) {
 607        qemu_fdt_add_subnode(fdt, "/chosen");
 608    }
 609
 610    if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
 611        rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
 612                                     binfo->kernel_cmdline);
 613        if (rc < 0) {
 614            fprintf(stderr, "couldn't set /chosen/bootargs\n");
 615            goto fail;
 616        }
 617    }
 618
 619    if (binfo->initrd_size) {
 620        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
 621                                   binfo->initrd_start);
 622        if (rc < 0) {
 623            fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
 624            goto fail;
 625        }
 626
 627        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
 628                                   binfo->initrd_start + binfo->initrd_size);
 629        if (rc < 0) {
 630            fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
 631            goto fail;
 632        }
 633    }
 634
 635    fdt_add_psci_node(fdt);
 636
 637    if (binfo->modify_dtb) {
 638        binfo->modify_dtb(binfo, fdt);
 639    }
 640
 641    qemu_fdt_dumpdtb(fdt, size);
 642
 643    /* Put the DTB into the memory map as a ROM image: this will ensure
 644     * the DTB is copied again upon reset, even if addr points into RAM.
 645     */
 646    rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
 647
 648    g_free(fdt);
 649
 650    return size;
 651
 652fail:
 653    g_free(fdt);
 654    return -1;
 655}
 656
 657static void do_cpu_reset(void *opaque)
 658{
 659    ARMCPU *cpu = opaque;
 660    CPUState *cs = CPU(cpu);
 661    CPUARMState *env = &cpu->env;
 662    const struct arm_boot_info *info = env->boot_info;
 663
 664    cpu_reset(cs);
 665    if (info) {
 666        if (!info->is_linux) {
 667            int i;
 668            /* Jump to the entry point.  */
 669            uint64_t entry = info->entry;
 670
 671            switch (info->endianness) {
 672            case ARM_ENDIANNESS_LE:
 673                env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
 674                for (i = 1; i < 4; ++i) {
 675                    env->cp15.sctlr_el[i] &= ~SCTLR_EE;
 676                }
 677                env->uncached_cpsr &= ~CPSR_E;
 678                break;
 679            case ARM_ENDIANNESS_BE8:
 680                env->cp15.sctlr_el[1] |= SCTLR_E0E;
 681                for (i = 1; i < 4; ++i) {
 682                    env->cp15.sctlr_el[i] |= SCTLR_EE;
 683                }
 684                env->uncached_cpsr |= CPSR_E;
 685                break;
 686            case ARM_ENDIANNESS_BE32:
 687                env->cp15.sctlr_el[1] |= SCTLR_B;
 688                break;
 689            case ARM_ENDIANNESS_UNKNOWN:
 690                break; /* Board's decision */
 691            default:
 692                g_assert_not_reached();
 693            }
 694
 695            if (!env->aarch64) {
 696                env->thumb = info->entry & 1;
 697                entry &= 0xfffffffe;
 698            }
 699            cpu_set_pc(cs, entry);
 700        } else {
 701            /* If we are booting Linux then we need to check whether we are
 702             * booting into secure or non-secure state and adjust the state
 703             * accordingly.  Out of reset, ARM is defined to be in secure state
 704             * (SCR.NS = 0), we change that here if non-secure boot has been
 705             * requested.
 706             */
 707            if (arm_feature(env, ARM_FEATURE_EL3)) {
 708                /* AArch64 is defined to come out of reset into EL3 if enabled.
 709                 * If we are booting Linux then we need to adjust our EL as
 710                 * Linux expects us to be in EL2 or EL1.  AArch32 resets into
 711                 * SVC, which Linux expects, so no privilege/exception level to
 712                 * adjust.
 713                 */
 714                if (env->aarch64) {
 715                    env->cp15.scr_el3 |= SCR_RW;
 716                    if (arm_feature(env, ARM_FEATURE_EL2)) {
 717                        env->cp15.hcr_el2 |= HCR_RW;
 718                        env->pstate = PSTATE_MODE_EL2h;
 719                    } else {
 720                        env->pstate = PSTATE_MODE_EL1h;
 721                    }
 722                    /* AArch64 kernels never boot in secure mode */
 723                    assert(!info->secure_boot);
 724                    /* This hook is only supported for AArch32 currently:
 725                     * bootloader_aarch64[] will not call the hook, and
 726                     * the code above has already dropped us into EL2 or EL1.
 727                     */
 728                    assert(!info->secure_board_setup);
 729                }
 730
 731                if (arm_feature(env, ARM_FEATURE_EL2)) {
 732                    /* If we have EL2 then Linux expects the HVC insn to work */
 733                    env->cp15.scr_el3 |= SCR_HCE;
 734                }
 735
 736                /* Set to non-secure if not a secure boot */
 737                if (!info->secure_boot &&
 738                    (cs != first_cpu || !info->secure_board_setup)) {
 739                    /* Linux expects non-secure state */
 740                    env->cp15.scr_el3 |= SCR_NS;
 741                }
 742            }
 743
 744            if (!env->aarch64 && !info->secure_boot &&
 745                arm_feature(env, ARM_FEATURE_EL2)) {
 746                /*
 747                 * This is an AArch32 boot not to Secure state, and
 748                 * we have Hyp mode available, so boot the kernel into
 749                 * Hyp mode. This is not how the CPU comes out of reset,
 750                 * so we need to manually put it there.
 751                 */
 752                cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
 753            }
 754
 755            if (cs == first_cpu) {
 756                AddressSpace *as = arm_boot_address_space(cpu, info);
 757
 758                cpu_set_pc(cs, info->loader_start);
 759
 760                if (!have_dtb(info)) {
 761                    if (old_param) {
 762                        set_kernel_args_old(info, as);
 763                    } else {
 764                        set_kernel_args(info, as);
 765                    }
 766                }
 767            } else {
 768                info->secondary_cpu_reset_hook(cpu, info);
 769            }
 770        }
 771    }
 772}
 773
 774/**
 775 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
 776 *                          by key.
 777 * @fw_cfg:         The firmware config instance to store the data in.
 778 * @size_key:       The firmware config key to store the size of the loaded
 779 *                  data under, with fw_cfg_add_i32().
 780 * @data_key:       The firmware config key to store the loaded data under,
 781 *                  with fw_cfg_add_bytes().
 782 * @image_name:     The name of the image file to load. If it is NULL, the
 783 *                  function returns without doing anything.
 784 * @try_decompress: Whether the image should be decompressed (gunzipped) before
 785 *                  adding it to fw_cfg. If decompression fails, the image is
 786 *                  loaded as-is.
 787 *
 788 * In case of failure, the function prints an error message to stderr and the
 789 * process exits with status 1.
 790 */
 791static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
 792                                 uint16_t data_key, const char *image_name,
 793                                 bool try_decompress)
 794{
 795    size_t size = -1;
 796    uint8_t *data;
 797
 798    if (image_name == NULL) {
 799        return;
 800    }
 801
 802    if (try_decompress) {
 803        size = load_image_gzipped_buffer(image_name,
 804                                         LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
 805    }
 806
 807    if (size == (size_t)-1) {
 808        gchar *contents;
 809        gsize length;
 810
 811        if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
 812            error_report("failed to load \"%s\"", image_name);
 813            exit(1);
 814        }
 815        size = length;
 816        data = (uint8_t *)contents;
 817    }
 818
 819    fw_cfg_add_i32(fw_cfg, size_key, size);
 820    fw_cfg_add_bytes(fw_cfg, data_key, data, size);
 821}
 822
 823static int do_arm_linux_init(Object *obj, void *opaque)
 824{
 825    if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
 826        ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
 827        ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
 828        struct arm_boot_info *info = opaque;
 829
 830        if (albifc->arm_linux_init) {
 831            albifc->arm_linux_init(albif, info->secure_boot);
 832        }
 833    }
 834    return 0;
 835}
 836
 837static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
 838                            uint64_t *lowaddr, uint64_t *highaddr,
 839                            int elf_machine, AddressSpace *as)
 840{
 841    bool elf_is64;
 842    union {
 843        Elf32_Ehdr h32;
 844        Elf64_Ehdr h64;
 845    } elf_header;
 846    int data_swab = 0;
 847    bool big_endian;
 848    int64_t ret = -1;
 849    Error *err = NULL;
 850
 851
 852    load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
 853    if (err) {
 854        error_free(err);
 855        return ret;
 856    }
 857
 858    if (elf_is64) {
 859        big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
 860        info->endianness = big_endian ? ARM_ENDIANNESS_BE8
 861                                      : ARM_ENDIANNESS_LE;
 862    } else {
 863        big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
 864        if (big_endian) {
 865            if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
 866                info->endianness = ARM_ENDIANNESS_BE8;
 867            } else {
 868                info->endianness = ARM_ENDIANNESS_BE32;
 869                /* In BE32, the CPU has a different view of the per-byte
 870                 * address map than the rest of the system. BE32 ELF files
 871                 * are organised such that they can be programmed through
 872                 * the CPU's per-word byte-reversed view of the world. QEMU
 873                 * however loads ELF files independently of the CPU. So
 874                 * tell the ELF loader to byte reverse the data for us.
 875                 */
 876                data_swab = 2;
 877            }
 878        } else {
 879            info->endianness = ARM_ENDIANNESS_LE;
 880        }
 881    }
 882
 883    ret = load_elf_as(info->kernel_filename, NULL, NULL,
 884                      pentry, lowaddr, highaddr, big_endian, elf_machine,
 885                      1, data_swab, as);
 886    if (ret <= 0) {
 887        /* The header loaded but the image didn't */
 888        exit(1);
 889    }
 890
 891    return ret;
 892}
 893
 894static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
 895                                   hwaddr *entry, AddressSpace *as)
 896{
 897    hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
 898    uint8_t *buffer;
 899    int size;
 900
 901    /* On aarch64, it's the bootloader's job to uncompress the kernel. */
 902    size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
 903                                     &buffer);
 904
 905    if (size < 0) {
 906        gsize len;
 907
 908        /* Load as raw file otherwise */
 909        if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
 910            return -1;
 911        }
 912        size = len;
 913    }
 914
 915    /* check the arm64 magic header value -- very old kernels may not have it */
 916    if (size > ARM64_MAGIC_OFFSET + 4 &&
 917        memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
 918        uint64_t hdrvals[2];
 919
 920        /* The arm64 Image header has text_offset and image_size fields at 8 and
 921         * 16 bytes into the Image header, respectively. The text_offset field
 922         * is only valid if the image_size is non-zero.
 923         */
 924        memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
 925        if (hdrvals[1] != 0) {
 926            kernel_load_offset = le64_to_cpu(hdrvals[0]);
 927
 928            /*
 929             * We write our startup "bootloader" at the very bottom of RAM,
 930             * so that bit can't be used for the image. Luckily the Image
 931             * format specification is that the image requests only an offset
 932             * from a 2MB boundary, not an absolute load address. So if the
 933             * image requests an offset that might mean it overlaps with the
 934             * bootloader, we can just load it starting at 2MB+offset rather
 935             * than 0MB + offset.
 936             */
 937            if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
 938                kernel_load_offset += 2 * MiB;
 939            }
 940        }
 941    }
 942
 943    *entry = mem_base + kernel_load_offset;
 944    rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
 945
 946    g_free(buffer);
 947
 948    return size;
 949}
 950
 951void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
 952{
 953    CPUState *cs;
 954    int kernel_size;
 955    int initrd_size;
 956    int is_linux = 0;
 957    uint64_t elf_entry, elf_low_addr, elf_high_addr;
 958    int elf_machine;
 959    hwaddr entry;
 960    static const ARMInsnFixup *primary_loader;
 961    AddressSpace *as = arm_boot_address_space(cpu, info);
 962
 963    /* CPU objects (unlike devices) are not automatically reset on system
 964     * reset, so we must always register a handler to do so. If we're
 965     * actually loading a kernel, the handler is also responsible for
 966     * arranging that we start it correctly.
 967     */
 968    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
 969        qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
 970    }
 971
 972    /* The board code is not supposed to set secure_board_setup unless
 973     * running its code in secure mode is actually possible, and KVM
 974     * doesn't support secure.
 975     */
 976    assert(!(info->secure_board_setup && kvm_enabled()));
 977
 978    info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
 979    info->dtb_limit = 0;
 980
 981    /* Load the kernel.  */
 982    if (!info->kernel_filename || info->firmware_loaded) {
 983
 984        if (have_dtb(info)) {
 985            /* If we have a device tree blob, but no kernel to supply it to (or
 986             * the kernel is supposed to be loaded by the bootloader), copy the
 987             * DTB to the base of RAM for the bootloader to pick up.
 988             */
 989            info->dtb_start = info->loader_start;
 990        }
 991
 992        if (info->kernel_filename) {
 993            FWCfgState *fw_cfg;
 994            bool try_decompressing_kernel;
 995
 996            fw_cfg = fw_cfg_find();
 997            try_decompressing_kernel = arm_feature(&cpu->env,
 998                                                   ARM_FEATURE_AARCH64);
 999
1000            /* Expose the kernel, the command line, and the initrd in fw_cfg.
1001             * We don't process them here at all, it's all left to the
1002             * firmware.
1003             */
1004            load_image_to_fw_cfg(fw_cfg,
1005                                 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1006                                 info->kernel_filename,
1007                                 try_decompressing_kernel);
1008            load_image_to_fw_cfg(fw_cfg,
1009                                 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1010                                 info->initrd_filename, false);
1011
1012            if (info->kernel_cmdline) {
1013                fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1014                               strlen(info->kernel_cmdline) + 1);
1015                fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1016                                  info->kernel_cmdline);
1017            }
1018        }
1019
1020        /* We will start from address 0 (typically a boot ROM image) in the
1021         * same way as hardware.
1022         */
1023        return;
1024    }
1025
1026    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1027        primary_loader = bootloader_aarch64;
1028        elf_machine = EM_AARCH64;
1029    } else {
1030        primary_loader = bootloader;
1031        if (!info->write_board_setup) {
1032            primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1033        }
1034        elf_machine = EM_ARM;
1035    }
1036
1037    if (!info->secondary_cpu_reset_hook) {
1038        info->secondary_cpu_reset_hook = default_reset_secondary;
1039    }
1040    if (!info->write_secondary_boot) {
1041        info->write_secondary_boot = default_write_secondary;
1042    }
1043
1044    if (info->nb_cpus == 0)
1045        info->nb_cpus = 1;
1046
1047    /* We want to put the initrd far enough into RAM that when the
1048     * kernel is uncompressed it will not clobber the initrd. However
1049     * on boards without much RAM we must ensure that we still leave
1050     * enough room for a decent sized initrd, and on boards with large
1051     * amounts of RAM we must avoid the initrd being so far up in RAM
1052     * that it is outside lowmem and inaccessible to the kernel.
1053     * So for boards with less  than 256MB of RAM we put the initrd
1054     * halfway into RAM, and for boards with 256MB of RAM or more we put
1055     * the initrd at 128MB.
1056     */
1057    info->initrd_start = info->loader_start +
1058        MIN(info->ram_size / 2, 128 * 1024 * 1024);
1059
1060    /* Assume that raw images are linux kernels, and ELF images are not.  */
1061    kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
1062                               &elf_high_addr, elf_machine, as);
1063    if (kernel_size > 0 && have_dtb(info)) {
1064        /* If there is still some room left at the base of RAM, try and put
1065         * the DTB there like we do for images loaded with -bios or -pflash.
1066         */
1067        if (elf_low_addr > info->loader_start
1068            || elf_high_addr < info->loader_start) {
1069            /* Set elf_low_addr as address limit for arm_load_dtb if it may be
1070             * pointing into RAM, otherwise pass '0' (no limit)
1071             */
1072            if (elf_low_addr < info->loader_start) {
1073                elf_low_addr = 0;
1074            }
1075            info->dtb_start = info->loader_start;
1076            info->dtb_limit = elf_low_addr;
1077        }
1078    }
1079    entry = elf_entry;
1080    if (kernel_size < 0) {
1081        kernel_size = load_uimage_as(info->kernel_filename, &entry, NULL,
1082                                     &is_linux, NULL, NULL, as);
1083    }
1084    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1085        kernel_size = load_aarch64_image(info->kernel_filename,
1086                                         info->loader_start, &entry, as);
1087        is_linux = 1;
1088    } else if (kernel_size < 0) {
1089        /* 32-bit ARM */
1090        entry = info->loader_start + KERNEL_LOAD_ADDR;
1091        kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1092                                             info->ram_size - KERNEL_LOAD_ADDR,
1093                                             as);
1094        is_linux = 1;
1095    }
1096    if (kernel_size < 0) {
1097        error_report("could not load kernel '%s'", info->kernel_filename);
1098        exit(1);
1099    }
1100    info->entry = entry;
1101    if (is_linux) {
1102        uint32_t fixupcontext[FIXUP_MAX];
1103
1104        if (info->initrd_filename) {
1105            initrd_size = load_ramdisk_as(info->initrd_filename,
1106                                          info->initrd_start,
1107                                          info->ram_size - info->initrd_start,
1108                                          as);
1109            if (initrd_size < 0) {
1110                initrd_size = load_image_targphys_as(info->initrd_filename,
1111                                                     info->initrd_start,
1112                                                     info->ram_size -
1113                                                     info->initrd_start,
1114                                                     as);
1115            }
1116            if (initrd_size < 0) {
1117                error_report("could not load initrd '%s'",
1118                             info->initrd_filename);
1119                exit(1);
1120            }
1121        } else {
1122            initrd_size = 0;
1123        }
1124        info->initrd_size = initrd_size;
1125
1126        fixupcontext[FIXUP_BOARDID] = info->board_id;
1127        fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1128
1129        /* for device tree boot, we pass the DTB directly in r2. Otherwise
1130         * we point to the kernel args.
1131         */
1132        if (have_dtb(info)) {
1133            hwaddr align;
1134
1135            if (elf_machine == EM_AARCH64) {
1136                /*
1137                 * Some AArch64 kernels on early bootup map the fdt region as
1138                 *
1139                 *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1140                 *
1141                 * Let's play safe and prealign it to 2MB to give us some space.
1142                 */
1143                align = 2 * 1024 * 1024;
1144            } else {
1145                /*
1146                 * Some 32bit kernels will trash anything in the 4K page the
1147                 * initrd ends in, so make sure the DTB isn't caught up in that.
1148                 */
1149                align = 4096;
1150            }
1151
1152            /* Place the DTB after the initrd in memory with alignment. */
1153            info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1154                                           align);
1155            fixupcontext[FIXUP_ARGPTR] = info->dtb_start;
1156        } else {
1157            fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
1158            if (info->ram_size >= (1ULL << 32)) {
1159                error_report("RAM size must be less than 4GB to boot"
1160                             " Linux kernel using ATAGS (try passing a device tree"
1161                             " using -dtb)");
1162                exit(1);
1163            }
1164        }
1165        fixupcontext[FIXUP_ENTRYPOINT] = entry;
1166
1167        write_bootloader("bootloader", info->loader_start,
1168                         primary_loader, fixupcontext, as);
1169
1170        if (info->nb_cpus > 1) {
1171            info->write_secondary_boot(cpu, info);
1172        }
1173        if (info->write_board_setup) {
1174            info->write_board_setup(cpu, info);
1175        }
1176
1177        /* Notify devices which need to fake up firmware initialization
1178         * that we're doing a direct kernel boot.
1179         */
1180        object_child_foreach_recursive(object_get_root(),
1181                                       do_arm_linux_init, info);
1182    }
1183    info->is_linux = is_linux;
1184
1185    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1186        ARM_CPU(cs)->env.boot_info = info;
1187    }
1188
1189    if (!info->skip_dtb_autoload && have_dtb(info)) {
1190        if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1191            exit(1);
1192        }
1193    }
1194}
1195
1196static const TypeInfo arm_linux_boot_if_info = {
1197    .name = TYPE_ARM_LINUX_BOOT_IF,
1198    .parent = TYPE_INTERFACE,
1199    .class_size = sizeof(ARMLinuxBootIfClass),
1200};
1201
1202static void arm_linux_boot_register_types(void)
1203{
1204    type_register_static(&arm_linux_boot_if_info);
1205}
1206
1207type_init(arm_linux_boot_register_types)
1208