qemu/block/nvme.c
<<
>>
Prefs
   1/*
   2 * NVMe block driver based on vfio
   3 *
   4 * Copyright 2016 - 2018 Red Hat, Inc.
   5 *
   6 * Authors:
   7 *   Fam Zheng <famz@redhat.com>
   8 *   Paolo Bonzini <pbonzini@redhat.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 */
  13
  14#include "qemu/osdep.h"
  15#include <linux/vfio.h>
  16#include "qapi/error.h"
  17#include "qapi/qmp/qdict.h"
  18#include "qapi/qmp/qstring.h"
  19#include "qemu/error-report.h"
  20#include "qemu/cutils.h"
  21#include "qemu/option.h"
  22#include "qemu/vfio-helpers.h"
  23#include "block/block_int.h"
  24#include "trace.h"
  25
  26#include "block/nvme.h"
  27
  28#define NVME_SQ_ENTRY_BYTES 64
  29#define NVME_CQ_ENTRY_BYTES 16
  30#define NVME_QUEUE_SIZE 128
  31#define NVME_BAR_SIZE 8192
  32
  33typedef struct {
  34    int32_t  head, tail;
  35    uint8_t  *queue;
  36    uint64_t iova;
  37    /* Hardware MMIO register */
  38    volatile uint32_t *doorbell;
  39} NVMeQueue;
  40
  41typedef struct {
  42    BlockCompletionFunc *cb;
  43    void *opaque;
  44    int cid;
  45    void *prp_list_page;
  46    uint64_t prp_list_iova;
  47    bool busy;
  48} NVMeRequest;
  49
  50typedef struct {
  51    CoQueue     free_req_queue;
  52    QemuMutex   lock;
  53
  54    /* Fields protected by BQL */
  55    int         index;
  56    uint8_t     *prp_list_pages;
  57
  58    /* Fields protected by @lock */
  59    NVMeQueue   sq, cq;
  60    int         cq_phase;
  61    NVMeRequest reqs[NVME_QUEUE_SIZE];
  62    bool        busy;
  63    int         need_kick;
  64    int         inflight;
  65} NVMeQueuePair;
  66
  67/* Memory mapped registers */
  68typedef volatile struct {
  69    uint64_t cap;
  70    uint32_t vs;
  71    uint32_t intms;
  72    uint32_t intmc;
  73    uint32_t cc;
  74    uint32_t reserved0;
  75    uint32_t csts;
  76    uint32_t nssr;
  77    uint32_t aqa;
  78    uint64_t asq;
  79    uint64_t acq;
  80    uint32_t cmbloc;
  81    uint32_t cmbsz;
  82    uint8_t  reserved1[0xec0];
  83    uint8_t  cmd_set_specfic[0x100];
  84    uint32_t doorbells[];
  85} NVMeRegs;
  86
  87QEMU_BUILD_BUG_ON(offsetof(NVMeRegs, doorbells) != 0x1000);
  88
  89typedef struct {
  90    AioContext *aio_context;
  91    QEMUVFIOState *vfio;
  92    NVMeRegs *regs;
  93    /* The submission/completion queue pairs.
  94     * [0]: admin queue.
  95     * [1..]: io queues.
  96     */
  97    NVMeQueuePair **queues;
  98    int nr_queues;
  99    size_t page_size;
 100    /* How many uint32_t elements does each doorbell entry take. */
 101    size_t doorbell_scale;
 102    bool write_cache_supported;
 103    EventNotifier irq_notifier;
 104    uint64_t nsze; /* Namespace size reported by identify command */
 105    int nsid;      /* The namespace id to read/write data. */
 106    uint64_t max_transfer;
 107    bool plugged;
 108
 109    CoMutex dma_map_lock;
 110    CoQueue dma_flush_queue;
 111
 112    /* Total size of mapped qiov, accessed under dma_map_lock */
 113    int dma_map_count;
 114
 115    /* PCI address (required for nvme_refresh_filename()) */
 116    char *device;
 117} BDRVNVMeState;
 118
 119#define NVME_BLOCK_OPT_DEVICE "device"
 120#define NVME_BLOCK_OPT_NAMESPACE "namespace"
 121
 122static QemuOptsList runtime_opts = {
 123    .name = "nvme",
 124    .head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
 125    .desc = {
 126        {
 127            .name = NVME_BLOCK_OPT_DEVICE,
 128            .type = QEMU_OPT_STRING,
 129            .help = "NVMe PCI device address",
 130        },
 131        {
 132            .name = NVME_BLOCK_OPT_NAMESPACE,
 133            .type = QEMU_OPT_NUMBER,
 134            .help = "NVMe namespace",
 135        },
 136        { /* end of list */ }
 137    },
 138};
 139
 140static void nvme_init_queue(BlockDriverState *bs, NVMeQueue *q,
 141                            int nentries, int entry_bytes, Error **errp)
 142{
 143    BDRVNVMeState *s = bs->opaque;
 144    size_t bytes;
 145    int r;
 146
 147    bytes = ROUND_UP(nentries * entry_bytes, s->page_size);
 148    q->head = q->tail = 0;
 149    q->queue = qemu_try_blockalign0(bs, bytes);
 150
 151    if (!q->queue) {
 152        error_setg(errp, "Cannot allocate queue");
 153        return;
 154    }
 155    r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
 156    if (r) {
 157        error_setg(errp, "Cannot map queue");
 158    }
 159}
 160
 161static void nvme_free_queue_pair(BlockDriverState *bs, NVMeQueuePair *q)
 162{
 163    qemu_vfree(q->prp_list_pages);
 164    qemu_vfree(q->sq.queue);
 165    qemu_vfree(q->cq.queue);
 166    qemu_mutex_destroy(&q->lock);
 167    g_free(q);
 168}
 169
 170static void nvme_free_req_queue_cb(void *opaque)
 171{
 172    NVMeQueuePair *q = opaque;
 173
 174    qemu_mutex_lock(&q->lock);
 175    while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
 176        /* Retry all pending requests */
 177    }
 178    qemu_mutex_unlock(&q->lock);
 179}
 180
 181static NVMeQueuePair *nvme_create_queue_pair(BlockDriverState *bs,
 182                                             int idx, int size,
 183                                             Error **errp)
 184{
 185    int i, r;
 186    BDRVNVMeState *s = bs->opaque;
 187    Error *local_err = NULL;
 188    NVMeQueuePair *q = g_new0(NVMeQueuePair, 1);
 189    uint64_t prp_list_iova;
 190
 191    qemu_mutex_init(&q->lock);
 192    q->index = idx;
 193    qemu_co_queue_init(&q->free_req_queue);
 194    q->prp_list_pages = qemu_blockalign0(bs, s->page_size * NVME_QUEUE_SIZE);
 195    r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages,
 196                          s->page_size * NVME_QUEUE_SIZE,
 197                          false, &prp_list_iova);
 198    if (r) {
 199        goto fail;
 200    }
 201    for (i = 0; i < NVME_QUEUE_SIZE; i++) {
 202        NVMeRequest *req = &q->reqs[i];
 203        req->cid = i + 1;
 204        req->prp_list_page = q->prp_list_pages + i * s->page_size;
 205        req->prp_list_iova = prp_list_iova + i * s->page_size;
 206    }
 207    nvme_init_queue(bs, &q->sq, size, NVME_SQ_ENTRY_BYTES, &local_err);
 208    if (local_err) {
 209        error_propagate(errp, local_err);
 210        goto fail;
 211    }
 212    q->sq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale];
 213
 214    nvme_init_queue(bs, &q->cq, size, NVME_CQ_ENTRY_BYTES, &local_err);
 215    if (local_err) {
 216        error_propagate(errp, local_err);
 217        goto fail;
 218    }
 219    q->cq.doorbell = &s->regs->doorbells[idx * 2 * s->doorbell_scale + 1];
 220
 221    return q;
 222fail:
 223    nvme_free_queue_pair(bs, q);
 224    return NULL;
 225}
 226
 227/* With q->lock */
 228static void nvme_kick(BDRVNVMeState *s, NVMeQueuePair *q)
 229{
 230    if (s->plugged || !q->need_kick) {
 231        return;
 232    }
 233    trace_nvme_kick(s, q->index);
 234    assert(!(q->sq.tail & 0xFF00));
 235    /* Fence the write to submission queue entry before notifying the device. */
 236    smp_wmb();
 237    *q->sq.doorbell = cpu_to_le32(q->sq.tail);
 238    q->inflight += q->need_kick;
 239    q->need_kick = 0;
 240}
 241
 242/* Find a free request element if any, otherwise:
 243 * a) if in coroutine context, try to wait for one to become available;
 244 * b) if not in coroutine, return NULL;
 245 */
 246static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
 247{
 248    int i;
 249    NVMeRequest *req = NULL;
 250
 251    qemu_mutex_lock(&q->lock);
 252    while (q->inflight + q->need_kick > NVME_QUEUE_SIZE - 2) {
 253        /* We have to leave one slot empty as that is the full queue case (head
 254         * == tail + 1). */
 255        if (qemu_in_coroutine()) {
 256            trace_nvme_free_req_queue_wait(q);
 257            qemu_co_queue_wait(&q->free_req_queue, &q->lock);
 258        } else {
 259            qemu_mutex_unlock(&q->lock);
 260            return NULL;
 261        }
 262    }
 263    for (i = 0; i < NVME_QUEUE_SIZE; i++) {
 264        if (!q->reqs[i].busy) {
 265            q->reqs[i].busy = true;
 266            req = &q->reqs[i];
 267            break;
 268        }
 269    }
 270    /* We have checked inflight and need_kick while holding q->lock, so one
 271     * free req must be available. */
 272    assert(req);
 273    qemu_mutex_unlock(&q->lock);
 274    return req;
 275}
 276
 277static inline int nvme_translate_error(const NvmeCqe *c)
 278{
 279    uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
 280    if (status) {
 281        trace_nvme_error(le32_to_cpu(c->result),
 282                         le16_to_cpu(c->sq_head),
 283                         le16_to_cpu(c->sq_id),
 284                         le16_to_cpu(c->cid),
 285                         le16_to_cpu(status));
 286    }
 287    switch (status) {
 288    case 0:
 289        return 0;
 290    case 1:
 291        return -ENOSYS;
 292    case 2:
 293        return -EINVAL;
 294    default:
 295        return -EIO;
 296    }
 297}
 298
 299/* With q->lock */
 300static bool nvme_process_completion(BDRVNVMeState *s, NVMeQueuePair *q)
 301{
 302    bool progress = false;
 303    NVMeRequest *preq;
 304    NVMeRequest req;
 305    NvmeCqe *c;
 306
 307    trace_nvme_process_completion(s, q->index, q->inflight);
 308    if (q->busy || s->plugged) {
 309        trace_nvme_process_completion_queue_busy(s, q->index);
 310        return false;
 311    }
 312    q->busy = true;
 313    assert(q->inflight >= 0);
 314    while (q->inflight) {
 315        int16_t cid;
 316        c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
 317        if (!c->cid || (le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
 318            break;
 319        }
 320        q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
 321        if (!q->cq.head) {
 322            q->cq_phase = !q->cq_phase;
 323        }
 324        cid = le16_to_cpu(c->cid);
 325        if (cid == 0 || cid > NVME_QUEUE_SIZE) {
 326            fprintf(stderr, "Unexpected CID in completion queue: %" PRIu32 "\n",
 327                    cid);
 328            continue;
 329        }
 330        assert(cid <= NVME_QUEUE_SIZE);
 331        trace_nvme_complete_command(s, q->index, cid);
 332        preq = &q->reqs[cid - 1];
 333        req = *preq;
 334        assert(req.cid == cid);
 335        assert(req.cb);
 336        preq->busy = false;
 337        preq->cb = preq->opaque = NULL;
 338        qemu_mutex_unlock(&q->lock);
 339        req.cb(req.opaque, nvme_translate_error(c));
 340        qemu_mutex_lock(&q->lock);
 341        c->cid = cpu_to_le16(0);
 342        q->inflight--;
 343        /* Flip Phase Tag bit. */
 344        c->status = cpu_to_le16(le16_to_cpu(c->status) ^ 0x1);
 345        progress = true;
 346    }
 347    if (progress) {
 348        /* Notify the device so it can post more completions. */
 349        smp_mb_release();
 350        *q->cq.doorbell = cpu_to_le32(q->cq.head);
 351        if (!qemu_co_queue_empty(&q->free_req_queue)) {
 352            aio_bh_schedule_oneshot(s->aio_context, nvme_free_req_queue_cb, q);
 353        }
 354    }
 355    q->busy = false;
 356    return progress;
 357}
 358
 359static void nvme_trace_command(const NvmeCmd *cmd)
 360{
 361    int i;
 362
 363    for (i = 0; i < 8; ++i) {
 364        uint8_t *cmdp = (uint8_t *)cmd + i * 8;
 365        trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
 366                                      cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
 367    }
 368}
 369
 370static void nvme_submit_command(BDRVNVMeState *s, NVMeQueuePair *q,
 371                                NVMeRequest *req,
 372                                NvmeCmd *cmd, BlockCompletionFunc cb,
 373                                void *opaque)
 374{
 375    assert(!req->cb);
 376    req->cb = cb;
 377    req->opaque = opaque;
 378    cmd->cid = cpu_to_le32(req->cid);
 379
 380    trace_nvme_submit_command(s, q->index, req->cid);
 381    nvme_trace_command(cmd);
 382    qemu_mutex_lock(&q->lock);
 383    memcpy((uint8_t *)q->sq.queue +
 384           q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
 385    q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
 386    q->need_kick++;
 387    nvme_kick(s, q);
 388    nvme_process_completion(s, q);
 389    qemu_mutex_unlock(&q->lock);
 390}
 391
 392static void nvme_cmd_sync_cb(void *opaque, int ret)
 393{
 394    int *pret = opaque;
 395    *pret = ret;
 396    aio_wait_kick();
 397}
 398
 399static int nvme_cmd_sync(BlockDriverState *bs, NVMeQueuePair *q,
 400                         NvmeCmd *cmd)
 401{
 402    NVMeRequest *req;
 403    BDRVNVMeState *s = bs->opaque;
 404    int ret = -EINPROGRESS;
 405    req = nvme_get_free_req(q);
 406    if (!req) {
 407        return -EBUSY;
 408    }
 409    nvme_submit_command(s, q, req, cmd, nvme_cmd_sync_cb, &ret);
 410
 411    BDRV_POLL_WHILE(bs, ret == -EINPROGRESS);
 412    return ret;
 413}
 414
 415static void nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
 416{
 417    BDRVNVMeState *s = bs->opaque;
 418    NvmeIdCtrl *idctrl;
 419    NvmeIdNs *idns;
 420    uint8_t *resp;
 421    int r;
 422    uint64_t iova;
 423    NvmeCmd cmd = {
 424        .opcode = NVME_ADM_CMD_IDENTIFY,
 425        .cdw10 = cpu_to_le32(0x1),
 426    };
 427
 428    resp = qemu_try_blockalign0(bs, sizeof(NvmeIdCtrl));
 429    if (!resp) {
 430        error_setg(errp, "Cannot allocate buffer for identify response");
 431        goto out;
 432    }
 433    idctrl = (NvmeIdCtrl *)resp;
 434    idns = (NvmeIdNs *)resp;
 435    r = qemu_vfio_dma_map(s->vfio, resp, sizeof(NvmeIdCtrl), true, &iova);
 436    if (r) {
 437        error_setg(errp, "Cannot map buffer for DMA");
 438        goto out;
 439    }
 440    cmd.prp1 = cpu_to_le64(iova);
 441
 442    if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
 443        error_setg(errp, "Failed to identify controller");
 444        goto out;
 445    }
 446
 447    if (le32_to_cpu(idctrl->nn) < namespace) {
 448        error_setg(errp, "Invalid namespace");
 449        goto out;
 450    }
 451    s->write_cache_supported = le32_to_cpu(idctrl->vwc) & 0x1;
 452    s->max_transfer = (idctrl->mdts ? 1 << idctrl->mdts : 0) * s->page_size;
 453    /* For now the page list buffer per command is one page, to hold at most
 454     * s->page_size / sizeof(uint64_t) entries. */
 455    s->max_transfer = MIN_NON_ZERO(s->max_transfer,
 456                          s->page_size / sizeof(uint64_t) * s->page_size);
 457
 458    memset(resp, 0, 4096);
 459
 460    cmd.cdw10 = 0;
 461    cmd.nsid = cpu_to_le32(namespace);
 462    if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
 463        error_setg(errp, "Failed to identify namespace");
 464        goto out;
 465    }
 466
 467    s->nsze = le64_to_cpu(idns->nsze);
 468
 469out:
 470    qemu_vfio_dma_unmap(s->vfio, resp);
 471    qemu_vfree(resp);
 472}
 473
 474static bool nvme_poll_queues(BDRVNVMeState *s)
 475{
 476    bool progress = false;
 477    int i;
 478
 479    for (i = 0; i < s->nr_queues; i++) {
 480        NVMeQueuePair *q = s->queues[i];
 481        qemu_mutex_lock(&q->lock);
 482        while (nvme_process_completion(s, q)) {
 483            /* Keep polling */
 484            progress = true;
 485        }
 486        qemu_mutex_unlock(&q->lock);
 487    }
 488    return progress;
 489}
 490
 491static void nvme_handle_event(EventNotifier *n)
 492{
 493    BDRVNVMeState *s = container_of(n, BDRVNVMeState, irq_notifier);
 494
 495    trace_nvme_handle_event(s);
 496    event_notifier_test_and_clear(n);
 497    nvme_poll_queues(s);
 498}
 499
 500static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
 501{
 502    BDRVNVMeState *s = bs->opaque;
 503    int n = s->nr_queues;
 504    NVMeQueuePair *q;
 505    NvmeCmd cmd;
 506    int queue_size = NVME_QUEUE_SIZE;
 507
 508    q = nvme_create_queue_pair(bs, n, queue_size, errp);
 509    if (!q) {
 510        return false;
 511    }
 512    cmd = (NvmeCmd) {
 513        .opcode = NVME_ADM_CMD_CREATE_CQ,
 514        .prp1 = cpu_to_le64(q->cq.iova),
 515        .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
 516        .cdw11 = cpu_to_le32(0x3),
 517    };
 518    if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
 519        error_setg(errp, "Failed to create io queue [%d]", n);
 520        nvme_free_queue_pair(bs, q);
 521        return false;
 522    }
 523    cmd = (NvmeCmd) {
 524        .opcode = NVME_ADM_CMD_CREATE_SQ,
 525        .prp1 = cpu_to_le64(q->sq.iova),
 526        .cdw10 = cpu_to_le32(((queue_size - 1) << 16) | (n & 0xFFFF)),
 527        .cdw11 = cpu_to_le32(0x1 | (n << 16)),
 528    };
 529    if (nvme_cmd_sync(bs, s->queues[0], &cmd)) {
 530        error_setg(errp, "Failed to create io queue [%d]", n);
 531        nvme_free_queue_pair(bs, q);
 532        return false;
 533    }
 534    s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
 535    s->queues[n] = q;
 536    s->nr_queues++;
 537    return true;
 538}
 539
 540static bool nvme_poll_cb(void *opaque)
 541{
 542    EventNotifier *e = opaque;
 543    BDRVNVMeState *s = container_of(e, BDRVNVMeState, irq_notifier);
 544    bool progress = false;
 545
 546    trace_nvme_poll_cb(s);
 547    progress = nvme_poll_queues(s);
 548    return progress;
 549}
 550
 551static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
 552                     Error **errp)
 553{
 554    BDRVNVMeState *s = bs->opaque;
 555    int ret;
 556    uint64_t cap;
 557    uint64_t timeout_ms;
 558    uint64_t deadline, now;
 559    Error *local_err = NULL;
 560
 561    qemu_co_mutex_init(&s->dma_map_lock);
 562    qemu_co_queue_init(&s->dma_flush_queue);
 563    s->device = g_strdup(device);
 564    s->nsid = namespace;
 565    s->aio_context = bdrv_get_aio_context(bs);
 566    ret = event_notifier_init(&s->irq_notifier, 0);
 567    if (ret) {
 568        error_setg(errp, "Failed to init event notifier");
 569        return ret;
 570    }
 571
 572    s->vfio = qemu_vfio_open_pci(device, errp);
 573    if (!s->vfio) {
 574        ret = -EINVAL;
 575        goto out;
 576    }
 577
 578    s->regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, NVME_BAR_SIZE, errp);
 579    if (!s->regs) {
 580        ret = -EINVAL;
 581        goto out;
 582    }
 583
 584    /* Perform initialize sequence as described in NVMe spec "7.6.1
 585     * Initialization". */
 586
 587    cap = le64_to_cpu(s->regs->cap);
 588    if (!(cap & (1ULL << 37))) {
 589        error_setg(errp, "Device doesn't support NVMe command set");
 590        ret = -EINVAL;
 591        goto out;
 592    }
 593
 594    s->page_size = MAX(4096, 1 << (12 + ((cap >> 48) & 0xF)));
 595    s->doorbell_scale = (4 << (((cap >> 32) & 0xF))) / sizeof(uint32_t);
 596    bs->bl.opt_mem_alignment = s->page_size;
 597    timeout_ms = MIN(500 * ((cap >> 24) & 0xFF), 30000);
 598
 599    /* Reset device to get a clean state. */
 600    s->regs->cc = cpu_to_le32(le32_to_cpu(s->regs->cc) & 0xFE);
 601    /* Wait for CSTS.RDY = 0. */
 602    deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * 1000000ULL;
 603    while (le32_to_cpu(s->regs->csts) & 0x1) {
 604        if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
 605            error_setg(errp, "Timeout while waiting for device to reset (%"
 606                             PRId64 " ms)",
 607                       timeout_ms);
 608            ret = -ETIMEDOUT;
 609            goto out;
 610        }
 611    }
 612
 613    /* Set up admin queue. */
 614    s->queues = g_new(NVMeQueuePair *, 1);
 615    s->nr_queues = 1;
 616    s->queues[0] = nvme_create_queue_pair(bs, 0, NVME_QUEUE_SIZE, errp);
 617    if (!s->queues[0]) {
 618        ret = -EINVAL;
 619        goto out;
 620    }
 621    QEMU_BUILD_BUG_ON(NVME_QUEUE_SIZE & 0xF000);
 622    s->regs->aqa = cpu_to_le32((NVME_QUEUE_SIZE << 16) | NVME_QUEUE_SIZE);
 623    s->regs->asq = cpu_to_le64(s->queues[0]->sq.iova);
 624    s->regs->acq = cpu_to_le64(s->queues[0]->cq.iova);
 625
 626    /* After setting up all control registers we can enable device now. */
 627    s->regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << 20) |
 628                              (ctz32(NVME_SQ_ENTRY_BYTES) << 16) |
 629                              0x1);
 630    /* Wait for CSTS.RDY = 1. */
 631    now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 632    deadline = now + timeout_ms * 1000000;
 633    while (!(le32_to_cpu(s->regs->csts) & 0x1)) {
 634        if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
 635            error_setg(errp, "Timeout while waiting for device to start (%"
 636                             PRId64 " ms)",
 637                       timeout_ms);
 638            ret = -ETIMEDOUT;
 639            goto out;
 640        }
 641    }
 642
 643    ret = qemu_vfio_pci_init_irq(s->vfio, &s->irq_notifier,
 644                                 VFIO_PCI_MSIX_IRQ_INDEX, errp);
 645    if (ret) {
 646        goto out;
 647    }
 648    aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
 649                           false, nvme_handle_event, nvme_poll_cb);
 650
 651    nvme_identify(bs, namespace, &local_err);
 652    if (local_err) {
 653        error_propagate(errp, local_err);
 654        ret = -EIO;
 655        goto out;
 656    }
 657
 658    /* Set up command queues. */
 659    if (!nvme_add_io_queue(bs, errp)) {
 660        ret = -EIO;
 661    }
 662out:
 663    /* Cleaning up is done in nvme_file_open() upon error. */
 664    return ret;
 665}
 666
 667/* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
 668 *
 669 *     nvme://0000:44:00.0/1
 670 *
 671 * where the "nvme://" is a fixed form of the protocol prefix, the middle part
 672 * is the PCI address, and the last part is the namespace number starting from
 673 * 1 according to the NVMe spec. */
 674static void nvme_parse_filename(const char *filename, QDict *options,
 675                                Error **errp)
 676{
 677    int pref = strlen("nvme://");
 678
 679    if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
 680        const char *tmp = filename + pref;
 681        char *device;
 682        const char *namespace;
 683        unsigned long ns;
 684        const char *slash = strchr(tmp, '/');
 685        if (!slash) {
 686            qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
 687            return;
 688        }
 689        device = g_strndup(tmp, slash - tmp);
 690        qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
 691        g_free(device);
 692        namespace = slash + 1;
 693        if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
 694            error_setg(errp, "Invalid namespace '%s', positive number expected",
 695                       namespace);
 696            return;
 697        }
 698        qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
 699                      *namespace ? namespace : "1");
 700    }
 701}
 702
 703static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
 704                                           Error **errp)
 705{
 706    int ret;
 707    BDRVNVMeState *s = bs->opaque;
 708    NvmeCmd cmd = {
 709        .opcode = NVME_ADM_CMD_SET_FEATURES,
 710        .nsid = cpu_to_le32(s->nsid),
 711        .cdw10 = cpu_to_le32(0x06),
 712        .cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
 713    };
 714
 715    ret = nvme_cmd_sync(bs, s->queues[0], &cmd);
 716    if (ret) {
 717        error_setg(errp, "Failed to configure NVMe write cache");
 718    }
 719    return ret;
 720}
 721
 722static void nvme_close(BlockDriverState *bs)
 723{
 724    int i;
 725    BDRVNVMeState *s = bs->opaque;
 726
 727    for (i = 0; i < s->nr_queues; ++i) {
 728        nvme_free_queue_pair(bs, s->queues[i]);
 729    }
 730    g_free(s->queues);
 731    aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
 732                           false, NULL, NULL);
 733    event_notifier_cleanup(&s->irq_notifier);
 734    qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)s->regs, 0, NVME_BAR_SIZE);
 735    qemu_vfio_close(s->vfio);
 736
 737    g_free(s->device);
 738}
 739
 740static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
 741                          Error **errp)
 742{
 743    const char *device;
 744    QemuOpts *opts;
 745    int namespace;
 746    int ret;
 747    BDRVNVMeState *s = bs->opaque;
 748
 749    opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
 750    qemu_opts_absorb_qdict(opts, options, &error_abort);
 751    device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
 752    if (!device) {
 753        error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
 754        qemu_opts_del(opts);
 755        return -EINVAL;
 756    }
 757
 758    namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
 759    ret = nvme_init(bs, device, namespace, errp);
 760    qemu_opts_del(opts);
 761    if (ret) {
 762        goto fail;
 763    }
 764    if (flags & BDRV_O_NOCACHE) {
 765        if (!s->write_cache_supported) {
 766            error_setg(errp,
 767                       "NVMe controller doesn't support write cache configuration");
 768            ret = -EINVAL;
 769        } else {
 770            ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
 771                                                  errp);
 772        }
 773        if (ret) {
 774            goto fail;
 775        }
 776    }
 777    bs->supported_write_flags = BDRV_REQ_FUA;
 778    return 0;
 779fail:
 780    nvme_close(bs);
 781    return ret;
 782}
 783
 784static int64_t nvme_getlength(BlockDriverState *bs)
 785{
 786    BDRVNVMeState *s = bs->opaque;
 787
 788    return s->nsze << BDRV_SECTOR_BITS;
 789}
 790
 791/* Called with s->dma_map_lock */
 792static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
 793                                            QEMUIOVector *qiov)
 794{
 795    int r = 0;
 796    BDRVNVMeState *s = bs->opaque;
 797
 798    s->dma_map_count -= qiov->size;
 799    if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
 800        r = qemu_vfio_dma_reset_temporary(s->vfio);
 801        if (!r) {
 802            qemu_co_queue_restart_all(&s->dma_flush_queue);
 803        }
 804    }
 805    return r;
 806}
 807
 808/* Called with s->dma_map_lock */
 809static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
 810                                          NVMeRequest *req, QEMUIOVector *qiov)
 811{
 812    BDRVNVMeState *s = bs->opaque;
 813    uint64_t *pagelist = req->prp_list_page;
 814    int i, j, r;
 815    int entries = 0;
 816
 817    assert(qiov->size);
 818    assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
 819    assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
 820    for (i = 0; i < qiov->niov; ++i) {
 821        bool retry = true;
 822        uint64_t iova;
 823try_map:
 824        r = qemu_vfio_dma_map(s->vfio,
 825                              qiov->iov[i].iov_base,
 826                              qiov->iov[i].iov_len,
 827                              true, &iova);
 828        if (r == -ENOMEM && retry) {
 829            retry = false;
 830            trace_nvme_dma_flush_queue_wait(s);
 831            if (s->dma_map_count) {
 832                trace_nvme_dma_map_flush(s);
 833                qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
 834            } else {
 835                r = qemu_vfio_dma_reset_temporary(s->vfio);
 836                if (r) {
 837                    goto fail;
 838                }
 839            }
 840            goto try_map;
 841        }
 842        if (r) {
 843            goto fail;
 844        }
 845
 846        for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
 847            pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
 848        }
 849        trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
 850                                    qiov->iov[i].iov_len / s->page_size);
 851    }
 852
 853    s->dma_map_count += qiov->size;
 854
 855    assert(entries <= s->page_size / sizeof(uint64_t));
 856    switch (entries) {
 857    case 0:
 858        abort();
 859    case 1:
 860        cmd->prp1 = pagelist[0];
 861        cmd->prp2 = 0;
 862        break;
 863    case 2:
 864        cmd->prp1 = pagelist[0];
 865        cmd->prp2 = pagelist[1];
 866        break;
 867    default:
 868        cmd->prp1 = pagelist[0];
 869        cmd->prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
 870        break;
 871    }
 872    trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
 873    for (i = 0; i < entries; ++i) {
 874        trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
 875    }
 876    return 0;
 877fail:
 878    /* No need to unmap [0 - i) iovs even if we've failed, since we don't
 879     * increment s->dma_map_count. This is okay for fixed mapping memory areas
 880     * because they are already mapped before calling this function; for
 881     * temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
 882     * calling qemu_vfio_dma_reset_temporary when necessary. */
 883    return r;
 884}
 885
 886typedef struct {
 887    Coroutine *co;
 888    int ret;
 889    AioContext *ctx;
 890} NVMeCoData;
 891
 892static void nvme_rw_cb_bh(void *opaque)
 893{
 894    NVMeCoData *data = opaque;
 895    qemu_coroutine_enter(data->co);
 896}
 897
 898static void nvme_rw_cb(void *opaque, int ret)
 899{
 900    NVMeCoData *data = opaque;
 901    data->ret = ret;
 902    if (!data->co) {
 903        /* The rw coroutine hasn't yielded, don't try to enter. */
 904        return;
 905    }
 906    aio_bh_schedule_oneshot(data->ctx, nvme_rw_cb_bh, data);
 907}
 908
 909static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
 910                                            uint64_t offset, uint64_t bytes,
 911                                            QEMUIOVector *qiov,
 912                                            bool is_write,
 913                                            int flags)
 914{
 915    int r;
 916    BDRVNVMeState *s = bs->opaque;
 917    NVMeQueuePair *ioq = s->queues[1];
 918    NVMeRequest *req;
 919    uint32_t cdw12 = (((bytes >> BDRV_SECTOR_BITS) - 1) & 0xFFFF) |
 920                       (flags & BDRV_REQ_FUA ? 1 << 30 : 0);
 921    NvmeCmd cmd = {
 922        .opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
 923        .nsid = cpu_to_le32(s->nsid),
 924        .cdw10 = cpu_to_le32((offset >> BDRV_SECTOR_BITS) & 0xFFFFFFFF),
 925        .cdw11 = cpu_to_le32(((offset >> BDRV_SECTOR_BITS) >> 32) & 0xFFFFFFFF),
 926        .cdw12 = cpu_to_le32(cdw12),
 927    };
 928    NVMeCoData data = {
 929        .ctx = bdrv_get_aio_context(bs),
 930        .ret = -EINPROGRESS,
 931    };
 932
 933    trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
 934    assert(s->nr_queues > 1);
 935    req = nvme_get_free_req(ioq);
 936    assert(req);
 937
 938    qemu_co_mutex_lock(&s->dma_map_lock);
 939    r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
 940    qemu_co_mutex_unlock(&s->dma_map_lock);
 941    if (r) {
 942        req->busy = false;
 943        return r;
 944    }
 945    nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
 946
 947    data.co = qemu_coroutine_self();
 948    while (data.ret == -EINPROGRESS) {
 949        qemu_coroutine_yield();
 950    }
 951
 952    qemu_co_mutex_lock(&s->dma_map_lock);
 953    r = nvme_cmd_unmap_qiov(bs, qiov);
 954    qemu_co_mutex_unlock(&s->dma_map_lock);
 955    if (r) {
 956        return r;
 957    }
 958
 959    trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
 960    return data.ret;
 961}
 962
 963static inline bool nvme_qiov_aligned(BlockDriverState *bs,
 964                                     const QEMUIOVector *qiov)
 965{
 966    int i;
 967    BDRVNVMeState *s = bs->opaque;
 968
 969    for (i = 0; i < qiov->niov; ++i) {
 970        if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base, s->page_size) ||
 971            !QEMU_IS_ALIGNED(qiov->iov[i].iov_len, s->page_size)) {
 972            trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
 973                                      qiov->iov[i].iov_len, s->page_size);
 974            return false;
 975        }
 976    }
 977    return true;
 978}
 979
 980static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
 981                       QEMUIOVector *qiov, bool is_write, int flags)
 982{
 983    BDRVNVMeState *s = bs->opaque;
 984    int r;
 985    uint8_t *buf = NULL;
 986    QEMUIOVector local_qiov;
 987
 988    assert(QEMU_IS_ALIGNED(offset, s->page_size));
 989    assert(QEMU_IS_ALIGNED(bytes, s->page_size));
 990    assert(bytes <= s->max_transfer);
 991    if (nvme_qiov_aligned(bs, qiov)) {
 992        return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
 993    }
 994    trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
 995    buf = qemu_try_blockalign(bs, bytes);
 996
 997    if (!buf) {
 998        return -ENOMEM;
 999    }
1000    qemu_iovec_init(&local_qiov, 1);
1001    if (is_write) {
1002        qemu_iovec_to_buf(qiov, 0, buf, bytes);
1003    }
1004    qemu_iovec_add(&local_qiov, buf, bytes);
1005    r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
1006    qemu_iovec_destroy(&local_qiov);
1007    if (!r && !is_write) {
1008        qemu_iovec_from_buf(qiov, 0, buf, bytes);
1009    }
1010    qemu_vfree(buf);
1011    return r;
1012}
1013
1014static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
1015                                       uint64_t offset, uint64_t bytes,
1016                                       QEMUIOVector *qiov, int flags)
1017{
1018    return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
1019}
1020
1021static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
1022                                        uint64_t offset, uint64_t bytes,
1023                                        QEMUIOVector *qiov, int flags)
1024{
1025    return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
1026}
1027
1028static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
1029{
1030    BDRVNVMeState *s = bs->opaque;
1031    NVMeQueuePair *ioq = s->queues[1];
1032    NVMeRequest *req;
1033    NvmeCmd cmd = {
1034        .opcode = NVME_CMD_FLUSH,
1035        .nsid = cpu_to_le32(s->nsid),
1036    };
1037    NVMeCoData data = {
1038        .ctx = bdrv_get_aio_context(bs),
1039        .ret = -EINPROGRESS,
1040    };
1041
1042    assert(s->nr_queues > 1);
1043    req = nvme_get_free_req(ioq);
1044    assert(req);
1045    nvme_submit_command(s, ioq, req, &cmd, nvme_rw_cb, &data);
1046
1047    data.co = qemu_coroutine_self();
1048    if (data.ret == -EINPROGRESS) {
1049        qemu_coroutine_yield();
1050    }
1051
1052    return data.ret;
1053}
1054
1055
1056static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
1057                               BlockReopenQueue *queue, Error **errp)
1058{
1059    return 0;
1060}
1061
1062static void nvme_refresh_filename(BlockDriverState *bs)
1063{
1064    BDRVNVMeState *s = bs->opaque;
1065
1066    snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
1067             s->device, s->nsid);
1068}
1069
1070static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
1071{
1072    BDRVNVMeState *s = bs->opaque;
1073
1074    bs->bl.opt_mem_alignment = s->page_size;
1075    bs->bl.request_alignment = s->page_size;
1076    bs->bl.max_transfer = s->max_transfer;
1077}
1078
1079static void nvme_detach_aio_context(BlockDriverState *bs)
1080{
1081    BDRVNVMeState *s = bs->opaque;
1082
1083    aio_set_event_notifier(bdrv_get_aio_context(bs), &s->irq_notifier,
1084                           false, NULL, NULL);
1085}
1086
1087static void nvme_attach_aio_context(BlockDriverState *bs,
1088                                    AioContext *new_context)
1089{
1090    BDRVNVMeState *s = bs->opaque;
1091
1092    s->aio_context = new_context;
1093    aio_set_event_notifier(new_context, &s->irq_notifier,
1094                           false, nvme_handle_event, nvme_poll_cb);
1095}
1096
1097static void nvme_aio_plug(BlockDriverState *bs)
1098{
1099    BDRVNVMeState *s = bs->opaque;
1100    assert(!s->plugged);
1101    s->plugged = true;
1102}
1103
1104static void nvme_aio_unplug(BlockDriverState *bs)
1105{
1106    int i;
1107    BDRVNVMeState *s = bs->opaque;
1108    assert(s->plugged);
1109    s->plugged = false;
1110    for (i = 1; i < s->nr_queues; i++) {
1111        NVMeQueuePair *q = s->queues[i];
1112        qemu_mutex_lock(&q->lock);
1113        nvme_kick(s, q);
1114        nvme_process_completion(s, q);
1115        qemu_mutex_unlock(&q->lock);
1116    }
1117}
1118
1119static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
1120{
1121    int ret;
1122    BDRVNVMeState *s = bs->opaque;
1123
1124    ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
1125    if (ret) {
1126        /* FIXME: we may run out of IOVA addresses after repeated
1127         * bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
1128         * doesn't reclaim addresses for fixed mappings. */
1129        error_report("nvme_register_buf failed: %s", strerror(-ret));
1130    }
1131}
1132
1133static void nvme_unregister_buf(BlockDriverState *bs, void *host)
1134{
1135    BDRVNVMeState *s = bs->opaque;
1136
1137    qemu_vfio_dma_unmap(s->vfio, host);
1138}
1139
1140static const char *const nvme_strong_runtime_opts[] = {
1141    NVME_BLOCK_OPT_DEVICE,
1142    NVME_BLOCK_OPT_NAMESPACE,
1143
1144    NULL
1145};
1146
1147static BlockDriver bdrv_nvme = {
1148    .format_name              = "nvme",
1149    .protocol_name            = "nvme",
1150    .instance_size            = sizeof(BDRVNVMeState),
1151
1152    .bdrv_parse_filename      = nvme_parse_filename,
1153    .bdrv_file_open           = nvme_file_open,
1154    .bdrv_close               = nvme_close,
1155    .bdrv_getlength           = nvme_getlength,
1156
1157    .bdrv_co_preadv           = nvme_co_preadv,
1158    .bdrv_co_pwritev          = nvme_co_pwritev,
1159    .bdrv_co_flush_to_disk    = nvme_co_flush,
1160    .bdrv_reopen_prepare      = nvme_reopen_prepare,
1161
1162    .bdrv_refresh_filename    = nvme_refresh_filename,
1163    .bdrv_refresh_limits      = nvme_refresh_limits,
1164    .strong_runtime_opts      = nvme_strong_runtime_opts,
1165
1166    .bdrv_detach_aio_context  = nvme_detach_aio_context,
1167    .bdrv_attach_aio_context  = nvme_attach_aio_context,
1168
1169    .bdrv_io_plug             = nvme_aio_plug,
1170    .bdrv_io_unplug           = nvme_aio_unplug,
1171
1172    .bdrv_register_buf        = nvme_register_buf,
1173    .bdrv_unregister_buf      = nvme_unregister_buf,
1174};
1175
1176static void bdrv_nvme_init(void)
1177{
1178    bdrv_register(&bdrv_nvme);
1179}
1180
1181block_init(bdrv_nvme_init);
1182