qemu/target/arm/cpu.c
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "target/arm/idau.h"
  23#include "qemu/error-report.h"
  24#include "qapi/error.h"
  25#include "cpu.h"
  26#include "internals.h"
  27#include "qemu-common.h"
  28#include "exec/exec-all.h"
  29#include "hw/qdev-properties.h"
  30#if !defined(CONFIG_USER_ONLY)
  31#include "hw/loader.h"
  32#endif
  33#include "hw/arm/arm.h"
  34#include "sysemu/sysemu.h"
  35#include "sysemu/hw_accel.h"
  36#include "kvm_arm.h"
  37#include "disas/capstone.h"
  38#include "fpu/softfloat.h"
  39
  40static void arm_cpu_set_pc(CPUState *cs, vaddr value)
  41{
  42    ARMCPU *cpu = ARM_CPU(cs);
  43
  44    cpu->env.regs[15] = value;
  45}
  46
  47static bool arm_cpu_has_work(CPUState *cs)
  48{
  49    ARMCPU *cpu = ARM_CPU(cs);
  50
  51    return (cpu->power_state != PSCI_OFF)
  52        && cs->interrupt_request &
  53        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
  54         | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
  55         | CPU_INTERRUPT_EXITTB);
  56}
  57
  58void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  59                                 void *opaque)
  60{
  61    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  62
  63    entry->hook = hook;
  64    entry->opaque = opaque;
  65
  66    QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
  67}
  68
  69void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  70                                 void *opaque)
  71{
  72    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  73
  74    entry->hook = hook;
  75    entry->opaque = opaque;
  76
  77    QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
  78}
  79
  80static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
  81{
  82    /* Reset a single ARMCPRegInfo register */
  83    ARMCPRegInfo *ri = value;
  84    ARMCPU *cpu = opaque;
  85
  86    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
  87        return;
  88    }
  89
  90    if (ri->resetfn) {
  91        ri->resetfn(&cpu->env, ri);
  92        return;
  93    }
  94
  95    /* A zero offset is never possible as it would be regs[0]
  96     * so we use it to indicate that reset is being handled elsewhere.
  97     * This is basically only used for fields in non-core coprocessors
  98     * (like the pxa2xx ones).
  99     */
 100    if (!ri->fieldoffset) {
 101        return;
 102    }
 103
 104    if (cpreg_field_is_64bit(ri)) {
 105        CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
 106    } else {
 107        CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
 108    }
 109}
 110
 111static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
 112{
 113    /* Purely an assertion check: we've already done reset once,
 114     * so now check that running the reset for the cpreg doesn't
 115     * change its value. This traps bugs where two different cpregs
 116     * both try to reset the same state field but to different values.
 117     */
 118    ARMCPRegInfo *ri = value;
 119    ARMCPU *cpu = opaque;
 120    uint64_t oldvalue, newvalue;
 121
 122    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
 123        return;
 124    }
 125
 126    oldvalue = read_raw_cp_reg(&cpu->env, ri);
 127    cp_reg_reset(key, value, opaque);
 128    newvalue = read_raw_cp_reg(&cpu->env, ri);
 129    assert(oldvalue == newvalue);
 130}
 131
 132/* CPUClass::reset() */
 133static void arm_cpu_reset(CPUState *s)
 134{
 135    ARMCPU *cpu = ARM_CPU(s);
 136    ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
 137    CPUARMState *env = &cpu->env;
 138
 139    acc->parent_reset(s);
 140
 141    memset(env, 0, offsetof(CPUARMState, end_reset_fields));
 142
 143    g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
 144    g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
 145
 146    env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
 147    env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
 148    env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
 149    env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
 150
 151    cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
 152    s->halted = cpu->start_powered_off;
 153
 154    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 155        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 156    }
 157
 158    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 159        /* 64 bit CPUs always start in 64 bit mode */
 160        env->aarch64 = 1;
 161#if defined(CONFIG_USER_ONLY)
 162        env->pstate = PSTATE_MODE_EL0t;
 163        /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
 164        env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
 165        /* and to the FP/Neon instructions */
 166        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
 167        /* and to the SVE instructions */
 168        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
 169        env->cp15.cptr_el[3] |= CPTR_EZ;
 170        /* with maximum vector length */
 171        env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
 172        env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
 173        env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
 174#else
 175        /* Reset into the highest available EL */
 176        if (arm_feature(env, ARM_FEATURE_EL3)) {
 177            env->pstate = PSTATE_MODE_EL3h;
 178        } else if (arm_feature(env, ARM_FEATURE_EL2)) {
 179            env->pstate = PSTATE_MODE_EL2h;
 180        } else {
 181            env->pstate = PSTATE_MODE_EL1h;
 182        }
 183        env->pc = cpu->rvbar;
 184#endif
 185    } else {
 186#if defined(CONFIG_USER_ONLY)
 187        /* Userspace expects access to cp10 and cp11 for FP/Neon */
 188        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
 189#endif
 190    }
 191
 192#if defined(CONFIG_USER_ONLY)
 193    env->uncached_cpsr = ARM_CPU_MODE_USR;
 194    /* For user mode we must enable access to coprocessors */
 195    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 196    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 197        env->cp15.c15_cpar = 3;
 198    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 199        env->cp15.c15_cpar = 1;
 200    }
 201#else
 202
 203    /*
 204     * If the highest available EL is EL2, AArch32 will start in Hyp
 205     * mode; otherwise it starts in SVC. Note that if we start in
 206     * AArch64 then these values in the uncached_cpsr will be ignored.
 207     */
 208    if (arm_feature(env, ARM_FEATURE_EL2) &&
 209        !arm_feature(env, ARM_FEATURE_EL3)) {
 210        env->uncached_cpsr = ARM_CPU_MODE_HYP;
 211    } else {
 212        env->uncached_cpsr = ARM_CPU_MODE_SVC;
 213    }
 214    env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
 215
 216    if (arm_feature(env, ARM_FEATURE_M)) {
 217        uint32_t initial_msp; /* Loaded from 0x0 */
 218        uint32_t initial_pc; /* Loaded from 0x4 */
 219        uint8_t *rom;
 220        uint32_t vecbase;
 221
 222        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 223            env->v7m.secure = true;
 224        } else {
 225            /* This bit resets to 0 if security is supported, but 1 if
 226             * it is not. The bit is not present in v7M, but we set it
 227             * here so we can avoid having to make checks on it conditional
 228             * on ARM_FEATURE_V8 (we don't let the guest see the bit).
 229             */
 230            env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
 231        }
 232
 233        /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
 234         * that it resets to 1, so QEMU always does that rather than making
 235         * it dependent on CPU model. In v8M it is RES1.
 236         */
 237        env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
 238        env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
 239        if (arm_feature(env, ARM_FEATURE_V8)) {
 240            /* in v8M the NONBASETHRDENA bit [0] is RES1 */
 241            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 242            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 243        }
 244        if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
 245            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 246            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 247        }
 248
 249        /* Unlike A/R profile, M profile defines the reset LR value */
 250        env->regs[14] = 0xffffffff;
 251
 252        env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
 253
 254        /* Load the initial SP and PC from offset 0 and 4 in the vector table */
 255        vecbase = env->v7m.vecbase[env->v7m.secure];
 256        rom = rom_ptr(vecbase, 8);
 257        if (rom) {
 258            /* Address zero is covered by ROM which hasn't yet been
 259             * copied into physical memory.
 260             */
 261            initial_msp = ldl_p(rom);
 262            initial_pc = ldl_p(rom + 4);
 263        } else {
 264            /* Address zero not covered by a ROM blob, or the ROM blob
 265             * is in non-modifiable memory and this is a second reset after
 266             * it got copied into memory. In the latter case, rom_ptr
 267             * will return a NULL pointer and we should use ldl_phys instead.
 268             */
 269            initial_msp = ldl_phys(s->as, vecbase);
 270            initial_pc = ldl_phys(s->as, vecbase + 4);
 271        }
 272
 273        env->regs[13] = initial_msp & 0xFFFFFFFC;
 274        env->regs[15] = initial_pc & ~1;
 275        env->thumb = initial_pc & 1;
 276    }
 277
 278    /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
 279     * executing as AArch32 then check if highvecs are enabled and
 280     * adjust the PC accordingly.
 281     */
 282    if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 283        env->regs[15] = 0xFFFF0000;
 284    }
 285
 286    /* M profile requires that reset clears the exclusive monitor;
 287     * A profile does not, but clearing it makes more sense than having it
 288     * set with an exclusive access on address zero.
 289     */
 290    arm_clear_exclusive(env);
 291
 292    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 293#endif
 294
 295    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 296        if (cpu->pmsav7_dregion > 0) {
 297            if (arm_feature(env, ARM_FEATURE_V8)) {
 298                memset(env->pmsav8.rbar[M_REG_NS], 0,
 299                       sizeof(*env->pmsav8.rbar[M_REG_NS])
 300                       * cpu->pmsav7_dregion);
 301                memset(env->pmsav8.rlar[M_REG_NS], 0,
 302                       sizeof(*env->pmsav8.rlar[M_REG_NS])
 303                       * cpu->pmsav7_dregion);
 304                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 305                    memset(env->pmsav8.rbar[M_REG_S], 0,
 306                           sizeof(*env->pmsav8.rbar[M_REG_S])
 307                           * cpu->pmsav7_dregion);
 308                    memset(env->pmsav8.rlar[M_REG_S], 0,
 309                           sizeof(*env->pmsav8.rlar[M_REG_S])
 310                           * cpu->pmsav7_dregion);
 311                }
 312            } else if (arm_feature(env, ARM_FEATURE_V7)) {
 313                memset(env->pmsav7.drbar, 0,
 314                       sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
 315                memset(env->pmsav7.drsr, 0,
 316                       sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
 317                memset(env->pmsav7.dracr, 0,
 318                       sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
 319            }
 320        }
 321        env->pmsav7.rnr[M_REG_NS] = 0;
 322        env->pmsav7.rnr[M_REG_S] = 0;
 323        env->pmsav8.mair0[M_REG_NS] = 0;
 324        env->pmsav8.mair0[M_REG_S] = 0;
 325        env->pmsav8.mair1[M_REG_NS] = 0;
 326        env->pmsav8.mair1[M_REG_S] = 0;
 327    }
 328
 329    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 330        if (cpu->sau_sregion > 0) {
 331            memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
 332            memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
 333        }
 334        env->sau.rnr = 0;
 335        /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
 336         * the Cortex-M33 does.
 337         */
 338        env->sau.ctrl = 0;
 339    }
 340
 341    set_flush_to_zero(1, &env->vfp.standard_fp_status);
 342    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 343    set_default_nan_mode(1, &env->vfp.standard_fp_status);
 344    set_float_detect_tininess(float_tininess_before_rounding,
 345                              &env->vfp.fp_status);
 346    set_float_detect_tininess(float_tininess_before_rounding,
 347                              &env->vfp.standard_fp_status);
 348    set_float_detect_tininess(float_tininess_before_rounding,
 349                              &env->vfp.fp_status_f16);
 350#ifndef CONFIG_USER_ONLY
 351    if (kvm_enabled()) {
 352        kvm_arm_reset_vcpu(cpu);
 353    }
 354#endif
 355
 356    hw_breakpoint_update_all(cpu);
 357    hw_watchpoint_update_all(cpu);
 358}
 359
 360bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 361{
 362    CPUClass *cc = CPU_GET_CLASS(cs);
 363    CPUARMState *env = cs->env_ptr;
 364    uint32_t cur_el = arm_current_el(env);
 365    bool secure = arm_is_secure(env);
 366    uint32_t target_el;
 367    uint32_t excp_idx;
 368    bool ret = false;
 369
 370    if (interrupt_request & CPU_INTERRUPT_FIQ) {
 371        excp_idx = EXCP_FIQ;
 372        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 373        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 374            cs->exception_index = excp_idx;
 375            env->exception.target_el = target_el;
 376            cc->do_interrupt(cs);
 377            ret = true;
 378        }
 379    }
 380    if (interrupt_request & CPU_INTERRUPT_HARD) {
 381        excp_idx = EXCP_IRQ;
 382        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 383        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 384            cs->exception_index = excp_idx;
 385            env->exception.target_el = target_el;
 386            cc->do_interrupt(cs);
 387            ret = true;
 388        }
 389    }
 390    if (interrupt_request & CPU_INTERRUPT_VIRQ) {
 391        excp_idx = EXCP_VIRQ;
 392        target_el = 1;
 393        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 394            cs->exception_index = excp_idx;
 395            env->exception.target_el = target_el;
 396            cc->do_interrupt(cs);
 397            ret = true;
 398        }
 399    }
 400    if (interrupt_request & CPU_INTERRUPT_VFIQ) {
 401        excp_idx = EXCP_VFIQ;
 402        target_el = 1;
 403        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 404            cs->exception_index = excp_idx;
 405            env->exception.target_el = target_el;
 406            cc->do_interrupt(cs);
 407            ret = true;
 408        }
 409    }
 410
 411    return ret;
 412}
 413
 414#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
 415static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 416{
 417    CPUClass *cc = CPU_GET_CLASS(cs);
 418    ARMCPU *cpu = ARM_CPU(cs);
 419    CPUARMState *env = &cpu->env;
 420    bool ret = false;
 421
 422    /* ARMv7-M interrupt masking works differently than -A or -R.
 423     * There is no FIQ/IRQ distinction. Instead of I and F bits
 424     * masking FIQ and IRQ interrupts, an exception is taken only
 425     * if it is higher priority than the current execution priority
 426     * (which depends on state like BASEPRI, FAULTMASK and the
 427     * currently active exception).
 428     */
 429    if (interrupt_request & CPU_INTERRUPT_HARD
 430        && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
 431        cs->exception_index = EXCP_IRQ;
 432        cc->do_interrupt(cs);
 433        ret = true;
 434    }
 435    return ret;
 436}
 437#endif
 438
 439void arm_cpu_update_virq(ARMCPU *cpu)
 440{
 441    /*
 442     * Update the interrupt level for VIRQ, which is the logical OR of
 443     * the HCR_EL2.VI bit and the input line level from the GIC.
 444     */
 445    CPUARMState *env = &cpu->env;
 446    CPUState *cs = CPU(cpu);
 447
 448    bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
 449        (env->irq_line_state & CPU_INTERRUPT_VIRQ);
 450
 451    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
 452        if (new_state) {
 453            cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
 454        } else {
 455            cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
 456        }
 457    }
 458}
 459
 460void arm_cpu_update_vfiq(ARMCPU *cpu)
 461{
 462    /*
 463     * Update the interrupt level for VFIQ, which is the logical OR of
 464     * the HCR_EL2.VF bit and the input line level from the GIC.
 465     */
 466    CPUARMState *env = &cpu->env;
 467    CPUState *cs = CPU(cpu);
 468
 469    bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
 470        (env->irq_line_state & CPU_INTERRUPT_VFIQ);
 471
 472    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
 473        if (new_state) {
 474            cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
 475        } else {
 476            cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
 477        }
 478    }
 479}
 480
 481#ifndef CONFIG_USER_ONLY
 482static void arm_cpu_set_irq(void *opaque, int irq, int level)
 483{
 484    ARMCPU *cpu = opaque;
 485    CPUARMState *env = &cpu->env;
 486    CPUState *cs = CPU(cpu);
 487    static const int mask[] = {
 488        [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
 489        [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
 490        [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
 491        [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
 492    };
 493
 494    if (level) {
 495        env->irq_line_state |= mask[irq];
 496    } else {
 497        env->irq_line_state &= ~mask[irq];
 498    }
 499
 500    switch (irq) {
 501    case ARM_CPU_VIRQ:
 502        assert(arm_feature(env, ARM_FEATURE_EL2));
 503        arm_cpu_update_virq(cpu);
 504        break;
 505    case ARM_CPU_VFIQ:
 506        assert(arm_feature(env, ARM_FEATURE_EL2));
 507        arm_cpu_update_vfiq(cpu);
 508        break;
 509    case ARM_CPU_IRQ:
 510    case ARM_CPU_FIQ:
 511        if (level) {
 512            cpu_interrupt(cs, mask[irq]);
 513        } else {
 514            cpu_reset_interrupt(cs, mask[irq]);
 515        }
 516        break;
 517    default:
 518        g_assert_not_reached();
 519    }
 520}
 521
 522static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
 523{
 524#ifdef CONFIG_KVM
 525    ARMCPU *cpu = opaque;
 526    CPUARMState *env = &cpu->env;
 527    CPUState *cs = CPU(cpu);
 528    int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
 529    uint32_t linestate_bit;
 530
 531    switch (irq) {
 532    case ARM_CPU_IRQ:
 533        kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
 534        linestate_bit = CPU_INTERRUPT_HARD;
 535        break;
 536    case ARM_CPU_FIQ:
 537        kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
 538        linestate_bit = CPU_INTERRUPT_FIQ;
 539        break;
 540    default:
 541        g_assert_not_reached();
 542    }
 543
 544    if (level) {
 545        env->irq_line_state |= linestate_bit;
 546    } else {
 547        env->irq_line_state &= ~linestate_bit;
 548    }
 549
 550    kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
 551    kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
 552#endif
 553}
 554
 555static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
 556{
 557    ARMCPU *cpu = ARM_CPU(cs);
 558    CPUARMState *env = &cpu->env;
 559
 560    cpu_synchronize_state(cs);
 561    return arm_cpu_data_is_big_endian(env);
 562}
 563
 564#endif
 565
 566static inline void set_feature(CPUARMState *env, int feature)
 567{
 568    env->features |= 1ULL << feature;
 569}
 570
 571static inline void unset_feature(CPUARMState *env, int feature)
 572{
 573    env->features &= ~(1ULL << feature);
 574}
 575
 576static int
 577print_insn_thumb1(bfd_vma pc, disassemble_info *info)
 578{
 579  return print_insn_arm(pc | 1, info);
 580}
 581
 582static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
 583{
 584    ARMCPU *ac = ARM_CPU(cpu);
 585    CPUARMState *env = &ac->env;
 586    bool sctlr_b;
 587
 588    if (is_a64(env)) {
 589        /* We might not be compiled with the A64 disassembler
 590         * because it needs a C++ compiler. Leave print_insn
 591         * unset in this case to use the caller default behaviour.
 592         */
 593#if defined(CONFIG_ARM_A64_DIS)
 594        info->print_insn = print_insn_arm_a64;
 595#endif
 596        info->cap_arch = CS_ARCH_ARM64;
 597        info->cap_insn_unit = 4;
 598        info->cap_insn_split = 4;
 599    } else {
 600        int cap_mode;
 601        if (env->thumb) {
 602            info->print_insn = print_insn_thumb1;
 603            info->cap_insn_unit = 2;
 604            info->cap_insn_split = 4;
 605            cap_mode = CS_MODE_THUMB;
 606        } else {
 607            info->print_insn = print_insn_arm;
 608            info->cap_insn_unit = 4;
 609            info->cap_insn_split = 4;
 610            cap_mode = CS_MODE_ARM;
 611        }
 612        if (arm_feature(env, ARM_FEATURE_V8)) {
 613            cap_mode |= CS_MODE_V8;
 614        }
 615        if (arm_feature(env, ARM_FEATURE_M)) {
 616            cap_mode |= CS_MODE_MCLASS;
 617        }
 618        info->cap_arch = CS_ARCH_ARM;
 619        info->cap_mode = cap_mode;
 620    }
 621
 622    sctlr_b = arm_sctlr_b(env);
 623    if (bswap_code(sctlr_b)) {
 624#ifdef TARGET_WORDS_BIGENDIAN
 625        info->endian = BFD_ENDIAN_LITTLE;
 626#else
 627        info->endian = BFD_ENDIAN_BIG;
 628#endif
 629    }
 630    info->flags &= ~INSN_ARM_BE32;
 631#ifndef CONFIG_USER_ONLY
 632    if (sctlr_b) {
 633        info->flags |= INSN_ARM_BE32;
 634    }
 635#endif
 636}
 637
 638uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
 639{
 640    uint32_t Aff1 = idx / clustersz;
 641    uint32_t Aff0 = idx % clustersz;
 642    return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
 643}
 644
 645static void arm_cpu_initfn(Object *obj)
 646{
 647    CPUState *cs = CPU(obj);
 648    ARMCPU *cpu = ARM_CPU(obj);
 649
 650    cs->env_ptr = &cpu->env;
 651    cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
 652                                         g_free, g_free);
 653
 654    QLIST_INIT(&cpu->pre_el_change_hooks);
 655    QLIST_INIT(&cpu->el_change_hooks);
 656
 657#ifndef CONFIG_USER_ONLY
 658    /* Our inbound IRQ and FIQ lines */
 659    if (kvm_enabled()) {
 660        /* VIRQ and VFIQ are unused with KVM but we add them to maintain
 661         * the same interface as non-KVM CPUs.
 662         */
 663        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
 664    } else {
 665        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
 666    }
 667
 668    cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
 669                                                arm_gt_ptimer_cb, cpu);
 670    cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
 671                                                arm_gt_vtimer_cb, cpu);
 672    cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
 673                                                arm_gt_htimer_cb, cpu);
 674    cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
 675                                                arm_gt_stimer_cb, cpu);
 676    qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
 677                       ARRAY_SIZE(cpu->gt_timer_outputs));
 678
 679    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
 680                             "gicv3-maintenance-interrupt", 1);
 681    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
 682                             "pmu-interrupt", 1);
 683#endif
 684
 685    /* DTB consumers generally don't in fact care what the 'compatible'
 686     * string is, so always provide some string and trust that a hypothetical
 687     * picky DTB consumer will also provide a helpful error message.
 688     */
 689    cpu->dtb_compatible = "qemu,unknown";
 690    cpu->psci_version = 1; /* By default assume PSCI v0.1 */
 691    cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
 692
 693    if (tcg_enabled()) {
 694        cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
 695    }
 696}
 697
 698static Property arm_cpu_reset_cbar_property =
 699            DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
 700
 701static Property arm_cpu_reset_hivecs_property =
 702            DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
 703
 704static Property arm_cpu_rvbar_property =
 705            DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
 706
 707static Property arm_cpu_has_el2_property =
 708            DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
 709
 710static Property arm_cpu_has_el3_property =
 711            DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
 712
 713static Property arm_cpu_cfgend_property =
 714            DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
 715
 716/* use property name "pmu" to match other archs and virt tools */
 717static Property arm_cpu_has_pmu_property =
 718            DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
 719
 720static Property arm_cpu_has_mpu_property =
 721            DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
 722
 723/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
 724 * because the CPU initfn will have already set cpu->pmsav7_dregion to
 725 * the right value for that particular CPU type, and we don't want
 726 * to override that with an incorrect constant value.
 727 */
 728static Property arm_cpu_pmsav7_dregion_property =
 729            DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
 730                                           pmsav7_dregion,
 731                                           qdev_prop_uint32, uint32_t);
 732
 733/* M profile: initial value of the Secure VTOR */
 734static Property arm_cpu_initsvtor_property =
 735            DEFINE_PROP_UINT32("init-svtor", ARMCPU, init_svtor, 0);
 736
 737static void arm_cpu_post_init(Object *obj)
 738{
 739    ARMCPU *cpu = ARM_CPU(obj);
 740
 741    /* M profile implies PMSA. We have to do this here rather than
 742     * in realize with the other feature-implication checks because
 743     * we look at the PMSA bit to see if we should add some properties.
 744     */
 745    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
 746        set_feature(&cpu->env, ARM_FEATURE_PMSA);
 747    }
 748
 749    if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
 750        arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
 751        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
 752                                 &error_abort);
 753    }
 754
 755    if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
 756        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
 757                                 &error_abort);
 758    }
 759
 760    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 761        qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
 762                                 &error_abort);
 763    }
 764
 765    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
 766        /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
 767         * prevent "has_el3" from existing on CPUs which cannot support EL3.
 768         */
 769        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
 770                                 &error_abort);
 771
 772#ifndef CONFIG_USER_ONLY
 773        object_property_add_link(obj, "secure-memory",
 774                                 TYPE_MEMORY_REGION,
 775                                 (Object **)&cpu->secure_memory,
 776                                 qdev_prop_allow_set_link_before_realize,
 777                                 OBJ_PROP_LINK_STRONG,
 778                                 &error_abort);
 779#endif
 780    }
 781
 782    if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
 783        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
 784                                 &error_abort);
 785    }
 786
 787    if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
 788        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
 789                                 &error_abort);
 790    }
 791
 792    if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
 793        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
 794                                 &error_abort);
 795        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 796            qdev_property_add_static(DEVICE(obj),
 797                                     &arm_cpu_pmsav7_dregion_property,
 798                                     &error_abort);
 799        }
 800    }
 801
 802    if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
 803        object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
 804                                 qdev_prop_allow_set_link_before_realize,
 805                                 OBJ_PROP_LINK_STRONG,
 806                                 &error_abort);
 807        qdev_property_add_static(DEVICE(obj), &arm_cpu_initsvtor_property,
 808                                 &error_abort);
 809    }
 810
 811    qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
 812                             &error_abort);
 813}
 814
 815static void arm_cpu_finalizefn(Object *obj)
 816{
 817    ARMCPU *cpu = ARM_CPU(obj);
 818    ARMELChangeHook *hook, *next;
 819
 820    g_hash_table_destroy(cpu->cp_regs);
 821
 822    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
 823        QLIST_REMOVE(hook, node);
 824        g_free(hook);
 825    }
 826    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
 827        QLIST_REMOVE(hook, node);
 828        g_free(hook);
 829    }
 830}
 831
 832static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
 833{
 834    CPUState *cs = CPU(dev);
 835    ARMCPU *cpu = ARM_CPU(dev);
 836    ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
 837    CPUARMState *env = &cpu->env;
 838    int pagebits;
 839    Error *local_err = NULL;
 840    bool no_aa32 = false;
 841
 842    /* If we needed to query the host kernel for the CPU features
 843     * then it's possible that might have failed in the initfn, but
 844     * this is the first point where we can report it.
 845     */
 846    if (cpu->host_cpu_probe_failed) {
 847        if (!kvm_enabled()) {
 848            error_setg(errp, "The 'host' CPU type can only be used with KVM");
 849        } else {
 850            error_setg(errp, "Failed to retrieve host CPU features");
 851        }
 852        return;
 853    }
 854
 855#ifndef CONFIG_USER_ONLY
 856    /* The NVIC and M-profile CPU are two halves of a single piece of
 857     * hardware; trying to use one without the other is a command line
 858     * error and will result in segfaults if not caught here.
 859     */
 860    if (arm_feature(env, ARM_FEATURE_M)) {
 861        if (!env->nvic) {
 862            error_setg(errp, "This board cannot be used with Cortex-M CPUs");
 863            return;
 864        }
 865    } else {
 866        if (env->nvic) {
 867            error_setg(errp, "This board can only be used with Cortex-M CPUs");
 868            return;
 869        }
 870    }
 871#endif
 872
 873    cpu_exec_realizefn(cs, &local_err);
 874    if (local_err != NULL) {
 875        error_propagate(errp, local_err);
 876        return;
 877    }
 878
 879    /* Some features automatically imply others: */
 880    if (arm_feature(env, ARM_FEATURE_V8)) {
 881        if (arm_feature(env, ARM_FEATURE_M)) {
 882            set_feature(env, ARM_FEATURE_V7);
 883        } else {
 884            set_feature(env, ARM_FEATURE_V7VE);
 885        }
 886    }
 887
 888    /*
 889     * There exist AArch64 cpus without AArch32 support.  When KVM
 890     * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
 891     * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
 892     */
 893    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 894        no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
 895    }
 896
 897    if (arm_feature(env, ARM_FEATURE_V7VE)) {
 898        /* v7 Virtualization Extensions. In real hardware this implies
 899         * EL2 and also the presence of the Security Extensions.
 900         * For QEMU, for backwards-compatibility we implement some
 901         * CPUs or CPU configs which have no actual EL2 or EL3 but do
 902         * include the various other features that V7VE implies.
 903         * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
 904         * Security Extensions is ARM_FEATURE_EL3.
 905         */
 906        assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
 907        set_feature(env, ARM_FEATURE_LPAE);
 908        set_feature(env, ARM_FEATURE_V7);
 909    }
 910    if (arm_feature(env, ARM_FEATURE_V7)) {
 911        set_feature(env, ARM_FEATURE_VAPA);
 912        set_feature(env, ARM_FEATURE_THUMB2);
 913        set_feature(env, ARM_FEATURE_MPIDR);
 914        if (!arm_feature(env, ARM_FEATURE_M)) {
 915            set_feature(env, ARM_FEATURE_V6K);
 916        } else {
 917            set_feature(env, ARM_FEATURE_V6);
 918        }
 919
 920        /* Always define VBAR for V7 CPUs even if it doesn't exist in
 921         * non-EL3 configs. This is needed by some legacy boards.
 922         */
 923        set_feature(env, ARM_FEATURE_VBAR);
 924    }
 925    if (arm_feature(env, ARM_FEATURE_V6K)) {
 926        set_feature(env, ARM_FEATURE_V6);
 927        set_feature(env, ARM_FEATURE_MVFR);
 928    }
 929    if (arm_feature(env, ARM_FEATURE_V6)) {
 930        set_feature(env, ARM_FEATURE_V5);
 931        if (!arm_feature(env, ARM_FEATURE_M)) {
 932            assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
 933            set_feature(env, ARM_FEATURE_AUXCR);
 934        }
 935    }
 936    if (arm_feature(env, ARM_FEATURE_V5)) {
 937        set_feature(env, ARM_FEATURE_V4T);
 938    }
 939    if (arm_feature(env, ARM_FEATURE_VFP4)) {
 940        set_feature(env, ARM_FEATURE_VFP3);
 941        set_feature(env, ARM_FEATURE_VFP_FP16);
 942    }
 943    if (arm_feature(env, ARM_FEATURE_VFP3)) {
 944        set_feature(env, ARM_FEATURE_VFP);
 945    }
 946    if (arm_feature(env, ARM_FEATURE_LPAE)) {
 947        set_feature(env, ARM_FEATURE_V7MP);
 948        set_feature(env, ARM_FEATURE_PXN);
 949    }
 950    if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
 951        set_feature(env, ARM_FEATURE_CBAR);
 952    }
 953    if (arm_feature(env, ARM_FEATURE_THUMB2) &&
 954        !arm_feature(env, ARM_FEATURE_M)) {
 955        set_feature(env, ARM_FEATURE_THUMB_DSP);
 956    }
 957
 958    if (arm_feature(env, ARM_FEATURE_V7) &&
 959        !arm_feature(env, ARM_FEATURE_M) &&
 960        !arm_feature(env, ARM_FEATURE_PMSA)) {
 961        /* v7VMSA drops support for the old ARMv5 tiny pages, so we
 962         * can use 4K pages.
 963         */
 964        pagebits = 12;
 965    } else {
 966        /* For CPUs which might have tiny 1K pages, or which have an
 967         * MPU and might have small region sizes, stick with 1K pages.
 968         */
 969        pagebits = 10;
 970    }
 971    if (!set_preferred_target_page_bits(pagebits)) {
 972        /* This can only ever happen for hotplugging a CPU, or if
 973         * the board code incorrectly creates a CPU which it has
 974         * promised via minimum_page_size that it will not.
 975         */
 976        error_setg(errp, "This CPU requires a smaller page size than the "
 977                   "system is using");
 978        return;
 979    }
 980
 981    /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
 982     * We don't support setting cluster ID ([16..23]) (known as Aff2
 983     * in later ARM ARM versions), or any of the higher affinity level fields,
 984     * so these bits always RAZ.
 985     */
 986    if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
 987        cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
 988                                               ARM_DEFAULT_CPUS_PER_CLUSTER);
 989    }
 990
 991    if (cpu->reset_hivecs) {
 992            cpu->reset_sctlr |= (1 << 13);
 993    }
 994
 995    if (cpu->cfgend) {
 996        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 997            cpu->reset_sctlr |= SCTLR_EE;
 998        } else {
 999            cpu->reset_sctlr |= SCTLR_B;
1000        }
1001    }
1002
1003    if (!cpu->has_el3) {
1004        /* If the has_el3 CPU property is disabled then we need to disable the
1005         * feature.
1006         */
1007        unset_feature(env, ARM_FEATURE_EL3);
1008
1009        /* Disable the security extension feature bits in the processor feature
1010         * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1011         */
1012        cpu->id_pfr1 &= ~0xf0;
1013        cpu->isar.id_aa64pfr0 &= ~0xf000;
1014    }
1015
1016    if (!cpu->has_el2) {
1017        unset_feature(env, ARM_FEATURE_EL2);
1018    }
1019
1020    if (!cpu->has_pmu) {
1021        unset_feature(env, ARM_FEATURE_PMU);
1022        cpu->id_aa64dfr0 &= ~0xf00;
1023    }
1024
1025    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1026        /* Disable the hypervisor feature bits in the processor feature
1027         * registers if we don't have EL2. These are id_pfr1[15:12] and
1028         * id_aa64pfr0_el1[11:8].
1029         */
1030        cpu->isar.id_aa64pfr0 &= ~0xf00;
1031        cpu->id_pfr1 &= ~0xf000;
1032    }
1033
1034    /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1035     * to false or by setting pmsav7-dregion to 0.
1036     */
1037    if (!cpu->has_mpu) {
1038        cpu->pmsav7_dregion = 0;
1039    }
1040    if (cpu->pmsav7_dregion == 0) {
1041        cpu->has_mpu = false;
1042    }
1043
1044    if (arm_feature(env, ARM_FEATURE_PMSA) &&
1045        arm_feature(env, ARM_FEATURE_V7)) {
1046        uint32_t nr = cpu->pmsav7_dregion;
1047
1048        if (nr > 0xff) {
1049            error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1050            return;
1051        }
1052
1053        if (nr) {
1054            if (arm_feature(env, ARM_FEATURE_V8)) {
1055                /* PMSAv8 */
1056                env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1057                env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1058                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1059                    env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1060                    env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1061                }
1062            } else {
1063                env->pmsav7.drbar = g_new0(uint32_t, nr);
1064                env->pmsav7.drsr = g_new0(uint32_t, nr);
1065                env->pmsav7.dracr = g_new0(uint32_t, nr);
1066            }
1067        }
1068    }
1069
1070    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1071        uint32_t nr = cpu->sau_sregion;
1072
1073        if (nr > 0xff) {
1074            error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1075            return;
1076        }
1077
1078        if (nr) {
1079            env->sau.rbar = g_new0(uint32_t, nr);
1080            env->sau.rlar = g_new0(uint32_t, nr);
1081        }
1082    }
1083
1084    if (arm_feature(env, ARM_FEATURE_EL3)) {
1085        set_feature(env, ARM_FEATURE_VBAR);
1086    }
1087
1088    register_cp_regs_for_features(cpu);
1089    arm_cpu_register_gdb_regs_for_features(cpu);
1090
1091    init_cpreg_list(cpu);
1092
1093#ifndef CONFIG_USER_ONLY
1094    if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1095        cs->num_ases = 2;
1096
1097        if (!cpu->secure_memory) {
1098            cpu->secure_memory = cs->memory;
1099        }
1100        cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1101                               cpu->secure_memory);
1102    } else {
1103        cs->num_ases = 1;
1104    }
1105    cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1106
1107    /* No core_count specified, default to smp_cpus. */
1108    if (cpu->core_count == -1) {
1109        cpu->core_count = smp_cpus;
1110    }
1111#endif
1112
1113    qemu_init_vcpu(cs);
1114    cpu_reset(cs);
1115
1116    acc->parent_realize(dev, errp);
1117}
1118
1119static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1120{
1121    ObjectClass *oc;
1122    char *typename;
1123    char **cpuname;
1124    const char *cpunamestr;
1125
1126    cpuname = g_strsplit(cpu_model, ",", 1);
1127    cpunamestr = cpuname[0];
1128#ifdef CONFIG_USER_ONLY
1129    /* For backwards compatibility usermode emulation allows "-cpu any",
1130     * which has the same semantics as "-cpu max".
1131     */
1132    if (!strcmp(cpunamestr, "any")) {
1133        cpunamestr = "max";
1134    }
1135#endif
1136    typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1137    oc = object_class_by_name(typename);
1138    g_strfreev(cpuname);
1139    g_free(typename);
1140    if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1141        object_class_is_abstract(oc)) {
1142        return NULL;
1143    }
1144    return oc;
1145}
1146
1147/* CPU models. These are not needed for the AArch64 linux-user build. */
1148#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1149
1150static void arm926_initfn(Object *obj)
1151{
1152    ARMCPU *cpu = ARM_CPU(obj);
1153
1154    cpu->dtb_compatible = "arm,arm926";
1155    set_feature(&cpu->env, ARM_FEATURE_V5);
1156    set_feature(&cpu->env, ARM_FEATURE_VFP);
1157    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1158    set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1159    cpu->midr = 0x41069265;
1160    cpu->reset_fpsid = 0x41011090;
1161    cpu->ctr = 0x1dd20d2;
1162    cpu->reset_sctlr = 0x00090078;
1163
1164    /*
1165     * ARMv5 does not have the ID_ISAR registers, but we can still
1166     * set the field to indicate Jazelle support within QEMU.
1167     */
1168    cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1169}
1170
1171static void arm946_initfn(Object *obj)
1172{
1173    ARMCPU *cpu = ARM_CPU(obj);
1174
1175    cpu->dtb_compatible = "arm,arm946";
1176    set_feature(&cpu->env, ARM_FEATURE_V5);
1177    set_feature(&cpu->env, ARM_FEATURE_PMSA);
1178    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1179    cpu->midr = 0x41059461;
1180    cpu->ctr = 0x0f004006;
1181    cpu->reset_sctlr = 0x00000078;
1182}
1183
1184static void arm1026_initfn(Object *obj)
1185{
1186    ARMCPU *cpu = ARM_CPU(obj);
1187
1188    cpu->dtb_compatible = "arm,arm1026";
1189    set_feature(&cpu->env, ARM_FEATURE_V5);
1190    set_feature(&cpu->env, ARM_FEATURE_VFP);
1191    set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1192    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1193    set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1194    cpu->midr = 0x4106a262;
1195    cpu->reset_fpsid = 0x410110a0;
1196    cpu->ctr = 0x1dd20d2;
1197    cpu->reset_sctlr = 0x00090078;
1198    cpu->reset_auxcr = 1;
1199
1200    /*
1201     * ARMv5 does not have the ID_ISAR registers, but we can still
1202     * set the field to indicate Jazelle support within QEMU.
1203     */
1204    cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1205
1206    {
1207        /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1208        ARMCPRegInfo ifar = {
1209            .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1210            .access = PL1_RW,
1211            .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1212            .resetvalue = 0
1213        };
1214        define_one_arm_cp_reg(cpu, &ifar);
1215    }
1216}
1217
1218static void arm1136_r2_initfn(Object *obj)
1219{
1220    ARMCPU *cpu = ARM_CPU(obj);
1221    /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1222     * older core than plain "arm1136". In particular this does not
1223     * have the v6K features.
1224     * These ID register values are correct for 1136 but may be wrong
1225     * for 1136_r2 (in particular r0p2 does not actually implement most
1226     * of the ID registers).
1227     */
1228
1229    cpu->dtb_compatible = "arm,arm1136";
1230    set_feature(&cpu->env, ARM_FEATURE_V6);
1231    set_feature(&cpu->env, ARM_FEATURE_VFP);
1232    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1233    set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1234    set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1235    cpu->midr = 0x4107b362;
1236    cpu->reset_fpsid = 0x410120b4;
1237    cpu->isar.mvfr0 = 0x11111111;
1238    cpu->isar.mvfr1 = 0x00000000;
1239    cpu->ctr = 0x1dd20d2;
1240    cpu->reset_sctlr = 0x00050078;
1241    cpu->id_pfr0 = 0x111;
1242    cpu->id_pfr1 = 0x1;
1243    cpu->id_dfr0 = 0x2;
1244    cpu->id_afr0 = 0x3;
1245    cpu->id_mmfr0 = 0x01130003;
1246    cpu->id_mmfr1 = 0x10030302;
1247    cpu->id_mmfr2 = 0x01222110;
1248    cpu->isar.id_isar0 = 0x00140011;
1249    cpu->isar.id_isar1 = 0x12002111;
1250    cpu->isar.id_isar2 = 0x11231111;
1251    cpu->isar.id_isar3 = 0x01102131;
1252    cpu->isar.id_isar4 = 0x141;
1253    cpu->reset_auxcr = 7;
1254}
1255
1256static void arm1136_initfn(Object *obj)
1257{
1258    ARMCPU *cpu = ARM_CPU(obj);
1259
1260    cpu->dtb_compatible = "arm,arm1136";
1261    set_feature(&cpu->env, ARM_FEATURE_V6K);
1262    set_feature(&cpu->env, ARM_FEATURE_V6);
1263    set_feature(&cpu->env, ARM_FEATURE_VFP);
1264    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1265    set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1266    set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1267    cpu->midr = 0x4117b363;
1268    cpu->reset_fpsid = 0x410120b4;
1269    cpu->isar.mvfr0 = 0x11111111;
1270    cpu->isar.mvfr1 = 0x00000000;
1271    cpu->ctr = 0x1dd20d2;
1272    cpu->reset_sctlr = 0x00050078;
1273    cpu->id_pfr0 = 0x111;
1274    cpu->id_pfr1 = 0x1;
1275    cpu->id_dfr0 = 0x2;
1276    cpu->id_afr0 = 0x3;
1277    cpu->id_mmfr0 = 0x01130003;
1278    cpu->id_mmfr1 = 0x10030302;
1279    cpu->id_mmfr2 = 0x01222110;
1280    cpu->isar.id_isar0 = 0x00140011;
1281    cpu->isar.id_isar1 = 0x12002111;
1282    cpu->isar.id_isar2 = 0x11231111;
1283    cpu->isar.id_isar3 = 0x01102131;
1284    cpu->isar.id_isar4 = 0x141;
1285    cpu->reset_auxcr = 7;
1286}
1287
1288static void arm1176_initfn(Object *obj)
1289{
1290    ARMCPU *cpu = ARM_CPU(obj);
1291
1292    cpu->dtb_compatible = "arm,arm1176";
1293    set_feature(&cpu->env, ARM_FEATURE_V6K);
1294    set_feature(&cpu->env, ARM_FEATURE_VFP);
1295    set_feature(&cpu->env, ARM_FEATURE_VAPA);
1296    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1297    set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1298    set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1299    set_feature(&cpu->env, ARM_FEATURE_EL3);
1300    cpu->midr = 0x410fb767;
1301    cpu->reset_fpsid = 0x410120b5;
1302    cpu->isar.mvfr0 = 0x11111111;
1303    cpu->isar.mvfr1 = 0x00000000;
1304    cpu->ctr = 0x1dd20d2;
1305    cpu->reset_sctlr = 0x00050078;
1306    cpu->id_pfr0 = 0x111;
1307    cpu->id_pfr1 = 0x11;
1308    cpu->id_dfr0 = 0x33;
1309    cpu->id_afr0 = 0;
1310    cpu->id_mmfr0 = 0x01130003;
1311    cpu->id_mmfr1 = 0x10030302;
1312    cpu->id_mmfr2 = 0x01222100;
1313    cpu->isar.id_isar0 = 0x0140011;
1314    cpu->isar.id_isar1 = 0x12002111;
1315    cpu->isar.id_isar2 = 0x11231121;
1316    cpu->isar.id_isar3 = 0x01102131;
1317    cpu->isar.id_isar4 = 0x01141;
1318    cpu->reset_auxcr = 7;
1319}
1320
1321static void arm11mpcore_initfn(Object *obj)
1322{
1323    ARMCPU *cpu = ARM_CPU(obj);
1324
1325    cpu->dtb_compatible = "arm,arm11mpcore";
1326    set_feature(&cpu->env, ARM_FEATURE_V6K);
1327    set_feature(&cpu->env, ARM_FEATURE_VFP);
1328    set_feature(&cpu->env, ARM_FEATURE_VAPA);
1329    set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1330    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1331    cpu->midr = 0x410fb022;
1332    cpu->reset_fpsid = 0x410120b4;
1333    cpu->isar.mvfr0 = 0x11111111;
1334    cpu->isar.mvfr1 = 0x00000000;
1335    cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1336    cpu->id_pfr0 = 0x111;
1337    cpu->id_pfr1 = 0x1;
1338    cpu->id_dfr0 = 0;
1339    cpu->id_afr0 = 0x2;
1340    cpu->id_mmfr0 = 0x01100103;
1341    cpu->id_mmfr1 = 0x10020302;
1342    cpu->id_mmfr2 = 0x01222000;
1343    cpu->isar.id_isar0 = 0x00100011;
1344    cpu->isar.id_isar1 = 0x12002111;
1345    cpu->isar.id_isar2 = 0x11221011;
1346    cpu->isar.id_isar3 = 0x01102131;
1347    cpu->isar.id_isar4 = 0x141;
1348    cpu->reset_auxcr = 1;
1349}
1350
1351static void cortex_m0_initfn(Object *obj)
1352{
1353    ARMCPU *cpu = ARM_CPU(obj);
1354    set_feature(&cpu->env, ARM_FEATURE_V6);
1355    set_feature(&cpu->env, ARM_FEATURE_M);
1356
1357    cpu->midr = 0x410cc200;
1358}
1359
1360static void cortex_m3_initfn(Object *obj)
1361{
1362    ARMCPU *cpu = ARM_CPU(obj);
1363    set_feature(&cpu->env, ARM_FEATURE_V7);
1364    set_feature(&cpu->env, ARM_FEATURE_M);
1365    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1366    cpu->midr = 0x410fc231;
1367    cpu->pmsav7_dregion = 8;
1368    cpu->id_pfr0 = 0x00000030;
1369    cpu->id_pfr1 = 0x00000200;
1370    cpu->id_dfr0 = 0x00100000;
1371    cpu->id_afr0 = 0x00000000;
1372    cpu->id_mmfr0 = 0x00000030;
1373    cpu->id_mmfr1 = 0x00000000;
1374    cpu->id_mmfr2 = 0x00000000;
1375    cpu->id_mmfr3 = 0x00000000;
1376    cpu->isar.id_isar0 = 0x01141110;
1377    cpu->isar.id_isar1 = 0x02111000;
1378    cpu->isar.id_isar2 = 0x21112231;
1379    cpu->isar.id_isar3 = 0x01111110;
1380    cpu->isar.id_isar4 = 0x01310102;
1381    cpu->isar.id_isar5 = 0x00000000;
1382    cpu->isar.id_isar6 = 0x00000000;
1383}
1384
1385static void cortex_m4_initfn(Object *obj)
1386{
1387    ARMCPU *cpu = ARM_CPU(obj);
1388
1389    set_feature(&cpu->env, ARM_FEATURE_V7);
1390    set_feature(&cpu->env, ARM_FEATURE_M);
1391    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1392    set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1393    cpu->midr = 0x410fc240; /* r0p0 */
1394    cpu->pmsav7_dregion = 8;
1395    cpu->id_pfr0 = 0x00000030;
1396    cpu->id_pfr1 = 0x00000200;
1397    cpu->id_dfr0 = 0x00100000;
1398    cpu->id_afr0 = 0x00000000;
1399    cpu->id_mmfr0 = 0x00000030;
1400    cpu->id_mmfr1 = 0x00000000;
1401    cpu->id_mmfr2 = 0x00000000;
1402    cpu->id_mmfr3 = 0x00000000;
1403    cpu->isar.id_isar0 = 0x01141110;
1404    cpu->isar.id_isar1 = 0x02111000;
1405    cpu->isar.id_isar2 = 0x21112231;
1406    cpu->isar.id_isar3 = 0x01111110;
1407    cpu->isar.id_isar4 = 0x01310102;
1408    cpu->isar.id_isar5 = 0x00000000;
1409    cpu->isar.id_isar6 = 0x00000000;
1410}
1411
1412static void cortex_m33_initfn(Object *obj)
1413{
1414    ARMCPU *cpu = ARM_CPU(obj);
1415
1416    set_feature(&cpu->env, ARM_FEATURE_V8);
1417    set_feature(&cpu->env, ARM_FEATURE_M);
1418    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1419    set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1420    set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1421    cpu->midr = 0x410fd213; /* r0p3 */
1422    cpu->pmsav7_dregion = 16;
1423    cpu->sau_sregion = 8;
1424    cpu->id_pfr0 = 0x00000030;
1425    cpu->id_pfr1 = 0x00000210;
1426    cpu->id_dfr0 = 0x00200000;
1427    cpu->id_afr0 = 0x00000000;
1428    cpu->id_mmfr0 = 0x00101F40;
1429    cpu->id_mmfr1 = 0x00000000;
1430    cpu->id_mmfr2 = 0x01000000;
1431    cpu->id_mmfr3 = 0x00000000;
1432    cpu->isar.id_isar0 = 0x01101110;
1433    cpu->isar.id_isar1 = 0x02212000;
1434    cpu->isar.id_isar2 = 0x20232232;
1435    cpu->isar.id_isar3 = 0x01111131;
1436    cpu->isar.id_isar4 = 0x01310132;
1437    cpu->isar.id_isar5 = 0x00000000;
1438    cpu->isar.id_isar6 = 0x00000000;
1439    cpu->clidr = 0x00000000;
1440    cpu->ctr = 0x8000c000;
1441}
1442
1443static void arm_v7m_class_init(ObjectClass *oc, void *data)
1444{
1445    CPUClass *cc = CPU_CLASS(oc);
1446
1447#ifndef CONFIG_USER_ONLY
1448    cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1449#endif
1450
1451    cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1452}
1453
1454static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1455    /* Dummy the TCM region regs for the moment */
1456    { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1457      .access = PL1_RW, .type = ARM_CP_CONST },
1458    { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1459      .access = PL1_RW, .type = ARM_CP_CONST },
1460    { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1461      .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1462    REGINFO_SENTINEL
1463};
1464
1465static void cortex_r5_initfn(Object *obj)
1466{
1467    ARMCPU *cpu = ARM_CPU(obj);
1468
1469    set_feature(&cpu->env, ARM_FEATURE_V7);
1470    set_feature(&cpu->env, ARM_FEATURE_V7MP);
1471    set_feature(&cpu->env, ARM_FEATURE_PMSA);
1472    cpu->midr = 0x411fc153; /* r1p3 */
1473    cpu->id_pfr0 = 0x0131;
1474    cpu->id_pfr1 = 0x001;
1475    cpu->id_dfr0 = 0x010400;
1476    cpu->id_afr0 = 0x0;
1477    cpu->id_mmfr0 = 0x0210030;
1478    cpu->id_mmfr1 = 0x00000000;
1479    cpu->id_mmfr2 = 0x01200000;
1480    cpu->id_mmfr3 = 0x0211;
1481    cpu->isar.id_isar0 = 0x02101111;
1482    cpu->isar.id_isar1 = 0x13112111;
1483    cpu->isar.id_isar2 = 0x21232141;
1484    cpu->isar.id_isar3 = 0x01112131;
1485    cpu->isar.id_isar4 = 0x0010142;
1486    cpu->isar.id_isar5 = 0x0;
1487    cpu->isar.id_isar6 = 0x0;
1488    cpu->mp_is_up = true;
1489    cpu->pmsav7_dregion = 16;
1490    define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1491}
1492
1493static void cortex_r5f_initfn(Object *obj)
1494{
1495    ARMCPU *cpu = ARM_CPU(obj);
1496
1497    cortex_r5_initfn(obj);
1498    set_feature(&cpu->env, ARM_FEATURE_VFP3);
1499}
1500
1501static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1502    { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1503      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1504    { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1505      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1506    REGINFO_SENTINEL
1507};
1508
1509static void cortex_a8_initfn(Object *obj)
1510{
1511    ARMCPU *cpu = ARM_CPU(obj);
1512
1513    cpu->dtb_compatible = "arm,cortex-a8";
1514    set_feature(&cpu->env, ARM_FEATURE_V7);
1515    set_feature(&cpu->env, ARM_FEATURE_VFP3);
1516    set_feature(&cpu->env, ARM_FEATURE_NEON);
1517    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1518    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1519    set_feature(&cpu->env, ARM_FEATURE_EL3);
1520    cpu->midr = 0x410fc080;
1521    cpu->reset_fpsid = 0x410330c0;
1522    cpu->isar.mvfr0 = 0x11110222;
1523    cpu->isar.mvfr1 = 0x00011111;
1524    cpu->ctr = 0x82048004;
1525    cpu->reset_sctlr = 0x00c50078;
1526    cpu->id_pfr0 = 0x1031;
1527    cpu->id_pfr1 = 0x11;
1528    cpu->id_dfr0 = 0x400;
1529    cpu->id_afr0 = 0;
1530    cpu->id_mmfr0 = 0x31100003;
1531    cpu->id_mmfr1 = 0x20000000;
1532    cpu->id_mmfr2 = 0x01202000;
1533    cpu->id_mmfr3 = 0x11;
1534    cpu->isar.id_isar0 = 0x00101111;
1535    cpu->isar.id_isar1 = 0x12112111;
1536    cpu->isar.id_isar2 = 0x21232031;
1537    cpu->isar.id_isar3 = 0x11112131;
1538    cpu->isar.id_isar4 = 0x00111142;
1539    cpu->dbgdidr = 0x15141000;
1540    cpu->clidr = (1 << 27) | (2 << 24) | 3;
1541    cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1542    cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1543    cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1544    cpu->reset_auxcr = 2;
1545    define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1546}
1547
1548static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1549    /* power_control should be set to maximum latency. Again,
1550     * default to 0 and set by private hook
1551     */
1552    { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1553      .access = PL1_RW, .resetvalue = 0,
1554      .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1555    { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1556      .access = PL1_RW, .resetvalue = 0,
1557      .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1558    { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1559      .access = PL1_RW, .resetvalue = 0,
1560      .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1561    { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1562      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1563    /* TLB lockdown control */
1564    { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1565      .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1566    { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1567      .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1568    { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1569      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1570    { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1571      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1572    { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1573      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1574    REGINFO_SENTINEL
1575};
1576
1577static void cortex_a9_initfn(Object *obj)
1578{
1579    ARMCPU *cpu = ARM_CPU(obj);
1580
1581    cpu->dtb_compatible = "arm,cortex-a9";
1582    set_feature(&cpu->env, ARM_FEATURE_V7);
1583    set_feature(&cpu->env, ARM_FEATURE_VFP3);
1584    set_feature(&cpu->env, ARM_FEATURE_VFP_FP16);
1585    set_feature(&cpu->env, ARM_FEATURE_NEON);
1586    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1587    set_feature(&cpu->env, ARM_FEATURE_EL3);
1588    /* Note that A9 supports the MP extensions even for
1589     * A9UP and single-core A9MP (which are both different
1590     * and valid configurations; we don't model A9UP).
1591     */
1592    set_feature(&cpu->env, ARM_FEATURE_V7MP);
1593    set_feature(&cpu->env, ARM_FEATURE_CBAR);
1594    cpu->midr = 0x410fc090;
1595    cpu->reset_fpsid = 0x41033090;
1596    cpu->isar.mvfr0 = 0x11110222;
1597    cpu->isar.mvfr1 = 0x01111111;
1598    cpu->ctr = 0x80038003;
1599    cpu->reset_sctlr = 0x00c50078;
1600    cpu->id_pfr0 = 0x1031;
1601    cpu->id_pfr1 = 0x11;
1602    cpu->id_dfr0 = 0x000;
1603    cpu->id_afr0 = 0;
1604    cpu->id_mmfr0 = 0x00100103;
1605    cpu->id_mmfr1 = 0x20000000;
1606    cpu->id_mmfr2 = 0x01230000;
1607    cpu->id_mmfr3 = 0x00002111;
1608    cpu->isar.id_isar0 = 0x00101111;
1609    cpu->isar.id_isar1 = 0x13112111;
1610    cpu->isar.id_isar2 = 0x21232041;
1611    cpu->isar.id_isar3 = 0x11112131;
1612    cpu->isar.id_isar4 = 0x00111142;
1613    cpu->dbgdidr = 0x35141000;
1614    cpu->clidr = (1 << 27) | (1 << 24) | 3;
1615    cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1616    cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1617    define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1618}
1619
1620#ifndef CONFIG_USER_ONLY
1621static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1622{
1623    /* Linux wants the number of processors from here.
1624     * Might as well set the interrupt-controller bit too.
1625     */
1626    return ((smp_cpus - 1) << 24) | (1 << 23);
1627}
1628#endif
1629
1630static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1631#ifndef CONFIG_USER_ONLY
1632    { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1633      .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1634      .writefn = arm_cp_write_ignore, },
1635#endif
1636    { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1637      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1638    REGINFO_SENTINEL
1639};
1640
1641static void cortex_a7_initfn(Object *obj)
1642{
1643    ARMCPU *cpu = ARM_CPU(obj);
1644
1645    cpu->dtb_compatible = "arm,cortex-a7";
1646    set_feature(&cpu->env, ARM_FEATURE_V7VE);
1647    set_feature(&cpu->env, ARM_FEATURE_VFP4);
1648    set_feature(&cpu->env, ARM_FEATURE_NEON);
1649    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1650    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1651    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1652    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1653    set_feature(&cpu->env, ARM_FEATURE_EL2);
1654    set_feature(&cpu->env, ARM_FEATURE_EL3);
1655    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1656    cpu->midr = 0x410fc075;
1657    cpu->reset_fpsid = 0x41023075;
1658    cpu->isar.mvfr0 = 0x10110222;
1659    cpu->isar.mvfr1 = 0x11111111;
1660    cpu->ctr = 0x84448003;
1661    cpu->reset_sctlr = 0x00c50078;
1662    cpu->id_pfr0 = 0x00001131;
1663    cpu->id_pfr1 = 0x00011011;
1664    cpu->id_dfr0 = 0x02010555;
1665    cpu->pmceid0 = 0x00000000;
1666    cpu->pmceid1 = 0x00000000;
1667    cpu->id_afr0 = 0x00000000;
1668    cpu->id_mmfr0 = 0x10101105;
1669    cpu->id_mmfr1 = 0x40000000;
1670    cpu->id_mmfr2 = 0x01240000;
1671    cpu->id_mmfr3 = 0x02102211;
1672    /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1673     * table 4-41 gives 0x02101110, which includes the arm div insns.
1674     */
1675    cpu->isar.id_isar0 = 0x02101110;
1676    cpu->isar.id_isar1 = 0x13112111;
1677    cpu->isar.id_isar2 = 0x21232041;
1678    cpu->isar.id_isar3 = 0x11112131;
1679    cpu->isar.id_isar4 = 0x10011142;
1680    cpu->dbgdidr = 0x3515f005;
1681    cpu->clidr = 0x0a200023;
1682    cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1683    cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1684    cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1685    define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1686}
1687
1688static void cortex_a15_initfn(Object *obj)
1689{
1690    ARMCPU *cpu = ARM_CPU(obj);
1691
1692    cpu->dtb_compatible = "arm,cortex-a15";
1693    set_feature(&cpu->env, ARM_FEATURE_V7VE);
1694    set_feature(&cpu->env, ARM_FEATURE_VFP4);
1695    set_feature(&cpu->env, ARM_FEATURE_NEON);
1696    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1697    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1698    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1699    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1700    set_feature(&cpu->env, ARM_FEATURE_EL2);
1701    set_feature(&cpu->env, ARM_FEATURE_EL3);
1702    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1703    cpu->midr = 0x412fc0f1;
1704    cpu->reset_fpsid = 0x410430f0;
1705    cpu->isar.mvfr0 = 0x10110222;
1706    cpu->isar.mvfr1 = 0x11111111;
1707    cpu->ctr = 0x8444c004;
1708    cpu->reset_sctlr = 0x00c50078;
1709    cpu->id_pfr0 = 0x00001131;
1710    cpu->id_pfr1 = 0x00011011;
1711    cpu->id_dfr0 = 0x02010555;
1712    cpu->pmceid0 = 0x0000000;
1713    cpu->pmceid1 = 0x00000000;
1714    cpu->id_afr0 = 0x00000000;
1715    cpu->id_mmfr0 = 0x10201105;
1716    cpu->id_mmfr1 = 0x20000000;
1717    cpu->id_mmfr2 = 0x01240000;
1718    cpu->id_mmfr3 = 0x02102211;
1719    cpu->isar.id_isar0 = 0x02101110;
1720    cpu->isar.id_isar1 = 0x13112111;
1721    cpu->isar.id_isar2 = 0x21232041;
1722    cpu->isar.id_isar3 = 0x11112131;
1723    cpu->isar.id_isar4 = 0x10011142;
1724    cpu->dbgdidr = 0x3515f021;
1725    cpu->clidr = 0x0a200023;
1726    cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1727    cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1728    cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1729    define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1730}
1731
1732static void ti925t_initfn(Object *obj)
1733{
1734    ARMCPU *cpu = ARM_CPU(obj);
1735    set_feature(&cpu->env, ARM_FEATURE_V4T);
1736    set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1737    cpu->midr = ARM_CPUID_TI925T;
1738    cpu->ctr = 0x5109149;
1739    cpu->reset_sctlr = 0x00000070;
1740}
1741
1742static void sa1100_initfn(Object *obj)
1743{
1744    ARMCPU *cpu = ARM_CPU(obj);
1745
1746    cpu->dtb_compatible = "intel,sa1100";
1747    set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1748    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1749    cpu->midr = 0x4401A11B;
1750    cpu->reset_sctlr = 0x00000070;
1751}
1752
1753static void sa1110_initfn(Object *obj)
1754{
1755    ARMCPU *cpu = ARM_CPU(obj);
1756    set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1757    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1758    cpu->midr = 0x6901B119;
1759    cpu->reset_sctlr = 0x00000070;
1760}
1761
1762static void pxa250_initfn(Object *obj)
1763{
1764    ARMCPU *cpu = ARM_CPU(obj);
1765
1766    cpu->dtb_compatible = "marvell,xscale";
1767    set_feature(&cpu->env, ARM_FEATURE_V5);
1768    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1769    cpu->midr = 0x69052100;
1770    cpu->ctr = 0xd172172;
1771    cpu->reset_sctlr = 0x00000078;
1772}
1773
1774static void pxa255_initfn(Object *obj)
1775{
1776    ARMCPU *cpu = ARM_CPU(obj);
1777
1778    cpu->dtb_compatible = "marvell,xscale";
1779    set_feature(&cpu->env, ARM_FEATURE_V5);
1780    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1781    cpu->midr = 0x69052d00;
1782    cpu->ctr = 0xd172172;
1783    cpu->reset_sctlr = 0x00000078;
1784}
1785
1786static void pxa260_initfn(Object *obj)
1787{
1788    ARMCPU *cpu = ARM_CPU(obj);
1789
1790    cpu->dtb_compatible = "marvell,xscale";
1791    set_feature(&cpu->env, ARM_FEATURE_V5);
1792    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1793    cpu->midr = 0x69052903;
1794    cpu->ctr = 0xd172172;
1795    cpu->reset_sctlr = 0x00000078;
1796}
1797
1798static void pxa261_initfn(Object *obj)
1799{
1800    ARMCPU *cpu = ARM_CPU(obj);
1801
1802    cpu->dtb_compatible = "marvell,xscale";
1803    set_feature(&cpu->env, ARM_FEATURE_V5);
1804    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1805    cpu->midr = 0x69052d05;
1806    cpu->ctr = 0xd172172;
1807    cpu->reset_sctlr = 0x00000078;
1808}
1809
1810static void pxa262_initfn(Object *obj)
1811{
1812    ARMCPU *cpu = ARM_CPU(obj);
1813
1814    cpu->dtb_compatible = "marvell,xscale";
1815    set_feature(&cpu->env, ARM_FEATURE_V5);
1816    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1817    cpu->midr = 0x69052d06;
1818    cpu->ctr = 0xd172172;
1819    cpu->reset_sctlr = 0x00000078;
1820}
1821
1822static void pxa270a0_initfn(Object *obj)
1823{
1824    ARMCPU *cpu = ARM_CPU(obj);
1825
1826    cpu->dtb_compatible = "marvell,xscale";
1827    set_feature(&cpu->env, ARM_FEATURE_V5);
1828    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1829    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1830    cpu->midr = 0x69054110;
1831    cpu->ctr = 0xd172172;
1832    cpu->reset_sctlr = 0x00000078;
1833}
1834
1835static void pxa270a1_initfn(Object *obj)
1836{
1837    ARMCPU *cpu = ARM_CPU(obj);
1838
1839    cpu->dtb_compatible = "marvell,xscale";
1840    set_feature(&cpu->env, ARM_FEATURE_V5);
1841    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1842    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1843    cpu->midr = 0x69054111;
1844    cpu->ctr = 0xd172172;
1845    cpu->reset_sctlr = 0x00000078;
1846}
1847
1848static void pxa270b0_initfn(Object *obj)
1849{
1850    ARMCPU *cpu = ARM_CPU(obj);
1851
1852    cpu->dtb_compatible = "marvell,xscale";
1853    set_feature(&cpu->env, ARM_FEATURE_V5);
1854    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1855    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1856    cpu->midr = 0x69054112;
1857    cpu->ctr = 0xd172172;
1858    cpu->reset_sctlr = 0x00000078;
1859}
1860
1861static void pxa270b1_initfn(Object *obj)
1862{
1863    ARMCPU *cpu = ARM_CPU(obj);
1864
1865    cpu->dtb_compatible = "marvell,xscale";
1866    set_feature(&cpu->env, ARM_FEATURE_V5);
1867    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1868    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1869    cpu->midr = 0x69054113;
1870    cpu->ctr = 0xd172172;
1871    cpu->reset_sctlr = 0x00000078;
1872}
1873
1874static void pxa270c0_initfn(Object *obj)
1875{
1876    ARMCPU *cpu = ARM_CPU(obj);
1877
1878    cpu->dtb_compatible = "marvell,xscale";
1879    set_feature(&cpu->env, ARM_FEATURE_V5);
1880    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1881    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1882    cpu->midr = 0x69054114;
1883    cpu->ctr = 0xd172172;
1884    cpu->reset_sctlr = 0x00000078;
1885}
1886
1887static void pxa270c5_initfn(Object *obj)
1888{
1889    ARMCPU *cpu = ARM_CPU(obj);
1890
1891    cpu->dtb_compatible = "marvell,xscale";
1892    set_feature(&cpu->env, ARM_FEATURE_V5);
1893    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1894    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1895    cpu->midr = 0x69054117;
1896    cpu->ctr = 0xd172172;
1897    cpu->reset_sctlr = 0x00000078;
1898}
1899
1900#ifndef TARGET_AARCH64
1901/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1902 * otherwise, a CPU with as many features enabled as our emulation supports.
1903 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1904 * this only needs to handle 32 bits.
1905 */
1906static void arm_max_initfn(Object *obj)
1907{
1908    ARMCPU *cpu = ARM_CPU(obj);
1909
1910    if (kvm_enabled()) {
1911        kvm_arm_set_cpu_features_from_host(cpu);
1912    } else {
1913        cortex_a15_initfn(obj);
1914#ifdef CONFIG_USER_ONLY
1915        /* We don't set these in system emulation mode for the moment,
1916         * since we don't correctly set (all of) the ID registers to
1917         * advertise them.
1918         */
1919        set_feature(&cpu->env, ARM_FEATURE_V8);
1920        {
1921            uint32_t t;
1922
1923            t = cpu->isar.id_isar5;
1924            t = FIELD_DP32(t, ID_ISAR5, AES, 2);
1925            t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
1926            t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
1927            t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
1928            t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
1929            t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
1930            cpu->isar.id_isar5 = t;
1931
1932            t = cpu->isar.id_isar6;
1933            t = FIELD_DP32(t, ID_ISAR6, DP, 1);
1934            cpu->isar.id_isar6 = t;
1935        }
1936#endif
1937    }
1938}
1939#endif
1940
1941#endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
1942
1943typedef struct ARMCPUInfo {
1944    const char *name;
1945    void (*initfn)(Object *obj);
1946    void (*class_init)(ObjectClass *oc, void *data);
1947} ARMCPUInfo;
1948
1949static const ARMCPUInfo arm_cpus[] = {
1950#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1951    { .name = "arm926",      .initfn = arm926_initfn },
1952    { .name = "arm946",      .initfn = arm946_initfn },
1953    { .name = "arm1026",     .initfn = arm1026_initfn },
1954    /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
1955     * older core than plain "arm1136". In particular this does not
1956     * have the v6K features.
1957     */
1958    { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
1959    { .name = "arm1136",     .initfn = arm1136_initfn },
1960    { .name = "arm1176",     .initfn = arm1176_initfn },
1961    { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
1962    { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
1963                             .class_init = arm_v7m_class_init },
1964    { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
1965                             .class_init = arm_v7m_class_init },
1966    { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
1967                             .class_init = arm_v7m_class_init },
1968    { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
1969                             .class_init = arm_v7m_class_init },
1970    { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
1971    { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
1972    { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
1973    { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
1974    { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
1975    { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
1976    { .name = "ti925t",      .initfn = ti925t_initfn },
1977    { .name = "sa1100",      .initfn = sa1100_initfn },
1978    { .name = "sa1110",      .initfn = sa1110_initfn },
1979    { .name = "pxa250",      .initfn = pxa250_initfn },
1980    { .name = "pxa255",      .initfn = pxa255_initfn },
1981    { .name = "pxa260",      .initfn = pxa260_initfn },
1982    { .name = "pxa261",      .initfn = pxa261_initfn },
1983    { .name = "pxa262",      .initfn = pxa262_initfn },
1984    /* "pxa270" is an alias for "pxa270-a0" */
1985    { .name = "pxa270",      .initfn = pxa270a0_initfn },
1986    { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
1987    { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
1988    { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
1989    { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
1990    { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
1991    { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
1992#ifndef TARGET_AARCH64
1993    { .name = "max",         .initfn = arm_max_initfn },
1994#endif
1995#ifdef CONFIG_USER_ONLY
1996    { .name = "any",         .initfn = arm_max_initfn },
1997#endif
1998#endif
1999    { .name = NULL }
2000};
2001
2002static Property arm_cpu_properties[] = {
2003    DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2004    DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2005    DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2006    DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2007                        mp_affinity, ARM64_AFFINITY_INVALID),
2008    DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2009    DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2010    DEFINE_PROP_END_OF_LIST()
2011};
2012
2013#ifdef CONFIG_USER_ONLY
2014static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
2015                                    int rw, int mmu_idx)
2016{
2017    ARMCPU *cpu = ARM_CPU(cs);
2018    CPUARMState *env = &cpu->env;
2019
2020    env->exception.vaddress = address;
2021    if (rw == 2) {
2022        cs->exception_index = EXCP_PREFETCH_ABORT;
2023    } else {
2024        cs->exception_index = EXCP_DATA_ABORT;
2025    }
2026    return 1;
2027}
2028#endif
2029
2030static gchar *arm_gdb_arch_name(CPUState *cs)
2031{
2032    ARMCPU *cpu = ARM_CPU(cs);
2033    CPUARMState *env = &cpu->env;
2034
2035    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2036        return g_strdup("iwmmxt");
2037    }
2038    return g_strdup("arm");
2039}
2040
2041static void arm_cpu_class_init(ObjectClass *oc, void *data)
2042{
2043    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2044    CPUClass *cc = CPU_CLASS(acc);
2045    DeviceClass *dc = DEVICE_CLASS(oc);
2046
2047    device_class_set_parent_realize(dc, arm_cpu_realizefn,
2048                                    &acc->parent_realize);
2049    dc->props = arm_cpu_properties;
2050
2051    acc->parent_reset = cc->reset;
2052    cc->reset = arm_cpu_reset;
2053
2054    cc->class_by_name = arm_cpu_class_by_name;
2055    cc->has_work = arm_cpu_has_work;
2056    cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2057    cc->dump_state = arm_cpu_dump_state;
2058    cc->set_pc = arm_cpu_set_pc;
2059    cc->gdb_read_register = arm_cpu_gdb_read_register;
2060    cc->gdb_write_register = arm_cpu_gdb_write_register;
2061#ifdef CONFIG_USER_ONLY
2062    cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
2063#else
2064    cc->do_interrupt = arm_cpu_do_interrupt;
2065    cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2066    cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2067    cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2068    cc->asidx_from_attrs = arm_asidx_from_attrs;
2069    cc->vmsd = &vmstate_arm_cpu;
2070    cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2071    cc->write_elf64_note = arm_cpu_write_elf64_note;
2072    cc->write_elf32_note = arm_cpu_write_elf32_note;
2073#endif
2074    cc->gdb_num_core_regs = 26;
2075    cc->gdb_core_xml_file = "arm-core.xml";
2076    cc->gdb_arch_name = arm_gdb_arch_name;
2077    cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2078    cc->gdb_stop_before_watchpoint = true;
2079    cc->debug_excp_handler = arm_debug_excp_handler;
2080    cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2081#if !defined(CONFIG_USER_ONLY)
2082    cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2083#endif
2084
2085    cc->disas_set_info = arm_disas_set_info;
2086#ifdef CONFIG_TCG
2087    cc->tcg_initialize = arm_translate_init;
2088#endif
2089}
2090
2091#ifdef CONFIG_KVM
2092static void arm_host_initfn(Object *obj)
2093{
2094    ARMCPU *cpu = ARM_CPU(obj);
2095
2096    kvm_arm_set_cpu_features_from_host(cpu);
2097}
2098
2099static const TypeInfo host_arm_cpu_type_info = {
2100    .name = TYPE_ARM_HOST_CPU,
2101#ifdef TARGET_AARCH64
2102    .parent = TYPE_AARCH64_CPU,
2103#else
2104    .parent = TYPE_ARM_CPU,
2105#endif
2106    .instance_init = arm_host_initfn,
2107};
2108
2109#endif
2110
2111static void cpu_register(const ARMCPUInfo *info)
2112{
2113    TypeInfo type_info = {
2114        .parent = TYPE_ARM_CPU,
2115        .instance_size = sizeof(ARMCPU),
2116        .instance_init = info->initfn,
2117        .class_size = sizeof(ARMCPUClass),
2118        .class_init = info->class_init,
2119    };
2120
2121    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2122    type_register(&type_info);
2123    g_free((void *)type_info.name);
2124}
2125
2126static const TypeInfo arm_cpu_type_info = {
2127    .name = TYPE_ARM_CPU,
2128    .parent = TYPE_CPU,
2129    .instance_size = sizeof(ARMCPU),
2130    .instance_init = arm_cpu_initfn,
2131    .instance_post_init = arm_cpu_post_init,
2132    .instance_finalize = arm_cpu_finalizefn,
2133    .abstract = true,
2134    .class_size = sizeof(ARMCPUClass),
2135    .class_init = arm_cpu_class_init,
2136};
2137
2138static const TypeInfo idau_interface_type_info = {
2139    .name = TYPE_IDAU_INTERFACE,
2140    .parent = TYPE_INTERFACE,
2141    .class_size = sizeof(IDAUInterfaceClass),
2142};
2143
2144static void arm_cpu_register_types(void)
2145{
2146    const ARMCPUInfo *info = arm_cpus;
2147
2148    type_register_static(&arm_cpu_type_info);
2149    type_register_static(&idau_interface_type_info);
2150
2151    while (info->name) {
2152        cpu_register(info);
2153        info++;
2154    }
2155
2156#ifdef CONFIG_KVM
2157    type_register_static(&host_arm_cpu_type_info);
2158#endif
2159}
2160
2161type_init(arm_cpu_register_types)
2162