qemu/hw/arm/boot.c
<<
>>
Prefs
   1/*
   2 * ARM kernel loader.
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu/error-report.h"
  12#include "qapi/error.h"
  13#include <libfdt.h>
  14#include "hw/hw.h"
  15#include "hw/arm/arm.h"
  16#include "hw/arm/linux-boot-if.h"
  17#include "sysemu/kvm.h"
  18#include "sysemu/sysemu.h"
  19#include "sysemu/numa.h"
  20#include "hw/boards.h"
  21#include "hw/loader.h"
  22#include "elf.h"
  23#include "sysemu/device_tree.h"
  24#include "qemu/config-file.h"
  25#include "qemu/option.h"
  26#include "exec/address-spaces.h"
  27#include "qemu/units.h"
  28
  29/* Kernel boot protocol is specified in the kernel docs
  30 * Documentation/arm/Booting and Documentation/arm64/booting.txt
  31 * They have different preferred image load offsets from system RAM base.
  32 */
  33#define KERNEL_ARGS_ADDR   0x100
  34#define KERNEL_NOLOAD_ADDR 0x02000000
  35#define KERNEL_LOAD_ADDR   0x00010000
  36#define KERNEL64_LOAD_ADDR 0x00080000
  37
  38#define ARM64_TEXT_OFFSET_OFFSET    8
  39#define ARM64_MAGIC_OFFSET          56
  40
  41#define BOOTLOADER_MAX_SIZE         (4 * KiB)
  42
  43AddressSpace *arm_boot_address_space(ARMCPU *cpu,
  44                                     const struct arm_boot_info *info)
  45{
  46    /* Return the address space to use for bootloader reads and writes.
  47     * We prefer the secure address space if the CPU has it and we're
  48     * going to boot the guest into it.
  49     */
  50    int asidx;
  51    CPUState *cs = CPU(cpu);
  52
  53    if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
  54        asidx = ARMASIdx_S;
  55    } else {
  56        asidx = ARMASIdx_NS;
  57    }
  58
  59    return cpu_get_address_space(cs, asidx);
  60}
  61
  62typedef enum {
  63    FIXUP_NONE = 0,     /* do nothing */
  64    FIXUP_TERMINATOR,   /* end of insns */
  65    FIXUP_BOARDID,      /* overwrite with board ID number */
  66    FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
  67    FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
  68    FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
  69    FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
  70    FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
  71    FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
  72    FIXUP_BOOTREG,      /* overwrite with boot register address */
  73    FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
  74    FIXUP_MAX,
  75} FixupType;
  76
  77typedef struct ARMInsnFixup {
  78    uint32_t insn;
  79    FixupType fixup;
  80} ARMInsnFixup;
  81
  82static const ARMInsnFixup bootloader_aarch64[] = {
  83    { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
  84    { 0xaa1f03e1 }, /* mov x1, xzr */
  85    { 0xaa1f03e2 }, /* mov x2, xzr */
  86    { 0xaa1f03e3 }, /* mov x3, xzr */
  87    { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
  88    { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
  89    { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
  90    { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
  91    { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
  92    { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
  93    { 0, FIXUP_TERMINATOR }
  94};
  95
  96/* A very small bootloader: call the board-setup code (if needed),
  97 * set r0-r2, then jump to the kernel.
  98 * If we're not calling boot setup code then we don't copy across
  99 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
 100 */
 101
 102static const ARMInsnFixup bootloader[] = {
 103    { 0xe28fe004 }, /* add     lr, pc, #4 */
 104    { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
 105    { 0, FIXUP_BOARD_SETUP },
 106#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
 107    { 0xe3a00000 }, /* mov     r0, #0 */
 108    { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
 109    { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
 110    { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
 111    { 0, FIXUP_BOARDID },
 112    { 0, FIXUP_ARGPTR_LO },
 113    { 0, FIXUP_ENTRYPOINT_LO },
 114    { 0, FIXUP_TERMINATOR }
 115};
 116
 117/* Handling for secondary CPU boot in a multicore system.
 118 * Unlike the uniprocessor/primary CPU boot, this is platform
 119 * dependent. The default code here is based on the secondary
 120 * CPU boot protocol used on realview/vexpress boards, with
 121 * some parameterisation to increase its flexibility.
 122 * QEMU platform models for which this code is not appropriate
 123 * should override write_secondary_boot and secondary_cpu_reset_hook
 124 * instead.
 125 *
 126 * This code enables the interrupt controllers for the secondary
 127 * CPUs and then puts all the secondary CPUs into a loop waiting
 128 * for an interprocessor interrupt and polling a configurable
 129 * location for the kernel secondary CPU entry point.
 130 */
 131#define DSB_INSN 0xf57ff04f
 132#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
 133
 134static const ARMInsnFixup smpboot[] = {
 135    { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
 136    { 0xe59f0028 }, /* ldr r0, bootreg_addr */
 137    { 0xe3a01001 }, /* mov r1, #1 */
 138    { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
 139    { 0xe3a010ff }, /* mov r1, #0xff */
 140    { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
 141    { 0, FIXUP_DSB },   /* dsb */
 142    { 0xe320f003 }, /* wfi */
 143    { 0xe5901000 }, /* ldr     r1, [r0] */
 144    { 0xe1110001 }, /* tst     r1, r1 */
 145    { 0x0afffffb }, /* beq     <wfi> */
 146    { 0xe12fff11 }, /* bx      r1 */
 147    { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
 148    { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
 149    { 0, FIXUP_TERMINATOR }
 150};
 151
 152static void write_bootloader(const char *name, hwaddr addr,
 153                             const ARMInsnFixup *insns, uint32_t *fixupcontext,
 154                             AddressSpace *as)
 155{
 156    /* Fix up the specified bootloader fragment and write it into
 157     * guest memory using rom_add_blob_fixed(). fixupcontext is
 158     * an array giving the values to write in for the fixup types
 159     * which write a value into the code array.
 160     */
 161    int i, len;
 162    uint32_t *code;
 163
 164    len = 0;
 165    while (insns[len].fixup != FIXUP_TERMINATOR) {
 166        len++;
 167    }
 168
 169    code = g_new0(uint32_t, len);
 170
 171    for (i = 0; i < len; i++) {
 172        uint32_t insn = insns[i].insn;
 173        FixupType fixup = insns[i].fixup;
 174
 175        switch (fixup) {
 176        case FIXUP_NONE:
 177            break;
 178        case FIXUP_BOARDID:
 179        case FIXUP_BOARD_SETUP:
 180        case FIXUP_ARGPTR_LO:
 181        case FIXUP_ARGPTR_HI:
 182        case FIXUP_ENTRYPOINT_LO:
 183        case FIXUP_ENTRYPOINT_HI:
 184        case FIXUP_GIC_CPU_IF:
 185        case FIXUP_BOOTREG:
 186        case FIXUP_DSB:
 187            insn = fixupcontext[fixup];
 188            break;
 189        default:
 190            abort();
 191        }
 192        code[i] = tswap32(insn);
 193    }
 194
 195    assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
 196
 197    rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
 198
 199    g_free(code);
 200}
 201
 202static void default_write_secondary(ARMCPU *cpu,
 203                                    const struct arm_boot_info *info)
 204{
 205    uint32_t fixupcontext[FIXUP_MAX];
 206    AddressSpace *as = arm_boot_address_space(cpu, info);
 207
 208    fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
 209    fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
 210    if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 211        fixupcontext[FIXUP_DSB] = DSB_INSN;
 212    } else {
 213        fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
 214    }
 215
 216    write_bootloader("smpboot", info->smp_loader_start,
 217                     smpboot, fixupcontext, as);
 218}
 219
 220void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
 221                                            const struct arm_boot_info *info,
 222                                            hwaddr mvbar_addr)
 223{
 224    AddressSpace *as = arm_boot_address_space(cpu, info);
 225    int n;
 226    uint32_t mvbar_blob[] = {
 227        /* mvbar_addr: secure monitor vectors
 228         * Default unimplemented and unused vectors to spin. Makes it
 229         * easier to debug (as opposed to the CPU running away).
 230         */
 231        0xeafffffe, /* (spin) */
 232        0xeafffffe, /* (spin) */
 233        0xe1b0f00e, /* movs pc, lr ;SMC exception return */
 234        0xeafffffe, /* (spin) */
 235        0xeafffffe, /* (spin) */
 236        0xeafffffe, /* (spin) */
 237        0xeafffffe, /* (spin) */
 238        0xeafffffe, /* (spin) */
 239    };
 240    uint32_t board_setup_blob[] = {
 241        /* board setup addr */
 242        0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
 243        0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
 244        0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
 245        0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
 246        0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
 247        0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
 248        0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
 249        0xe1a0f001, /* mov     pc, r1                 ;return */
 250    };
 251
 252    /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
 253    assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
 254
 255    /* check that these blobs don't overlap */
 256    assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
 257          || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
 258
 259    for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
 260        mvbar_blob[n] = tswap32(mvbar_blob[n]);
 261    }
 262    rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
 263                          mvbar_addr, as);
 264
 265    for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
 266        board_setup_blob[n] = tswap32(board_setup_blob[n]);
 267    }
 268    rom_add_blob_fixed_as("board-setup", board_setup_blob,
 269                          sizeof(board_setup_blob), info->board_setup_addr, as);
 270}
 271
 272static void default_reset_secondary(ARMCPU *cpu,
 273                                    const struct arm_boot_info *info)
 274{
 275    AddressSpace *as = arm_boot_address_space(cpu, info);
 276    CPUState *cs = CPU(cpu);
 277
 278    address_space_stl_notdirty(as, info->smp_bootreg_addr,
 279                               0, MEMTXATTRS_UNSPECIFIED, NULL);
 280    cpu_set_pc(cs, info->smp_loader_start);
 281}
 282
 283static inline bool have_dtb(const struct arm_boot_info *info)
 284{
 285    return info->dtb_filename || info->get_dtb;
 286}
 287
 288#define WRITE_WORD(p, value) do { \
 289    address_space_stl_notdirty(as, p, value, \
 290                               MEMTXATTRS_UNSPECIFIED, NULL);  \
 291    p += 4;                       \
 292} while (0)
 293
 294static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
 295{
 296    int initrd_size = info->initrd_size;
 297    hwaddr base = info->loader_start;
 298    hwaddr p;
 299
 300    p = base + KERNEL_ARGS_ADDR;
 301    /* ATAG_CORE */
 302    WRITE_WORD(p, 5);
 303    WRITE_WORD(p, 0x54410001);
 304    WRITE_WORD(p, 1);
 305    WRITE_WORD(p, 0x1000);
 306    WRITE_WORD(p, 0);
 307    /* ATAG_MEM */
 308    /* TODO: handle multiple chips on one ATAG list */
 309    WRITE_WORD(p, 4);
 310    WRITE_WORD(p, 0x54410002);
 311    WRITE_WORD(p, info->ram_size);
 312    WRITE_WORD(p, info->loader_start);
 313    if (initrd_size) {
 314        /* ATAG_INITRD2 */
 315        WRITE_WORD(p, 4);
 316        WRITE_WORD(p, 0x54420005);
 317        WRITE_WORD(p, info->initrd_start);
 318        WRITE_WORD(p, initrd_size);
 319    }
 320    if (info->kernel_cmdline && *info->kernel_cmdline) {
 321        /* ATAG_CMDLINE */
 322        int cmdline_size;
 323
 324        cmdline_size = strlen(info->kernel_cmdline);
 325        address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
 326                            (const uint8_t *)info->kernel_cmdline,
 327                            cmdline_size + 1);
 328        cmdline_size = (cmdline_size >> 2) + 1;
 329        WRITE_WORD(p, cmdline_size + 2);
 330        WRITE_WORD(p, 0x54410009);
 331        p += cmdline_size * 4;
 332    }
 333    if (info->atag_board) {
 334        /* ATAG_BOARD */
 335        int atag_board_len;
 336        uint8_t atag_board_buf[0x1000];
 337
 338        atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
 339        WRITE_WORD(p, (atag_board_len + 8) >> 2);
 340        WRITE_WORD(p, 0x414f4d50);
 341        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
 342                            atag_board_buf, atag_board_len);
 343        p += atag_board_len;
 344    }
 345    /* ATAG_END */
 346    WRITE_WORD(p, 0);
 347    WRITE_WORD(p, 0);
 348}
 349
 350static void set_kernel_args_old(const struct arm_boot_info *info,
 351                                AddressSpace *as)
 352{
 353    hwaddr p;
 354    const char *s;
 355    int initrd_size = info->initrd_size;
 356    hwaddr base = info->loader_start;
 357
 358    /* see linux/include/asm-arm/setup.h */
 359    p = base + KERNEL_ARGS_ADDR;
 360    /* page_size */
 361    WRITE_WORD(p, 4096);
 362    /* nr_pages */
 363    WRITE_WORD(p, info->ram_size / 4096);
 364    /* ramdisk_size */
 365    WRITE_WORD(p, 0);
 366#define FLAG_READONLY   1
 367#define FLAG_RDLOAD     4
 368#define FLAG_RDPROMPT   8
 369    /* flags */
 370    WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
 371    /* rootdev */
 372    WRITE_WORD(p, (31 << 8) | 0);       /* /dev/mtdblock0 */
 373    /* video_num_cols */
 374    WRITE_WORD(p, 0);
 375    /* video_num_rows */
 376    WRITE_WORD(p, 0);
 377    /* video_x */
 378    WRITE_WORD(p, 0);
 379    /* video_y */
 380    WRITE_WORD(p, 0);
 381    /* memc_control_reg */
 382    WRITE_WORD(p, 0);
 383    /* unsigned char sounddefault */
 384    /* unsigned char adfsdrives */
 385    /* unsigned char bytes_per_char_h */
 386    /* unsigned char bytes_per_char_v */
 387    WRITE_WORD(p, 0);
 388    /* pages_in_bank[4] */
 389    WRITE_WORD(p, 0);
 390    WRITE_WORD(p, 0);
 391    WRITE_WORD(p, 0);
 392    WRITE_WORD(p, 0);
 393    /* pages_in_vram */
 394    WRITE_WORD(p, 0);
 395    /* initrd_start */
 396    if (initrd_size) {
 397        WRITE_WORD(p, info->initrd_start);
 398    } else {
 399        WRITE_WORD(p, 0);
 400    }
 401    /* initrd_size */
 402    WRITE_WORD(p, initrd_size);
 403    /* rd_start */
 404    WRITE_WORD(p, 0);
 405    /* system_rev */
 406    WRITE_WORD(p, 0);
 407    /* system_serial_low */
 408    WRITE_WORD(p, 0);
 409    /* system_serial_high */
 410    WRITE_WORD(p, 0);
 411    /* mem_fclk_21285 */
 412    WRITE_WORD(p, 0);
 413    /* zero unused fields */
 414    while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
 415        WRITE_WORD(p, 0);
 416    }
 417    s = info->kernel_cmdline;
 418    if (s) {
 419        address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
 420                            (const uint8_t *)s, strlen(s) + 1);
 421    } else {
 422        WRITE_WORD(p, 0);
 423    }
 424}
 425
 426static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
 427                               uint32_t scells, hwaddr mem_len,
 428                               int numa_node_id)
 429{
 430    char *nodename;
 431    int ret;
 432
 433    nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
 434    qemu_fdt_add_subnode(fdt, nodename);
 435    qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
 436    ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
 437                                       scells, mem_len);
 438    if (ret < 0) {
 439        goto out;
 440    }
 441
 442    /* only set the NUMA ID if it is specified */
 443    if (numa_node_id >= 0) {
 444        ret = qemu_fdt_setprop_cell(fdt, nodename,
 445                                    "numa-node-id", numa_node_id);
 446    }
 447out:
 448    g_free(nodename);
 449    return ret;
 450}
 451
 452static void fdt_add_psci_node(void *fdt)
 453{
 454    uint32_t cpu_suspend_fn;
 455    uint32_t cpu_off_fn;
 456    uint32_t cpu_on_fn;
 457    uint32_t migrate_fn;
 458    ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
 459    const char *psci_method;
 460    int64_t psci_conduit;
 461    int rc;
 462
 463    psci_conduit = object_property_get_int(OBJECT(armcpu),
 464                                           "psci-conduit",
 465                                           &error_abort);
 466    switch (psci_conduit) {
 467    case QEMU_PSCI_CONDUIT_DISABLED:
 468        return;
 469    case QEMU_PSCI_CONDUIT_HVC:
 470        psci_method = "hvc";
 471        break;
 472    case QEMU_PSCI_CONDUIT_SMC:
 473        psci_method = "smc";
 474        break;
 475    default:
 476        g_assert_not_reached();
 477    }
 478
 479    /*
 480     * If /psci node is present in provided DTB, assume that no fixup
 481     * is necessary and all PSCI configuration should be taken as-is
 482     */
 483    rc = fdt_path_offset(fdt, "/psci");
 484    if (rc >= 0) {
 485        return;
 486    }
 487
 488    qemu_fdt_add_subnode(fdt, "/psci");
 489    if (armcpu->psci_version == 2) {
 490        const char comp[] = "arm,psci-0.2\0arm,psci";
 491        qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 492
 493        cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
 494        if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
 495            cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
 496            cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
 497            migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
 498        } else {
 499            cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
 500            cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
 501            migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
 502        }
 503    } else {
 504        qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
 505
 506        cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
 507        cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
 508        cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
 509        migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
 510    }
 511
 512    /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
 513     * to the instruction that should be used to invoke PSCI functions.
 514     * However, the device tree binding uses 'method' instead, so that is
 515     * what we should use here.
 516     */
 517    qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
 518
 519    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
 520    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
 521    qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
 522    qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
 523}
 524
 525int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
 526                 hwaddr addr_limit, AddressSpace *as)
 527{
 528    void *fdt = NULL;
 529    int size, rc, n = 0;
 530    uint32_t acells, scells;
 531    unsigned int i;
 532    hwaddr mem_base, mem_len;
 533    char **node_path;
 534    Error *err = NULL;
 535
 536    if (binfo->dtb_filename) {
 537        char *filename;
 538        filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
 539        if (!filename) {
 540            fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
 541            goto fail;
 542        }
 543
 544        fdt = load_device_tree(filename, &size);
 545        if (!fdt) {
 546            fprintf(stderr, "Couldn't open dtb file %s\n", filename);
 547            g_free(filename);
 548            goto fail;
 549        }
 550        g_free(filename);
 551    } else {
 552        fdt = binfo->get_dtb(binfo, &size);
 553        if (!fdt) {
 554            fprintf(stderr, "Board was unable to create a dtb blob\n");
 555            goto fail;
 556        }
 557    }
 558
 559    if (addr_limit > addr && size > (addr_limit - addr)) {
 560        /* Installing the device tree blob at addr would exceed addr_limit.
 561         * Whether this constitutes failure is up to the caller to decide,
 562         * so just return 0 as size, i.e., no error.
 563         */
 564        g_free(fdt);
 565        return 0;
 566    }
 567
 568    acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
 569                                   NULL, &error_fatal);
 570    scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
 571                                   NULL, &error_fatal);
 572    if (acells == 0 || scells == 0) {
 573        fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
 574        goto fail;
 575    }
 576
 577    if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
 578        /* This is user error so deserves a friendlier error message
 579         * than the failure of setprop_sized_cells would provide
 580         */
 581        fprintf(stderr, "qemu: dtb file not compatible with "
 582                "RAM size > 4GB\n");
 583        goto fail;
 584    }
 585
 586    /* nop all root nodes matching /memory or /memory@unit-address */
 587    node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
 588    if (err) {
 589        error_report_err(err);
 590        goto fail;
 591    }
 592    while (node_path[n]) {
 593        if (g_str_has_prefix(node_path[n], "/memory")) {
 594            qemu_fdt_nop_node(fdt, node_path[n]);
 595        }
 596        n++;
 597    }
 598    g_strfreev(node_path);
 599
 600    if (nb_numa_nodes > 0) {
 601        mem_base = binfo->loader_start;
 602        for (i = 0; i < nb_numa_nodes; i++) {
 603            mem_len = numa_info[i].node_mem;
 604            rc = fdt_add_memory_node(fdt, acells, mem_base,
 605                                     scells, mem_len, i);
 606            if (rc < 0) {
 607                fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
 608                        mem_base);
 609                goto fail;
 610            }
 611
 612            mem_base += mem_len;
 613        }
 614    } else {
 615        rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
 616                                 scells, binfo->ram_size, -1);
 617        if (rc < 0) {
 618            fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
 619                    binfo->loader_start);
 620            goto fail;
 621        }
 622    }
 623
 624    rc = fdt_path_offset(fdt, "/chosen");
 625    if (rc < 0) {
 626        qemu_fdt_add_subnode(fdt, "/chosen");
 627    }
 628
 629    if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
 630        rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
 631                                     binfo->kernel_cmdline);
 632        if (rc < 0) {
 633            fprintf(stderr, "couldn't set /chosen/bootargs\n");
 634            goto fail;
 635        }
 636    }
 637
 638    if (binfo->initrd_size) {
 639        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
 640                                   binfo->initrd_start);
 641        if (rc < 0) {
 642            fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
 643            goto fail;
 644        }
 645
 646        rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
 647                                   binfo->initrd_start + binfo->initrd_size);
 648        if (rc < 0) {
 649            fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
 650            goto fail;
 651        }
 652    }
 653
 654    fdt_add_psci_node(fdt);
 655
 656    if (binfo->modify_dtb) {
 657        binfo->modify_dtb(binfo, fdt);
 658    }
 659
 660    qemu_fdt_dumpdtb(fdt, size);
 661
 662    /* Put the DTB into the memory map as a ROM image: this will ensure
 663     * the DTB is copied again upon reset, even if addr points into RAM.
 664     */
 665    rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
 666
 667    g_free(fdt);
 668
 669    return size;
 670
 671fail:
 672    g_free(fdt);
 673    return -1;
 674}
 675
 676static void do_cpu_reset(void *opaque)
 677{
 678    ARMCPU *cpu = opaque;
 679    CPUState *cs = CPU(cpu);
 680    CPUARMState *env = &cpu->env;
 681    const struct arm_boot_info *info = env->boot_info;
 682
 683    cpu_reset(cs);
 684    if (info) {
 685        if (!info->is_linux) {
 686            int i;
 687            /* Jump to the entry point.  */
 688            uint64_t entry = info->entry;
 689
 690            switch (info->endianness) {
 691            case ARM_ENDIANNESS_LE:
 692                env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
 693                for (i = 1; i < 4; ++i) {
 694                    env->cp15.sctlr_el[i] &= ~SCTLR_EE;
 695                }
 696                env->uncached_cpsr &= ~CPSR_E;
 697                break;
 698            case ARM_ENDIANNESS_BE8:
 699                env->cp15.sctlr_el[1] |= SCTLR_E0E;
 700                for (i = 1; i < 4; ++i) {
 701                    env->cp15.sctlr_el[i] |= SCTLR_EE;
 702                }
 703                env->uncached_cpsr |= CPSR_E;
 704                break;
 705            case ARM_ENDIANNESS_BE32:
 706                env->cp15.sctlr_el[1] |= SCTLR_B;
 707                break;
 708            case ARM_ENDIANNESS_UNKNOWN:
 709                break; /* Board's decision */
 710            default:
 711                g_assert_not_reached();
 712            }
 713
 714            cpu_set_pc(cs, entry);
 715        } else {
 716            /* If we are booting Linux then we need to check whether we are
 717             * booting into secure or non-secure state and adjust the state
 718             * accordingly.  Out of reset, ARM is defined to be in secure state
 719             * (SCR.NS = 0), we change that here if non-secure boot has been
 720             * requested.
 721             */
 722            if (arm_feature(env, ARM_FEATURE_EL3)) {
 723                /* AArch64 is defined to come out of reset into EL3 if enabled.
 724                 * If we are booting Linux then we need to adjust our EL as
 725                 * Linux expects us to be in EL2 or EL1.  AArch32 resets into
 726                 * SVC, which Linux expects, so no privilege/exception level to
 727                 * adjust.
 728                 */
 729                if (env->aarch64) {
 730                    env->cp15.scr_el3 |= SCR_RW;
 731                    if (arm_feature(env, ARM_FEATURE_EL2)) {
 732                        env->cp15.hcr_el2 |= HCR_RW;
 733                        env->pstate = PSTATE_MODE_EL2h;
 734                    } else {
 735                        env->pstate = PSTATE_MODE_EL1h;
 736                    }
 737                    /* AArch64 kernels never boot in secure mode */
 738                    assert(!info->secure_boot);
 739                    /* This hook is only supported for AArch32 currently:
 740                     * bootloader_aarch64[] will not call the hook, and
 741                     * the code above has already dropped us into EL2 or EL1.
 742                     */
 743                    assert(!info->secure_board_setup);
 744                }
 745
 746                if (arm_feature(env, ARM_FEATURE_EL2)) {
 747                    /* If we have EL2 then Linux expects the HVC insn to work */
 748                    env->cp15.scr_el3 |= SCR_HCE;
 749                }
 750
 751                /* Set to non-secure if not a secure boot */
 752                if (!info->secure_boot &&
 753                    (cs != first_cpu || !info->secure_board_setup)) {
 754                    /* Linux expects non-secure state */
 755                    env->cp15.scr_el3 |= SCR_NS;
 756                }
 757            }
 758
 759            if (!env->aarch64 && !info->secure_boot &&
 760                arm_feature(env, ARM_FEATURE_EL2)) {
 761                /*
 762                 * This is an AArch32 boot not to Secure state, and
 763                 * we have Hyp mode available, so boot the kernel into
 764                 * Hyp mode. This is not how the CPU comes out of reset,
 765                 * so we need to manually put it there.
 766                 */
 767                cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
 768            }
 769
 770            if (cs == first_cpu) {
 771                AddressSpace *as = arm_boot_address_space(cpu, info);
 772
 773                cpu_set_pc(cs, info->loader_start);
 774
 775                if (!have_dtb(info)) {
 776                    if (old_param) {
 777                        set_kernel_args_old(info, as);
 778                    } else {
 779                        set_kernel_args(info, as);
 780                    }
 781                }
 782            } else {
 783                info->secondary_cpu_reset_hook(cpu, info);
 784            }
 785        }
 786    }
 787}
 788
 789/**
 790 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
 791 *                          by key.
 792 * @fw_cfg:         The firmware config instance to store the data in.
 793 * @size_key:       The firmware config key to store the size of the loaded
 794 *                  data under, with fw_cfg_add_i32().
 795 * @data_key:       The firmware config key to store the loaded data under,
 796 *                  with fw_cfg_add_bytes().
 797 * @image_name:     The name of the image file to load. If it is NULL, the
 798 *                  function returns without doing anything.
 799 * @try_decompress: Whether the image should be decompressed (gunzipped) before
 800 *                  adding it to fw_cfg. If decompression fails, the image is
 801 *                  loaded as-is.
 802 *
 803 * In case of failure, the function prints an error message to stderr and the
 804 * process exits with status 1.
 805 */
 806static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
 807                                 uint16_t data_key, const char *image_name,
 808                                 bool try_decompress)
 809{
 810    size_t size = -1;
 811    uint8_t *data;
 812
 813    if (image_name == NULL) {
 814        return;
 815    }
 816
 817    if (try_decompress) {
 818        size = load_image_gzipped_buffer(image_name,
 819                                         LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
 820    }
 821
 822    if (size == (size_t)-1) {
 823        gchar *contents;
 824        gsize length;
 825
 826        if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
 827            error_report("failed to load \"%s\"", image_name);
 828            exit(1);
 829        }
 830        size = length;
 831        data = (uint8_t *)contents;
 832    }
 833
 834    fw_cfg_add_i32(fw_cfg, size_key, size);
 835    fw_cfg_add_bytes(fw_cfg, data_key, data, size);
 836}
 837
 838static int do_arm_linux_init(Object *obj, void *opaque)
 839{
 840    if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
 841        ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
 842        ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
 843        struct arm_boot_info *info = opaque;
 844
 845        if (albifc->arm_linux_init) {
 846            albifc->arm_linux_init(albif, info->secure_boot);
 847        }
 848    }
 849    return 0;
 850}
 851
 852static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
 853                            uint64_t *lowaddr, uint64_t *highaddr,
 854                            int elf_machine, AddressSpace *as)
 855{
 856    bool elf_is64;
 857    union {
 858        Elf32_Ehdr h32;
 859        Elf64_Ehdr h64;
 860    } elf_header;
 861    int data_swab = 0;
 862    bool big_endian;
 863    int64_t ret = -1;
 864    Error *err = NULL;
 865
 866
 867    load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
 868    if (err) {
 869        error_free(err);
 870        return ret;
 871    }
 872
 873    if (elf_is64) {
 874        big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
 875        info->endianness = big_endian ? ARM_ENDIANNESS_BE8
 876                                      : ARM_ENDIANNESS_LE;
 877    } else {
 878        big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
 879        if (big_endian) {
 880            if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
 881                info->endianness = ARM_ENDIANNESS_BE8;
 882            } else {
 883                info->endianness = ARM_ENDIANNESS_BE32;
 884                /* In BE32, the CPU has a different view of the per-byte
 885                 * address map than the rest of the system. BE32 ELF files
 886                 * are organised such that they can be programmed through
 887                 * the CPU's per-word byte-reversed view of the world. QEMU
 888                 * however loads ELF files independently of the CPU. So
 889                 * tell the ELF loader to byte reverse the data for us.
 890                 */
 891                data_swab = 2;
 892            }
 893        } else {
 894            info->endianness = ARM_ENDIANNESS_LE;
 895        }
 896    }
 897
 898    ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
 899                      pentry, lowaddr, highaddr, big_endian, elf_machine,
 900                      1, data_swab, as);
 901    if (ret <= 0) {
 902        /* The header loaded but the image didn't */
 903        exit(1);
 904    }
 905
 906    return ret;
 907}
 908
 909static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
 910                                   hwaddr *entry, AddressSpace *as)
 911{
 912    hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
 913    uint8_t *buffer;
 914    int size;
 915
 916    /* On aarch64, it's the bootloader's job to uncompress the kernel. */
 917    size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
 918                                     &buffer);
 919
 920    if (size < 0) {
 921        gsize len;
 922
 923        /* Load as raw file otherwise */
 924        if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
 925            return -1;
 926        }
 927        size = len;
 928    }
 929
 930    /* check the arm64 magic header value -- very old kernels may not have it */
 931    if (size > ARM64_MAGIC_OFFSET + 4 &&
 932        memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
 933        uint64_t hdrvals[2];
 934
 935        /* The arm64 Image header has text_offset and image_size fields at 8 and
 936         * 16 bytes into the Image header, respectively. The text_offset field
 937         * is only valid if the image_size is non-zero.
 938         */
 939        memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
 940        if (hdrvals[1] != 0) {
 941            kernel_load_offset = le64_to_cpu(hdrvals[0]);
 942
 943            /*
 944             * We write our startup "bootloader" at the very bottom of RAM,
 945             * so that bit can't be used for the image. Luckily the Image
 946             * format specification is that the image requests only an offset
 947             * from a 2MB boundary, not an absolute load address. So if the
 948             * image requests an offset that might mean it overlaps with the
 949             * bootloader, we can just load it starting at 2MB+offset rather
 950             * than 0MB + offset.
 951             */
 952            if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
 953                kernel_load_offset += 2 * MiB;
 954            }
 955        }
 956    }
 957
 958    *entry = mem_base + kernel_load_offset;
 959    rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
 960
 961    g_free(buffer);
 962
 963    return size;
 964}
 965
 966static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
 967                                         struct arm_boot_info *info)
 968{
 969    /* Set up for a direct boot of a kernel image file. */
 970    CPUState *cs;
 971    AddressSpace *as = arm_boot_address_space(cpu, info);
 972    int kernel_size;
 973    int initrd_size;
 974    int is_linux = 0;
 975    uint64_t elf_entry, elf_low_addr, elf_high_addr;
 976    int elf_machine;
 977    hwaddr entry;
 978    static const ARMInsnFixup *primary_loader;
 979
 980    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 981        primary_loader = bootloader_aarch64;
 982        elf_machine = EM_AARCH64;
 983    } else {
 984        primary_loader = bootloader;
 985        if (!info->write_board_setup) {
 986            primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
 987        }
 988        elf_machine = EM_ARM;
 989    }
 990
 991    if (!info->secondary_cpu_reset_hook) {
 992        info->secondary_cpu_reset_hook = default_reset_secondary;
 993    }
 994    if (!info->write_secondary_boot) {
 995        info->write_secondary_boot = default_write_secondary;
 996    }
 997
 998    if (info->nb_cpus == 0)
 999        info->nb_cpus = 1;
1000
1001    /*
1002     * We want to put the initrd far enough into RAM that when the
1003     * kernel is uncompressed it will not clobber the initrd. However
1004     * on boards without much RAM we must ensure that we still leave
1005     * enough room for a decent sized initrd, and on boards with large
1006     * amounts of RAM we must avoid the initrd being so far up in RAM
1007     * that it is outside lowmem and inaccessible to the kernel.
1008     * So for boards with less  than 256MB of RAM we put the initrd
1009     * halfway into RAM, and for boards with 256MB of RAM or more we put
1010     * the initrd at 128MB.
1011     */
1012    info->initrd_start = info->loader_start +
1013        MIN(info->ram_size / 2, 128 * 1024 * 1024);
1014
1015    /* Assume that raw images are linux kernels, and ELF images are not.  */
1016    kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
1017                               &elf_high_addr, elf_machine, as);
1018    if (kernel_size > 0 && have_dtb(info)) {
1019        /*
1020         * If there is still some room left at the base of RAM, try and put
1021         * the DTB there like we do for images loaded with -bios or -pflash.
1022         */
1023        if (elf_low_addr > info->loader_start
1024            || elf_high_addr < info->loader_start) {
1025            /*
1026             * Set elf_low_addr as address limit for arm_load_dtb if it may be
1027             * pointing into RAM, otherwise pass '0' (no limit)
1028             */
1029            if (elf_low_addr < info->loader_start) {
1030                elf_low_addr = 0;
1031            }
1032            info->dtb_start = info->loader_start;
1033            info->dtb_limit = elf_low_addr;
1034        }
1035    }
1036    entry = elf_entry;
1037    if (kernel_size < 0) {
1038        uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1039        kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1040                                     &is_linux, NULL, NULL, as);
1041    }
1042    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1043        kernel_size = load_aarch64_image(info->kernel_filename,
1044                                         info->loader_start, &entry, as);
1045        is_linux = 1;
1046    } else if (kernel_size < 0) {
1047        /* 32-bit ARM */
1048        entry = info->loader_start + KERNEL_LOAD_ADDR;
1049        kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1050                                             info->ram_size - KERNEL_LOAD_ADDR,
1051                                             as);
1052        is_linux = 1;
1053    }
1054    if (kernel_size < 0) {
1055        error_report("could not load kernel '%s'", info->kernel_filename);
1056        exit(1);
1057    }
1058    info->entry = entry;
1059    if (is_linux) {
1060        uint32_t fixupcontext[FIXUP_MAX];
1061
1062        if (info->initrd_filename) {
1063            initrd_size = load_ramdisk_as(info->initrd_filename,
1064                                          info->initrd_start,
1065                                          info->ram_size - info->initrd_start,
1066                                          as);
1067            if (initrd_size < 0) {
1068                initrd_size = load_image_targphys_as(info->initrd_filename,
1069                                                     info->initrd_start,
1070                                                     info->ram_size -
1071                                                     info->initrd_start,
1072                                                     as);
1073            }
1074            if (initrd_size < 0) {
1075                error_report("could not load initrd '%s'",
1076                             info->initrd_filename);
1077                exit(1);
1078            }
1079        } else {
1080            initrd_size = 0;
1081        }
1082        info->initrd_size = initrd_size;
1083
1084        fixupcontext[FIXUP_BOARDID] = info->board_id;
1085        fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1086
1087        /*
1088         * for device tree boot, we pass the DTB directly in r2. Otherwise
1089         * we point to the kernel args.
1090         */
1091        if (have_dtb(info)) {
1092            hwaddr align;
1093
1094            if (elf_machine == EM_AARCH64) {
1095                /*
1096                 * Some AArch64 kernels on early bootup map the fdt region as
1097                 *
1098                 *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1099                 *
1100                 * Let's play safe and prealign it to 2MB to give us some space.
1101                 */
1102                align = 2 * 1024 * 1024;
1103            } else {
1104                /*
1105                 * Some 32bit kernels will trash anything in the 4K page the
1106                 * initrd ends in, so make sure the DTB isn't caught up in that.
1107                 */
1108                align = 4096;
1109            }
1110
1111            /* Place the DTB after the initrd in memory with alignment. */
1112            info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1113                                           align);
1114            fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1115            fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1116        } else {
1117            fixupcontext[FIXUP_ARGPTR_LO] =
1118                info->loader_start + KERNEL_ARGS_ADDR;
1119            fixupcontext[FIXUP_ARGPTR_HI] =
1120                (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1121            if (info->ram_size >= (1ULL << 32)) {
1122                error_report("RAM size must be less than 4GB to boot"
1123                             " Linux kernel using ATAGS (try passing a device tree"
1124                             " using -dtb)");
1125                exit(1);
1126            }
1127        }
1128        fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1129        fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1130
1131        write_bootloader("bootloader", info->loader_start,
1132                         primary_loader, fixupcontext, as);
1133
1134        if (info->nb_cpus > 1) {
1135            info->write_secondary_boot(cpu, info);
1136        }
1137        if (info->write_board_setup) {
1138            info->write_board_setup(cpu, info);
1139        }
1140
1141        /*
1142         * Notify devices which need to fake up firmware initialization
1143         * that we're doing a direct kernel boot.
1144         */
1145        object_child_foreach_recursive(object_get_root(),
1146                                       do_arm_linux_init, info);
1147    }
1148    info->is_linux = is_linux;
1149
1150    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1151        ARM_CPU(cs)->env.boot_info = info;
1152    }
1153}
1154
1155static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1156{
1157    /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1158
1159    if (have_dtb(info)) {
1160        /*
1161         * If we have a device tree blob, but no kernel to supply it to (or
1162         * the kernel is supposed to be loaded by the bootloader), copy the
1163         * DTB to the base of RAM for the bootloader to pick up.
1164         */
1165        info->dtb_start = info->loader_start;
1166    }
1167
1168    if (info->kernel_filename) {
1169        FWCfgState *fw_cfg;
1170        bool try_decompressing_kernel;
1171
1172        fw_cfg = fw_cfg_find();
1173        try_decompressing_kernel = arm_feature(&cpu->env,
1174                                               ARM_FEATURE_AARCH64);
1175
1176        /*
1177         * Expose the kernel, the command line, and the initrd in fw_cfg.
1178         * We don't process them here at all, it's all left to the
1179         * firmware.
1180         */
1181        load_image_to_fw_cfg(fw_cfg,
1182                             FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1183                             info->kernel_filename,
1184                             try_decompressing_kernel);
1185        load_image_to_fw_cfg(fw_cfg,
1186                             FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1187                             info->initrd_filename, false);
1188
1189        if (info->kernel_cmdline) {
1190            fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1191                           strlen(info->kernel_cmdline) + 1);
1192            fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1193                              info->kernel_cmdline);
1194        }
1195    }
1196
1197    /*
1198     * We will start from address 0 (typically a boot ROM image) in the
1199     * same way as hardware. Leave env->boot_info NULL, so that
1200     * do_cpu_reset() knows it does not need to alter the PC on reset.
1201     */
1202}
1203
1204void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
1205{
1206    CPUState *cs;
1207    AddressSpace *as = arm_boot_address_space(cpu, info);
1208
1209    /*
1210     * CPU objects (unlike devices) are not automatically reset on system
1211     * reset, so we must always register a handler to do so. If we're
1212     * actually loading a kernel, the handler is also responsible for
1213     * arranging that we start it correctly.
1214     */
1215    for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1216        qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1217    }
1218
1219    /*
1220     * The board code is not supposed to set secure_board_setup unless
1221     * running its code in secure mode is actually possible, and KVM
1222     * doesn't support secure.
1223     */
1224    assert(!(info->secure_board_setup && kvm_enabled()));
1225
1226    info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
1227    info->dtb_limit = 0;
1228
1229    /* Load the kernel.  */
1230    if (!info->kernel_filename || info->firmware_loaded) {
1231        arm_setup_firmware_boot(cpu, info);
1232    } else {
1233        arm_setup_direct_kernel_boot(cpu, info);
1234    }
1235
1236    if (!info->skip_dtb_autoload && have_dtb(info)) {
1237        if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1238            exit(1);
1239        }
1240    }
1241}
1242
1243static const TypeInfo arm_linux_boot_if_info = {
1244    .name = TYPE_ARM_LINUX_BOOT_IF,
1245    .parent = TYPE_INTERFACE,
1246    .class_size = sizeof(ARMLinuxBootIfClass),
1247};
1248
1249static void arm_linux_boot_register_types(void)
1250{
1251    type_register_static(&arm_linux_boot_if_info);
1252}
1253
1254type_init(arm_linux_boot_register_types)
1255