qemu/linux-user/elfload.c
<<
>>
Prefs
   1/* This is the Linux kernel elf-loading code, ported into user space */
   2#include "qemu/osdep.h"
   3#include <sys/param.h>
   4
   5#include <sys/resource.h>
   6
   7#include "qemu.h"
   8#include "disas/disas.h"
   9#include "qemu/path.h"
  10
  11#ifdef _ARCH_PPC64
  12#undef ARCH_DLINFO
  13#undef ELF_PLATFORM
  14#undef ELF_HWCAP
  15#undef ELF_HWCAP2
  16#undef ELF_CLASS
  17#undef ELF_DATA
  18#undef ELF_ARCH
  19#endif
  20
  21#define ELF_OSABI   ELFOSABI_SYSV
  22
  23/* from personality.h */
  24
  25/*
  26 * Flags for bug emulation.
  27 *
  28 * These occupy the top three bytes.
  29 */
  30enum {
  31    ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
  32    FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
  33                                           descriptors (signal handling) */
  34    MMAP_PAGE_ZERO =    0x0100000,
  35    ADDR_COMPAT_LAYOUT = 0x0200000,
  36    READ_IMPLIES_EXEC = 0x0400000,
  37    ADDR_LIMIT_32BIT =  0x0800000,
  38    SHORT_INODE =       0x1000000,
  39    WHOLE_SECONDS =     0x2000000,
  40    STICKY_TIMEOUTS =   0x4000000,
  41    ADDR_LIMIT_3GB =    0x8000000,
  42};
  43
  44/*
  45 * Personality types.
  46 *
  47 * These go in the low byte.  Avoid using the top bit, it will
  48 * conflict with error returns.
  49 */
  50enum {
  51    PER_LINUX =         0x0000,
  52    PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
  53    PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
  54    PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  55    PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
  56    PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
  57    PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
  58    PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
  59    PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
  60    PER_BSD =           0x0006,
  61    PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
  62    PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
  63    PER_LINUX32 =       0x0008,
  64    PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
  65    PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
  66    PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
  67    PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
  68    PER_RISCOS =        0x000c,
  69    PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
  70    PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  71    PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
  72    PER_HPUX =          0x0010,
  73    PER_MASK =          0x00ff,
  74};
  75
  76/*
  77 * Return the base personality without flags.
  78 */
  79#define personality(pers)       (pers & PER_MASK)
  80
  81int info_is_fdpic(struct image_info *info)
  82{
  83    return info->personality == PER_LINUX_FDPIC;
  84}
  85
  86/* this flag is uneffective under linux too, should be deleted */
  87#ifndef MAP_DENYWRITE
  88#define MAP_DENYWRITE 0
  89#endif
  90
  91/* should probably go in elf.h */
  92#ifndef ELIBBAD
  93#define ELIBBAD 80
  94#endif
  95
  96#ifdef TARGET_WORDS_BIGENDIAN
  97#define ELF_DATA        ELFDATA2MSB
  98#else
  99#define ELF_DATA        ELFDATA2LSB
 100#endif
 101
 102#ifdef TARGET_ABI_MIPSN32
 103typedef abi_ullong      target_elf_greg_t;
 104#define tswapreg(ptr)   tswap64(ptr)
 105#else
 106typedef abi_ulong       target_elf_greg_t;
 107#define tswapreg(ptr)   tswapal(ptr)
 108#endif
 109
 110#ifdef USE_UID16
 111typedef abi_ushort      target_uid_t;
 112typedef abi_ushort      target_gid_t;
 113#else
 114typedef abi_uint        target_uid_t;
 115typedef abi_uint        target_gid_t;
 116#endif
 117typedef abi_int         target_pid_t;
 118
 119#ifdef TARGET_I386
 120
 121#define ELF_PLATFORM get_elf_platform()
 122
 123static const char *get_elf_platform(void)
 124{
 125    static char elf_platform[] = "i386";
 126    int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
 127    if (family > 6)
 128        family = 6;
 129    if (family >= 3)
 130        elf_platform[1] = '0' + family;
 131    return elf_platform;
 132}
 133
 134#define ELF_HWCAP get_elf_hwcap()
 135
 136static uint32_t get_elf_hwcap(void)
 137{
 138    X86CPU *cpu = X86_CPU(thread_cpu);
 139
 140    return cpu->env.features[FEAT_1_EDX];
 141}
 142
 143#ifdef TARGET_X86_64
 144#define ELF_START_MMAP 0x2aaaaab000ULL
 145
 146#define ELF_CLASS      ELFCLASS64
 147#define ELF_ARCH       EM_X86_64
 148
 149static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 150{
 151    regs->rax = 0;
 152    regs->rsp = infop->start_stack;
 153    regs->rip = infop->entry;
 154}
 155
 156#define ELF_NREG    27
 157typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 158
 159/*
 160 * Note that ELF_NREG should be 29 as there should be place for
 161 * TRAPNO and ERR "registers" as well but linux doesn't dump
 162 * those.
 163 *
 164 * See linux kernel: arch/x86/include/asm/elf.h
 165 */
 166static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 167{
 168    (*regs)[0] = env->regs[15];
 169    (*regs)[1] = env->regs[14];
 170    (*regs)[2] = env->regs[13];
 171    (*regs)[3] = env->regs[12];
 172    (*regs)[4] = env->regs[R_EBP];
 173    (*regs)[5] = env->regs[R_EBX];
 174    (*regs)[6] = env->regs[11];
 175    (*regs)[7] = env->regs[10];
 176    (*regs)[8] = env->regs[9];
 177    (*regs)[9] = env->regs[8];
 178    (*regs)[10] = env->regs[R_EAX];
 179    (*regs)[11] = env->regs[R_ECX];
 180    (*regs)[12] = env->regs[R_EDX];
 181    (*regs)[13] = env->regs[R_ESI];
 182    (*regs)[14] = env->regs[R_EDI];
 183    (*regs)[15] = env->regs[R_EAX]; /* XXX */
 184    (*regs)[16] = env->eip;
 185    (*regs)[17] = env->segs[R_CS].selector & 0xffff;
 186    (*regs)[18] = env->eflags;
 187    (*regs)[19] = env->regs[R_ESP];
 188    (*regs)[20] = env->segs[R_SS].selector & 0xffff;
 189    (*regs)[21] = env->segs[R_FS].selector & 0xffff;
 190    (*regs)[22] = env->segs[R_GS].selector & 0xffff;
 191    (*regs)[23] = env->segs[R_DS].selector & 0xffff;
 192    (*regs)[24] = env->segs[R_ES].selector & 0xffff;
 193    (*regs)[25] = env->segs[R_FS].selector & 0xffff;
 194    (*regs)[26] = env->segs[R_GS].selector & 0xffff;
 195}
 196
 197#else
 198
 199#define ELF_START_MMAP 0x80000000
 200
 201/*
 202 * This is used to ensure we don't load something for the wrong architecture.
 203 */
 204#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
 205
 206/*
 207 * These are used to set parameters in the core dumps.
 208 */
 209#define ELF_CLASS       ELFCLASS32
 210#define ELF_ARCH        EM_386
 211
 212static inline void init_thread(struct target_pt_regs *regs,
 213                               struct image_info *infop)
 214{
 215    regs->esp = infop->start_stack;
 216    regs->eip = infop->entry;
 217
 218    /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
 219       starts %edx contains a pointer to a function which might be
 220       registered using `atexit'.  This provides a mean for the
 221       dynamic linker to call DT_FINI functions for shared libraries
 222       that have been loaded before the code runs.
 223
 224       A value of 0 tells we have no such handler.  */
 225    regs->edx = 0;
 226}
 227
 228#define ELF_NREG    17
 229typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 230
 231/*
 232 * Note that ELF_NREG should be 19 as there should be place for
 233 * TRAPNO and ERR "registers" as well but linux doesn't dump
 234 * those.
 235 *
 236 * See linux kernel: arch/x86/include/asm/elf.h
 237 */
 238static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 239{
 240    (*regs)[0] = env->regs[R_EBX];
 241    (*regs)[1] = env->regs[R_ECX];
 242    (*regs)[2] = env->regs[R_EDX];
 243    (*regs)[3] = env->regs[R_ESI];
 244    (*regs)[4] = env->regs[R_EDI];
 245    (*regs)[5] = env->regs[R_EBP];
 246    (*regs)[6] = env->regs[R_EAX];
 247    (*regs)[7] = env->segs[R_DS].selector & 0xffff;
 248    (*regs)[8] = env->segs[R_ES].selector & 0xffff;
 249    (*regs)[9] = env->segs[R_FS].selector & 0xffff;
 250    (*regs)[10] = env->segs[R_GS].selector & 0xffff;
 251    (*regs)[11] = env->regs[R_EAX]; /* XXX */
 252    (*regs)[12] = env->eip;
 253    (*regs)[13] = env->segs[R_CS].selector & 0xffff;
 254    (*regs)[14] = env->eflags;
 255    (*regs)[15] = env->regs[R_ESP];
 256    (*regs)[16] = env->segs[R_SS].selector & 0xffff;
 257}
 258#endif
 259
 260#define USE_ELF_CORE_DUMP
 261#define ELF_EXEC_PAGESIZE       4096
 262
 263#endif
 264
 265#ifdef TARGET_ARM
 266
 267#ifndef TARGET_AARCH64
 268/* 32 bit ARM definitions */
 269
 270#define ELF_START_MMAP 0x80000000
 271
 272#define ELF_ARCH        EM_ARM
 273#define ELF_CLASS       ELFCLASS32
 274
 275static inline void init_thread(struct target_pt_regs *regs,
 276                               struct image_info *infop)
 277{
 278    abi_long stack = infop->start_stack;
 279    memset(regs, 0, sizeof(*regs));
 280
 281    regs->uregs[16] = ARM_CPU_MODE_USR;
 282    if (infop->entry & 1) {
 283        regs->uregs[16] |= CPSR_T;
 284    }
 285    regs->uregs[15] = infop->entry & 0xfffffffe;
 286    regs->uregs[13] = infop->start_stack;
 287    /* FIXME - what to for failure of get_user()? */
 288    get_user_ual(regs->uregs[2], stack + 8); /* envp */
 289    get_user_ual(regs->uregs[1], stack + 4); /* envp */
 290    /* XXX: it seems that r0 is zeroed after ! */
 291    regs->uregs[0] = 0;
 292    /* For uClinux PIC binaries.  */
 293    /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
 294    regs->uregs[10] = infop->start_data;
 295
 296    /* Support ARM FDPIC.  */
 297    if (info_is_fdpic(infop)) {
 298        /* As described in the ABI document, r7 points to the loadmap info
 299         * prepared by the kernel. If an interpreter is needed, r8 points
 300         * to the interpreter loadmap and r9 points to the interpreter
 301         * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
 302         * r9 points to the main program PT_DYNAMIC info.
 303         */
 304        regs->uregs[7] = infop->loadmap_addr;
 305        if (infop->interpreter_loadmap_addr) {
 306            /* Executable is dynamically loaded.  */
 307            regs->uregs[8] = infop->interpreter_loadmap_addr;
 308            regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
 309        } else {
 310            regs->uregs[8] = 0;
 311            regs->uregs[9] = infop->pt_dynamic_addr;
 312        }
 313    }
 314}
 315
 316#define ELF_NREG    18
 317typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 318
 319static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
 320{
 321    (*regs)[0] = tswapreg(env->regs[0]);
 322    (*regs)[1] = tswapreg(env->regs[1]);
 323    (*regs)[2] = tswapreg(env->regs[2]);
 324    (*regs)[3] = tswapreg(env->regs[3]);
 325    (*regs)[4] = tswapreg(env->regs[4]);
 326    (*regs)[5] = tswapreg(env->regs[5]);
 327    (*regs)[6] = tswapreg(env->regs[6]);
 328    (*regs)[7] = tswapreg(env->regs[7]);
 329    (*regs)[8] = tswapreg(env->regs[8]);
 330    (*regs)[9] = tswapreg(env->regs[9]);
 331    (*regs)[10] = tswapreg(env->regs[10]);
 332    (*regs)[11] = tswapreg(env->regs[11]);
 333    (*regs)[12] = tswapreg(env->regs[12]);
 334    (*regs)[13] = tswapreg(env->regs[13]);
 335    (*regs)[14] = tswapreg(env->regs[14]);
 336    (*regs)[15] = tswapreg(env->regs[15]);
 337
 338    (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
 339    (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
 340}
 341
 342#define USE_ELF_CORE_DUMP
 343#define ELF_EXEC_PAGESIZE       4096
 344
 345enum
 346{
 347    ARM_HWCAP_ARM_SWP       = 1 << 0,
 348    ARM_HWCAP_ARM_HALF      = 1 << 1,
 349    ARM_HWCAP_ARM_THUMB     = 1 << 2,
 350    ARM_HWCAP_ARM_26BIT     = 1 << 3,
 351    ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
 352    ARM_HWCAP_ARM_FPA       = 1 << 5,
 353    ARM_HWCAP_ARM_VFP       = 1 << 6,
 354    ARM_HWCAP_ARM_EDSP      = 1 << 7,
 355    ARM_HWCAP_ARM_JAVA      = 1 << 8,
 356    ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
 357    ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
 358    ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
 359    ARM_HWCAP_ARM_NEON      = 1 << 12,
 360    ARM_HWCAP_ARM_VFPv3     = 1 << 13,
 361    ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
 362    ARM_HWCAP_ARM_TLS       = 1 << 15,
 363    ARM_HWCAP_ARM_VFPv4     = 1 << 16,
 364    ARM_HWCAP_ARM_IDIVA     = 1 << 17,
 365    ARM_HWCAP_ARM_IDIVT     = 1 << 18,
 366    ARM_HWCAP_ARM_VFPD32    = 1 << 19,
 367    ARM_HWCAP_ARM_LPAE      = 1 << 20,
 368    ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
 369};
 370
 371enum {
 372    ARM_HWCAP2_ARM_AES      = 1 << 0,
 373    ARM_HWCAP2_ARM_PMULL    = 1 << 1,
 374    ARM_HWCAP2_ARM_SHA1     = 1 << 2,
 375    ARM_HWCAP2_ARM_SHA2     = 1 << 3,
 376    ARM_HWCAP2_ARM_CRC32    = 1 << 4,
 377};
 378
 379/* The commpage only exists for 32 bit kernels */
 380
 381/* Return 1 if the proposed guest space is suitable for the guest.
 382 * Return 0 if the proposed guest space isn't suitable, but another
 383 * address space should be tried.
 384 * Return -1 if there is no way the proposed guest space can be
 385 * valid regardless of the base.
 386 * The guest code may leave a page mapped and populate it if the
 387 * address is suitable.
 388 */
 389static int init_guest_commpage(unsigned long guest_base,
 390                               unsigned long guest_size)
 391{
 392    unsigned long real_start, test_page_addr;
 393
 394    /* We need to check that we can force a fault on access to the
 395     * commpage at 0xffff0fxx
 396     */
 397    test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
 398
 399    /* If the commpage lies within the already allocated guest space,
 400     * then there is no way we can allocate it.
 401     *
 402     * You may be thinking that that this check is redundant because
 403     * we already validated the guest size against MAX_RESERVED_VA;
 404     * but if qemu_host_page_mask is unusually large, then
 405     * test_page_addr may be lower.
 406     */
 407    if (test_page_addr >= guest_base
 408        && test_page_addr < (guest_base + guest_size)) {
 409        return -1;
 410    }
 411
 412    /* Note it needs to be writeable to let us initialise it */
 413    real_start = (unsigned long)
 414                 mmap((void *)test_page_addr, qemu_host_page_size,
 415                     PROT_READ | PROT_WRITE,
 416                     MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 417
 418    /* If we can't map it then try another address */
 419    if (real_start == -1ul) {
 420        return 0;
 421    }
 422
 423    if (real_start != test_page_addr) {
 424        /* OS didn't put the page where we asked - unmap and reject */
 425        munmap((void *)real_start, qemu_host_page_size);
 426        return 0;
 427    }
 428
 429    /* Leave the page mapped
 430     * Populate it (mmap should have left it all 0'd)
 431     */
 432
 433    /* Kernel helper versions */
 434    __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
 435
 436    /* Now it's populated make it RO */
 437    if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
 438        perror("Protecting guest commpage");
 439        exit(-1);
 440    }
 441
 442    return 1; /* All good */
 443}
 444
 445#define ELF_HWCAP get_elf_hwcap()
 446#define ELF_HWCAP2 get_elf_hwcap2()
 447
 448static uint32_t get_elf_hwcap(void)
 449{
 450    ARMCPU *cpu = ARM_CPU(thread_cpu);
 451    uint32_t hwcaps = 0;
 452
 453    hwcaps |= ARM_HWCAP_ARM_SWP;
 454    hwcaps |= ARM_HWCAP_ARM_HALF;
 455    hwcaps |= ARM_HWCAP_ARM_THUMB;
 456    hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
 457
 458    /* probe for the extra features */
 459#define GET_FEATURE(feat, hwcap) \
 460    do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
 461
 462#define GET_FEATURE_ID(feat, hwcap) \
 463    do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 464
 465    /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
 466    GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
 467    GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
 468    GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
 469    GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
 470    GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
 471    GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
 472    GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
 473    GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
 474    GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
 475    GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
 476    /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
 477     * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
 478     * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
 479     * to our VFP_FP16 feature bit.
 480     */
 481    GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
 482    GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
 483
 484    return hwcaps;
 485}
 486
 487static uint32_t get_elf_hwcap2(void)
 488{
 489    ARMCPU *cpu = ARM_CPU(thread_cpu);
 490    uint32_t hwcaps = 0;
 491
 492    GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
 493    GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
 494    GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
 495    GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
 496    GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
 497    return hwcaps;
 498}
 499
 500#undef GET_FEATURE
 501#undef GET_FEATURE_ID
 502
 503#else
 504/* 64 bit ARM definitions */
 505#define ELF_START_MMAP 0x80000000
 506
 507#define ELF_ARCH        EM_AARCH64
 508#define ELF_CLASS       ELFCLASS64
 509#define ELF_PLATFORM    "aarch64"
 510
 511static inline void init_thread(struct target_pt_regs *regs,
 512                               struct image_info *infop)
 513{
 514    abi_long stack = infop->start_stack;
 515    memset(regs, 0, sizeof(*regs));
 516
 517    regs->pc = infop->entry & ~0x3ULL;
 518    regs->sp = stack;
 519}
 520
 521#define ELF_NREG    34
 522typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 523
 524static void elf_core_copy_regs(target_elf_gregset_t *regs,
 525                               const CPUARMState *env)
 526{
 527    int i;
 528
 529    for (i = 0; i < 32; i++) {
 530        (*regs)[i] = tswapreg(env->xregs[i]);
 531    }
 532    (*regs)[32] = tswapreg(env->pc);
 533    (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
 534}
 535
 536#define USE_ELF_CORE_DUMP
 537#define ELF_EXEC_PAGESIZE       4096
 538
 539enum {
 540    ARM_HWCAP_A64_FP            = 1 << 0,
 541    ARM_HWCAP_A64_ASIMD         = 1 << 1,
 542    ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
 543    ARM_HWCAP_A64_AES           = 1 << 3,
 544    ARM_HWCAP_A64_PMULL         = 1 << 4,
 545    ARM_HWCAP_A64_SHA1          = 1 << 5,
 546    ARM_HWCAP_A64_SHA2          = 1 << 6,
 547    ARM_HWCAP_A64_CRC32         = 1 << 7,
 548    ARM_HWCAP_A64_ATOMICS       = 1 << 8,
 549    ARM_HWCAP_A64_FPHP          = 1 << 9,
 550    ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
 551    ARM_HWCAP_A64_CPUID         = 1 << 11,
 552    ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
 553    ARM_HWCAP_A64_JSCVT         = 1 << 13,
 554    ARM_HWCAP_A64_FCMA          = 1 << 14,
 555    ARM_HWCAP_A64_LRCPC         = 1 << 15,
 556    ARM_HWCAP_A64_DCPOP         = 1 << 16,
 557    ARM_HWCAP_A64_SHA3          = 1 << 17,
 558    ARM_HWCAP_A64_SM3           = 1 << 18,
 559    ARM_HWCAP_A64_SM4           = 1 << 19,
 560    ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
 561    ARM_HWCAP_A64_SHA512        = 1 << 21,
 562    ARM_HWCAP_A64_SVE           = 1 << 22,
 563};
 564
 565#define ELF_HWCAP get_elf_hwcap()
 566
 567static uint32_t get_elf_hwcap(void)
 568{
 569    ARMCPU *cpu = ARM_CPU(thread_cpu);
 570    uint32_t hwcaps = 0;
 571
 572    hwcaps |= ARM_HWCAP_A64_FP;
 573    hwcaps |= ARM_HWCAP_A64_ASIMD;
 574
 575    /* probe for the extra features */
 576#define GET_FEATURE_ID(feat, hwcap) \
 577    do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 578
 579    GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
 580    GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
 581    GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
 582    GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
 583    GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
 584    GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
 585    GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
 586    GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
 587    GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
 588    GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
 589    GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
 590    GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
 591    GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
 592    GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
 593    GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
 594
 595#undef GET_FEATURE_ID
 596
 597    return hwcaps;
 598}
 599
 600#endif /* not TARGET_AARCH64 */
 601#endif /* TARGET_ARM */
 602
 603#ifdef TARGET_SPARC
 604#ifdef TARGET_SPARC64
 605
 606#define ELF_START_MMAP 0x80000000
 607#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 608                    | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
 609#ifndef TARGET_ABI32
 610#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
 611#else
 612#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
 613#endif
 614
 615#define ELF_CLASS   ELFCLASS64
 616#define ELF_ARCH    EM_SPARCV9
 617
 618#define STACK_BIAS              2047
 619
 620static inline void init_thread(struct target_pt_regs *regs,
 621                               struct image_info *infop)
 622{
 623#ifndef TARGET_ABI32
 624    regs->tstate = 0;
 625#endif
 626    regs->pc = infop->entry;
 627    regs->npc = regs->pc + 4;
 628    regs->y = 0;
 629#ifdef TARGET_ABI32
 630    regs->u_regs[14] = infop->start_stack - 16 * 4;
 631#else
 632    if (personality(infop->personality) == PER_LINUX32)
 633        regs->u_regs[14] = infop->start_stack - 16 * 4;
 634    else
 635        regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
 636#endif
 637}
 638
 639#else
 640#define ELF_START_MMAP 0x80000000
 641#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 642                    | HWCAP_SPARC_MULDIV)
 643
 644#define ELF_CLASS   ELFCLASS32
 645#define ELF_ARCH    EM_SPARC
 646
 647static inline void init_thread(struct target_pt_regs *regs,
 648                               struct image_info *infop)
 649{
 650    regs->psr = 0;
 651    regs->pc = infop->entry;
 652    regs->npc = regs->pc + 4;
 653    regs->y = 0;
 654    regs->u_regs[14] = infop->start_stack - 16 * 4;
 655}
 656
 657#endif
 658#endif
 659
 660#ifdef TARGET_PPC
 661
 662#define ELF_MACHINE    PPC_ELF_MACHINE
 663#define ELF_START_MMAP 0x80000000
 664
 665#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 666
 667#define elf_check_arch(x) ( (x) == EM_PPC64 )
 668
 669#define ELF_CLASS       ELFCLASS64
 670
 671#else
 672
 673#define ELF_CLASS       ELFCLASS32
 674
 675#endif
 676
 677#define ELF_ARCH        EM_PPC
 678
 679/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
 680   See arch/powerpc/include/asm/cputable.h.  */
 681enum {
 682    QEMU_PPC_FEATURE_32 = 0x80000000,
 683    QEMU_PPC_FEATURE_64 = 0x40000000,
 684    QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
 685    QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
 686    QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
 687    QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
 688    QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
 689    QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
 690    QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
 691    QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
 692    QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
 693    QEMU_PPC_FEATURE_NO_TB = 0x00100000,
 694    QEMU_PPC_FEATURE_POWER4 = 0x00080000,
 695    QEMU_PPC_FEATURE_POWER5 = 0x00040000,
 696    QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
 697    QEMU_PPC_FEATURE_CELL = 0x00010000,
 698    QEMU_PPC_FEATURE_BOOKE = 0x00008000,
 699    QEMU_PPC_FEATURE_SMT = 0x00004000,
 700    QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
 701    QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
 702    QEMU_PPC_FEATURE_PA6T = 0x00000800,
 703    QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
 704    QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
 705    QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
 706    QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
 707    QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
 708
 709    QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
 710    QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
 711
 712    /* Feature definitions in AT_HWCAP2.  */
 713    QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
 714    QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
 715    QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
 716    QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
 717    QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
 718    QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
 719    QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
 720};
 721
 722#define ELF_HWCAP get_elf_hwcap()
 723
 724static uint32_t get_elf_hwcap(void)
 725{
 726    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 727    uint32_t features = 0;
 728
 729    /* We don't have to be terribly complete here; the high points are
 730       Altivec/FP/SPE support.  Anything else is just a bonus.  */
 731#define GET_FEATURE(flag, feature)                                      \
 732    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 733#define GET_FEATURE2(flags, feature) \
 734    do { \
 735        if ((cpu->env.insns_flags2 & flags) == flags) { \
 736            features |= feature; \
 737        } \
 738    } while (0)
 739    GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
 740    GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
 741    GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
 742    GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
 743    GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
 744    GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
 745    GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
 746    GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
 747    GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
 748    GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
 749    GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
 750                  PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
 751                  QEMU_PPC_FEATURE_ARCH_2_06);
 752#undef GET_FEATURE
 753#undef GET_FEATURE2
 754
 755    return features;
 756}
 757
 758#define ELF_HWCAP2 get_elf_hwcap2()
 759
 760static uint32_t get_elf_hwcap2(void)
 761{
 762    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 763    uint32_t features = 0;
 764
 765#define GET_FEATURE(flag, feature)                                      \
 766    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 767#define GET_FEATURE2(flag, feature)                                      \
 768    do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
 769
 770    GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
 771    GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
 772    GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
 773                  PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
 774    GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
 775
 776#undef GET_FEATURE
 777#undef GET_FEATURE2
 778
 779    return features;
 780}
 781
 782/*
 783 * The requirements here are:
 784 * - keep the final alignment of sp (sp & 0xf)
 785 * - make sure the 32-bit value at the first 16 byte aligned position of
 786 *   AUXV is greater than 16 for glibc compatibility.
 787 *   AT_IGNOREPPC is used for that.
 788 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
 789 *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
 790 */
 791#define DLINFO_ARCH_ITEMS       5
 792#define ARCH_DLINFO                                     \
 793    do {                                                \
 794        PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
 795        /*                                              \
 796         * Handle glibc compatibility: these magic entries must \
 797         * be at the lowest addresses in the final auxv.        \
 798         */                                             \
 799        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 800        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 801        NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
 802        NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
 803        NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
 804    } while (0)
 805
 806static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
 807{
 808    _regs->gpr[1] = infop->start_stack;
 809#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 810    if (get_ppc64_abi(infop) < 2) {
 811        uint64_t val;
 812        get_user_u64(val, infop->entry + 8);
 813        _regs->gpr[2] = val + infop->load_bias;
 814        get_user_u64(val, infop->entry);
 815        infop->entry = val + infop->load_bias;
 816    } else {
 817        _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
 818    }
 819#endif
 820    _regs->nip = infop->entry;
 821}
 822
 823/* See linux kernel: arch/powerpc/include/asm/elf.h.  */
 824#define ELF_NREG 48
 825typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 826
 827static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
 828{
 829    int i;
 830    target_ulong ccr = 0;
 831
 832    for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
 833        (*regs)[i] = tswapreg(env->gpr[i]);
 834    }
 835
 836    (*regs)[32] = tswapreg(env->nip);
 837    (*regs)[33] = tswapreg(env->msr);
 838    (*regs)[35] = tswapreg(env->ctr);
 839    (*regs)[36] = tswapreg(env->lr);
 840    (*regs)[37] = tswapreg(env->xer);
 841
 842    for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
 843        ccr |= env->crf[i] << (32 - ((i + 1) * 4));
 844    }
 845    (*regs)[38] = tswapreg(ccr);
 846}
 847
 848#define USE_ELF_CORE_DUMP
 849#define ELF_EXEC_PAGESIZE       4096
 850
 851#endif
 852
 853#ifdef TARGET_MIPS
 854
 855#define ELF_START_MMAP 0x80000000
 856
 857#ifdef TARGET_MIPS64
 858#define ELF_CLASS   ELFCLASS64
 859#else
 860#define ELF_CLASS   ELFCLASS32
 861#endif
 862#define ELF_ARCH    EM_MIPS
 863
 864#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
 865
 866static inline void init_thread(struct target_pt_regs *regs,
 867                               struct image_info *infop)
 868{
 869    regs->cp0_status = 2 << CP0St_KSU;
 870    regs->cp0_epc = infop->entry;
 871    regs->regs[29] = infop->start_stack;
 872}
 873
 874/* See linux kernel: arch/mips/include/asm/elf.h.  */
 875#define ELF_NREG 45
 876typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 877
 878/* See linux kernel: arch/mips/include/asm/reg.h.  */
 879enum {
 880#ifdef TARGET_MIPS64
 881    TARGET_EF_R0 = 0,
 882#else
 883    TARGET_EF_R0 = 6,
 884#endif
 885    TARGET_EF_R26 = TARGET_EF_R0 + 26,
 886    TARGET_EF_R27 = TARGET_EF_R0 + 27,
 887    TARGET_EF_LO = TARGET_EF_R0 + 32,
 888    TARGET_EF_HI = TARGET_EF_R0 + 33,
 889    TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
 890    TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
 891    TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
 892    TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
 893};
 894
 895/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 896static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
 897{
 898    int i;
 899
 900    for (i = 0; i < TARGET_EF_R0; i++) {
 901        (*regs)[i] = 0;
 902    }
 903    (*regs)[TARGET_EF_R0] = 0;
 904
 905    for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
 906        (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
 907    }
 908
 909    (*regs)[TARGET_EF_R26] = 0;
 910    (*regs)[TARGET_EF_R27] = 0;
 911    (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
 912    (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
 913    (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
 914    (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
 915    (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
 916    (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
 917}
 918
 919#define USE_ELF_CORE_DUMP
 920#define ELF_EXEC_PAGESIZE        4096
 921
 922/* See arch/mips/include/uapi/asm/hwcap.h.  */
 923enum {
 924    HWCAP_MIPS_R6           = (1 << 0),
 925    HWCAP_MIPS_MSA          = (1 << 1),
 926};
 927
 928#define ELF_HWCAP get_elf_hwcap()
 929
 930static uint32_t get_elf_hwcap(void)
 931{
 932    MIPSCPU *cpu = MIPS_CPU(thread_cpu);
 933    uint32_t hwcaps = 0;
 934
 935#define GET_FEATURE(flag, hwcap) \
 936    do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
 937
 938    GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
 939    GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
 940
 941#undef GET_FEATURE
 942
 943    return hwcaps;
 944}
 945
 946#endif /* TARGET_MIPS */
 947
 948#ifdef TARGET_MICROBLAZE
 949
 950#define ELF_START_MMAP 0x80000000
 951
 952#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
 953
 954#define ELF_CLASS   ELFCLASS32
 955#define ELF_ARCH    EM_MICROBLAZE
 956
 957static inline void init_thread(struct target_pt_regs *regs,
 958                               struct image_info *infop)
 959{
 960    regs->pc = infop->entry;
 961    regs->r1 = infop->start_stack;
 962
 963}
 964
 965#define ELF_EXEC_PAGESIZE        4096
 966
 967#define USE_ELF_CORE_DUMP
 968#define ELF_NREG 38
 969typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 970
 971/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 972static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
 973{
 974    int i, pos = 0;
 975
 976    for (i = 0; i < 32; i++) {
 977        (*regs)[pos++] = tswapreg(env->regs[i]);
 978    }
 979
 980    for (i = 0; i < 6; i++) {
 981        (*regs)[pos++] = tswapreg(env->sregs[i]);
 982    }
 983}
 984
 985#endif /* TARGET_MICROBLAZE */
 986
 987#ifdef TARGET_NIOS2
 988
 989#define ELF_START_MMAP 0x80000000
 990
 991#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
 992
 993#define ELF_CLASS   ELFCLASS32
 994#define ELF_ARCH    EM_ALTERA_NIOS2
 995
 996static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 997{
 998    regs->ea = infop->entry;
 999    regs->sp = infop->start_stack;
1000    regs->estatus = 0x3;
1001}
1002
1003#define ELF_EXEC_PAGESIZE        4096
1004
1005#define USE_ELF_CORE_DUMP
1006#define ELF_NREG 49
1007typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1008
1009/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1010static void elf_core_copy_regs(target_elf_gregset_t *regs,
1011                               const CPUNios2State *env)
1012{
1013    int i;
1014
1015    (*regs)[0] = -1;
1016    for (i = 1; i < 8; i++)    /* r0-r7 */
1017        (*regs)[i] = tswapreg(env->regs[i + 7]);
1018
1019    for (i = 8; i < 16; i++)   /* r8-r15 */
1020        (*regs)[i] = tswapreg(env->regs[i - 8]);
1021
1022    for (i = 16; i < 24; i++)  /* r16-r23 */
1023        (*regs)[i] = tswapreg(env->regs[i + 7]);
1024    (*regs)[24] = -1;    /* R_ET */
1025    (*regs)[25] = -1;    /* R_BT */
1026    (*regs)[26] = tswapreg(env->regs[R_GP]);
1027    (*regs)[27] = tswapreg(env->regs[R_SP]);
1028    (*regs)[28] = tswapreg(env->regs[R_FP]);
1029    (*regs)[29] = tswapreg(env->regs[R_EA]);
1030    (*regs)[30] = -1;    /* R_SSTATUS */
1031    (*regs)[31] = tswapreg(env->regs[R_RA]);
1032
1033    (*regs)[32] = tswapreg(env->regs[R_PC]);
1034
1035    (*regs)[33] = -1; /* R_STATUS */
1036    (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1037
1038    for (i = 35; i < 49; i++)    /* ... */
1039        (*regs)[i] = -1;
1040}
1041
1042#endif /* TARGET_NIOS2 */
1043
1044#ifdef TARGET_OPENRISC
1045
1046#define ELF_START_MMAP 0x08000000
1047
1048#define ELF_ARCH EM_OPENRISC
1049#define ELF_CLASS ELFCLASS32
1050#define ELF_DATA  ELFDATA2MSB
1051
1052static inline void init_thread(struct target_pt_regs *regs,
1053                               struct image_info *infop)
1054{
1055    regs->pc = infop->entry;
1056    regs->gpr[1] = infop->start_stack;
1057}
1058
1059#define USE_ELF_CORE_DUMP
1060#define ELF_EXEC_PAGESIZE 8192
1061
1062/* See linux kernel arch/openrisc/include/asm/elf.h.  */
1063#define ELF_NREG 34 /* gprs and pc, sr */
1064typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1065
1066static void elf_core_copy_regs(target_elf_gregset_t *regs,
1067                               const CPUOpenRISCState *env)
1068{
1069    int i;
1070
1071    for (i = 0; i < 32; i++) {
1072        (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1073    }
1074    (*regs)[32] = tswapreg(env->pc);
1075    (*regs)[33] = tswapreg(cpu_get_sr(env));
1076}
1077#define ELF_HWCAP 0
1078#define ELF_PLATFORM NULL
1079
1080#endif /* TARGET_OPENRISC */
1081
1082#ifdef TARGET_SH4
1083
1084#define ELF_START_MMAP 0x80000000
1085
1086#define ELF_CLASS ELFCLASS32
1087#define ELF_ARCH  EM_SH
1088
1089static inline void init_thread(struct target_pt_regs *regs,
1090                               struct image_info *infop)
1091{
1092    /* Check other registers XXXXX */
1093    regs->pc = infop->entry;
1094    regs->regs[15] = infop->start_stack;
1095}
1096
1097/* See linux kernel: arch/sh/include/asm/elf.h.  */
1098#define ELF_NREG 23
1099typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1100
1101/* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1102enum {
1103    TARGET_REG_PC = 16,
1104    TARGET_REG_PR = 17,
1105    TARGET_REG_SR = 18,
1106    TARGET_REG_GBR = 19,
1107    TARGET_REG_MACH = 20,
1108    TARGET_REG_MACL = 21,
1109    TARGET_REG_SYSCALL = 22
1110};
1111
1112static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1113                                      const CPUSH4State *env)
1114{
1115    int i;
1116
1117    for (i = 0; i < 16; i++) {
1118        (*regs)[i] = tswapreg(env->gregs[i]);
1119    }
1120
1121    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1122    (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1123    (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1124    (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1125    (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1126    (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1127    (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1128}
1129
1130#define USE_ELF_CORE_DUMP
1131#define ELF_EXEC_PAGESIZE        4096
1132
1133enum {
1134    SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1135    SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1136    SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1137    SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1138    SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1139    SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1140    SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1141    SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1142    SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1143    SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1144};
1145
1146#define ELF_HWCAP get_elf_hwcap()
1147
1148static uint32_t get_elf_hwcap(void)
1149{
1150    SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1151    uint32_t hwcap = 0;
1152
1153    hwcap |= SH_CPU_HAS_FPU;
1154
1155    if (cpu->env.features & SH_FEATURE_SH4A) {
1156        hwcap |= SH_CPU_HAS_LLSC;
1157    }
1158
1159    return hwcap;
1160}
1161
1162#endif
1163
1164#ifdef TARGET_CRIS
1165
1166#define ELF_START_MMAP 0x80000000
1167
1168#define ELF_CLASS ELFCLASS32
1169#define ELF_ARCH  EM_CRIS
1170
1171static inline void init_thread(struct target_pt_regs *regs,
1172                               struct image_info *infop)
1173{
1174    regs->erp = infop->entry;
1175}
1176
1177#define ELF_EXEC_PAGESIZE        8192
1178
1179#endif
1180
1181#ifdef TARGET_M68K
1182
1183#define ELF_START_MMAP 0x80000000
1184
1185#define ELF_CLASS       ELFCLASS32
1186#define ELF_ARCH        EM_68K
1187
1188/* ??? Does this need to do anything?
1189   #define ELF_PLAT_INIT(_r) */
1190
1191static inline void init_thread(struct target_pt_regs *regs,
1192                               struct image_info *infop)
1193{
1194    regs->usp = infop->start_stack;
1195    regs->sr = 0;
1196    regs->pc = infop->entry;
1197}
1198
1199/* See linux kernel: arch/m68k/include/asm/elf.h.  */
1200#define ELF_NREG 20
1201typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1202
1203static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1204{
1205    (*regs)[0] = tswapreg(env->dregs[1]);
1206    (*regs)[1] = tswapreg(env->dregs[2]);
1207    (*regs)[2] = tswapreg(env->dregs[3]);
1208    (*regs)[3] = tswapreg(env->dregs[4]);
1209    (*regs)[4] = tswapreg(env->dregs[5]);
1210    (*regs)[5] = tswapreg(env->dregs[6]);
1211    (*regs)[6] = tswapreg(env->dregs[7]);
1212    (*regs)[7] = tswapreg(env->aregs[0]);
1213    (*regs)[8] = tswapreg(env->aregs[1]);
1214    (*regs)[9] = tswapreg(env->aregs[2]);
1215    (*regs)[10] = tswapreg(env->aregs[3]);
1216    (*regs)[11] = tswapreg(env->aregs[4]);
1217    (*regs)[12] = tswapreg(env->aregs[5]);
1218    (*regs)[13] = tswapreg(env->aregs[6]);
1219    (*regs)[14] = tswapreg(env->dregs[0]);
1220    (*regs)[15] = tswapreg(env->aregs[7]);
1221    (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1222    (*regs)[17] = tswapreg(env->sr);
1223    (*regs)[18] = tswapreg(env->pc);
1224    (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1225}
1226
1227#define USE_ELF_CORE_DUMP
1228#define ELF_EXEC_PAGESIZE       8192
1229
1230#endif
1231
1232#ifdef TARGET_ALPHA
1233
1234#define ELF_START_MMAP (0x30000000000ULL)
1235
1236#define ELF_CLASS      ELFCLASS64
1237#define ELF_ARCH       EM_ALPHA
1238
1239static inline void init_thread(struct target_pt_regs *regs,
1240                               struct image_info *infop)
1241{
1242    regs->pc = infop->entry;
1243    regs->ps = 8;
1244    regs->usp = infop->start_stack;
1245}
1246
1247#define ELF_EXEC_PAGESIZE        8192
1248
1249#endif /* TARGET_ALPHA */
1250
1251#ifdef TARGET_S390X
1252
1253#define ELF_START_MMAP (0x20000000000ULL)
1254
1255#define ELF_CLASS       ELFCLASS64
1256#define ELF_DATA        ELFDATA2MSB
1257#define ELF_ARCH        EM_S390
1258
1259static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1260{
1261    regs->psw.addr = infop->entry;
1262    regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1263    regs->gprs[15] = infop->start_stack;
1264}
1265
1266#endif /* TARGET_S390X */
1267
1268#ifdef TARGET_TILEGX
1269
1270/* 42 bits real used address, a half for user mode */
1271#define ELF_START_MMAP (0x00000020000000000ULL)
1272
1273#define elf_check_arch(x) ((x) == EM_TILEGX)
1274
1275#define ELF_CLASS   ELFCLASS64
1276#define ELF_DATA    ELFDATA2LSB
1277#define ELF_ARCH    EM_TILEGX
1278
1279static inline void init_thread(struct target_pt_regs *regs,
1280                               struct image_info *infop)
1281{
1282    regs->pc = infop->entry;
1283    regs->sp = infop->start_stack;
1284
1285}
1286
1287#define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1288
1289#endif /* TARGET_TILEGX */
1290
1291#ifdef TARGET_RISCV
1292
1293#define ELF_START_MMAP 0x80000000
1294#define ELF_ARCH  EM_RISCV
1295
1296#ifdef TARGET_RISCV32
1297#define ELF_CLASS ELFCLASS32
1298#else
1299#define ELF_CLASS ELFCLASS64
1300#endif
1301
1302static inline void init_thread(struct target_pt_regs *regs,
1303                               struct image_info *infop)
1304{
1305    regs->sepc = infop->entry;
1306    regs->sp = infop->start_stack;
1307}
1308
1309#define ELF_EXEC_PAGESIZE 4096
1310
1311#endif /* TARGET_RISCV */
1312
1313#ifdef TARGET_HPPA
1314
1315#define ELF_START_MMAP  0x80000000
1316#define ELF_CLASS       ELFCLASS32
1317#define ELF_ARCH        EM_PARISC
1318#define ELF_PLATFORM    "PARISC"
1319#define STACK_GROWS_DOWN 0
1320#define STACK_ALIGNMENT  64
1321
1322static inline void init_thread(struct target_pt_regs *regs,
1323                               struct image_info *infop)
1324{
1325    regs->iaoq[0] = infop->entry;
1326    regs->iaoq[1] = infop->entry + 4;
1327    regs->gr[23] = 0;
1328    regs->gr[24] = infop->arg_start;
1329    regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1330    /* The top-of-stack contains a linkage buffer.  */
1331    regs->gr[30] = infop->start_stack + 64;
1332    regs->gr[31] = infop->entry;
1333}
1334
1335#endif /* TARGET_HPPA */
1336
1337#ifdef TARGET_XTENSA
1338
1339#define ELF_START_MMAP 0x20000000
1340
1341#define ELF_CLASS       ELFCLASS32
1342#define ELF_ARCH        EM_XTENSA
1343
1344static inline void init_thread(struct target_pt_regs *regs,
1345                               struct image_info *infop)
1346{
1347    regs->windowbase = 0;
1348    regs->windowstart = 1;
1349    regs->areg[1] = infop->start_stack;
1350    regs->pc = infop->entry;
1351}
1352
1353/* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1354#define ELF_NREG 128
1355typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1356
1357enum {
1358    TARGET_REG_PC,
1359    TARGET_REG_PS,
1360    TARGET_REG_LBEG,
1361    TARGET_REG_LEND,
1362    TARGET_REG_LCOUNT,
1363    TARGET_REG_SAR,
1364    TARGET_REG_WINDOWSTART,
1365    TARGET_REG_WINDOWBASE,
1366    TARGET_REG_THREADPTR,
1367    TARGET_REG_AR0 = 64,
1368};
1369
1370static void elf_core_copy_regs(target_elf_gregset_t *regs,
1371                               const CPUXtensaState *env)
1372{
1373    unsigned i;
1374
1375    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1376    (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1377    (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1378    (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1379    (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1380    (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1381    (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1382    (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1383    (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1384    xtensa_sync_phys_from_window((CPUXtensaState *)env);
1385    for (i = 0; i < env->config->nareg; ++i) {
1386        (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1387    }
1388}
1389
1390#define USE_ELF_CORE_DUMP
1391#define ELF_EXEC_PAGESIZE       4096
1392
1393#endif /* TARGET_XTENSA */
1394
1395#ifndef ELF_PLATFORM
1396#define ELF_PLATFORM (NULL)
1397#endif
1398
1399#ifndef ELF_MACHINE
1400#define ELF_MACHINE ELF_ARCH
1401#endif
1402
1403#ifndef elf_check_arch
1404#define elf_check_arch(x) ((x) == ELF_ARCH)
1405#endif
1406
1407#ifndef ELF_HWCAP
1408#define ELF_HWCAP 0
1409#endif
1410
1411#ifndef STACK_GROWS_DOWN
1412#define STACK_GROWS_DOWN 1
1413#endif
1414
1415#ifndef STACK_ALIGNMENT
1416#define STACK_ALIGNMENT 16
1417#endif
1418
1419#ifdef TARGET_ABI32
1420#undef ELF_CLASS
1421#define ELF_CLASS ELFCLASS32
1422#undef bswaptls
1423#define bswaptls(ptr) bswap32s(ptr)
1424#endif
1425
1426#include "elf.h"
1427
1428struct exec
1429{
1430    unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1431    unsigned int a_text;   /* length of text, in bytes */
1432    unsigned int a_data;   /* length of data, in bytes */
1433    unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1434    unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1435    unsigned int a_entry;  /* start address */
1436    unsigned int a_trsize; /* length of relocation info for text, in bytes */
1437    unsigned int a_drsize; /* length of relocation info for data, in bytes */
1438};
1439
1440
1441#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1442#define OMAGIC 0407
1443#define NMAGIC 0410
1444#define ZMAGIC 0413
1445#define QMAGIC 0314
1446
1447/* Necessary parameters */
1448#define TARGET_ELF_EXEC_PAGESIZE \
1449        (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1450         TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1451#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1452#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1453                                 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1454#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1455
1456#define DLINFO_ITEMS 15
1457
1458static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1459{
1460    memcpy(to, from, n);
1461}
1462
1463#ifdef BSWAP_NEEDED
1464static void bswap_ehdr(struct elfhdr *ehdr)
1465{
1466    bswap16s(&ehdr->e_type);            /* Object file type */
1467    bswap16s(&ehdr->e_machine);         /* Architecture */
1468    bswap32s(&ehdr->e_version);         /* Object file version */
1469    bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1470    bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1471    bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1472    bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1473    bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1474    bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1475    bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1476    bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1477    bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1478    bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1479}
1480
1481static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1482{
1483    int i;
1484    for (i = 0; i < phnum; ++i, ++phdr) {
1485        bswap32s(&phdr->p_type);        /* Segment type */
1486        bswap32s(&phdr->p_flags);       /* Segment flags */
1487        bswaptls(&phdr->p_offset);      /* Segment file offset */
1488        bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1489        bswaptls(&phdr->p_paddr);       /* Segment physical address */
1490        bswaptls(&phdr->p_filesz);      /* Segment size in file */
1491        bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1492        bswaptls(&phdr->p_align);       /* Segment alignment */
1493    }
1494}
1495
1496static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1497{
1498    int i;
1499    for (i = 0; i < shnum; ++i, ++shdr) {
1500        bswap32s(&shdr->sh_name);
1501        bswap32s(&shdr->sh_type);
1502        bswaptls(&shdr->sh_flags);
1503        bswaptls(&shdr->sh_addr);
1504        bswaptls(&shdr->sh_offset);
1505        bswaptls(&shdr->sh_size);
1506        bswap32s(&shdr->sh_link);
1507        bswap32s(&shdr->sh_info);
1508        bswaptls(&shdr->sh_addralign);
1509        bswaptls(&shdr->sh_entsize);
1510    }
1511}
1512
1513static void bswap_sym(struct elf_sym *sym)
1514{
1515    bswap32s(&sym->st_name);
1516    bswaptls(&sym->st_value);
1517    bswaptls(&sym->st_size);
1518    bswap16s(&sym->st_shndx);
1519}
1520
1521#ifdef TARGET_MIPS
1522static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1523{
1524    bswap16s(&abiflags->version);
1525    bswap32s(&abiflags->ases);
1526    bswap32s(&abiflags->isa_ext);
1527    bswap32s(&abiflags->flags1);
1528    bswap32s(&abiflags->flags2);
1529}
1530#endif
1531#else
1532static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1533static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1534static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1535static inline void bswap_sym(struct elf_sym *sym) { }
1536#ifdef TARGET_MIPS
1537static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1538#endif
1539#endif
1540
1541#ifdef USE_ELF_CORE_DUMP
1542static int elf_core_dump(int, const CPUArchState *);
1543#endif /* USE_ELF_CORE_DUMP */
1544static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1545
1546/* Verify the portions of EHDR within E_IDENT for the target.
1547   This can be performed before bswapping the entire header.  */
1548static bool elf_check_ident(struct elfhdr *ehdr)
1549{
1550    return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1551            && ehdr->e_ident[EI_MAG1] == ELFMAG1
1552            && ehdr->e_ident[EI_MAG2] == ELFMAG2
1553            && ehdr->e_ident[EI_MAG3] == ELFMAG3
1554            && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1555            && ehdr->e_ident[EI_DATA] == ELF_DATA
1556            && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1557}
1558
1559/* Verify the portions of EHDR outside of E_IDENT for the target.
1560   This has to wait until after bswapping the header.  */
1561static bool elf_check_ehdr(struct elfhdr *ehdr)
1562{
1563    return (elf_check_arch(ehdr->e_machine)
1564            && ehdr->e_ehsize == sizeof(struct elfhdr)
1565            && ehdr->e_phentsize == sizeof(struct elf_phdr)
1566            && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1567}
1568
1569/*
1570 * 'copy_elf_strings()' copies argument/envelope strings from user
1571 * memory to free pages in kernel mem. These are in a format ready
1572 * to be put directly into the top of new user memory.
1573 *
1574 */
1575static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1576                                  abi_ulong p, abi_ulong stack_limit)
1577{
1578    char *tmp;
1579    int len, i;
1580    abi_ulong top = p;
1581
1582    if (!p) {
1583        return 0;       /* bullet-proofing */
1584    }
1585
1586    if (STACK_GROWS_DOWN) {
1587        int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1588        for (i = argc - 1; i >= 0; --i) {
1589            tmp = argv[i];
1590            if (!tmp) {
1591                fprintf(stderr, "VFS: argc is wrong");
1592                exit(-1);
1593            }
1594            len = strlen(tmp) + 1;
1595            tmp += len;
1596
1597            if (len > (p - stack_limit)) {
1598                return 0;
1599            }
1600            while (len) {
1601                int bytes_to_copy = (len > offset) ? offset : len;
1602                tmp -= bytes_to_copy;
1603                p -= bytes_to_copy;
1604                offset -= bytes_to_copy;
1605                len -= bytes_to_copy;
1606
1607                memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1608
1609                if (offset == 0) {
1610                    memcpy_to_target(p, scratch, top - p);
1611                    top = p;
1612                    offset = TARGET_PAGE_SIZE;
1613                }
1614            }
1615        }
1616        if (p != top) {
1617            memcpy_to_target(p, scratch + offset, top - p);
1618        }
1619    } else {
1620        int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1621        for (i = 0; i < argc; ++i) {
1622            tmp = argv[i];
1623            if (!tmp) {
1624                fprintf(stderr, "VFS: argc is wrong");
1625                exit(-1);
1626            }
1627            len = strlen(tmp) + 1;
1628            if (len > (stack_limit - p)) {
1629                return 0;
1630            }
1631            while (len) {
1632                int bytes_to_copy = (len > remaining) ? remaining : len;
1633
1634                memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1635
1636                tmp += bytes_to_copy;
1637                remaining -= bytes_to_copy;
1638                p += bytes_to_copy;
1639                len -= bytes_to_copy;
1640
1641                if (remaining == 0) {
1642                    memcpy_to_target(top, scratch, p - top);
1643                    top = p;
1644                    remaining = TARGET_PAGE_SIZE;
1645                }
1646            }
1647        }
1648        if (p != top) {
1649            memcpy_to_target(top, scratch, p - top);
1650        }
1651    }
1652
1653    return p;
1654}
1655
1656/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1657 * argument/environment space. Newer kernels (>2.6.33) allow more,
1658 * dependent on stack size, but guarantee at least 32 pages for
1659 * backwards compatibility.
1660 */
1661#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1662
1663static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1664                                 struct image_info *info)
1665{
1666    abi_ulong size, error, guard;
1667
1668    size = guest_stack_size;
1669    if (size < STACK_LOWER_LIMIT) {
1670        size = STACK_LOWER_LIMIT;
1671    }
1672    guard = TARGET_PAGE_SIZE;
1673    if (guard < qemu_real_host_page_size) {
1674        guard = qemu_real_host_page_size;
1675    }
1676
1677    error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1678                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1679    if (error == -1) {
1680        perror("mmap stack");
1681        exit(-1);
1682    }
1683
1684    /* We reserve one extra page at the top of the stack as guard.  */
1685    if (STACK_GROWS_DOWN) {
1686        target_mprotect(error, guard, PROT_NONE);
1687        info->stack_limit = error + guard;
1688        return info->stack_limit + size - sizeof(void *);
1689    } else {
1690        target_mprotect(error + size, guard, PROT_NONE);
1691        info->stack_limit = error + size;
1692        return error;
1693    }
1694}
1695
1696/* Map and zero the bss.  We need to explicitly zero any fractional pages
1697   after the data section (i.e. bss).  */
1698static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1699{
1700    uintptr_t host_start, host_map_start, host_end;
1701
1702    last_bss = TARGET_PAGE_ALIGN(last_bss);
1703
1704    /* ??? There is confusion between qemu_real_host_page_size and
1705       qemu_host_page_size here and elsewhere in target_mmap, which
1706       may lead to the end of the data section mapping from the file
1707       not being mapped.  At least there was an explicit test and
1708       comment for that here, suggesting that "the file size must
1709       be known".  The comment probably pre-dates the introduction
1710       of the fstat system call in target_mmap which does in fact
1711       find out the size.  What isn't clear is if the workaround
1712       here is still actually needed.  For now, continue with it,
1713       but merge it with the "normal" mmap that would allocate the bss.  */
1714
1715    host_start = (uintptr_t) g2h(elf_bss);
1716    host_end = (uintptr_t) g2h(last_bss);
1717    host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1718
1719    if (host_map_start < host_end) {
1720        void *p = mmap((void *)host_map_start, host_end - host_map_start,
1721                       prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1722        if (p == MAP_FAILED) {
1723            perror("cannot mmap brk");
1724            exit(-1);
1725        }
1726    }
1727
1728    /* Ensure that the bss page(s) are valid */
1729    if ((page_get_flags(last_bss-1) & prot) != prot) {
1730        page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1731    }
1732
1733    if (host_start < host_map_start) {
1734        memset((void *)host_start, 0, host_map_start - host_start);
1735    }
1736}
1737
1738#ifdef TARGET_ARM
1739static int elf_is_fdpic(struct elfhdr *exec)
1740{
1741    return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1742}
1743#else
1744/* Default implementation, always false.  */
1745static int elf_is_fdpic(struct elfhdr *exec)
1746{
1747    return 0;
1748}
1749#endif
1750
1751static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1752{
1753    uint16_t n;
1754    struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1755
1756    /* elf32_fdpic_loadseg */
1757    n = info->nsegs;
1758    while (n--) {
1759        sp -= 12;
1760        put_user_u32(loadsegs[n].addr, sp+0);
1761        put_user_u32(loadsegs[n].p_vaddr, sp+4);
1762        put_user_u32(loadsegs[n].p_memsz, sp+8);
1763    }
1764
1765    /* elf32_fdpic_loadmap */
1766    sp -= 4;
1767    put_user_u16(0, sp+0); /* version */
1768    put_user_u16(info->nsegs, sp+2); /* nsegs */
1769
1770    info->personality = PER_LINUX_FDPIC;
1771    info->loadmap_addr = sp;
1772
1773    return sp;
1774}
1775
1776static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1777                                   struct elfhdr *exec,
1778                                   struct image_info *info,
1779                                   struct image_info *interp_info)
1780{
1781    abi_ulong sp;
1782    abi_ulong u_argc, u_argv, u_envp, u_auxv;
1783    int size;
1784    int i;
1785    abi_ulong u_rand_bytes;
1786    uint8_t k_rand_bytes[16];
1787    abi_ulong u_platform;
1788    const char *k_platform;
1789    const int n = sizeof(elf_addr_t);
1790
1791    sp = p;
1792
1793    /* Needs to be before we load the env/argc/... */
1794    if (elf_is_fdpic(exec)) {
1795        /* Need 4 byte alignment for these structs */
1796        sp &= ~3;
1797        sp = loader_build_fdpic_loadmap(info, sp);
1798        info->other_info = interp_info;
1799        if (interp_info) {
1800            interp_info->other_info = info;
1801            sp = loader_build_fdpic_loadmap(interp_info, sp);
1802            info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1803            info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1804        } else {
1805            info->interpreter_loadmap_addr = 0;
1806            info->interpreter_pt_dynamic_addr = 0;
1807        }
1808    }
1809
1810    u_platform = 0;
1811    k_platform = ELF_PLATFORM;
1812    if (k_platform) {
1813        size_t len = strlen(k_platform) + 1;
1814        if (STACK_GROWS_DOWN) {
1815            sp -= (len + n - 1) & ~(n - 1);
1816            u_platform = sp;
1817            /* FIXME - check return value of memcpy_to_target() for failure */
1818            memcpy_to_target(sp, k_platform, len);
1819        } else {
1820            memcpy_to_target(sp, k_platform, len);
1821            u_platform = sp;
1822            sp += len + 1;
1823        }
1824    }
1825
1826    /* Provide 16 byte alignment for the PRNG, and basic alignment for
1827     * the argv and envp pointers.
1828     */
1829    if (STACK_GROWS_DOWN) {
1830        sp = QEMU_ALIGN_DOWN(sp, 16);
1831    } else {
1832        sp = QEMU_ALIGN_UP(sp, 16);
1833    }
1834
1835    /*
1836     * Generate 16 random bytes for userspace PRNG seeding (not
1837     * cryptically secure but it's not the aim of QEMU).
1838     */
1839    for (i = 0; i < 16; i++) {
1840        k_rand_bytes[i] = rand();
1841    }
1842    if (STACK_GROWS_DOWN) {
1843        sp -= 16;
1844        u_rand_bytes = sp;
1845        /* FIXME - check return value of memcpy_to_target() for failure */
1846        memcpy_to_target(sp, k_rand_bytes, 16);
1847    } else {
1848        memcpy_to_target(sp, k_rand_bytes, 16);
1849        u_rand_bytes = sp;
1850        sp += 16;
1851    }
1852
1853    size = (DLINFO_ITEMS + 1) * 2;
1854    if (k_platform)
1855        size += 2;
1856#ifdef DLINFO_ARCH_ITEMS
1857    size += DLINFO_ARCH_ITEMS * 2;
1858#endif
1859#ifdef ELF_HWCAP2
1860    size += 2;
1861#endif
1862    info->auxv_len = size * n;
1863
1864    size += envc + argc + 2;
1865    size += 1;  /* argc itself */
1866    size *= n;
1867
1868    /* Allocate space and finalize stack alignment for entry now.  */
1869    if (STACK_GROWS_DOWN) {
1870        u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1871        sp = u_argc;
1872    } else {
1873        u_argc = sp;
1874        sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1875    }
1876
1877    u_argv = u_argc + n;
1878    u_envp = u_argv + (argc + 1) * n;
1879    u_auxv = u_envp + (envc + 1) * n;
1880    info->saved_auxv = u_auxv;
1881    info->arg_start = u_argv;
1882    info->arg_end = u_argv + argc * n;
1883
1884    /* This is correct because Linux defines
1885     * elf_addr_t as Elf32_Off / Elf64_Off
1886     */
1887#define NEW_AUX_ENT(id, val) do {               \
1888        put_user_ual(id, u_auxv);  u_auxv += n; \
1889        put_user_ual(val, u_auxv); u_auxv += n; \
1890    } while(0)
1891
1892#ifdef ARCH_DLINFO
1893    /*
1894     * ARCH_DLINFO must come first so platform specific code can enforce
1895     * special alignment requirements on the AUXV if necessary (eg. PPC).
1896     */
1897    ARCH_DLINFO;
1898#endif
1899    /* There must be exactly DLINFO_ITEMS entries here, or the assert
1900     * on info->auxv_len will trigger.
1901     */
1902    NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1903    NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1904    NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1905    if ((info->alignment & ~qemu_host_page_mask) != 0) {
1906        /* Target doesn't support host page size alignment */
1907        NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1908    } else {
1909        NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1910                                               qemu_host_page_size)));
1911    }
1912    NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1913    NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1914    NEW_AUX_ENT(AT_ENTRY, info->entry);
1915    NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1916    NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1917    NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1918    NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1919    NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1920    NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1921    NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1922    NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1923
1924#ifdef ELF_HWCAP2
1925    NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1926#endif
1927
1928    if (u_platform) {
1929        NEW_AUX_ENT(AT_PLATFORM, u_platform);
1930    }
1931    NEW_AUX_ENT (AT_NULL, 0);
1932#undef NEW_AUX_ENT
1933
1934    /* Check that our initial calculation of the auxv length matches how much
1935     * we actually put into it.
1936     */
1937    assert(info->auxv_len == u_auxv - info->saved_auxv);
1938
1939    put_user_ual(argc, u_argc);
1940
1941    p = info->arg_strings;
1942    for (i = 0; i < argc; ++i) {
1943        put_user_ual(p, u_argv);
1944        u_argv += n;
1945        p += target_strlen(p) + 1;
1946    }
1947    put_user_ual(0, u_argv);
1948
1949    p = info->env_strings;
1950    for (i = 0; i < envc; ++i) {
1951        put_user_ual(p, u_envp);
1952        u_envp += n;
1953        p += target_strlen(p) + 1;
1954    }
1955    put_user_ual(0, u_envp);
1956
1957    return sp;
1958}
1959
1960unsigned long init_guest_space(unsigned long host_start,
1961                               unsigned long host_size,
1962                               unsigned long guest_start,
1963                               bool fixed)
1964{
1965    unsigned long current_start, aligned_start;
1966    int flags;
1967
1968    assert(host_start || host_size);
1969
1970    /* If just a starting address is given, then just verify that
1971     * address.  */
1972    if (host_start && !host_size) {
1973#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1974        if (init_guest_commpage(host_start, host_size) != 1) {
1975            return (unsigned long)-1;
1976        }
1977#endif
1978        return host_start;
1979    }
1980
1981    /* Setup the initial flags and start address.  */
1982    current_start = host_start & qemu_host_page_mask;
1983    flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1984    if (fixed) {
1985        flags |= MAP_FIXED;
1986    }
1987
1988    /* Otherwise, a non-zero size region of memory needs to be mapped
1989     * and validated.  */
1990
1991#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1992    /* On 32-bit ARM, we need to map not just the usable memory, but
1993     * also the commpage.  Try to find a suitable place by allocating
1994     * a big chunk for all of it.  If host_start, then the naive
1995     * strategy probably does good enough.
1996     */
1997    if (!host_start) {
1998        unsigned long guest_full_size, host_full_size, real_start;
1999
2000        guest_full_size =
2001            (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2002        host_full_size = guest_full_size - guest_start;
2003        real_start = (unsigned long)
2004            mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2005        if (real_start == (unsigned long)-1) {
2006            if (host_size < host_full_size - qemu_host_page_size) {
2007                /* We failed to map a continous segment, but we're
2008                 * allowed to have a gap between the usable memory and
2009                 * the commpage where other things can be mapped.
2010                 * This sparseness gives us more flexibility to find
2011                 * an address range.
2012                 */
2013                goto naive;
2014            }
2015            return (unsigned long)-1;
2016        }
2017        munmap((void *)real_start, host_full_size);
2018        if (real_start & ~qemu_host_page_mask) {
2019            /* The same thing again, but with an extra qemu_host_page_size
2020             * so that we can shift around alignment.
2021             */
2022            unsigned long real_size = host_full_size + qemu_host_page_size;
2023            real_start = (unsigned long)
2024                mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2025            if (real_start == (unsigned long)-1) {
2026                if (host_size < host_full_size - qemu_host_page_size) {
2027                    goto naive;
2028                }
2029                return (unsigned long)-1;
2030            }
2031            munmap((void *)real_start, real_size);
2032            real_start = HOST_PAGE_ALIGN(real_start);
2033        }
2034        current_start = real_start;
2035    }
2036 naive:
2037#endif
2038
2039    while (1) {
2040        unsigned long real_start, real_size, aligned_size;
2041        aligned_size = real_size = host_size;
2042
2043        /* Do not use mmap_find_vma here because that is limited to the
2044         * guest address space.  We are going to make the
2045         * guest address space fit whatever we're given.
2046         */
2047        real_start = (unsigned long)
2048            mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2049        if (real_start == (unsigned long)-1) {
2050            return (unsigned long)-1;
2051        }
2052
2053        /* Check to see if the address is valid.  */
2054        if (host_start && real_start != current_start) {
2055            goto try_again;
2056        }
2057
2058        /* Ensure the address is properly aligned.  */
2059        if (real_start & ~qemu_host_page_mask) {
2060            /* Ideally, we adjust like
2061             *
2062             *    pages: [  ][  ][  ][  ][  ]
2063             *      old:   [   real   ]
2064             *             [ aligned  ]
2065             *      new:   [     real     ]
2066             *               [ aligned  ]
2067             *
2068             * But if there is something else mapped right after it,
2069             * then obviously it won't have room to grow, and the
2070             * kernel will put the new larger real someplace else with
2071             * unknown alignment (if we made it to here, then
2072             * fixed=false).  Which is why we grow real by a full page
2073             * size, instead of by part of one; so that even if we get
2074             * moved, we can still guarantee alignment.  But this does
2075             * mean that there is a padding of < 1 page both before
2076             * and after the aligned range; the "after" could could
2077             * cause problems for ARM emulation where it could butt in
2078             * to where we need to put the commpage.
2079             */
2080            munmap((void *)real_start, host_size);
2081            real_size = aligned_size + qemu_host_page_size;
2082            real_start = (unsigned long)
2083                mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2084            if (real_start == (unsigned long)-1) {
2085                return (unsigned long)-1;
2086            }
2087            aligned_start = HOST_PAGE_ALIGN(real_start);
2088        } else {
2089            aligned_start = real_start;
2090        }
2091
2092#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2093        /* On 32-bit ARM, we need to also be able to map the commpage.  */
2094        int valid = init_guest_commpage(aligned_start - guest_start,
2095                                        aligned_size + guest_start);
2096        if (valid == -1) {
2097            munmap((void *)real_start, real_size);
2098            return (unsigned long)-1;
2099        } else if (valid == 0) {
2100            goto try_again;
2101        }
2102#endif
2103
2104        /* If nothing has said `return -1` or `goto try_again` yet,
2105         * then the address we have is good.
2106         */
2107        break;
2108
2109    try_again:
2110        /* That address didn't work.  Unmap and try a different one.
2111         * The address the host picked because is typically right at
2112         * the top of the host address space and leaves the guest with
2113         * no usable address space.  Resort to a linear search.  We
2114         * already compensated for mmap_min_addr, so this should not
2115         * happen often.  Probably means we got unlucky and host
2116         * address space randomization put a shared library somewhere
2117         * inconvenient.
2118         *
2119         * This is probably a good strategy if host_start, but is
2120         * probably a bad strategy if not, which means we got here
2121         * because of trouble with ARM commpage setup.
2122         */
2123        munmap((void *)real_start, real_size);
2124        current_start += qemu_host_page_size;
2125        if (host_start == current_start) {
2126            /* Theoretically possible if host doesn't have any suitably
2127             * aligned areas.  Normally the first mmap will fail.
2128             */
2129            return (unsigned long)-1;
2130        }
2131    }
2132
2133    qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2134
2135    return aligned_start;
2136}
2137
2138static void probe_guest_base(const char *image_name,
2139                             abi_ulong loaddr, abi_ulong hiaddr)
2140{
2141    /* Probe for a suitable guest base address, if the user has not set
2142     * it explicitly, and set guest_base appropriately.
2143     * In case of error we will print a suitable message and exit.
2144     */
2145    const char *errmsg;
2146    if (!have_guest_base && !reserved_va) {
2147        unsigned long host_start, real_start, host_size;
2148
2149        /* Round addresses to page boundaries.  */
2150        loaddr &= qemu_host_page_mask;
2151        hiaddr = HOST_PAGE_ALIGN(hiaddr);
2152
2153        if (loaddr < mmap_min_addr) {
2154            host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2155        } else {
2156            host_start = loaddr;
2157            if (host_start != loaddr) {
2158                errmsg = "Address overflow loading ELF binary";
2159                goto exit_errmsg;
2160            }
2161        }
2162        host_size = hiaddr - loaddr;
2163
2164        /* Setup the initial guest memory space with ranges gleaned from
2165         * the ELF image that is being loaded.
2166         */
2167        real_start = init_guest_space(host_start, host_size, loaddr, false);
2168        if (real_start == (unsigned long)-1) {
2169            errmsg = "Unable to find space for application";
2170            goto exit_errmsg;
2171        }
2172        guest_base = real_start - loaddr;
2173
2174        qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2175                      TARGET_ABI_FMT_lx " to 0x%lx\n",
2176                      loaddr, real_start);
2177    }
2178    return;
2179
2180exit_errmsg:
2181    fprintf(stderr, "%s: %s\n", image_name, errmsg);
2182    exit(-1);
2183}
2184
2185
2186/* Load an ELF image into the address space.
2187
2188   IMAGE_NAME is the filename of the image, to use in error messages.
2189   IMAGE_FD is the open file descriptor for the image.
2190
2191   BPRM_BUF is a copy of the beginning of the file; this of course
2192   contains the elf file header at offset 0.  It is assumed that this
2193   buffer is sufficiently aligned to present no problems to the host
2194   in accessing data at aligned offsets within the buffer.
2195
2196   On return: INFO values will be filled in, as necessary or available.  */
2197
2198static void load_elf_image(const char *image_name, int image_fd,
2199                           struct image_info *info, char **pinterp_name,
2200                           char bprm_buf[BPRM_BUF_SIZE])
2201{
2202    struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2203    struct elf_phdr *phdr;
2204    abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2205    int i, retval;
2206    const char *errmsg;
2207
2208    /* First of all, some simple consistency checks */
2209    errmsg = "Invalid ELF image for this architecture";
2210    if (!elf_check_ident(ehdr)) {
2211        goto exit_errmsg;
2212    }
2213    bswap_ehdr(ehdr);
2214    if (!elf_check_ehdr(ehdr)) {
2215        goto exit_errmsg;
2216    }
2217
2218    i = ehdr->e_phnum * sizeof(struct elf_phdr);
2219    if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2220        phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2221    } else {
2222        phdr = (struct elf_phdr *) alloca(i);
2223        retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2224        if (retval != i) {
2225            goto exit_read;
2226        }
2227    }
2228    bswap_phdr(phdr, ehdr->e_phnum);
2229
2230    info->nsegs = 0;
2231    info->pt_dynamic_addr = 0;
2232
2233    mmap_lock();
2234
2235    /* Find the maximum size of the image and allocate an appropriate
2236       amount of memory to handle that.  */
2237    loaddr = -1, hiaddr = 0;
2238    info->alignment = 0;
2239    for (i = 0; i < ehdr->e_phnum; ++i) {
2240        if (phdr[i].p_type == PT_LOAD) {
2241            abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2242            if (a < loaddr) {
2243                loaddr = a;
2244            }
2245            a = phdr[i].p_vaddr + phdr[i].p_memsz;
2246            if (a > hiaddr) {
2247                hiaddr = a;
2248            }
2249            ++info->nsegs;
2250            info->alignment |= phdr[i].p_align;
2251        }
2252    }
2253
2254    load_addr = loaddr;
2255    if (ehdr->e_type == ET_DYN) {
2256        /* The image indicates that it can be loaded anywhere.  Find a
2257           location that can hold the memory space required.  If the
2258           image is pre-linked, LOADDR will be non-zero.  Since we do
2259           not supply MAP_FIXED here we'll use that address if and
2260           only if it remains available.  */
2261        load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2262                                MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2263                                -1, 0);
2264        if (load_addr == -1) {
2265            goto exit_perror;
2266        }
2267    } else if (pinterp_name != NULL) {
2268        /* This is the main executable.  Make sure that the low
2269           address does not conflict with MMAP_MIN_ADDR or the
2270           QEMU application itself.  */
2271        probe_guest_base(image_name, loaddr, hiaddr);
2272    }
2273    load_bias = load_addr - loaddr;
2274
2275    if (elf_is_fdpic(ehdr)) {
2276        struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2277            g_malloc(sizeof(*loadsegs) * info->nsegs);
2278
2279        for (i = 0; i < ehdr->e_phnum; ++i) {
2280            switch (phdr[i].p_type) {
2281            case PT_DYNAMIC:
2282                info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2283                break;
2284            case PT_LOAD:
2285                loadsegs->addr = phdr[i].p_vaddr + load_bias;
2286                loadsegs->p_vaddr = phdr[i].p_vaddr;
2287                loadsegs->p_memsz = phdr[i].p_memsz;
2288                ++loadsegs;
2289                break;
2290            }
2291        }
2292    }
2293
2294    info->load_bias = load_bias;
2295    info->load_addr = load_addr;
2296    info->entry = ehdr->e_entry + load_bias;
2297    info->start_code = -1;
2298    info->end_code = 0;
2299    info->start_data = -1;
2300    info->end_data = 0;
2301    info->brk = 0;
2302    info->elf_flags = ehdr->e_flags;
2303
2304    for (i = 0; i < ehdr->e_phnum; i++) {
2305        struct elf_phdr *eppnt = phdr + i;
2306        if (eppnt->p_type == PT_LOAD) {
2307            abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2308            int elf_prot = 0;
2309
2310            if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2311            if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2312            if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2313
2314            vaddr = load_bias + eppnt->p_vaddr;
2315            vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2316            vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2317            vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2318
2319            error = target_mmap(vaddr_ps, vaddr_len,
2320                                elf_prot, MAP_PRIVATE | MAP_FIXED,
2321                                image_fd, eppnt->p_offset - vaddr_po);
2322            if (error == -1) {
2323                goto exit_perror;
2324            }
2325
2326            vaddr_ef = vaddr + eppnt->p_filesz;
2327            vaddr_em = vaddr + eppnt->p_memsz;
2328
2329            /* If the load segment requests extra zeros (e.g. bss), map it.  */
2330            if (vaddr_ef < vaddr_em) {
2331                zero_bss(vaddr_ef, vaddr_em, elf_prot);
2332            }
2333
2334            /* Find the full program boundaries.  */
2335            if (elf_prot & PROT_EXEC) {
2336                if (vaddr < info->start_code) {
2337                    info->start_code = vaddr;
2338                }
2339                if (vaddr_ef > info->end_code) {
2340                    info->end_code = vaddr_ef;
2341                }
2342            }
2343            if (elf_prot & PROT_WRITE) {
2344                if (vaddr < info->start_data) {
2345                    info->start_data = vaddr;
2346                }
2347                if (vaddr_ef > info->end_data) {
2348                    info->end_data = vaddr_ef;
2349                }
2350                if (vaddr_em > info->brk) {
2351                    info->brk = vaddr_em;
2352                }
2353            }
2354        } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2355            char *interp_name;
2356
2357            if (*pinterp_name) {
2358                errmsg = "Multiple PT_INTERP entries";
2359                goto exit_errmsg;
2360            }
2361            interp_name = malloc(eppnt->p_filesz);
2362            if (!interp_name) {
2363                goto exit_perror;
2364            }
2365
2366            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2367                memcpy(interp_name, bprm_buf + eppnt->p_offset,
2368                       eppnt->p_filesz);
2369            } else {
2370                retval = pread(image_fd, interp_name, eppnt->p_filesz,
2371                               eppnt->p_offset);
2372                if (retval != eppnt->p_filesz) {
2373                    goto exit_perror;
2374                }
2375            }
2376            if (interp_name[eppnt->p_filesz - 1] != 0) {
2377                errmsg = "Invalid PT_INTERP entry";
2378                goto exit_errmsg;
2379            }
2380            *pinterp_name = interp_name;
2381#ifdef TARGET_MIPS
2382        } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2383            Mips_elf_abiflags_v0 abiflags;
2384            if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2385                errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2386                goto exit_errmsg;
2387            }
2388            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2389                memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2390                       sizeof(Mips_elf_abiflags_v0));
2391            } else {
2392                retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2393                               eppnt->p_offset);
2394                if (retval != sizeof(Mips_elf_abiflags_v0)) {
2395                    goto exit_perror;
2396                }
2397            }
2398            bswap_mips_abiflags(&abiflags);
2399            info->fp_abi = abiflags.fp_abi;
2400#endif
2401        }
2402    }
2403
2404    if (info->end_data == 0) {
2405        info->start_data = info->end_code;
2406        info->end_data = info->end_code;
2407        info->brk = info->end_code;
2408    }
2409
2410    if (qemu_log_enabled()) {
2411        load_symbols(ehdr, image_fd, load_bias);
2412    }
2413
2414    mmap_unlock();
2415
2416    close(image_fd);
2417    return;
2418
2419 exit_read:
2420    if (retval >= 0) {
2421        errmsg = "Incomplete read of file header";
2422        goto exit_errmsg;
2423    }
2424 exit_perror:
2425    errmsg = strerror(errno);
2426 exit_errmsg:
2427    fprintf(stderr, "%s: %s\n", image_name, errmsg);
2428    exit(-1);
2429}
2430
2431static void load_elf_interp(const char *filename, struct image_info *info,
2432                            char bprm_buf[BPRM_BUF_SIZE])
2433{
2434    int fd, retval;
2435
2436    fd = open(path(filename), O_RDONLY);
2437    if (fd < 0) {
2438        goto exit_perror;
2439    }
2440
2441    retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2442    if (retval < 0) {
2443        goto exit_perror;
2444    }
2445    if (retval < BPRM_BUF_SIZE) {
2446        memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2447    }
2448
2449    load_elf_image(filename, fd, info, NULL, bprm_buf);
2450    return;
2451
2452 exit_perror:
2453    fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2454    exit(-1);
2455}
2456
2457static int symfind(const void *s0, const void *s1)
2458{
2459    target_ulong addr = *(target_ulong *)s0;
2460    struct elf_sym *sym = (struct elf_sym *)s1;
2461    int result = 0;
2462    if (addr < sym->st_value) {
2463        result = -1;
2464    } else if (addr >= sym->st_value + sym->st_size) {
2465        result = 1;
2466    }
2467    return result;
2468}
2469
2470static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2471{
2472#if ELF_CLASS == ELFCLASS32
2473    struct elf_sym *syms = s->disas_symtab.elf32;
2474#else
2475    struct elf_sym *syms = s->disas_symtab.elf64;
2476#endif
2477
2478    // binary search
2479    struct elf_sym *sym;
2480
2481    sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2482    if (sym != NULL) {
2483        return s->disas_strtab + sym->st_name;
2484    }
2485
2486    return "";
2487}
2488
2489/* FIXME: This should use elf_ops.h  */
2490static int symcmp(const void *s0, const void *s1)
2491{
2492    struct elf_sym *sym0 = (struct elf_sym *)s0;
2493    struct elf_sym *sym1 = (struct elf_sym *)s1;
2494    return (sym0->st_value < sym1->st_value)
2495        ? -1
2496        : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2497}
2498
2499/* Best attempt to load symbols from this ELF object. */
2500static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2501{
2502    int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2503    uint64_t segsz;
2504    struct elf_shdr *shdr;
2505    char *strings = NULL;
2506    struct syminfo *s = NULL;
2507    struct elf_sym *new_syms, *syms = NULL;
2508
2509    shnum = hdr->e_shnum;
2510    i = shnum * sizeof(struct elf_shdr);
2511    shdr = (struct elf_shdr *)alloca(i);
2512    if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2513        return;
2514    }
2515
2516    bswap_shdr(shdr, shnum);
2517    for (i = 0; i < shnum; ++i) {
2518        if (shdr[i].sh_type == SHT_SYMTAB) {
2519            sym_idx = i;
2520            str_idx = shdr[i].sh_link;
2521            goto found;
2522        }
2523    }
2524
2525    /* There will be no symbol table if the file was stripped.  */
2526    return;
2527
2528 found:
2529    /* Now know where the strtab and symtab are.  Snarf them.  */
2530    s = g_try_new(struct syminfo, 1);
2531    if (!s) {
2532        goto give_up;
2533    }
2534
2535    segsz = shdr[str_idx].sh_size;
2536    s->disas_strtab = strings = g_try_malloc(segsz);
2537    if (!strings ||
2538        pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2539        goto give_up;
2540    }
2541
2542    segsz = shdr[sym_idx].sh_size;
2543    syms = g_try_malloc(segsz);
2544    if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2545        goto give_up;
2546    }
2547
2548    if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2549        /* Implausibly large symbol table: give up rather than ploughing
2550         * on with the number of symbols calculation overflowing
2551         */
2552        goto give_up;
2553    }
2554    nsyms = segsz / sizeof(struct elf_sym);
2555    for (i = 0; i < nsyms; ) {
2556        bswap_sym(syms + i);
2557        /* Throw away entries which we do not need.  */
2558        if (syms[i].st_shndx == SHN_UNDEF
2559            || syms[i].st_shndx >= SHN_LORESERVE
2560            || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2561            if (i < --nsyms) {
2562                syms[i] = syms[nsyms];
2563            }
2564        } else {
2565#if defined(TARGET_ARM) || defined (TARGET_MIPS)
2566            /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2567            syms[i].st_value &= ~(target_ulong)1;
2568#endif
2569            syms[i].st_value += load_bias;
2570            i++;
2571        }
2572    }
2573
2574    /* No "useful" symbol.  */
2575    if (nsyms == 0) {
2576        goto give_up;
2577    }
2578
2579    /* Attempt to free the storage associated with the local symbols
2580       that we threw away.  Whether or not this has any effect on the
2581       memory allocation depends on the malloc implementation and how
2582       many symbols we managed to discard.  */
2583    new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2584    if (new_syms == NULL) {
2585        goto give_up;
2586    }
2587    syms = new_syms;
2588
2589    qsort(syms, nsyms, sizeof(*syms), symcmp);
2590
2591    s->disas_num_syms = nsyms;
2592#if ELF_CLASS == ELFCLASS32
2593    s->disas_symtab.elf32 = syms;
2594#else
2595    s->disas_symtab.elf64 = syms;
2596#endif
2597    s->lookup_symbol = lookup_symbolxx;
2598    s->next = syminfos;
2599    syminfos = s;
2600
2601    return;
2602
2603give_up:
2604    g_free(s);
2605    g_free(strings);
2606    g_free(syms);
2607}
2608
2609uint32_t get_elf_eflags(int fd)
2610{
2611    struct elfhdr ehdr;
2612    off_t offset;
2613    int ret;
2614
2615    /* Read ELF header */
2616    offset = lseek(fd, 0, SEEK_SET);
2617    if (offset == (off_t) -1) {
2618        return 0;
2619    }
2620    ret = read(fd, &ehdr, sizeof(ehdr));
2621    if (ret < sizeof(ehdr)) {
2622        return 0;
2623    }
2624    offset = lseek(fd, offset, SEEK_SET);
2625    if (offset == (off_t) -1) {
2626        return 0;
2627    }
2628
2629    /* Check ELF signature */
2630    if (!elf_check_ident(&ehdr)) {
2631        return 0;
2632    }
2633
2634    /* check header */
2635    bswap_ehdr(&ehdr);
2636    if (!elf_check_ehdr(&ehdr)) {
2637        return 0;
2638    }
2639
2640    /* return architecture id */
2641    return ehdr.e_flags;
2642}
2643
2644int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2645{
2646    struct image_info interp_info;
2647    struct elfhdr elf_ex;
2648    char *elf_interpreter = NULL;
2649    char *scratch;
2650
2651    info->start_mmap = (abi_ulong)ELF_START_MMAP;
2652
2653    load_elf_image(bprm->filename, bprm->fd, info,
2654                   &elf_interpreter, bprm->buf);
2655
2656    /* ??? We need a copy of the elf header for passing to create_elf_tables.
2657       If we do nothing, we'll have overwritten this when we re-use bprm->buf
2658       when we load the interpreter.  */
2659    elf_ex = *(struct elfhdr *)bprm->buf;
2660
2661    /* Do this so that we can load the interpreter, if need be.  We will
2662       change some of these later */
2663    bprm->p = setup_arg_pages(bprm, info);
2664
2665    scratch = g_new0(char, TARGET_PAGE_SIZE);
2666    if (STACK_GROWS_DOWN) {
2667        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2668                                   bprm->p, info->stack_limit);
2669        info->file_string = bprm->p;
2670        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2671                                   bprm->p, info->stack_limit);
2672        info->env_strings = bprm->p;
2673        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2674                                   bprm->p, info->stack_limit);
2675        info->arg_strings = bprm->p;
2676    } else {
2677        info->arg_strings = bprm->p;
2678        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2679                                   bprm->p, info->stack_limit);
2680        info->env_strings = bprm->p;
2681        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2682                                   bprm->p, info->stack_limit);
2683        info->file_string = bprm->p;
2684        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2685                                   bprm->p, info->stack_limit);
2686    }
2687
2688    g_free(scratch);
2689
2690    if (!bprm->p) {
2691        fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2692        exit(-1);
2693    }
2694
2695    if (elf_interpreter) {
2696        load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2697
2698        /* If the program interpreter is one of these two, then assume
2699           an iBCS2 image.  Otherwise assume a native linux image.  */
2700
2701        if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2702            || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2703            info->personality = PER_SVR4;
2704
2705            /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2706               and some applications "depend" upon this behavior.  Since
2707               we do not have the power to recompile these, we emulate
2708               the SVr4 behavior.  Sigh.  */
2709            target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2710                        MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2711        }
2712#ifdef TARGET_MIPS
2713        info->interp_fp_abi = interp_info.fp_abi;
2714#endif
2715    }
2716
2717    bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2718                                info, (elf_interpreter ? &interp_info : NULL));
2719    info->start_stack = bprm->p;
2720
2721    /* If we have an interpreter, set that as the program's entry point.
2722       Copy the load_bias as well, to help PPC64 interpret the entry
2723       point as a function descriptor.  Do this after creating elf tables
2724       so that we copy the original program entry point into the AUXV.  */
2725    if (elf_interpreter) {
2726        info->load_bias = interp_info.load_bias;
2727        info->entry = interp_info.entry;
2728        free(elf_interpreter);
2729    }
2730
2731#ifdef USE_ELF_CORE_DUMP
2732    bprm->core_dump = &elf_core_dump;
2733#endif
2734
2735    return 0;
2736}
2737
2738#ifdef USE_ELF_CORE_DUMP
2739/*
2740 * Definitions to generate Intel SVR4-like core files.
2741 * These mostly have the same names as the SVR4 types with "target_elf_"
2742 * tacked on the front to prevent clashes with linux definitions,
2743 * and the typedef forms have been avoided.  This is mostly like
2744 * the SVR4 structure, but more Linuxy, with things that Linux does
2745 * not support and which gdb doesn't really use excluded.
2746 *
2747 * Fields we don't dump (their contents is zero) in linux-user qemu
2748 * are marked with XXX.
2749 *
2750 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2751 *
2752 * Porting ELF coredump for target is (quite) simple process.  First you
2753 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2754 * the target resides):
2755 *
2756 * #define USE_ELF_CORE_DUMP
2757 *
2758 * Next you define type of register set used for dumping.  ELF specification
2759 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2760 *
2761 * typedef <target_regtype> target_elf_greg_t;
2762 * #define ELF_NREG <number of registers>
2763 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2764 *
2765 * Last step is to implement target specific function that copies registers
2766 * from given cpu into just specified register set.  Prototype is:
2767 *
2768 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2769 *                                const CPUArchState *env);
2770 *
2771 * Parameters:
2772 *     regs - copy register values into here (allocated and zeroed by caller)
2773 *     env - copy registers from here
2774 *
2775 * Example for ARM target is provided in this file.
2776 */
2777
2778/* An ELF note in memory */
2779struct memelfnote {
2780    const char *name;
2781    size_t     namesz;
2782    size_t     namesz_rounded;
2783    int        type;
2784    size_t     datasz;
2785    size_t     datasz_rounded;
2786    void       *data;
2787    size_t     notesz;
2788};
2789
2790struct target_elf_siginfo {
2791    abi_int    si_signo; /* signal number */
2792    abi_int    si_code;  /* extra code */
2793    abi_int    si_errno; /* errno */
2794};
2795
2796struct target_elf_prstatus {
2797    struct target_elf_siginfo pr_info;      /* Info associated with signal */
2798    abi_short          pr_cursig;    /* Current signal */
2799    abi_ulong          pr_sigpend;   /* XXX */
2800    abi_ulong          pr_sighold;   /* XXX */
2801    target_pid_t       pr_pid;
2802    target_pid_t       pr_ppid;
2803    target_pid_t       pr_pgrp;
2804    target_pid_t       pr_sid;
2805    struct target_timeval pr_utime;  /* XXX User time */
2806    struct target_timeval pr_stime;  /* XXX System time */
2807    struct target_timeval pr_cutime; /* XXX Cumulative user time */
2808    struct target_timeval pr_cstime; /* XXX Cumulative system time */
2809    target_elf_gregset_t      pr_reg;       /* GP registers */
2810    abi_int            pr_fpvalid;   /* XXX */
2811};
2812
2813#define ELF_PRARGSZ     (80) /* Number of chars for args */
2814
2815struct target_elf_prpsinfo {
2816    char         pr_state;       /* numeric process state */
2817    char         pr_sname;       /* char for pr_state */
2818    char         pr_zomb;        /* zombie */
2819    char         pr_nice;        /* nice val */
2820    abi_ulong    pr_flag;        /* flags */
2821    target_uid_t pr_uid;
2822    target_gid_t pr_gid;
2823    target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2824    /* Lots missing */
2825    char    pr_fname[16];           /* filename of executable */
2826    char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2827};
2828
2829/* Here is the structure in which status of each thread is captured. */
2830struct elf_thread_status {
2831    QTAILQ_ENTRY(elf_thread_status)  ets_link;
2832    struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2833#if 0
2834    elf_fpregset_t fpu;             /* NT_PRFPREG */
2835    struct task_struct *thread;
2836    elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2837#endif
2838    struct memelfnote notes[1];
2839    int num_notes;
2840};
2841
2842struct elf_note_info {
2843    struct memelfnote   *notes;
2844    struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2845    struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2846
2847    QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2848#if 0
2849    /*
2850     * Current version of ELF coredump doesn't support
2851     * dumping fp regs etc.
2852     */
2853    elf_fpregset_t *fpu;
2854    elf_fpxregset_t *xfpu;
2855    int thread_status_size;
2856#endif
2857    int notes_size;
2858    int numnote;
2859};
2860
2861struct vm_area_struct {
2862    target_ulong   vma_start;  /* start vaddr of memory region */
2863    target_ulong   vma_end;    /* end vaddr of memory region */
2864    abi_ulong      vma_flags;  /* protection etc. flags for the region */
2865    QTAILQ_ENTRY(vm_area_struct) vma_link;
2866};
2867
2868struct mm_struct {
2869    QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2870    int mm_count;           /* number of mappings */
2871};
2872
2873static struct mm_struct *vma_init(void);
2874static void vma_delete(struct mm_struct *);
2875static int vma_add_mapping(struct mm_struct *, target_ulong,
2876                           target_ulong, abi_ulong);
2877static int vma_get_mapping_count(const struct mm_struct *);
2878static struct vm_area_struct *vma_first(const struct mm_struct *);
2879static struct vm_area_struct *vma_next(struct vm_area_struct *);
2880static abi_ulong vma_dump_size(const struct vm_area_struct *);
2881static int vma_walker(void *priv, target_ulong start, target_ulong end,
2882                      unsigned long flags);
2883
2884static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2885static void fill_note(struct memelfnote *, const char *, int,
2886                      unsigned int, void *);
2887static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2888static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2889static void fill_auxv_note(struct memelfnote *, const TaskState *);
2890static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2891static size_t note_size(const struct memelfnote *);
2892static void free_note_info(struct elf_note_info *);
2893static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2894static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2895static int core_dump_filename(const TaskState *, char *, size_t);
2896
2897static int dump_write(int, const void *, size_t);
2898static int write_note(struct memelfnote *, int);
2899static int write_note_info(struct elf_note_info *, int);
2900
2901#ifdef BSWAP_NEEDED
2902static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2903{
2904    prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2905    prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2906    prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2907    prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2908    prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2909    prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2910    prstatus->pr_pid = tswap32(prstatus->pr_pid);
2911    prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2912    prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2913    prstatus->pr_sid = tswap32(prstatus->pr_sid);
2914    /* cpu times are not filled, so we skip them */
2915    /* regs should be in correct format already */
2916    prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2917}
2918
2919static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2920{
2921    psinfo->pr_flag = tswapal(psinfo->pr_flag);
2922    psinfo->pr_uid = tswap16(psinfo->pr_uid);
2923    psinfo->pr_gid = tswap16(psinfo->pr_gid);
2924    psinfo->pr_pid = tswap32(psinfo->pr_pid);
2925    psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2926    psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2927    psinfo->pr_sid = tswap32(psinfo->pr_sid);
2928}
2929
2930static void bswap_note(struct elf_note *en)
2931{
2932    bswap32s(&en->n_namesz);
2933    bswap32s(&en->n_descsz);
2934    bswap32s(&en->n_type);
2935}
2936#else
2937static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2938static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2939static inline void bswap_note(struct elf_note *en) { }
2940#endif /* BSWAP_NEEDED */
2941
2942/*
2943 * Minimal support for linux memory regions.  These are needed
2944 * when we are finding out what memory exactly belongs to
2945 * emulated process.  No locks needed here, as long as
2946 * thread that received the signal is stopped.
2947 */
2948
2949static struct mm_struct *vma_init(void)
2950{
2951    struct mm_struct *mm;
2952
2953    if ((mm = g_malloc(sizeof (*mm))) == NULL)
2954        return (NULL);
2955
2956    mm->mm_count = 0;
2957    QTAILQ_INIT(&mm->mm_mmap);
2958
2959    return (mm);
2960}
2961
2962static void vma_delete(struct mm_struct *mm)
2963{
2964    struct vm_area_struct *vma;
2965
2966    while ((vma = vma_first(mm)) != NULL) {
2967        QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2968        g_free(vma);
2969    }
2970    g_free(mm);
2971}
2972
2973static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2974                           target_ulong end, abi_ulong flags)
2975{
2976    struct vm_area_struct *vma;
2977
2978    if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2979        return (-1);
2980
2981    vma->vma_start = start;
2982    vma->vma_end = end;
2983    vma->vma_flags = flags;
2984
2985    QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2986    mm->mm_count++;
2987
2988    return (0);
2989}
2990
2991static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2992{
2993    return (QTAILQ_FIRST(&mm->mm_mmap));
2994}
2995
2996static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2997{
2998    return (QTAILQ_NEXT(vma, vma_link));
2999}
3000
3001static int vma_get_mapping_count(const struct mm_struct *mm)
3002{
3003    return (mm->mm_count);
3004}
3005
3006/*
3007 * Calculate file (dump) size of given memory region.
3008 */
3009static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3010{
3011    /* if we cannot even read the first page, skip it */
3012    if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3013        return (0);
3014
3015    /*
3016     * Usually we don't dump executable pages as they contain
3017     * non-writable code that debugger can read directly from
3018     * target library etc.  However, thread stacks are marked
3019     * also executable so we read in first page of given region
3020     * and check whether it contains elf header.  If there is
3021     * no elf header, we dump it.
3022     */
3023    if (vma->vma_flags & PROT_EXEC) {
3024        char page[TARGET_PAGE_SIZE];
3025
3026        copy_from_user(page, vma->vma_start, sizeof (page));
3027        if ((page[EI_MAG0] == ELFMAG0) &&
3028            (page[EI_MAG1] == ELFMAG1) &&
3029            (page[EI_MAG2] == ELFMAG2) &&
3030            (page[EI_MAG3] == ELFMAG3)) {
3031            /*
3032             * Mappings are possibly from ELF binary.  Don't dump
3033             * them.
3034             */
3035            return (0);
3036        }
3037    }
3038
3039    return (vma->vma_end - vma->vma_start);
3040}
3041
3042static int vma_walker(void *priv, target_ulong start, target_ulong end,
3043                      unsigned long flags)
3044{
3045    struct mm_struct *mm = (struct mm_struct *)priv;
3046
3047    vma_add_mapping(mm, start, end, flags);
3048    return (0);
3049}
3050
3051static void fill_note(struct memelfnote *note, const char *name, int type,
3052                      unsigned int sz, void *data)
3053{
3054    unsigned int namesz;
3055
3056    namesz = strlen(name) + 1;
3057    note->name = name;
3058    note->namesz = namesz;
3059    note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3060    note->type = type;
3061    note->datasz = sz;
3062    note->datasz_rounded = roundup(sz, sizeof (int32_t));
3063
3064    note->data = data;
3065
3066    /*
3067     * We calculate rounded up note size here as specified by
3068     * ELF document.
3069     */
3070    note->notesz = sizeof (struct elf_note) +
3071        note->namesz_rounded + note->datasz_rounded;
3072}
3073
3074static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3075                            uint32_t flags)
3076{
3077    (void) memset(elf, 0, sizeof(*elf));
3078
3079    (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3080    elf->e_ident[EI_CLASS] = ELF_CLASS;
3081    elf->e_ident[EI_DATA] = ELF_DATA;
3082    elf->e_ident[EI_VERSION] = EV_CURRENT;
3083    elf->e_ident[EI_OSABI] = ELF_OSABI;
3084
3085    elf->e_type = ET_CORE;
3086    elf->e_machine = machine;
3087    elf->e_version = EV_CURRENT;
3088    elf->e_phoff = sizeof(struct elfhdr);
3089    elf->e_flags = flags;
3090    elf->e_ehsize = sizeof(struct elfhdr);
3091    elf->e_phentsize = sizeof(struct elf_phdr);
3092    elf->e_phnum = segs;
3093
3094    bswap_ehdr(elf);
3095}
3096
3097static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3098{
3099    phdr->p_type = PT_NOTE;
3100    phdr->p_offset = offset;
3101    phdr->p_vaddr = 0;
3102    phdr->p_paddr = 0;
3103    phdr->p_filesz = sz;
3104    phdr->p_memsz = 0;
3105    phdr->p_flags = 0;
3106    phdr->p_align = 0;
3107
3108    bswap_phdr(phdr, 1);
3109}
3110
3111static size_t note_size(const struct memelfnote *note)
3112{
3113    return (note->notesz);
3114}
3115
3116static void fill_prstatus(struct target_elf_prstatus *prstatus,
3117                          const TaskState *ts, int signr)
3118{
3119    (void) memset(prstatus, 0, sizeof (*prstatus));
3120    prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3121    prstatus->pr_pid = ts->ts_tid;
3122    prstatus->pr_ppid = getppid();
3123    prstatus->pr_pgrp = getpgrp();
3124    prstatus->pr_sid = getsid(0);
3125
3126    bswap_prstatus(prstatus);
3127}
3128
3129static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3130{
3131    char *base_filename;
3132    unsigned int i, len;
3133
3134    (void) memset(psinfo, 0, sizeof (*psinfo));
3135
3136    len = ts->info->arg_end - ts->info->arg_start;
3137    if (len >= ELF_PRARGSZ)
3138        len = ELF_PRARGSZ - 1;
3139    if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3140        return -EFAULT;
3141    for (i = 0; i < len; i++)
3142        if (psinfo->pr_psargs[i] == 0)
3143            psinfo->pr_psargs[i] = ' ';
3144    psinfo->pr_psargs[len] = 0;
3145
3146    psinfo->pr_pid = getpid();
3147    psinfo->pr_ppid = getppid();
3148    psinfo->pr_pgrp = getpgrp();
3149    psinfo->pr_sid = getsid(0);
3150    psinfo->pr_uid = getuid();
3151    psinfo->pr_gid = getgid();
3152
3153    base_filename = g_path_get_basename(ts->bprm->filename);
3154    /*
3155     * Using strncpy here is fine: at max-length,
3156     * this field is not NUL-terminated.
3157     */
3158    (void) strncpy(psinfo->pr_fname, base_filename,
3159                   sizeof(psinfo->pr_fname));
3160
3161    g_free(base_filename);
3162    bswap_psinfo(psinfo);
3163    return (0);
3164}
3165
3166static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3167{
3168    elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3169    elf_addr_t orig_auxv = auxv;
3170    void *ptr;
3171    int len = ts->info->auxv_len;
3172
3173    /*
3174     * Auxiliary vector is stored in target process stack.  It contains
3175     * {type, value} pairs that we need to dump into note.  This is not
3176     * strictly necessary but we do it here for sake of completeness.
3177     */
3178
3179    /* read in whole auxv vector and copy it to memelfnote */
3180    ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3181    if (ptr != NULL) {
3182        fill_note(note, "CORE", NT_AUXV, len, ptr);
3183        unlock_user(ptr, auxv, len);
3184    }
3185}
3186
3187/*
3188 * Constructs name of coredump file.  We have following convention
3189 * for the name:
3190 *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3191 *
3192 * Returns 0 in case of success, -1 otherwise (errno is set).
3193 */
3194static int core_dump_filename(const TaskState *ts, char *buf,
3195                              size_t bufsize)
3196{
3197    char timestamp[64];
3198    char *base_filename = NULL;
3199    struct timeval tv;
3200    struct tm tm;
3201
3202    assert(bufsize >= PATH_MAX);
3203
3204    if (gettimeofday(&tv, NULL) < 0) {
3205        (void) fprintf(stderr, "unable to get current timestamp: %s",
3206                       strerror(errno));
3207        return (-1);
3208    }
3209
3210    base_filename = g_path_get_basename(ts->bprm->filename);
3211    (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3212                    localtime_r(&tv.tv_sec, &tm));
3213    (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3214                    base_filename, timestamp, (int)getpid());
3215    g_free(base_filename);
3216
3217    return (0);
3218}
3219
3220static int dump_write(int fd, const void *ptr, size_t size)
3221{
3222    const char *bufp = (const char *)ptr;
3223    ssize_t bytes_written, bytes_left;
3224    struct rlimit dumpsize;
3225    off_t pos;
3226
3227    bytes_written = 0;
3228    getrlimit(RLIMIT_CORE, &dumpsize);
3229    if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3230        if (errno == ESPIPE) { /* not a seekable stream */
3231            bytes_left = size;
3232        } else {
3233            return pos;
3234        }
3235    } else {
3236        if (dumpsize.rlim_cur <= pos) {
3237            return -1;
3238        } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3239            bytes_left = size;
3240        } else {
3241            size_t limit_left=dumpsize.rlim_cur - pos;
3242            bytes_left = limit_left >= size ? size : limit_left ;
3243        }
3244    }
3245
3246    /*
3247     * In normal conditions, single write(2) should do but
3248     * in case of socket etc. this mechanism is more portable.
3249     */
3250    do {
3251        bytes_written = write(fd, bufp, bytes_left);
3252        if (bytes_written < 0) {
3253            if (errno == EINTR)
3254                continue;
3255            return (-1);
3256        } else if (bytes_written == 0) { /* eof */
3257            return (-1);
3258        }
3259        bufp += bytes_written;
3260        bytes_left -= bytes_written;
3261    } while (bytes_left > 0);
3262
3263    return (0);
3264}
3265
3266static int write_note(struct memelfnote *men, int fd)
3267{
3268    struct elf_note en;
3269
3270    en.n_namesz = men->namesz;
3271    en.n_type = men->type;
3272    en.n_descsz = men->datasz;
3273
3274    bswap_note(&en);
3275
3276    if (dump_write(fd, &en, sizeof(en)) != 0)
3277        return (-1);
3278    if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3279        return (-1);
3280    if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3281        return (-1);
3282
3283    return (0);
3284}
3285
3286static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3287{
3288    CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3289    TaskState *ts = (TaskState *)cpu->opaque;
3290    struct elf_thread_status *ets;
3291
3292    ets = g_malloc0(sizeof (*ets));
3293    ets->num_notes = 1; /* only prstatus is dumped */
3294    fill_prstatus(&ets->prstatus, ts, 0);
3295    elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3296    fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3297              &ets->prstatus);
3298
3299    QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3300
3301    info->notes_size += note_size(&ets->notes[0]);
3302}
3303
3304static void init_note_info(struct elf_note_info *info)
3305{
3306    /* Initialize the elf_note_info structure so that it is at
3307     * least safe to call free_note_info() on it. Must be
3308     * called before calling fill_note_info().
3309     */
3310    memset(info, 0, sizeof (*info));
3311    QTAILQ_INIT(&info->thread_list);
3312}
3313
3314static int fill_note_info(struct elf_note_info *info,
3315                          long signr, const CPUArchState *env)
3316{
3317#define NUMNOTES 3
3318    CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3319    TaskState *ts = (TaskState *)cpu->opaque;
3320    int i;
3321
3322    info->notes = g_new0(struct memelfnote, NUMNOTES);
3323    if (info->notes == NULL)
3324        return (-ENOMEM);
3325    info->prstatus = g_malloc0(sizeof (*info->prstatus));
3326    if (info->prstatus == NULL)
3327        return (-ENOMEM);
3328    info->psinfo = g_malloc0(sizeof (*info->psinfo));
3329    if (info->prstatus == NULL)
3330        return (-ENOMEM);
3331
3332    /*
3333     * First fill in status (and registers) of current thread
3334     * including process info & aux vector.
3335     */
3336    fill_prstatus(info->prstatus, ts, signr);
3337    elf_core_copy_regs(&info->prstatus->pr_reg, env);
3338    fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3339              sizeof (*info->prstatus), info->prstatus);
3340    fill_psinfo(info->psinfo, ts);
3341    fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3342              sizeof (*info->psinfo), info->psinfo);
3343    fill_auxv_note(&info->notes[2], ts);
3344    info->numnote = 3;
3345
3346    info->notes_size = 0;
3347    for (i = 0; i < info->numnote; i++)
3348        info->notes_size += note_size(&info->notes[i]);
3349
3350    /* read and fill status of all threads */
3351    cpu_list_lock();
3352    CPU_FOREACH(cpu) {
3353        if (cpu == thread_cpu) {
3354            continue;
3355        }
3356        fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3357    }
3358    cpu_list_unlock();
3359
3360    return (0);
3361}
3362
3363static void free_note_info(struct elf_note_info *info)
3364{
3365    struct elf_thread_status *ets;
3366
3367    while (!QTAILQ_EMPTY(&info->thread_list)) {
3368        ets = QTAILQ_FIRST(&info->thread_list);
3369        QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3370        g_free(ets);
3371    }
3372
3373    g_free(info->prstatus);
3374    g_free(info->psinfo);
3375    g_free(info->notes);
3376}
3377
3378static int write_note_info(struct elf_note_info *info, int fd)
3379{
3380    struct elf_thread_status *ets;
3381    int i, error = 0;
3382
3383    /* write prstatus, psinfo and auxv for current thread */
3384    for (i = 0; i < info->numnote; i++)
3385        if ((error = write_note(&info->notes[i], fd)) != 0)
3386            return (error);
3387
3388    /* write prstatus for each thread */
3389    QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3390        if ((error = write_note(&ets->notes[0], fd)) != 0)
3391            return (error);
3392    }
3393
3394    return (0);
3395}
3396
3397/*
3398 * Write out ELF coredump.
3399 *
3400 * See documentation of ELF object file format in:
3401 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3402 *
3403 * Coredump format in linux is following:
3404 *
3405 * 0   +----------------------+         \
3406 *     | ELF header           | ET_CORE  |
3407 *     +----------------------+          |
3408 *     | ELF program headers  |          |--- headers
3409 *     | - NOTE section       |          |
3410 *     | - PT_LOAD sections   |          |
3411 *     +----------------------+         /
3412 *     | NOTEs:               |
3413 *     | - NT_PRSTATUS        |
3414 *     | - NT_PRSINFO         |
3415 *     | - NT_AUXV            |
3416 *     +----------------------+ <-- aligned to target page
3417 *     | Process memory dump  |
3418 *     :                      :
3419 *     .                      .
3420 *     :                      :
3421 *     |                      |
3422 *     +----------------------+
3423 *
3424 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3425 * NT_PRSINFO  -> struct elf_prpsinfo
3426 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3427 *
3428 * Format follows System V format as close as possible.  Current
3429 * version limitations are as follows:
3430 *     - no floating point registers are dumped
3431 *
3432 * Function returns 0 in case of success, negative errno otherwise.
3433 *
3434 * TODO: make this work also during runtime: it should be
3435 * possible to force coredump from running process and then
3436 * continue processing.  For example qemu could set up SIGUSR2
3437 * handler (provided that target process haven't registered
3438 * handler for that) that does the dump when signal is received.
3439 */
3440static int elf_core_dump(int signr, const CPUArchState *env)
3441{
3442    const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3443    const TaskState *ts = (const TaskState *)cpu->opaque;
3444    struct vm_area_struct *vma = NULL;
3445    char corefile[PATH_MAX];
3446    struct elf_note_info info;
3447    struct elfhdr elf;
3448    struct elf_phdr phdr;
3449    struct rlimit dumpsize;
3450    struct mm_struct *mm = NULL;
3451    off_t offset = 0, data_offset = 0;
3452    int segs = 0;
3453    int fd = -1;
3454
3455    init_note_info(&info);
3456
3457    errno = 0;
3458    getrlimit(RLIMIT_CORE, &dumpsize);
3459    if (dumpsize.rlim_cur == 0)
3460        return 0;
3461
3462    if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3463        return (-errno);
3464
3465    if ((fd = open(corefile, O_WRONLY | O_CREAT,
3466                   S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3467        return (-errno);
3468
3469    /*
3470     * Walk through target process memory mappings and
3471     * set up structure containing this information.  After
3472     * this point vma_xxx functions can be used.
3473     */
3474    if ((mm = vma_init()) == NULL)
3475        goto out;
3476
3477    walk_memory_regions(mm, vma_walker);
3478    segs = vma_get_mapping_count(mm);
3479
3480    /*
3481     * Construct valid coredump ELF header.  We also
3482     * add one more segment for notes.
3483     */
3484    fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3485    if (dump_write(fd, &elf, sizeof (elf)) != 0)
3486        goto out;
3487
3488    /* fill in the in-memory version of notes */
3489    if (fill_note_info(&info, signr, env) < 0)
3490        goto out;
3491
3492    offset += sizeof (elf);                             /* elf header */
3493    offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3494
3495    /* write out notes program header */
3496    fill_elf_note_phdr(&phdr, info.notes_size, offset);
3497
3498    offset += info.notes_size;
3499    if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3500        goto out;
3501
3502    /*
3503     * ELF specification wants data to start at page boundary so
3504     * we align it here.
3505     */
3506    data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3507
3508    /*
3509     * Write program headers for memory regions mapped in
3510     * the target process.
3511     */
3512    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3513        (void) memset(&phdr, 0, sizeof (phdr));
3514
3515        phdr.p_type = PT_LOAD;
3516        phdr.p_offset = offset;
3517        phdr.p_vaddr = vma->vma_start;
3518        phdr.p_paddr = 0;
3519        phdr.p_filesz = vma_dump_size(vma);
3520        offset += phdr.p_filesz;
3521        phdr.p_memsz = vma->vma_end - vma->vma_start;
3522        phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3523        if (vma->vma_flags & PROT_WRITE)
3524            phdr.p_flags |= PF_W;
3525        if (vma->vma_flags & PROT_EXEC)
3526            phdr.p_flags |= PF_X;
3527        phdr.p_align = ELF_EXEC_PAGESIZE;
3528
3529        bswap_phdr(&phdr, 1);
3530        if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3531            goto out;
3532        }
3533    }
3534
3535    /*
3536     * Next we write notes just after program headers.  No
3537     * alignment needed here.
3538     */
3539    if (write_note_info(&info, fd) < 0)
3540        goto out;
3541
3542    /* align data to page boundary */
3543    if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3544        goto out;
3545
3546    /*
3547     * Finally we can dump process memory into corefile as well.
3548     */
3549    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3550        abi_ulong addr;
3551        abi_ulong end;
3552
3553        end = vma->vma_start + vma_dump_size(vma);
3554
3555        for (addr = vma->vma_start; addr < end;
3556             addr += TARGET_PAGE_SIZE) {
3557            char page[TARGET_PAGE_SIZE];
3558            int error;
3559
3560            /*
3561             *  Read in page from target process memory and
3562             *  write it to coredump file.
3563             */
3564            error = copy_from_user(page, addr, sizeof (page));
3565            if (error != 0) {
3566                (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3567                               addr);
3568                errno = -error;
3569                goto out;
3570            }
3571            if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3572                goto out;
3573        }
3574    }
3575
3576 out:
3577    free_note_info(&info);
3578    if (mm != NULL)
3579        vma_delete(mm);
3580    (void) close(fd);
3581
3582    if (errno != 0)
3583        return (-errno);
3584    return (0);
3585}
3586#endif /* USE_ELF_CORE_DUMP */
3587
3588void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3589{
3590    init_thread(regs, infop);
3591}
3592