qemu/hw/misc/mps2-fpgaio.c
<<
>>
Prefs
   1/*
   2 * ARM MPS2 AN505 FPGAIO emulation
   3 *
   4 * Copyright (c) 2018 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License version 2 or
   9 *  (at your option) any later version.
  10 */
  11
  12/* This is a model of the "FPGA system control and I/O" block found
  13 * in the AN505 FPGA image for the MPS2 devboard.
  14 * It is documented in AN505:
  15 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
  16 */
  17
  18#include "qemu/osdep.h"
  19#include "qemu/log.h"
  20#include "qapi/error.h"
  21#include "trace.h"
  22#include "hw/sysbus.h"
  23#include "hw/registerfields.h"
  24#include "hw/misc/mps2-fpgaio.h"
  25#include "qemu/timer.h"
  26
  27REG32(LED0, 0)
  28REG32(BUTTON, 8)
  29REG32(CLK1HZ, 0x10)
  30REG32(CLK100HZ, 0x14)
  31REG32(COUNTER, 0x18)
  32REG32(PRESCALE, 0x1c)
  33REG32(PSCNTR, 0x20)
  34REG32(MISC, 0x4c)
  35
  36static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
  37{
  38    return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
  39}
  40
  41static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
  42{
  43    return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
  44}
  45
  46static void resync_counter(MPS2FPGAIO *s)
  47{
  48    /*
  49     * Update s->counter and s->pscntr to their true current values
  50     * by calculating how many times PSCNTR has ticked since the
  51     * last time we did a resync.
  52     */
  53    int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
  54    int64_t elapsed = now - s->pscntr_sync_ticks;
  55
  56    /*
  57     * Round elapsed down to a whole number of PSCNTR ticks, so we don't
  58     * lose time if we do multiple resyncs in a single tick.
  59     */
  60    uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
  61
  62    /*
  63     * Work out what PSCNTR and COUNTER have moved to. We assume that
  64     * PSCNTR reloads from PRESCALE one tick-period after it hits zero,
  65     * and that COUNTER increments at the same moment.
  66     */
  67    if (ticks == 0) {
  68        /* We haven't ticked since the last time we were asked */
  69        return;
  70    } else if (ticks < s->pscntr) {
  71        /* We haven't yet reached zero, just reduce the PSCNTR */
  72        s->pscntr -= ticks;
  73    } else {
  74        if (s->prescale == 0) {
  75            /*
  76             * If the reload value is zero then the PSCNTR will stick
  77             * at zero once it reaches it, and so we will increment
  78             * COUNTER every tick after that.
  79             */
  80            s->counter += ticks - s->pscntr;
  81            s->pscntr = 0;
  82        } else {
  83            /*
  84             * This is the complicated bit. This ASCII art diagram gives an
  85             * example with PRESCALE==5 PSCNTR==7:
  86             *
  87             * ticks  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14
  88             * PSCNTR 7  6  5  4  3  2  1  0  5  4  3  2  1  0  5
  89             * cinc                           1                 2
  90             * y            0  1  2  3  4  5  6  7  8  9 10 11 12
  91             * x            0  1  2  3  4  5  0  1  2  3  4  5  0
  92             *
  93             * where x = y % (s->prescale + 1)
  94             * and so PSCNTR = s->prescale - x
  95             * and COUNTER is incremented by y / (s->prescale + 1)
  96             *
  97             * The case where PSCNTR < PRESCALE works out the same,
  98             * though we must be careful to calculate y as 64-bit unsigned
  99             * for all parts of the expression.
 100             * y < 0 is not possible because that implies ticks < s->pscntr.
 101             */
 102            uint64_t y = ticks - s->pscntr + s->prescale;
 103            s->pscntr = s->prescale - (y % (s->prescale + 1));
 104            s->counter += y / (s->prescale + 1);
 105        }
 106    }
 107
 108    /*
 109     * Only advance the sync time to the timestamp of the last PSCNTR tick,
 110     * not all the way to 'now', so we don't lose time if we do multiple
 111     * resyncs in a single tick.
 112     */
 113    s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
 114                                     s->prescale_clk);
 115}
 116
 117static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
 118{
 119    MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
 120    uint64_t r;
 121    int64_t now;
 122
 123    switch (offset) {
 124    case A_LED0:
 125        r = s->led0;
 126        break;
 127    case A_BUTTON:
 128        /* User-pressable board buttons. We don't model that, so just return
 129         * zeroes.
 130         */
 131        r = 0;
 132        break;
 133    case A_PRESCALE:
 134        r = s->prescale;
 135        break;
 136    case A_MISC:
 137        r = s->misc;
 138        break;
 139    case A_CLK1HZ:
 140        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 141        r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
 142        break;
 143    case A_CLK100HZ:
 144        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 145        r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
 146        break;
 147    case A_COUNTER:
 148        resync_counter(s);
 149        r = s->counter;
 150        break;
 151    case A_PSCNTR:
 152        resync_counter(s);
 153        r = s->pscntr;
 154        break;
 155    default:
 156        qemu_log_mask(LOG_GUEST_ERROR,
 157                      "MPS2 FPGAIO read: bad offset %x\n", (int) offset);
 158        r = 0;
 159        break;
 160    }
 161
 162    trace_mps2_fpgaio_read(offset, r, size);
 163    return r;
 164}
 165
 166static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
 167                              unsigned size)
 168{
 169    MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
 170    int64_t now;
 171
 172    trace_mps2_fpgaio_write(offset, value, size);
 173
 174    switch (offset) {
 175    case A_LED0:
 176        /* LED bits [1:0] control board LEDs. We don't currently have
 177         * a mechanism for displaying this graphically, so use a trace event.
 178         */
 179        trace_mps2_fpgaio_leds(value & 0x02 ? '*' : '.',
 180                               value & 0x01 ? '*' : '.');
 181        s->led0 = value & 0x3;
 182        break;
 183    case A_PRESCALE:
 184        resync_counter(s);
 185        s->prescale = value;
 186        break;
 187    case A_MISC:
 188        /* These are control bits for some of the other devices on the
 189         * board (SPI, CLCD, etc). We don't implement that yet, so just
 190         * make the bits read as written.
 191         */
 192        qemu_log_mask(LOG_UNIMP,
 193                      "MPS2 FPGAIO: MISC control bits unimplemented\n");
 194        s->misc = value;
 195        break;
 196    case A_CLK1HZ:
 197        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 198        s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
 199        break;
 200    case A_CLK100HZ:
 201        now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 202        s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
 203        break;
 204    case A_COUNTER:
 205        resync_counter(s);
 206        s->counter = value;
 207        break;
 208    case A_PSCNTR:
 209        resync_counter(s);
 210        s->pscntr = value;
 211        break;
 212    default:
 213        qemu_log_mask(LOG_GUEST_ERROR,
 214                      "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
 215        break;
 216    }
 217}
 218
 219static const MemoryRegionOps mps2_fpgaio_ops = {
 220    .read = mps2_fpgaio_read,
 221    .write = mps2_fpgaio_write,
 222    .endianness = DEVICE_LITTLE_ENDIAN,
 223};
 224
 225static void mps2_fpgaio_reset(DeviceState *dev)
 226{
 227    MPS2FPGAIO *s = MPS2_FPGAIO(dev);
 228    int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 229
 230    trace_mps2_fpgaio_reset();
 231    s->led0 = 0;
 232    s->prescale = 0;
 233    s->misc = 0;
 234    s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
 235    s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
 236    s->counter = 0;
 237    s->pscntr = 0;
 238    s->pscntr_sync_ticks = now;
 239}
 240
 241static void mps2_fpgaio_init(Object *obj)
 242{
 243    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 244    MPS2FPGAIO *s = MPS2_FPGAIO(obj);
 245
 246    memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
 247                          "mps2-fpgaio", 0x1000);
 248    sysbus_init_mmio(sbd, &s->iomem);
 249}
 250
 251static bool mps2_fpgaio_counters_needed(void *opaque)
 252{
 253    /* Currently vmstate.c insists all subsections have a 'needed' function */
 254    return true;
 255}
 256
 257static const VMStateDescription mps2_fpgaio_counters_vmstate = {
 258    .name = "mps2-fpgaio/counters",
 259    .version_id = 2,
 260    .minimum_version_id = 2,
 261    .needed = mps2_fpgaio_counters_needed,
 262    .fields = (VMStateField[]) {
 263        VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
 264        VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
 265        VMSTATE_UINT32(counter, MPS2FPGAIO),
 266        VMSTATE_UINT32(pscntr, MPS2FPGAIO),
 267        VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
 268        VMSTATE_END_OF_LIST()
 269    }
 270};
 271
 272static const VMStateDescription mps2_fpgaio_vmstate = {
 273    .name = "mps2-fpgaio",
 274    .version_id = 1,
 275    .minimum_version_id = 1,
 276    .fields = (VMStateField[]) {
 277        VMSTATE_UINT32(led0, MPS2FPGAIO),
 278        VMSTATE_UINT32(prescale, MPS2FPGAIO),
 279        VMSTATE_UINT32(misc, MPS2FPGAIO),
 280        VMSTATE_END_OF_LIST()
 281    },
 282    .subsections = (const VMStateDescription*[]) {
 283        &mps2_fpgaio_counters_vmstate,
 284        NULL
 285    }
 286};
 287
 288static Property mps2_fpgaio_properties[] = {
 289    /* Frequency of the prescale counter */
 290    DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
 291    DEFINE_PROP_END_OF_LIST(),
 292};
 293
 294static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
 295{
 296    DeviceClass *dc = DEVICE_CLASS(klass);
 297
 298    dc->vmsd = &mps2_fpgaio_vmstate;
 299    dc->reset = mps2_fpgaio_reset;
 300    dc->props = mps2_fpgaio_properties;
 301}
 302
 303static const TypeInfo mps2_fpgaio_info = {
 304    .name = TYPE_MPS2_FPGAIO,
 305    .parent = TYPE_SYS_BUS_DEVICE,
 306    .instance_size = sizeof(MPS2FPGAIO),
 307    .instance_init = mps2_fpgaio_init,
 308    .class_init = mps2_fpgaio_class_init,
 309};
 310
 311static void mps2_fpgaio_register_types(void)
 312{
 313    type_register_static(&mps2_fpgaio_info);
 314}
 315
 316type_init(mps2_fpgaio_register_types);
 317