qemu/hw/intc/arm_gicv3_cpuif.c
<<
>>
Prefs
   1/*
   2 * ARM Generic Interrupt Controller v3
   3 *
   4 * Copyright (c) 2016 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 * This code is licensed under the GPL, version 2 or (at your option)
   8 * any later version.
   9 */
  10
  11/* This file contains the code for the system register interface
  12 * portions of the GICv3.
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qemu/bitops.h"
  17#include "qemu/main-loop.h"
  18#include "trace.h"
  19#include "gicv3_internal.h"
  20#include "cpu.h"
  21
  22void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
  23{
  24    ARMCPU *arm_cpu = ARM_CPU(cpu);
  25    CPUARMState *env = &arm_cpu->env;
  26
  27    env->gicv3state = (void *)s;
  28};
  29
  30static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
  31{
  32    return env->gicv3state;
  33}
  34
  35static bool gicv3_use_ns_bank(CPUARMState *env)
  36{
  37    /* Return true if we should use the NonSecure bank for a banked GIC
  38     * CPU interface register. Note that this differs from the
  39     * access_secure_reg() function because GICv3 banked registers are
  40     * banked even for AArch64, unlike the other CPU system registers.
  41     */
  42    return !arm_is_secure_below_el3(env);
  43}
  44
  45/* The minimum BPR for the virtual interface is a configurable property */
  46static inline int icv_min_vbpr(GICv3CPUState *cs)
  47{
  48    return 7 - cs->vprebits;
  49}
  50
  51/* Simple accessor functions for LR fields */
  52static uint32_t ich_lr_vintid(uint64_t lr)
  53{
  54    return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
  55}
  56
  57static uint32_t ich_lr_pintid(uint64_t lr)
  58{
  59    return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
  60}
  61
  62static uint32_t ich_lr_prio(uint64_t lr)
  63{
  64    return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
  65}
  66
  67static int ich_lr_state(uint64_t lr)
  68{
  69    return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
  70}
  71
  72static bool icv_access(CPUARMState *env, int hcr_flags)
  73{
  74    /* Return true if this ICC_ register access should really be
  75     * directed to an ICV_ access. hcr_flags is a mask of
  76     * HCR_EL2 bits to check: we treat this as an ICV_ access
  77     * if we are in NS EL1 and at least one of the specified
  78     * HCR_EL2 bits is set.
  79     *
  80     * ICV registers fall into four categories:
  81     *  * access if NS EL1 and HCR_EL2.FMO == 1:
  82     *    all ICV regs with '0' in their name
  83     *  * access if NS EL1 and HCR_EL2.IMO == 1:
  84     *    all ICV regs with '1' in their name
  85     *  * access if NS EL1 and either IMO or FMO == 1:
  86     *    CTLR, DIR, PMR, RPR
  87     */
  88    bool flagmatch = ((hcr_flags & HCR_IMO) && arm_hcr_el2_imo(env)) ||
  89        ((hcr_flags & HCR_FMO) && arm_hcr_el2_fmo(env));
  90
  91    return flagmatch && arm_current_el(env) == 1
  92        && !arm_is_secure_below_el3(env);
  93}
  94
  95static int read_vbpr(GICv3CPUState *cs, int grp)
  96{
  97    /* Read VBPR value out of the VMCR field (caller must handle
  98     * VCBPR effects if required)
  99     */
 100    if (grp == GICV3_G0) {
 101        return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
 102                     ICH_VMCR_EL2_VBPR0_LENGTH);
 103    } else {
 104        return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
 105                         ICH_VMCR_EL2_VBPR1_LENGTH);
 106    }
 107}
 108
 109static void write_vbpr(GICv3CPUState *cs, int grp, int value)
 110{
 111    /* Write new VBPR1 value, handling the "writing a value less than
 112     * the minimum sets it to the minimum" semantics.
 113     */
 114    int min = icv_min_vbpr(cs);
 115
 116    if (grp != GICV3_G0) {
 117        min++;
 118    }
 119
 120    value = MAX(value, min);
 121
 122    if (grp == GICV3_G0) {
 123        cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
 124                                     ICH_VMCR_EL2_VBPR0_LENGTH, value);
 125    } else {
 126        cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
 127                                     ICH_VMCR_EL2_VBPR1_LENGTH, value);
 128    }
 129}
 130
 131static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
 132{
 133    /* Return a mask word which clears the unimplemented priority bits
 134     * from a priority value for a virtual interrupt. (Not to be confused
 135     * with the group priority, whose mask depends on the value of VBPR
 136     * for the interrupt group.)
 137     */
 138    return ~0U << (8 - cs->vpribits);
 139}
 140
 141static int ich_highest_active_virt_prio(GICv3CPUState *cs)
 142{
 143    /* Calculate the current running priority based on the set bits
 144     * in the ICH Active Priority Registers.
 145     */
 146    int i;
 147    int aprmax = 1 << (cs->vprebits - 5);
 148
 149    assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
 150
 151    for (i = 0; i < aprmax; i++) {
 152        uint32_t apr = cs->ich_apr[GICV3_G0][i] |
 153            cs->ich_apr[GICV3_G1NS][i];
 154
 155        if (!apr) {
 156            continue;
 157        }
 158        return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
 159    }
 160    /* No current active interrupts: return idle priority */
 161    return 0xff;
 162}
 163
 164static int hppvi_index(GICv3CPUState *cs)
 165{
 166    /* Return the list register index of the highest priority pending
 167     * virtual interrupt, as per the HighestPriorityVirtualInterrupt
 168     * pseudocode. If no pending virtual interrupts, return -1.
 169     */
 170    int idx = -1;
 171    int i;
 172    /* Note that a list register entry with a priority of 0xff will
 173     * never be reported by this function; this is the architecturally
 174     * correct behaviour.
 175     */
 176    int prio = 0xff;
 177
 178    if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
 179        /* Both groups disabled, definitely nothing to do */
 180        return idx;
 181    }
 182
 183    for (i = 0; i < cs->num_list_regs; i++) {
 184        uint64_t lr = cs->ich_lr_el2[i];
 185        int thisprio;
 186
 187        if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
 188            /* Not Pending */
 189            continue;
 190        }
 191
 192        /* Ignore interrupts if relevant group enable not set */
 193        if (lr & ICH_LR_EL2_GROUP) {
 194            if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 195                continue;
 196            }
 197        } else {
 198            if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
 199                continue;
 200            }
 201        }
 202
 203        thisprio = ich_lr_prio(lr);
 204
 205        if (thisprio < prio) {
 206            prio = thisprio;
 207            idx = i;
 208        }
 209    }
 210
 211    return idx;
 212}
 213
 214static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
 215{
 216    /* Return a mask word which clears the subpriority bits from
 217     * a priority value for a virtual interrupt in the specified group.
 218     * This depends on the VBPR value.
 219     * If using VBPR0 then:
 220     *  a BPR of 0 means the group priority bits are [7:1];
 221     *  a BPR of 1 means they are [7:2], and so on down to
 222     *  a BPR of 7 meaning no group priority bits at all.
 223     * If using VBPR1 then:
 224     *  a BPR of 0 is impossible (the minimum value is 1)
 225     *  a BPR of 1 means the group priority bits are [7:1];
 226     *  a BPR of 2 means they are [7:2], and so on down to
 227     *  a BPR of 7 meaning the group priority is [7].
 228     *
 229     * Which BPR to use depends on the group of the interrupt and
 230     * the current ICH_VMCR_EL2.VCBPR settings.
 231     *
 232     * This corresponds to the VGroupBits() pseudocode.
 233     */
 234    int bpr;
 235
 236    if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
 237        group = GICV3_G0;
 238    }
 239
 240    bpr = read_vbpr(cs, group);
 241    if (group == GICV3_G1NS) {
 242        assert(bpr > 0);
 243        bpr--;
 244    }
 245
 246    return ~0U << (bpr + 1);
 247}
 248
 249static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
 250{
 251    /* Return true if we can signal this virtual interrupt defined by
 252     * the given list register value; see the pseudocode functions
 253     * CanSignalVirtualInterrupt and CanSignalVirtualInt.
 254     * Compare also icc_hppi_can_preempt() which is the non-virtual
 255     * equivalent of these checks.
 256     */
 257    int grp;
 258    uint32_t mask, prio, rprio, vpmr;
 259
 260    if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
 261        /* Virtual interface disabled */
 262        return false;
 263    }
 264
 265    /* We don't need to check that this LR is in Pending state because
 266     * that has already been done in hppvi_index().
 267     */
 268
 269    prio = ich_lr_prio(lr);
 270    vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 271                     ICH_VMCR_EL2_VPMR_LENGTH);
 272
 273    if (prio >= vpmr) {
 274        /* Priority mask masks this interrupt */
 275        return false;
 276    }
 277
 278    rprio = ich_highest_active_virt_prio(cs);
 279    if (rprio == 0xff) {
 280        /* No running interrupt so we can preempt */
 281        return true;
 282    }
 283
 284    grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 285
 286    mask = icv_gprio_mask(cs, grp);
 287
 288    /* We only preempt a running interrupt if the pending interrupt's
 289     * group priority is sufficient (the subpriorities are not considered).
 290     */
 291    if ((prio & mask) < (rprio & mask)) {
 292        return true;
 293    }
 294
 295    return false;
 296}
 297
 298static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
 299                                                uint32_t *misr)
 300{
 301    /* Return a set of bits indicating the EOI maintenance interrupt status
 302     * for each list register. The EOI maintenance interrupt status is
 303     * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
 304     * (see the GICv3 spec for the ICH_EISR_EL2 register).
 305     * If misr is not NULL then we should also collect the information
 306     * about the MISR.EOI, MISR.NP and MISR.U bits.
 307     */
 308    uint32_t value = 0;
 309    int validcount = 0;
 310    bool seenpending = false;
 311    int i;
 312
 313    for (i = 0; i < cs->num_list_regs; i++) {
 314        uint64_t lr = cs->ich_lr_el2[i];
 315
 316        if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
 317            == ICH_LR_EL2_EOI) {
 318            value |= (1 << i);
 319        }
 320        if ((lr & ICH_LR_EL2_STATE_MASK)) {
 321            validcount++;
 322        }
 323        if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
 324            seenpending = true;
 325        }
 326    }
 327
 328    if (misr) {
 329        if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
 330            *misr |= ICH_MISR_EL2_U;
 331        }
 332        if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
 333            *misr |= ICH_MISR_EL2_NP;
 334        }
 335        if (value) {
 336            *misr |= ICH_MISR_EL2_EOI;
 337        }
 338    }
 339    return value;
 340}
 341
 342static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
 343{
 344    /* Return a set of bits indicating the maintenance interrupt status
 345     * (as seen in the ICH_MISR_EL2 register).
 346     */
 347    uint32_t value = 0;
 348
 349    /* Scan list registers and fill in the U, NP and EOI bits */
 350    eoi_maintenance_interrupt_state(cs, &value);
 351
 352    if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
 353        value |= ICH_MISR_EL2_LRENP;
 354    }
 355
 356    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
 357        (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
 358        value |= ICH_MISR_EL2_VGRP0E;
 359    }
 360
 361    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
 362        !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 363        value |= ICH_MISR_EL2_VGRP0D;
 364    }
 365    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
 366        (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 367        value |= ICH_MISR_EL2_VGRP1E;
 368    }
 369
 370    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
 371        !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
 372        value |= ICH_MISR_EL2_VGRP1D;
 373    }
 374
 375    return value;
 376}
 377
 378static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
 379{
 380    /* Tell the CPU about any pending virtual interrupts or
 381     * maintenance interrupts, following a change to the state
 382     * of the CPU interface relevant to virtual interrupts.
 383     *
 384     * CAUTION: this function will call qemu_set_irq() on the
 385     * CPU maintenance IRQ line, which is typically wired up
 386     * to the GIC as a per-CPU interrupt. This means that it
 387     * will recursively call back into the GIC code via
 388     * gicv3_redist_set_irq() and thus into the CPU interface code's
 389     * gicv3_cpuif_update(). It is therefore important that this
 390     * function is only called as the final action of a CPU interface
 391     * register write implementation, after all the GIC state
 392     * fields have been updated. gicv3_cpuif_update() also must
 393     * not cause this function to be called, but that happens
 394     * naturally as a result of there being no architectural
 395     * linkage between the physical and virtual GIC logic.
 396     */
 397    int idx;
 398    int irqlevel = 0;
 399    int fiqlevel = 0;
 400    int maintlevel = 0;
 401
 402    idx = hppvi_index(cs);
 403    trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
 404    if (idx >= 0) {
 405        uint64_t lr = cs->ich_lr_el2[idx];
 406
 407        if (icv_hppi_can_preempt(cs, lr)) {
 408            /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
 409            if (lr & ICH_LR_EL2_GROUP) {
 410                irqlevel = 1;
 411            } else {
 412                fiqlevel = 1;
 413            }
 414        }
 415    }
 416
 417    if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
 418        maintlevel = maintenance_interrupt_state(cs);
 419    }
 420
 421    trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
 422                                    irqlevel, maintlevel);
 423
 424    qemu_set_irq(cs->parent_vfiq, fiqlevel);
 425    qemu_set_irq(cs->parent_virq, irqlevel);
 426    qemu_set_irq(cs->maintenance_irq, maintlevel);
 427}
 428
 429static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
 430{
 431    GICv3CPUState *cs = icc_cs_from_env(env);
 432    int regno = ri->opc2 & 3;
 433    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
 434    uint64_t value = cs->ich_apr[grp][regno];
 435
 436    trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 437    return value;
 438}
 439
 440static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 441                         uint64_t value)
 442{
 443    GICv3CPUState *cs = icc_cs_from_env(env);
 444    int regno = ri->opc2 & 3;
 445    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
 446
 447    trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
 448
 449    cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
 450
 451    gicv3_cpuif_virt_update(cs);
 452    return;
 453}
 454
 455static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 456{
 457    GICv3CPUState *cs = icc_cs_from_env(env);
 458    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
 459    uint64_t bpr;
 460    bool satinc = false;
 461
 462    if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
 463        /* reads return bpr0 + 1 saturated to 7, writes ignored */
 464        grp = GICV3_G0;
 465        satinc = true;
 466    }
 467
 468    bpr = read_vbpr(cs, grp);
 469
 470    if (satinc) {
 471        bpr++;
 472        bpr = MIN(bpr, 7);
 473    }
 474
 475    trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
 476
 477    return bpr;
 478}
 479
 480static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 481                          uint64_t value)
 482{
 483    GICv3CPUState *cs = icc_cs_from_env(env);
 484    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
 485
 486    trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
 487                              gicv3_redist_affid(cs), value);
 488
 489    if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
 490        /* reads return bpr0 + 1 saturated to 7, writes ignored */
 491        return;
 492    }
 493
 494    write_vbpr(cs, grp, value);
 495
 496    gicv3_cpuif_virt_update(cs);
 497}
 498
 499static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 500{
 501    GICv3CPUState *cs = icc_cs_from_env(env);
 502    uint64_t value;
 503
 504    value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 505                      ICH_VMCR_EL2_VPMR_LENGTH);
 506
 507    trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
 508    return value;
 509}
 510
 511static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 512                          uint64_t value)
 513{
 514    GICv3CPUState *cs = icc_cs_from_env(env);
 515
 516    trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
 517
 518    value &= icv_fullprio_mask(cs);
 519
 520    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
 521                                 ICH_VMCR_EL2_VPMR_LENGTH, value);
 522
 523    gicv3_cpuif_virt_update(cs);
 524}
 525
 526static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
 527{
 528    GICv3CPUState *cs = icc_cs_from_env(env);
 529    int enbit;
 530    uint64_t value;
 531
 532    enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
 533    value = extract64(cs->ich_vmcr_el2, enbit, 1);
 534
 535    trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
 536                                gicv3_redist_affid(cs), value);
 537    return value;
 538}
 539
 540static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
 541                             uint64_t value)
 542{
 543    GICv3CPUState *cs = icc_cs_from_env(env);
 544    int enbit;
 545
 546    trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
 547                                 gicv3_redist_affid(cs), value);
 548
 549    enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
 550
 551    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
 552    gicv3_cpuif_virt_update(cs);
 553}
 554
 555static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 556{
 557    GICv3CPUState *cs = icc_cs_from_env(env);
 558    uint64_t value;
 559
 560    /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
 561     * should match the ones reported in ich_vtr_read().
 562     */
 563    value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
 564        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
 565
 566    if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
 567        value |= ICC_CTLR_EL1_EOIMODE;
 568    }
 569
 570    if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
 571        value |= ICC_CTLR_EL1_CBPR;
 572    }
 573
 574    trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
 575    return value;
 576}
 577
 578static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 579                               uint64_t value)
 580{
 581    GICv3CPUState *cs = icc_cs_from_env(env);
 582
 583    trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
 584
 585    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
 586                                 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
 587    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
 588                                 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
 589
 590    gicv3_cpuif_virt_update(cs);
 591}
 592
 593static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 594{
 595    GICv3CPUState *cs = icc_cs_from_env(env);
 596    int prio = ich_highest_active_virt_prio(cs);
 597
 598    trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
 599    return prio;
 600}
 601
 602static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
 603{
 604    GICv3CPUState *cs = icc_cs_from_env(env);
 605    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
 606    int idx = hppvi_index(cs);
 607    uint64_t value = INTID_SPURIOUS;
 608
 609    if (idx >= 0) {
 610        uint64_t lr = cs->ich_lr_el2[idx];
 611        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 612
 613        if (grp == thisgrp) {
 614            value = ich_lr_vintid(lr);
 615        }
 616    }
 617
 618    trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
 619    return value;
 620}
 621
 622static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
 623{
 624    /* Activate the interrupt in the specified list register
 625     * by moving it from Pending to Active state, and update the
 626     * Active Priority Registers.
 627     */
 628    uint32_t mask = icv_gprio_mask(cs, grp);
 629    int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
 630    int aprbit = prio >> (8 - cs->vprebits);
 631    int regno = aprbit / 32;
 632    int regbit = aprbit % 32;
 633
 634    cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
 635    cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
 636    cs->ich_apr[grp][regno] |= (1 << regbit);
 637}
 638
 639static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
 640{
 641    GICv3CPUState *cs = icc_cs_from_env(env);
 642    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
 643    int idx = hppvi_index(cs);
 644    uint64_t intid = INTID_SPURIOUS;
 645
 646    if (idx >= 0) {
 647        uint64_t lr = cs->ich_lr_el2[idx];
 648        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
 649
 650        if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
 651            intid = ich_lr_vintid(lr);
 652            if (intid < INTID_SECURE) {
 653                icv_activate_irq(cs, idx, grp);
 654            } else {
 655                /* Interrupt goes from Pending to Invalid */
 656                cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
 657                /* We will now return the (bogus) ID from the list register,
 658                 * as per the pseudocode.
 659                 */
 660            }
 661        }
 662    }
 663
 664    trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
 665                             gicv3_redist_affid(cs), intid);
 666    return intid;
 667}
 668
 669static int icc_highest_active_prio(GICv3CPUState *cs)
 670{
 671    /* Calculate the current running priority based on the set bits
 672     * in the Active Priority Registers.
 673     */
 674    int i;
 675
 676    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
 677        uint32_t apr = cs->icc_apr[GICV3_G0][i] |
 678            cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
 679
 680        if (!apr) {
 681            continue;
 682        }
 683        return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
 684    }
 685    /* No current active interrupts: return idle priority */
 686    return 0xff;
 687}
 688
 689static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
 690{
 691    /* Return a mask word which clears the subpriority bits from
 692     * a priority value for an interrupt in the specified group.
 693     * This depends on the BPR value. For CBPR0 (S or NS):
 694     *  a BPR of 0 means the group priority bits are [7:1];
 695     *  a BPR of 1 means they are [7:2], and so on down to
 696     *  a BPR of 7 meaning no group priority bits at all.
 697     * For CBPR1 NS:
 698     *  a BPR of 0 is impossible (the minimum value is 1)
 699     *  a BPR of 1 means the group priority bits are [7:1];
 700     *  a BPR of 2 means they are [7:2], and so on down to
 701     *  a BPR of 7 meaning the group priority is [7].
 702     *
 703     * Which BPR to use depends on the group of the interrupt and
 704     * the current ICC_CTLR.CBPR settings.
 705     *
 706     * This corresponds to the GroupBits() pseudocode.
 707     */
 708    int bpr;
 709
 710    if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
 711        (group == GICV3_G1NS &&
 712         cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
 713        group = GICV3_G0;
 714    }
 715
 716    bpr = cs->icc_bpr[group] & 7;
 717
 718    if (group == GICV3_G1NS) {
 719        assert(bpr > 0);
 720        bpr--;
 721    }
 722
 723    return ~0U << (bpr + 1);
 724}
 725
 726static bool icc_no_enabled_hppi(GICv3CPUState *cs)
 727{
 728    /* Return true if there is no pending interrupt, or the
 729     * highest priority pending interrupt is in a group which has been
 730     * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
 731     */
 732    return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
 733}
 734
 735static bool icc_hppi_can_preempt(GICv3CPUState *cs)
 736{
 737    /* Return true if we have a pending interrupt of sufficient
 738     * priority to preempt.
 739     */
 740    int rprio;
 741    uint32_t mask;
 742
 743    if (icc_no_enabled_hppi(cs)) {
 744        return false;
 745    }
 746
 747    if (cs->hppi.prio >= cs->icc_pmr_el1) {
 748        /* Priority mask masks this interrupt */
 749        return false;
 750    }
 751
 752    rprio = icc_highest_active_prio(cs);
 753    if (rprio == 0xff) {
 754        /* No currently running interrupt so we can preempt */
 755        return true;
 756    }
 757
 758    mask = icc_gprio_mask(cs, cs->hppi.grp);
 759
 760    /* We only preempt a running interrupt if the pending interrupt's
 761     * group priority is sufficient (the subpriorities are not considered).
 762     */
 763    if ((cs->hppi.prio & mask) < (rprio & mask)) {
 764        return true;
 765    }
 766
 767    return false;
 768}
 769
 770void gicv3_cpuif_update(GICv3CPUState *cs)
 771{
 772    /* Tell the CPU about its highest priority pending interrupt */
 773    int irqlevel = 0;
 774    int fiqlevel = 0;
 775    ARMCPU *cpu = ARM_CPU(cs->cpu);
 776    CPUARMState *env = &cpu->env;
 777
 778    g_assert(qemu_mutex_iothread_locked());
 779
 780    trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
 781                             cs->hppi.grp, cs->hppi.prio);
 782
 783    if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
 784        /* If a Security-enabled GIC sends a G1S interrupt to a
 785         * Security-disabled CPU, we must treat it as if it were G0.
 786         */
 787        cs->hppi.grp = GICV3_G0;
 788    }
 789
 790    if (icc_hppi_can_preempt(cs)) {
 791        /* We have an interrupt: should we signal it as IRQ or FIQ?
 792         * This is described in the GICv3 spec section 4.6.2.
 793         */
 794        bool isfiq;
 795
 796        switch (cs->hppi.grp) {
 797        case GICV3_G0:
 798            isfiq = true;
 799            break;
 800        case GICV3_G1:
 801            isfiq = (!arm_is_secure(env) ||
 802                     (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
 803            break;
 804        case GICV3_G1NS:
 805            isfiq = arm_is_secure(env);
 806            break;
 807        default:
 808            g_assert_not_reached();
 809        }
 810
 811        if (isfiq) {
 812            fiqlevel = 1;
 813        } else {
 814            irqlevel = 1;
 815        }
 816    }
 817
 818    trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
 819
 820    qemu_set_irq(cs->parent_fiq, fiqlevel);
 821    qemu_set_irq(cs->parent_irq, irqlevel);
 822}
 823
 824static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 825{
 826    GICv3CPUState *cs = icc_cs_from_env(env);
 827    uint32_t value = cs->icc_pmr_el1;
 828
 829    if (icv_access(env, HCR_FMO | HCR_IMO)) {
 830        return icv_pmr_read(env, ri);
 831    }
 832
 833    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
 834        (env->cp15.scr_el3 & SCR_FIQ)) {
 835        /* NS access and Group 0 is inaccessible to NS: return the
 836         * NS view of the current priority
 837         */
 838        if ((value & 0x80) == 0) {
 839            /* Secure priorities not visible to NS */
 840            value = 0;
 841        } else if (value != 0xff) {
 842            value = (value << 1) & 0xff;
 843        }
 844    }
 845
 846    trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
 847
 848    return value;
 849}
 850
 851static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 852                          uint64_t value)
 853{
 854    GICv3CPUState *cs = icc_cs_from_env(env);
 855
 856    if (icv_access(env, HCR_FMO | HCR_IMO)) {
 857        return icv_pmr_write(env, ri, value);
 858    }
 859
 860    trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
 861
 862    value &= 0xff;
 863
 864    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
 865        (env->cp15.scr_el3 & SCR_FIQ)) {
 866        /* NS access and Group 0 is inaccessible to NS: return the
 867         * NS view of the current priority
 868         */
 869        if (!(cs->icc_pmr_el1 & 0x80)) {
 870            /* Current PMR in the secure range, don't allow NS to change it */
 871            return;
 872        }
 873        value = (value >> 1) | 0x80;
 874    }
 875    cs->icc_pmr_el1 = value;
 876    gicv3_cpuif_update(cs);
 877}
 878
 879static void icc_activate_irq(GICv3CPUState *cs, int irq)
 880{
 881    /* Move the interrupt from the Pending state to Active, and update
 882     * the Active Priority Registers
 883     */
 884    uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
 885    int prio = cs->hppi.prio & mask;
 886    int aprbit = prio >> 1;
 887    int regno = aprbit / 32;
 888    int regbit = aprbit % 32;
 889
 890    cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
 891
 892    if (irq < GIC_INTERNAL) {
 893        cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
 894        cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
 895        gicv3_redist_update(cs);
 896    } else {
 897        gicv3_gicd_active_set(cs->gic, irq);
 898        gicv3_gicd_pending_clear(cs->gic, irq);
 899        gicv3_update(cs->gic, irq, 1);
 900    }
 901}
 902
 903static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
 904{
 905    /* Return the highest priority pending interrupt register value
 906     * for group 0.
 907     */
 908    bool irq_is_secure;
 909
 910    if (cs->hppi.prio == 0xff) {
 911        return INTID_SPURIOUS;
 912    }
 913
 914    /* Check whether we can return the interrupt or if we should return
 915     * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
 916     * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
 917     * is always zero.)
 918     */
 919    irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
 920                     (cs->hppi.grp != GICV3_G1NS));
 921
 922    if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
 923        return INTID_SPURIOUS;
 924    }
 925    if (irq_is_secure && !arm_is_secure(env)) {
 926        /* Secure interrupts not visible to Nonsecure */
 927        return INTID_SPURIOUS;
 928    }
 929
 930    if (cs->hppi.grp != GICV3_G0) {
 931        /* Indicate to EL3 that there's a Group 1 interrupt for the other
 932         * state pending.
 933         */
 934        return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
 935    }
 936
 937    return cs->hppi.irq;
 938}
 939
 940static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
 941{
 942    /* Return the highest priority pending interrupt register value
 943     * for group 1.
 944     */
 945    bool irq_is_secure;
 946
 947    if (cs->hppi.prio == 0xff) {
 948        return INTID_SPURIOUS;
 949    }
 950
 951    /* Check whether we can return the interrupt or if we should return
 952     * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
 953     * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
 954     * is always zero.)
 955     */
 956    irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
 957                     (cs->hppi.grp != GICV3_G1NS));
 958
 959    if (cs->hppi.grp == GICV3_G0) {
 960        /* Group 0 interrupts not visible via HPPIR1 */
 961        return INTID_SPURIOUS;
 962    }
 963    if (irq_is_secure) {
 964        if (!arm_is_secure(env)) {
 965            /* Secure interrupts not visible in Non-secure */
 966            return INTID_SPURIOUS;
 967        }
 968    } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
 969        /* Group 1 non-secure interrupts not visible in Secure EL1 */
 970        return INTID_SPURIOUS;
 971    }
 972
 973    return cs->hppi.irq;
 974}
 975
 976static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
 977{
 978    GICv3CPUState *cs = icc_cs_from_env(env);
 979    uint64_t intid;
 980
 981    if (icv_access(env, HCR_FMO)) {
 982        return icv_iar_read(env, ri);
 983    }
 984
 985    if (!icc_hppi_can_preempt(cs)) {
 986        intid = INTID_SPURIOUS;
 987    } else {
 988        intid = icc_hppir0_value(cs, env);
 989    }
 990
 991    if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
 992        icc_activate_irq(cs, intid);
 993    }
 994
 995    trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
 996    return intid;
 997}
 998
 999static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1000{
1001    GICv3CPUState *cs = icc_cs_from_env(env);
1002    uint64_t intid;
1003
1004    if (icv_access(env, HCR_IMO)) {
1005        return icv_iar_read(env, ri);
1006    }
1007
1008    if (!icc_hppi_can_preempt(cs)) {
1009        intid = INTID_SPURIOUS;
1010    } else {
1011        intid = icc_hppir1_value(cs, env);
1012    }
1013
1014    if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
1015        icc_activate_irq(cs, intid);
1016    }
1017
1018    trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1019    return intid;
1020}
1021
1022static void icc_drop_prio(GICv3CPUState *cs, int grp)
1023{
1024    /* Drop the priority of the currently active interrupt in
1025     * the specified group.
1026     *
1027     * Note that we can guarantee (because of the requirement to nest
1028     * ICC_IAR reads [which activate an interrupt and raise priority]
1029     * with ICC_EOIR writes [which drop the priority for the interrupt])
1030     * that the interrupt we're being called for is the highest priority
1031     * active interrupt, meaning that it has the lowest set bit in the
1032     * APR registers.
1033     *
1034     * If the guest does not honour the ordering constraints then the
1035     * behaviour of the GIC is UNPREDICTABLE, which for us means that
1036     * the values of the APR registers might become incorrect and the
1037     * running priority will be wrong, so interrupts that should preempt
1038     * might not do so, and interrupts that should not preempt might do so.
1039     */
1040    int i;
1041
1042    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1043        uint64_t *papr = &cs->icc_apr[grp][i];
1044
1045        if (!*papr) {
1046            continue;
1047        }
1048        /* Clear the lowest set bit */
1049        *papr &= *papr - 1;
1050        break;
1051    }
1052
1053    /* running priority change means we need an update for this cpu i/f */
1054    gicv3_cpuif_update(cs);
1055}
1056
1057static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1058{
1059    /* Return true if we should split priority drop and interrupt
1060     * deactivation, ie whether the relevant EOIMode bit is set.
1061     */
1062    if (arm_is_el3_or_mon(env)) {
1063        return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1064    }
1065    if (arm_is_secure_below_el3(env)) {
1066        return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1067    } else {
1068        return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1069    }
1070}
1071
1072static int icc_highest_active_group(GICv3CPUState *cs)
1073{
1074    /* Return the group with the highest priority active interrupt.
1075     * We can do this by just comparing the APRs to see which one
1076     * has the lowest set bit.
1077     * (If more than one group is active at the same priority then
1078     * we're in UNPREDICTABLE territory.)
1079     */
1080    int i;
1081
1082    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1083        int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1084        int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1085        int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1086
1087        if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1088            return GICV3_G1NS;
1089        }
1090        if (g1ctz < g0ctz) {
1091            return GICV3_G1;
1092        }
1093        if (g0ctz < 32) {
1094            return GICV3_G0;
1095        }
1096    }
1097    /* No set active bits? UNPREDICTABLE; return -1 so the caller
1098     * ignores the spurious EOI attempt.
1099     */
1100    return -1;
1101}
1102
1103static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1104{
1105    if (irq < GIC_INTERNAL) {
1106        cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1107        gicv3_redist_update(cs);
1108    } else {
1109        gicv3_gicd_active_clear(cs->gic, irq);
1110        gicv3_update(cs->gic, irq, 1);
1111    }
1112}
1113
1114static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1115{
1116    /* Return true if we should split priority drop and interrupt
1117     * deactivation, ie whether the virtual EOIMode bit is set.
1118     */
1119    return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1120}
1121
1122static int icv_find_active(GICv3CPUState *cs, int irq)
1123{
1124    /* Given an interrupt number for an active interrupt, return the index
1125     * of the corresponding list register, or -1 if there is no match.
1126     * Corresponds to FindActiveVirtualInterrupt pseudocode.
1127     */
1128    int i;
1129
1130    for (i = 0; i < cs->num_list_regs; i++) {
1131        uint64_t lr = cs->ich_lr_el2[i];
1132
1133        if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1134            return i;
1135        }
1136    }
1137
1138    return -1;
1139}
1140
1141static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1142{
1143    /* Deactivate the interrupt in the specified list register index */
1144    uint64_t lr = cs->ich_lr_el2[idx];
1145
1146    if (lr & ICH_LR_EL2_HW) {
1147        /* Deactivate the associated physical interrupt */
1148        int pirq = ich_lr_pintid(lr);
1149
1150        if (pirq < INTID_SECURE) {
1151            icc_deactivate_irq(cs, pirq);
1152        }
1153    }
1154
1155    /* Clear the 'active' part of the state, so ActivePending->Pending
1156     * and Active->Invalid.
1157     */
1158    lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1159    cs->ich_lr_el2[idx] = lr;
1160}
1161
1162static void icv_increment_eoicount(GICv3CPUState *cs)
1163{
1164    /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1165    int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1166                             ICH_HCR_EL2_EOICOUNT_LENGTH);
1167
1168    cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1169                                ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1170}
1171
1172static int icv_drop_prio(GICv3CPUState *cs)
1173{
1174    /* Drop the priority of the currently active virtual interrupt
1175     * (favouring group 0 if there is a set active bit at
1176     * the same priority for both group 0 and group 1).
1177     * Return the priority value for the bit we just cleared,
1178     * or 0xff if no bits were set in the AP registers at all.
1179     * Note that though the ich_apr[] are uint64_t only the low
1180     * 32 bits are actually relevant.
1181     */
1182    int i;
1183    int aprmax = 1 << (cs->vprebits - 5);
1184
1185    assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1186
1187    for (i = 0; i < aprmax; i++) {
1188        uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1189        uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1190        int apr0count, apr1count;
1191
1192        if (!*papr0 && !*papr1) {
1193            continue;
1194        }
1195
1196        /* We can't just use the bit-twiddling hack icc_drop_prio() does
1197         * because we need to return the bit number we cleared so
1198         * it can be compared against the list register's priority field.
1199         */
1200        apr0count = ctz32(*papr0);
1201        apr1count = ctz32(*papr1);
1202
1203        if (apr0count <= apr1count) {
1204            *papr0 &= *papr0 - 1;
1205            return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1206        } else {
1207            *papr1 &= *papr1 - 1;
1208            return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1209        }
1210    }
1211    return 0xff;
1212}
1213
1214static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1215                          uint64_t value)
1216{
1217    /* Deactivate interrupt */
1218    GICv3CPUState *cs = icc_cs_from_env(env);
1219    int idx;
1220    int irq = value & 0xffffff;
1221
1222    trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1223
1224    if (irq >= cs->gic->num_irq) {
1225        /* Also catches special interrupt numbers and LPIs */
1226        return;
1227    }
1228
1229    if (!icv_eoi_split(env, cs)) {
1230        return;
1231    }
1232
1233    idx = icv_find_active(cs, irq);
1234
1235    if (idx < 0) {
1236        /* No list register matching this, so increment the EOI count
1237         * (might trigger a maintenance interrupt)
1238         */
1239        icv_increment_eoicount(cs);
1240    } else {
1241        icv_deactivate_irq(cs, idx);
1242    }
1243
1244    gicv3_cpuif_virt_update(cs);
1245}
1246
1247static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1248                           uint64_t value)
1249{
1250    /* End of Interrupt */
1251    GICv3CPUState *cs = icc_cs_from_env(env);
1252    int irq = value & 0xffffff;
1253    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1254    int idx, dropprio;
1255
1256    trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1257                               gicv3_redist_affid(cs), value);
1258
1259    if (irq >= cs->gic->num_irq) {
1260        /* Also catches special interrupt numbers and LPIs */
1261        return;
1262    }
1263
1264    /* We implement the IMPDEF choice of "drop priority before doing
1265     * error checks" (because that lets us avoid scanning the AP
1266     * registers twice).
1267     */
1268    dropprio = icv_drop_prio(cs);
1269    if (dropprio == 0xff) {
1270        /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1271         * whether the list registers are checked in this
1272         * situation; we choose not to.
1273         */
1274        return;
1275    }
1276
1277    idx = icv_find_active(cs, irq);
1278
1279    if (idx < 0) {
1280        /* No valid list register corresponding to EOI ID */
1281        icv_increment_eoicount(cs);
1282    } else {
1283        uint64_t lr = cs->ich_lr_el2[idx];
1284        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1285        int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1286
1287        if (thisgrp == grp && lr_gprio == dropprio) {
1288            if (!icv_eoi_split(env, cs)) {
1289                /* Priority drop and deactivate not split: deactivate irq now */
1290                icv_deactivate_irq(cs, idx);
1291            }
1292        }
1293    }
1294
1295    gicv3_cpuif_virt_update(cs);
1296}
1297
1298static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1299                           uint64_t value)
1300{
1301    /* End of Interrupt */
1302    GICv3CPUState *cs = icc_cs_from_env(env);
1303    int irq = value & 0xffffff;
1304    int grp;
1305
1306    if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) {
1307        icv_eoir_write(env, ri, value);
1308        return;
1309    }
1310
1311    trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
1312                               gicv3_redist_affid(cs), value);
1313
1314    if (ri->crm == 8) {
1315        /* EOIR0 */
1316        grp = GICV3_G0;
1317    } else {
1318        /* EOIR1 */
1319        if (arm_is_secure(env)) {
1320            grp = GICV3_G1;
1321        } else {
1322            grp = GICV3_G1NS;
1323        }
1324    }
1325
1326    if (irq >= cs->gic->num_irq) {
1327        /* This handles two cases:
1328         * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1329         * to the GICC_EOIR, the GIC ignores that write.
1330         * 2. If software writes the number of a non-existent interrupt
1331         * this must be a subcase of "value written does not match the last
1332         * valid interrupt value read from the Interrupt Acknowledge
1333         * register" and so this is UNPREDICTABLE. We choose to ignore it.
1334         */
1335        return;
1336    }
1337
1338    if (icc_highest_active_group(cs) != grp) {
1339        return;
1340    }
1341
1342    icc_drop_prio(cs, grp);
1343
1344    if (!icc_eoi_split(env, cs)) {
1345        /* Priority drop and deactivate not split: deactivate irq now */
1346        icc_deactivate_irq(cs, irq);
1347    }
1348}
1349
1350static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1351{
1352    GICv3CPUState *cs = icc_cs_from_env(env);
1353    uint64_t value;
1354
1355    if (icv_access(env, HCR_FMO)) {
1356        return icv_hppir_read(env, ri);
1357    }
1358
1359    value = icc_hppir0_value(cs, env);
1360    trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1361    return value;
1362}
1363
1364static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1365{
1366    GICv3CPUState *cs = icc_cs_from_env(env);
1367    uint64_t value;
1368
1369    if (icv_access(env, HCR_IMO)) {
1370        return icv_hppir_read(env, ri);
1371    }
1372
1373    value = icc_hppir1_value(cs, env);
1374    trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1375    return value;
1376}
1377
1378static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1379{
1380    GICv3CPUState *cs = icc_cs_from_env(env);
1381    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1382    bool satinc = false;
1383    uint64_t bpr;
1384
1385    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1386        return icv_bpr_read(env, ri);
1387    }
1388
1389    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1390        grp = GICV3_G1NS;
1391    }
1392
1393    if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1394        (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1395        /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1396         * modify BPR0
1397         */
1398        grp = GICV3_G0;
1399    }
1400
1401    if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1402        (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1403        /* reads return bpr0 + 1 sat to 7, writes ignored */
1404        grp = GICV3_G0;
1405        satinc = true;
1406    }
1407
1408    bpr = cs->icc_bpr[grp];
1409    if (satinc) {
1410        bpr++;
1411        bpr = MIN(bpr, 7);
1412    }
1413
1414    trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1415
1416    return bpr;
1417}
1418
1419static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1420                          uint64_t value)
1421{
1422    GICv3CPUState *cs = icc_cs_from_env(env);
1423    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1424    uint64_t minval;
1425
1426    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1427        icv_bpr_write(env, ri, value);
1428        return;
1429    }
1430
1431    trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1432                              gicv3_redist_affid(cs), value);
1433
1434    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1435        grp = GICV3_G1NS;
1436    }
1437
1438    if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1439        (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1440        /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1441         * modify BPR0
1442         */
1443        grp = GICV3_G0;
1444    }
1445
1446    if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1447        (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1448        /* reads return bpr0 + 1 sat to 7, writes ignored */
1449        return;
1450    }
1451
1452    minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
1453    if (value < minval) {
1454        value = minval;
1455    }
1456
1457    cs->icc_bpr[grp] = value & 7;
1458    gicv3_cpuif_update(cs);
1459}
1460
1461static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1462{
1463    GICv3CPUState *cs = icc_cs_from_env(env);
1464    uint64_t value;
1465
1466    int regno = ri->opc2 & 3;
1467    int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1468
1469    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1470        return icv_ap_read(env, ri);
1471    }
1472
1473    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1474        grp = GICV3_G1NS;
1475    }
1476
1477    value = cs->icc_apr[grp][regno];
1478
1479    trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1480    return value;
1481}
1482
1483static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1484                         uint64_t value)
1485{
1486    GICv3CPUState *cs = icc_cs_from_env(env);
1487
1488    int regno = ri->opc2 & 3;
1489    int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1490
1491    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1492        icv_ap_write(env, ri, value);
1493        return;
1494    }
1495
1496    trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1497
1498    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1499        grp = GICV3_G1NS;
1500    }
1501
1502    /* It's not possible to claim that a Non-secure interrupt is active
1503     * at a priority outside the Non-secure range (128..255), since this
1504     * would otherwise allow malicious NS code to block delivery of S interrupts
1505     * by writing a bad value to these registers.
1506     */
1507    if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1508        return;
1509    }
1510
1511    cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1512    gicv3_cpuif_update(cs);
1513}
1514
1515static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1516                          uint64_t value)
1517{
1518    /* Deactivate interrupt */
1519    GICv3CPUState *cs = icc_cs_from_env(env);
1520    int irq = value & 0xffffff;
1521    bool irq_is_secure, single_sec_state, irq_is_grp0;
1522    bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1523
1524    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1525        icv_dir_write(env, ri, value);
1526        return;
1527    }
1528
1529    trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1530
1531    if (irq >= cs->gic->num_irq) {
1532        /* Also catches special interrupt numbers and LPIs */
1533        return;
1534    }
1535
1536    if (!icc_eoi_split(env, cs)) {
1537        return;
1538    }
1539
1540    int grp = gicv3_irq_group(cs->gic, cs, irq);
1541
1542    single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1543    irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1544    irq_is_grp0 = grp == GICV3_G0;
1545
1546    /* Check whether we're allowed to deactivate this interrupt based
1547     * on its group and the current CPU state.
1548     * These checks are laid out to correspond to the spec's pseudocode.
1549     */
1550    route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1551    route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1552    /* No need to include !IsSecure in route_*_to_el2 as it's only
1553     * tested in cases where we know !IsSecure is true.
1554     */
1555    route_fiq_to_el2 = arm_hcr_el2_fmo(env);
1556    route_irq_to_el2 = arm_hcr_el2_imo(env);
1557
1558    switch (arm_current_el(env)) {
1559    case 3:
1560        break;
1561    case 2:
1562        if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1563            break;
1564        }
1565        if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1566            break;
1567        }
1568        return;
1569    case 1:
1570        if (!arm_is_secure_below_el3(env)) {
1571            if (single_sec_state && irq_is_grp0 &&
1572                !route_fiq_to_el3 && !route_fiq_to_el2) {
1573                break;
1574            }
1575            if (!irq_is_secure && !irq_is_grp0 &&
1576                !route_irq_to_el3 && !route_irq_to_el2) {
1577                break;
1578            }
1579        } else {
1580            if (irq_is_grp0 && !route_fiq_to_el3) {
1581                break;
1582            }
1583            if (!irq_is_grp0 &&
1584                (!irq_is_secure || !single_sec_state) &&
1585                !route_irq_to_el3) {
1586                break;
1587            }
1588        }
1589        return;
1590    default:
1591        g_assert_not_reached();
1592    }
1593
1594    icc_deactivate_irq(cs, irq);
1595}
1596
1597static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1598{
1599    GICv3CPUState *cs = icc_cs_from_env(env);
1600    int prio;
1601
1602    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1603        return icv_rpr_read(env, ri);
1604    }
1605
1606    prio = icc_highest_active_prio(cs);
1607
1608    if (arm_feature(env, ARM_FEATURE_EL3) &&
1609        !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1610        /* NS GIC access and Group 0 is inaccessible to NS */
1611        if ((prio & 0x80) == 0) {
1612            /* NS mustn't see priorities in the Secure half of the range */
1613            prio = 0;
1614        } else if (prio != 0xff) {
1615            /* Non-idle priority: show the Non-secure view of it */
1616            prio = (prio << 1) & 0xff;
1617        }
1618    }
1619
1620    trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1621    return prio;
1622}
1623
1624static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1625                             uint64_t value, int grp, bool ns)
1626{
1627    GICv3State *s = cs->gic;
1628
1629    /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1630    uint64_t aff = extract64(value, 48, 8) << 16 |
1631        extract64(value, 32, 8) << 8 |
1632        extract64(value, 16, 8);
1633    uint32_t targetlist = extract64(value, 0, 16);
1634    uint32_t irq = extract64(value, 24, 4);
1635    bool irm = extract64(value, 40, 1);
1636    int i;
1637
1638    if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1639        /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1640         * interrupts as Group 0 interrupts and must send Secure Group 0
1641         * interrupts to the target CPUs.
1642         */
1643        grp = GICV3_G0;
1644    }
1645
1646    trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1647                                 aff, targetlist);
1648
1649    for (i = 0; i < s->num_cpu; i++) {
1650        GICv3CPUState *ocs = &s->cpu[i];
1651
1652        if (irm) {
1653            /* IRM == 1 : route to all CPUs except self */
1654            if (cs == ocs) {
1655                continue;
1656            }
1657        } else {
1658            /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1659             * where the corresponding bit is set in targetlist
1660             */
1661            int aff0;
1662
1663            if (ocs->gicr_typer >> 40 != aff) {
1664                continue;
1665            }
1666            aff0 = extract64(ocs->gicr_typer, 32, 8);
1667            if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1668                continue;
1669            }
1670        }
1671
1672        /* The redistributor will check against its own GICR_NSACR as needed */
1673        gicv3_redist_send_sgi(ocs, grp, irq, ns);
1674    }
1675}
1676
1677static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1678                           uint64_t value)
1679{
1680    /* Generate Secure Group 0 SGI. */
1681    GICv3CPUState *cs = icc_cs_from_env(env);
1682    bool ns = !arm_is_secure(env);
1683
1684    icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1685}
1686
1687static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1688                           uint64_t value)
1689{
1690    /* Generate Group 1 SGI for the current Security state */
1691    GICv3CPUState *cs = icc_cs_from_env(env);
1692    int grp;
1693    bool ns = !arm_is_secure(env);
1694
1695    grp = ns ? GICV3_G1NS : GICV3_G1;
1696    icc_generate_sgi(env, cs, value, grp, ns);
1697}
1698
1699static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1700                             uint64_t value)
1701{
1702    /* Generate Group 1 SGI for the Security state that is not
1703     * the current state
1704     */
1705    GICv3CPUState *cs = icc_cs_from_env(env);
1706    int grp;
1707    bool ns = !arm_is_secure(env);
1708
1709    grp = ns ? GICV3_G1 : GICV3_G1NS;
1710    icc_generate_sgi(env, cs, value, grp, ns);
1711}
1712
1713static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1714{
1715    GICv3CPUState *cs = icc_cs_from_env(env);
1716    int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1717    uint64_t value;
1718
1719    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1720        return icv_igrpen_read(env, ri);
1721    }
1722
1723    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1724        grp = GICV3_G1NS;
1725    }
1726
1727    value = cs->icc_igrpen[grp];
1728    trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1729                                gicv3_redist_affid(cs), value);
1730    return value;
1731}
1732
1733static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734                             uint64_t value)
1735{
1736    GICv3CPUState *cs = icc_cs_from_env(env);
1737    int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1738
1739    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1740        icv_igrpen_write(env, ri, value);
1741        return;
1742    }
1743
1744    trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1745                                 gicv3_redist_affid(cs), value);
1746
1747    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1748        grp = GICV3_G1NS;
1749    }
1750
1751    cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1752    gicv3_cpuif_update(cs);
1753}
1754
1755static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1756{
1757    GICv3CPUState *cs = icc_cs_from_env(env);
1758    uint64_t value;
1759
1760    /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1761    value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1762    trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1763    return value;
1764}
1765
1766static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1767                                  uint64_t value)
1768{
1769    GICv3CPUState *cs = icc_cs_from_env(env);
1770
1771    trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1772
1773    /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1774    cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1775    cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1776    gicv3_cpuif_update(cs);
1777}
1778
1779static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1780{
1781    GICv3CPUState *cs = icc_cs_from_env(env);
1782    int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1783    uint64_t value;
1784
1785    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1786        return icv_ctlr_read(env, ri);
1787    }
1788
1789    value = cs->icc_ctlr_el1[bank];
1790    trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1791    return value;
1792}
1793
1794static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1795                               uint64_t value)
1796{
1797    GICv3CPUState *cs = icc_cs_from_env(env);
1798    int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1799    uint64_t mask;
1800
1801    if (icv_access(env, HCR_FMO | HCR_IMO)) {
1802        icv_ctlr_write(env, ri, value);
1803        return;
1804    }
1805
1806    trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1807
1808    /* Only CBPR and EOIMODE can be RW;
1809     * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1810     * the asseciated priority-based routing of them);
1811     * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1812     */
1813    if (arm_feature(env, ARM_FEATURE_EL3) &&
1814        ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1815        mask = ICC_CTLR_EL1_EOIMODE;
1816    } else {
1817        mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1818    }
1819
1820    cs->icc_ctlr_el1[bank] &= ~mask;
1821    cs->icc_ctlr_el1[bank] |= (value & mask);
1822    gicv3_cpuif_update(cs);
1823}
1824
1825
1826static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1827{
1828    GICv3CPUState *cs = icc_cs_from_env(env);
1829    uint64_t value;
1830
1831    value = cs->icc_ctlr_el3;
1832    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1833        value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1834    }
1835    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1836        value |= ICC_CTLR_EL3_CBPR_EL1NS;
1837    }
1838    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1839        value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1840    }
1841    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1842        value |= ICC_CTLR_EL3_CBPR_EL1S;
1843    }
1844
1845    trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1846    return value;
1847}
1848
1849static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850                               uint64_t value)
1851{
1852    GICv3CPUState *cs = icc_cs_from_env(env);
1853    uint64_t mask;
1854
1855    trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1856
1857    /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1858    cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1859    if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1860        cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1861    }
1862    if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1863        cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1864    }
1865
1866    cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1867    if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1868        cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1869    }
1870    if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1871        cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1872    }
1873
1874    /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1875    mask = ICC_CTLR_EL3_EOIMODE_EL3;
1876
1877    cs->icc_ctlr_el3 &= ~mask;
1878    cs->icc_ctlr_el3 |= (value & mask);
1879    gicv3_cpuif_update(cs);
1880}
1881
1882static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1883                                          const ARMCPRegInfo *ri, bool isread)
1884{
1885    CPAccessResult r = CP_ACCESS_OK;
1886    GICv3CPUState *cs = icc_cs_from_env(env);
1887    int el = arm_current_el(env);
1888
1889    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1890        el == 1 && !arm_is_secure_below_el3(env)) {
1891        /* Takes priority over a possible EL3 trap */
1892        return CP_ACCESS_TRAP_EL2;
1893    }
1894
1895    if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1896        switch (el) {
1897        case 1:
1898            if (arm_is_secure_below_el3(env) ||
1899                (arm_hcr_el2_imo(env) == 0 && arm_hcr_el2_fmo(env) == 0)) {
1900                r = CP_ACCESS_TRAP_EL3;
1901            }
1902            break;
1903        case 2:
1904            r = CP_ACCESS_TRAP_EL3;
1905            break;
1906        case 3:
1907            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1908                r = CP_ACCESS_TRAP_EL3;
1909            }
1910            break;
1911        default:
1912            g_assert_not_reached();
1913        }
1914    }
1915
1916    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1917        r = CP_ACCESS_TRAP;
1918    }
1919    return r;
1920}
1921
1922static CPAccessResult gicv3_dir_access(CPUARMState *env,
1923                                       const ARMCPRegInfo *ri, bool isread)
1924{
1925    GICv3CPUState *cs = icc_cs_from_env(env);
1926
1927    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1928        arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1929        /* Takes priority over a possible EL3 trap */
1930        return CP_ACCESS_TRAP_EL2;
1931    }
1932
1933    return gicv3_irqfiq_access(env, ri, isread);
1934}
1935
1936static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1937                                       const ARMCPRegInfo *ri, bool isread)
1938{
1939    if ((arm_hcr_el2_imo(env) || arm_hcr_el2_fmo(env)) &&
1940        arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1941        /* Takes priority over a possible EL3 trap */
1942        return CP_ACCESS_TRAP_EL2;
1943    }
1944
1945    return gicv3_irqfiq_access(env, ri, isread);
1946}
1947
1948static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1949                                       const ARMCPRegInfo *ri, bool isread)
1950{
1951    CPAccessResult r = CP_ACCESS_OK;
1952    GICv3CPUState *cs = icc_cs_from_env(env);
1953    int el = arm_current_el(env);
1954
1955    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1956        el == 1 && !arm_is_secure_below_el3(env)) {
1957        /* Takes priority over a possible EL3 trap */
1958        return CP_ACCESS_TRAP_EL2;
1959    }
1960
1961    if (env->cp15.scr_el3 & SCR_FIQ) {
1962        switch (el) {
1963        case 1:
1964            if (arm_is_secure_below_el3(env) || !arm_hcr_el2_fmo(env)) {
1965                r = CP_ACCESS_TRAP_EL3;
1966            }
1967            break;
1968        case 2:
1969            r = CP_ACCESS_TRAP_EL3;
1970            break;
1971        case 3:
1972            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1973                r = CP_ACCESS_TRAP_EL3;
1974            }
1975            break;
1976        default:
1977            g_assert_not_reached();
1978        }
1979    }
1980
1981    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1982        r = CP_ACCESS_TRAP;
1983    }
1984    return r;
1985}
1986
1987static CPAccessResult gicv3_irq_access(CPUARMState *env,
1988                                       const ARMCPRegInfo *ri, bool isread)
1989{
1990    CPAccessResult r = CP_ACCESS_OK;
1991    GICv3CPUState *cs = icc_cs_from_env(env);
1992    int el = arm_current_el(env);
1993
1994    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
1995        el == 1 && !arm_is_secure_below_el3(env)) {
1996        /* Takes priority over a possible EL3 trap */
1997        return CP_ACCESS_TRAP_EL2;
1998    }
1999
2000    if (env->cp15.scr_el3 & SCR_IRQ) {
2001        switch (el) {
2002        case 1:
2003            if (arm_is_secure_below_el3(env) || !arm_hcr_el2_imo(env)) {
2004                r = CP_ACCESS_TRAP_EL3;
2005            }
2006            break;
2007        case 2:
2008            r = CP_ACCESS_TRAP_EL3;
2009            break;
2010        case 3:
2011            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2012                r = CP_ACCESS_TRAP_EL3;
2013            }
2014            break;
2015        default:
2016            g_assert_not_reached();
2017        }
2018    }
2019
2020    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2021        r = CP_ACCESS_TRAP;
2022    }
2023    return r;
2024}
2025
2026static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2027{
2028    GICv3CPUState *cs = icc_cs_from_env(env);
2029
2030    cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2031        (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2032        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2033    cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2034        (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2035        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2036    cs->icc_pmr_el1 = 0;
2037    cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2038    cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
2039    cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
2040    memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2041    memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2042    cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2043        (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2044        (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2045
2046    memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2047    cs->ich_hcr_el2 = 0;
2048    memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2049    cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2050        ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2051        (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2052}
2053
2054static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2055    { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2056      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2057      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2058      .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2059      .readfn = icc_pmr_read,
2060      .writefn = icc_pmr_write,
2061      /* We hang the whole cpu interface reset routine off here
2062       * rather than parcelling it out into one little function
2063       * per register
2064       */
2065      .resetfn = icc_reset,
2066    },
2067    { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2068      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2069      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2070      .access = PL1_R, .accessfn = gicv3_fiq_access,
2071      .readfn = icc_iar0_read,
2072    },
2073    { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2074      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2075      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2076      .access = PL1_W, .accessfn = gicv3_fiq_access,
2077      .writefn = icc_eoir_write,
2078    },
2079    { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2080      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2081      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2082      .access = PL1_R, .accessfn = gicv3_fiq_access,
2083      .readfn = icc_hppir0_read,
2084    },
2085    { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2086      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2087      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2088      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2089      .readfn = icc_bpr_read,
2090      .writefn = icc_bpr_write,
2091    },
2092    { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2093      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2094      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2095      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2096      .readfn = icc_ap_read,
2097      .writefn = icc_ap_write,
2098    },
2099    { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2100      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2101      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2102      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2103      .readfn = icc_ap_read,
2104      .writefn = icc_ap_write,
2105    },
2106    { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2107      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2108      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2109      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2110      .readfn = icc_ap_read,
2111      .writefn = icc_ap_write,
2112    },
2113    { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2114      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2115      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2116      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2117      .readfn = icc_ap_read,
2118      .writefn = icc_ap_write,
2119    },
2120    /* All the ICC_AP1R*_EL1 registers are banked */
2121    { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2122      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2123      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2124      .access = PL1_RW, .accessfn = gicv3_irq_access,
2125      .readfn = icc_ap_read,
2126      .writefn = icc_ap_write,
2127    },
2128    { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2129      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2130      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2131      .access = PL1_RW, .accessfn = gicv3_irq_access,
2132      .readfn = icc_ap_read,
2133      .writefn = icc_ap_write,
2134    },
2135    { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2136      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2137      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2138      .access = PL1_RW, .accessfn = gicv3_irq_access,
2139      .readfn = icc_ap_read,
2140      .writefn = icc_ap_write,
2141    },
2142    { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2143      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2144      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2145      .access = PL1_RW, .accessfn = gicv3_irq_access,
2146      .readfn = icc_ap_read,
2147      .writefn = icc_ap_write,
2148    },
2149    { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2150      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2151      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2152      .access = PL1_W, .accessfn = gicv3_dir_access,
2153      .writefn = icc_dir_write,
2154    },
2155    { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2156      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2157      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2158      .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2159      .readfn = icc_rpr_read,
2160    },
2161    { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2162      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2163      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2164      .access = PL1_W, .accessfn = gicv3_sgi_access,
2165      .writefn = icc_sgi1r_write,
2166    },
2167    { .name = "ICC_SGI1R",
2168      .cp = 15, .opc1 = 0, .crm = 12,
2169      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2170      .access = PL1_W, .accessfn = gicv3_sgi_access,
2171      .writefn = icc_sgi1r_write,
2172    },
2173    { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2174      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2175      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2176      .access = PL1_W, .accessfn = gicv3_sgi_access,
2177      .writefn = icc_asgi1r_write,
2178    },
2179    { .name = "ICC_ASGI1R",
2180      .cp = 15, .opc1 = 1, .crm = 12,
2181      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2182      .access = PL1_W, .accessfn = gicv3_sgi_access,
2183      .writefn = icc_asgi1r_write,
2184    },
2185    { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2186      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2187      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2188      .access = PL1_W, .accessfn = gicv3_sgi_access,
2189      .writefn = icc_sgi0r_write,
2190    },
2191    { .name = "ICC_SGI0R",
2192      .cp = 15, .opc1 = 2, .crm = 12,
2193      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2194      .access = PL1_W, .accessfn = gicv3_sgi_access,
2195      .writefn = icc_sgi0r_write,
2196    },
2197    { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2198      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2199      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2200      .access = PL1_R, .accessfn = gicv3_irq_access,
2201      .readfn = icc_iar1_read,
2202    },
2203    { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2204      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2205      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2206      .access = PL1_W, .accessfn = gicv3_irq_access,
2207      .writefn = icc_eoir_write,
2208    },
2209    { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2210      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2211      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2212      .access = PL1_R, .accessfn = gicv3_irq_access,
2213      .readfn = icc_hppir1_read,
2214    },
2215    /* This register is banked */
2216    { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2217      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2218      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2219      .access = PL1_RW, .accessfn = gicv3_irq_access,
2220      .readfn = icc_bpr_read,
2221      .writefn = icc_bpr_write,
2222    },
2223    /* This register is banked */
2224    { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2225      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2226      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2227      .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2228      .readfn = icc_ctlr_el1_read,
2229      .writefn = icc_ctlr_el1_write,
2230    },
2231    { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2232      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2233      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2234      .access = PL1_RW,
2235      /* We don't support IRQ/FIQ bypass and system registers are
2236       * always enabled, so all our bits are RAZ/WI or RAO/WI.
2237       * This register is banked but since it's constant we don't
2238       * need to do anything special.
2239       */
2240      .resetvalue = 0x7,
2241    },
2242    { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2243      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2244      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2245      .access = PL1_RW, .accessfn = gicv3_fiq_access,
2246      .readfn = icc_igrpen_read,
2247      .writefn = icc_igrpen_write,
2248    },
2249    /* This register is banked */
2250    { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2251      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2252      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2253      .access = PL1_RW, .accessfn = gicv3_irq_access,
2254      .readfn = icc_igrpen_read,
2255      .writefn = icc_igrpen_write,
2256    },
2257    { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2258      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2259      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2260      .access = PL2_RW,
2261      /* We don't support IRQ/FIQ bypass and system registers are
2262       * always enabled, so all our bits are RAZ/WI or RAO/WI.
2263       */
2264      .resetvalue = 0xf,
2265    },
2266    { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2267      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2268      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2269      .access = PL3_RW,
2270      .readfn = icc_ctlr_el3_read,
2271      .writefn = icc_ctlr_el3_write,
2272    },
2273    { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2274      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2275      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2276      .access = PL3_RW,
2277      /* We don't support IRQ/FIQ bypass and system registers are
2278       * always enabled, so all our bits are RAZ/WI or RAO/WI.
2279       */
2280      .resetvalue = 0xf,
2281    },
2282    { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2283      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2284      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2285      .access = PL3_RW,
2286      .readfn = icc_igrpen1_el3_read,
2287      .writefn = icc_igrpen1_el3_write,
2288    },
2289    REGINFO_SENTINEL
2290};
2291
2292static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2293{
2294    GICv3CPUState *cs = icc_cs_from_env(env);
2295    int regno = ri->opc2 & 3;
2296    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2297    uint64_t value;
2298
2299    value = cs->ich_apr[grp][regno];
2300    trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2301    return value;
2302}
2303
2304static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2305                         uint64_t value)
2306{
2307    GICv3CPUState *cs = icc_cs_from_env(env);
2308    int regno = ri->opc2 & 3;
2309    int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2310
2311    trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2312
2313    cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2314    gicv3_cpuif_virt_update(cs);
2315}
2316
2317static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2318{
2319    GICv3CPUState *cs = icc_cs_from_env(env);
2320    uint64_t value = cs->ich_hcr_el2;
2321
2322    trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2323    return value;
2324}
2325
2326static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2327                          uint64_t value)
2328{
2329    GICv3CPUState *cs = icc_cs_from_env(env);
2330
2331    trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2332
2333    value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2334        ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2335        ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2336        ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2337        ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2338
2339    cs->ich_hcr_el2 = value;
2340    gicv3_cpuif_virt_update(cs);
2341}
2342
2343static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2344{
2345    GICv3CPUState *cs = icc_cs_from_env(env);
2346    uint64_t value = cs->ich_vmcr_el2;
2347
2348    trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2349    return value;
2350}
2351
2352static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2353                         uint64_t value)
2354{
2355    GICv3CPUState *cs = icc_cs_from_env(env);
2356
2357    trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2358
2359    value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2360        ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2361        ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2362    value |= ICH_VMCR_EL2_VFIQEN;
2363
2364    cs->ich_vmcr_el2 = value;
2365    /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2366     * by reading and writing back the fields.
2367     */
2368    write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0));
2369    write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2370
2371    gicv3_cpuif_virt_update(cs);
2372}
2373
2374static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2375{
2376    GICv3CPUState *cs = icc_cs_from_env(env);
2377    int regno = ri->opc2 | ((ri->crm & 1) << 3);
2378    uint64_t value;
2379
2380    /* This read function handles all of:
2381     * 64-bit reads of the whole LR
2382     * 32-bit reads of the low half of the LR
2383     * 32-bit reads of the high half of the LR
2384     */
2385    if (ri->state == ARM_CP_STATE_AA32) {
2386        if (ri->crm >= 14) {
2387            value = extract64(cs->ich_lr_el2[regno], 32, 32);
2388            trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2389        } else {
2390            value = extract64(cs->ich_lr_el2[regno], 0, 32);
2391            trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2392        }
2393    } else {
2394        value = cs->ich_lr_el2[regno];
2395        trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2396    }
2397
2398    return value;
2399}
2400
2401static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2402                         uint64_t value)
2403{
2404    GICv3CPUState *cs = icc_cs_from_env(env);
2405    int regno = ri->opc2 | ((ri->crm & 1) << 3);
2406
2407    /* This write function handles all of:
2408     * 64-bit writes to the whole LR
2409     * 32-bit writes to the low half of the LR
2410     * 32-bit writes to the high half of the LR
2411     */
2412    if (ri->state == ARM_CP_STATE_AA32) {
2413        if (ri->crm >= 14) {
2414            trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2415            value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2416        } else {
2417            trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2418            value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2419        }
2420    } else {
2421        trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2422    }
2423
2424    /* Enforce RES0 bits in priority field */
2425    if (cs->vpribits < 8) {
2426        value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2427                          8 - cs->vpribits, 0);
2428    }
2429
2430    cs->ich_lr_el2[regno] = value;
2431    gicv3_cpuif_virt_update(cs);
2432}
2433
2434static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2435{
2436    GICv3CPUState *cs = icc_cs_from_env(env);
2437    uint64_t value;
2438
2439    value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2440        | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2441        | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2442        | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2443        | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2444
2445    trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2446    return value;
2447}
2448
2449static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2450{
2451    GICv3CPUState *cs = icc_cs_from_env(env);
2452    uint64_t value = maintenance_interrupt_state(cs);
2453
2454    trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2455    return value;
2456}
2457
2458static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2459{
2460    GICv3CPUState *cs = icc_cs_from_env(env);
2461    uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2462
2463    trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2464    return value;
2465}
2466
2467static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2468{
2469    GICv3CPUState *cs = icc_cs_from_env(env);
2470    uint64_t value = 0;
2471    int i;
2472
2473    for (i = 0; i < cs->num_list_regs; i++) {
2474        uint64_t lr = cs->ich_lr_el2[i];
2475
2476        if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2477            ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2478            value |= (1 << i);
2479        }
2480    }
2481
2482    trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2483    return value;
2484}
2485
2486static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2487    { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2488      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2489      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2490      .access = PL2_RW,
2491      .readfn = ich_ap_read,
2492      .writefn = ich_ap_write,
2493    },
2494    { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2495      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2496      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2497      .access = PL2_RW,
2498      .readfn = ich_ap_read,
2499      .writefn = ich_ap_write,
2500    },
2501    { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2502      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2503      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2504      .access = PL2_RW,
2505      .readfn = ich_hcr_read,
2506      .writefn = ich_hcr_write,
2507    },
2508    { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2509      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2510      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2511      .access = PL2_R,
2512      .readfn = ich_vtr_read,
2513    },
2514    { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2515      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2516      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2517      .access = PL2_R,
2518      .readfn = ich_misr_read,
2519    },
2520    { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2521      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2522      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2523      .access = PL2_R,
2524      .readfn = ich_eisr_read,
2525    },
2526    { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2527      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2528      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2529      .access = PL2_R,
2530      .readfn = ich_elrsr_read,
2531    },
2532    { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2533      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2534      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2535      .access = PL2_RW,
2536      .readfn = ich_vmcr_read,
2537      .writefn = ich_vmcr_write,
2538    },
2539    REGINFO_SENTINEL
2540};
2541
2542static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2543    { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2544      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2545      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2546      .access = PL2_RW,
2547      .readfn = ich_ap_read,
2548      .writefn = ich_ap_write,
2549    },
2550    { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2551      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2552      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2553      .access = PL2_RW,
2554      .readfn = ich_ap_read,
2555      .writefn = ich_ap_write,
2556    },
2557    REGINFO_SENTINEL
2558};
2559
2560static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2561    { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2562      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2563      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2564      .access = PL2_RW,
2565      .readfn = ich_ap_read,
2566      .writefn = ich_ap_write,
2567    },
2568    { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2569      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2570      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2571      .access = PL2_RW,
2572      .readfn = ich_ap_read,
2573      .writefn = ich_ap_write,
2574    },
2575    { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2576      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2577      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2578      .access = PL2_RW,
2579      .readfn = ich_ap_read,
2580      .writefn = ich_ap_write,
2581    },
2582    { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2583      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2584      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2585      .access = PL2_RW,
2586      .readfn = ich_ap_read,
2587      .writefn = ich_ap_write,
2588    },
2589    REGINFO_SENTINEL
2590};
2591
2592static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2593{
2594    GICv3CPUState *cs = opaque;
2595
2596    gicv3_cpuif_update(cs);
2597}
2598
2599void gicv3_init_cpuif(GICv3State *s)
2600{
2601    /* Called from the GICv3 realize function; register our system
2602     * registers with the CPU
2603     */
2604    int i;
2605
2606    for (i = 0; i < s->num_cpu; i++) {
2607        ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2608        GICv3CPUState *cs = &s->cpu[i];
2609
2610        /* Note that we can't just use the GICv3CPUState as an opaque pointer
2611         * in define_arm_cp_regs_with_opaque(), because when we're called back
2612         * it might be with code translated by CPU 0 but run by CPU 1, in
2613         * which case we'd get the wrong value.
2614         * So instead we define the regs with no ri->opaque info, and
2615         * get back to the GICv3CPUState from the CPUARMState.
2616         */
2617        define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2618        if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2619            && cpu->gic_num_lrs) {
2620            int j;
2621
2622            cs->maintenance_irq = cpu->gicv3_maintenance_interrupt;
2623
2624            cs->num_list_regs = cpu->gic_num_lrs;
2625            cs->vpribits = cpu->gic_vpribits;
2626            cs->vprebits = cpu->gic_vprebits;
2627
2628            /* Check against architectural constraints: getting these
2629             * wrong would be a bug in the CPU code defining these,
2630             * and the implementation relies on them holding.
2631             */
2632            g_assert(cs->vprebits <= cs->vpribits);
2633            g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2634            g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2635
2636            define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2637
2638            for (j = 0; j < cs->num_list_regs; j++) {
2639                /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2640                 * are split into two cp15 regs, LR (the low part, with the
2641                 * same encoding as the AArch64 LR) and LRC (the high part).
2642                 */
2643                ARMCPRegInfo lr_regset[] = {
2644                    { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2645                      .opc0 = 3, .opc1 = 4, .crn = 12,
2646                      .crm = 12 + (j >> 3), .opc2 = j & 7,
2647                      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2648                      .access = PL2_RW,
2649                      .readfn = ich_lr_read,
2650                      .writefn = ich_lr_write,
2651                    },
2652                    { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2653                      .cp = 15, .opc1 = 4, .crn = 12,
2654                      .crm = 14 + (j >> 3), .opc2 = j & 7,
2655                      .type = ARM_CP_IO | ARM_CP_NO_RAW,
2656                      .access = PL2_RW,
2657                      .readfn = ich_lr_read,
2658                      .writefn = ich_lr_write,
2659                    },
2660                    REGINFO_SENTINEL
2661                };
2662                define_arm_cp_regs(cpu, lr_regset);
2663            }
2664            if (cs->vprebits >= 6) {
2665                define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2666            }
2667            if (cs->vprebits == 7) {
2668                define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2669            }
2670        }
2671        arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
2672    }
2673}
2674