qemu/hw/arm/virt.c
<<
>>
Prefs
   1/*
   2 * ARM mach-virt emulation
   3 *
   4 * Copyright (c) 2013 Linaro Limited
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2 or later, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program.  If not, see <http://www.gnu.org/licenses/>.
  17 *
  18 * Emulate a virtual board which works by passing Linux all the information
  19 * it needs about what devices are present via the device tree.
  20 * There are some restrictions about what we can do here:
  21 *  + we can only present devices whose Linux drivers will work based
  22 *    purely on the device tree with no platform data at all
  23 *  + we want to present a very stripped-down minimalist platform,
  24 *    both because this reduces the security attack surface from the guest
  25 *    and also because it reduces our exposure to being broken when
  26 *    the kernel updates its device tree bindings and requires further
  27 *    information in a device binding that we aren't providing.
  28 * This is essentially the same approach kvmtool uses.
  29 */
  30
  31#include "qemu/osdep.h"
  32#include "qemu/units.h"
  33#include "qapi/error.h"
  34#include "hw/sysbus.h"
  35#include "hw/arm/arm.h"
  36#include "hw/arm/primecell.h"
  37#include "hw/arm/virt.h"
  38#include "hw/block/flash.h"
  39#include "hw/vfio/vfio-calxeda-xgmac.h"
  40#include "hw/vfio/vfio-amd-xgbe.h"
  41#include "hw/display/ramfb.h"
  42#include "net/net.h"
  43#include "sysemu/device_tree.h"
  44#include "sysemu/numa.h"
  45#include "sysemu/sysemu.h"
  46#include "sysemu/kvm.h"
  47#include "hw/loader.h"
  48#include "exec/address-spaces.h"
  49#include "qemu/bitops.h"
  50#include "qemu/error-report.h"
  51#include "hw/pci-host/gpex.h"
  52#include "hw/arm/sysbus-fdt.h"
  53#include "hw/platform-bus.h"
  54#include "hw/arm/fdt.h"
  55#include "hw/intc/arm_gic.h"
  56#include "hw/intc/arm_gicv3_common.h"
  57#include "kvm_arm.h"
  58#include "hw/firmware/smbios.h"
  59#include "qapi/visitor.h"
  60#include "standard-headers/linux/input.h"
  61#include "hw/arm/smmuv3.h"
  62#include "hw/acpi/acpi.h"
  63#include "target/arm/internals.h"
  64
  65#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
  66    static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
  67                                                    void *data) \
  68    { \
  69        MachineClass *mc = MACHINE_CLASS(oc); \
  70        virt_machine_##major##_##minor##_options(mc); \
  71        mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
  72        if (latest) { \
  73            mc->alias = "virt"; \
  74        } \
  75    } \
  76    static const TypeInfo machvirt_##major##_##minor##_info = { \
  77        .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
  78        .parent = TYPE_VIRT_MACHINE, \
  79        .class_init = virt_##major##_##minor##_class_init, \
  80    }; \
  81    static void machvirt_machine_##major##_##minor##_init(void) \
  82    { \
  83        type_register_static(&machvirt_##major##_##minor##_info); \
  84    } \
  85    type_init(machvirt_machine_##major##_##minor##_init);
  86
  87#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
  88    DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
  89#define DEFINE_VIRT_MACHINE(major, minor) \
  90    DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
  91
  92
  93/* Number of external interrupt lines to configure the GIC with */
  94#define NUM_IRQS 256
  95
  96#define PLATFORM_BUS_NUM_IRQS 64
  97
  98/* Legacy RAM limit in GB (< version 4.0) */
  99#define LEGACY_RAMLIMIT_GB 255
 100#define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
 101
 102/* Addresses and sizes of our components.
 103 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 104 * 128MB..256MB is used for miscellaneous device I/O.
 105 * 256MB..1GB is reserved for possible future PCI support (ie where the
 106 * PCI memory window will go if we add a PCI host controller).
 107 * 1GB and up is RAM (which may happily spill over into the
 108 * high memory region beyond 4GB).
 109 * This represents a compromise between how much RAM can be given to
 110 * a 32 bit VM and leaving space for expansion and in particular for PCI.
 111 * Note that devices should generally be placed at multiples of 0x10000,
 112 * to accommodate guests using 64K pages.
 113 */
 114static const MemMapEntry base_memmap[] = {
 115    /* Space up to 0x8000000 is reserved for a boot ROM */
 116    [VIRT_FLASH] =              {          0, 0x08000000 },
 117    [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
 118    /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
 119    [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
 120    [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
 121    [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
 122    [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
 123    [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
 124    /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
 125    [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
 126    /* This redistributor space allows up to 2*64kB*123 CPUs */
 127    [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
 128    [VIRT_UART] =               { 0x09000000, 0x00001000 },
 129    [VIRT_RTC] =                { 0x09010000, 0x00001000 },
 130    [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
 131    [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
 132    [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
 133    [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
 134    [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
 135    /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
 136    [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
 137    [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
 138    [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
 139    [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
 140    [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
 141    /* Actual RAM size depends on initial RAM and device memory settings */
 142    [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
 143};
 144
 145/*
 146 * Highmem IO Regions: This memory map is floating, located after the RAM.
 147 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
 148 * top of the RAM, so that its base get the same alignment as the size,
 149 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
 150 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
 151 * Note the extended_memmap is sized so that it eventually also includes the
 152 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
 153 * index of base_memmap).
 154 */
 155static MemMapEntry extended_memmap[] = {
 156    /* Additional 64 MB redist region (can contain up to 512 redistributors) */
 157    [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
 158    [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
 159    /* Second PCIe window */
 160    [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
 161};
 162
 163static const int a15irqmap[] = {
 164    [VIRT_UART] = 1,
 165    [VIRT_RTC] = 2,
 166    [VIRT_PCIE] = 3, /* ... to 6 */
 167    [VIRT_GPIO] = 7,
 168    [VIRT_SECURE_UART] = 8,
 169    [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
 170    [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
 171    [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
 172    [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
 173};
 174
 175static const char *valid_cpus[] = {
 176    ARM_CPU_TYPE_NAME("cortex-a15"),
 177    ARM_CPU_TYPE_NAME("cortex-a53"),
 178    ARM_CPU_TYPE_NAME("cortex-a57"),
 179    ARM_CPU_TYPE_NAME("cortex-a72"),
 180    ARM_CPU_TYPE_NAME("host"),
 181    ARM_CPU_TYPE_NAME("max"),
 182};
 183
 184static bool cpu_type_valid(const char *cpu)
 185{
 186    int i;
 187
 188    for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
 189        if (strcmp(cpu, valid_cpus[i]) == 0) {
 190            return true;
 191        }
 192    }
 193    return false;
 194}
 195
 196static void create_fdt(VirtMachineState *vms)
 197{
 198    void *fdt = create_device_tree(&vms->fdt_size);
 199
 200    if (!fdt) {
 201        error_report("create_device_tree() failed");
 202        exit(1);
 203    }
 204
 205    vms->fdt = fdt;
 206
 207    /* Header */
 208    qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
 209    qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 210    qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 211
 212    /* /chosen must exist for load_dtb to fill in necessary properties later */
 213    qemu_fdt_add_subnode(fdt, "/chosen");
 214
 215    /* Clock node, for the benefit of the UART. The kernel device tree
 216     * binding documentation claims the PL011 node clock properties are
 217     * optional but in practice if you omit them the kernel refuses to
 218     * probe for the device.
 219     */
 220    vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
 221    qemu_fdt_add_subnode(fdt, "/apb-pclk");
 222    qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
 223    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
 224    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
 225    qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
 226                                "clk24mhz");
 227    qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
 228
 229    if (have_numa_distance) {
 230        int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
 231        uint32_t *matrix = g_malloc0(size);
 232        int idx, i, j;
 233
 234        for (i = 0; i < nb_numa_nodes; i++) {
 235            for (j = 0; j < nb_numa_nodes; j++) {
 236                idx = (i * nb_numa_nodes + j) * 3;
 237                matrix[idx + 0] = cpu_to_be32(i);
 238                matrix[idx + 1] = cpu_to_be32(j);
 239                matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
 240            }
 241        }
 242
 243        qemu_fdt_add_subnode(fdt, "/distance-map");
 244        qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
 245                                "numa-distance-map-v1");
 246        qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
 247                         matrix, size);
 248        g_free(matrix);
 249    }
 250}
 251
 252static void fdt_add_timer_nodes(const VirtMachineState *vms)
 253{
 254    /* On real hardware these interrupts are level-triggered.
 255     * On KVM they were edge-triggered before host kernel version 4.4,
 256     * and level-triggered afterwards.
 257     * On emulated QEMU they are level-triggered.
 258     *
 259     * Getting the DTB info about them wrong is awkward for some
 260     * guest kernels:
 261     *  pre-4.8 ignore the DT and leave the interrupt configured
 262     *   with whatever the GIC reset value (or the bootloader) left it at
 263     *  4.8 before rc6 honour the incorrect data by programming it back
 264     *   into the GIC, causing problems
 265     *  4.8rc6 and later ignore the DT and always write "level triggered"
 266     *   into the GIC
 267     *
 268     * For backwards-compatibility, virt-2.8 and earlier will continue
 269     * to say these are edge-triggered, but later machines will report
 270     * the correct information.
 271     */
 272    ARMCPU *armcpu;
 273    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 274    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 275
 276    if (vmc->claim_edge_triggered_timers) {
 277        irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
 278    }
 279
 280    if (vms->gic_version == 2) {
 281        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 282                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 283                             (1 << vms->smp_cpus) - 1);
 284    }
 285
 286    qemu_fdt_add_subnode(vms->fdt, "/timer");
 287
 288    armcpu = ARM_CPU(qemu_get_cpu(0));
 289    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 290        const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
 291        qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
 292                         compat, sizeof(compat));
 293    } else {
 294        qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
 295                                "arm,armv7-timer");
 296    }
 297    qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
 298    qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
 299                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
 300                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
 301                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
 302                       GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
 303}
 304
 305static void fdt_add_cpu_nodes(const VirtMachineState *vms)
 306{
 307    int cpu;
 308    int addr_cells = 1;
 309    const MachineState *ms = MACHINE(vms);
 310
 311    /*
 312     * From Documentation/devicetree/bindings/arm/cpus.txt
 313     *  On ARM v8 64-bit systems value should be set to 2,
 314     *  that corresponds to the MPIDR_EL1 register size.
 315     *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
 316     *  in the system, #address-cells can be set to 1, since
 317     *  MPIDR_EL1[63:32] bits are not used for CPUs
 318     *  identification.
 319     *
 320     *  Here we actually don't know whether our system is 32- or 64-bit one.
 321     *  The simplest way to go is to examine affinity IDs of all our CPUs. If
 322     *  at least one of them has Aff3 populated, we set #address-cells to 2.
 323     */
 324    for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
 325        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 326
 327        if (armcpu->mp_affinity & ARM_AFF3_MASK) {
 328            addr_cells = 2;
 329            break;
 330        }
 331    }
 332
 333    qemu_fdt_add_subnode(vms->fdt, "/cpus");
 334    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
 335    qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
 336
 337    for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
 338        char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 339        ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 340        CPUState *cs = CPU(armcpu);
 341
 342        qemu_fdt_add_subnode(vms->fdt, nodename);
 343        qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
 344        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 345                                    armcpu->dtb_compatible);
 346
 347        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
 348            && vms->smp_cpus > 1) {
 349            qemu_fdt_setprop_string(vms->fdt, nodename,
 350                                        "enable-method", "psci");
 351        }
 352
 353        if (addr_cells == 2) {
 354            qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
 355                                 armcpu->mp_affinity);
 356        } else {
 357            qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
 358                                  armcpu->mp_affinity);
 359        }
 360
 361        if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
 362            qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
 363                ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
 364        }
 365
 366        g_free(nodename);
 367    }
 368}
 369
 370static void fdt_add_its_gic_node(VirtMachineState *vms)
 371{
 372    char *nodename;
 373
 374    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 375    nodename = g_strdup_printf("/intc/its@%" PRIx64,
 376                               vms->memmap[VIRT_GIC_ITS].base);
 377    qemu_fdt_add_subnode(vms->fdt, nodename);
 378    qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 379                            "arm,gic-v3-its");
 380    qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
 381    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 382                                 2, vms->memmap[VIRT_GIC_ITS].base,
 383                                 2, vms->memmap[VIRT_GIC_ITS].size);
 384    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
 385    g_free(nodename);
 386}
 387
 388static void fdt_add_v2m_gic_node(VirtMachineState *vms)
 389{
 390    char *nodename;
 391
 392    nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
 393                               vms->memmap[VIRT_GIC_V2M].base);
 394    vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 395    qemu_fdt_add_subnode(vms->fdt, nodename);
 396    qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 397                            "arm,gic-v2m-frame");
 398    qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
 399    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 400                                 2, vms->memmap[VIRT_GIC_V2M].base,
 401                                 2, vms->memmap[VIRT_GIC_V2M].size);
 402    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
 403    g_free(nodename);
 404}
 405
 406static void fdt_add_gic_node(VirtMachineState *vms)
 407{
 408    char *nodename;
 409
 410    vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 411    qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
 412
 413    nodename = g_strdup_printf("/intc@%" PRIx64,
 414                               vms->memmap[VIRT_GIC_DIST].base);
 415    qemu_fdt_add_subnode(vms->fdt, nodename);
 416    qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
 417    qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
 418    qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
 419    qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
 420    qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
 421    if (vms->gic_version == 3) {
 422        int nb_redist_regions = virt_gicv3_redist_region_count(vms);
 423
 424        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 425                                "arm,gic-v3");
 426
 427        qemu_fdt_setprop_cell(vms->fdt, nodename,
 428                              "#redistributor-regions", nb_redist_regions);
 429
 430        if (nb_redist_regions == 1) {
 431            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 432                                         2, vms->memmap[VIRT_GIC_DIST].base,
 433                                         2, vms->memmap[VIRT_GIC_DIST].size,
 434                                         2, vms->memmap[VIRT_GIC_REDIST].base,
 435                                         2, vms->memmap[VIRT_GIC_REDIST].size);
 436        } else {
 437            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 438                                 2, vms->memmap[VIRT_GIC_DIST].base,
 439                                 2, vms->memmap[VIRT_GIC_DIST].size,
 440                                 2, vms->memmap[VIRT_GIC_REDIST].base,
 441                                 2, vms->memmap[VIRT_GIC_REDIST].size,
 442                                 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
 443                                 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
 444        }
 445
 446        if (vms->virt) {
 447            qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 448                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 449                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 450        }
 451    } else {
 452        /* 'cortex-a15-gic' means 'GIC v2' */
 453        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 454                                "arm,cortex-a15-gic");
 455        if (!vms->virt) {
 456            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 457                                         2, vms->memmap[VIRT_GIC_DIST].base,
 458                                         2, vms->memmap[VIRT_GIC_DIST].size,
 459                                         2, vms->memmap[VIRT_GIC_CPU].base,
 460                                         2, vms->memmap[VIRT_GIC_CPU].size);
 461        } else {
 462            qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 463                                         2, vms->memmap[VIRT_GIC_DIST].base,
 464                                         2, vms->memmap[VIRT_GIC_DIST].size,
 465                                         2, vms->memmap[VIRT_GIC_CPU].base,
 466                                         2, vms->memmap[VIRT_GIC_CPU].size,
 467                                         2, vms->memmap[VIRT_GIC_HYP].base,
 468                                         2, vms->memmap[VIRT_GIC_HYP].size,
 469                                         2, vms->memmap[VIRT_GIC_VCPU].base,
 470                                         2, vms->memmap[VIRT_GIC_VCPU].size);
 471            qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 472                                   GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 473                                   GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 474        }
 475    }
 476
 477    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
 478    g_free(nodename);
 479}
 480
 481static void fdt_add_pmu_nodes(const VirtMachineState *vms)
 482{
 483    CPUState *cpu;
 484    ARMCPU *armcpu;
 485    uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 486
 487    CPU_FOREACH(cpu) {
 488        armcpu = ARM_CPU(cpu);
 489        if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
 490            return;
 491        }
 492        if (kvm_enabled()) {
 493            if (kvm_irqchip_in_kernel()) {
 494                kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
 495            }
 496            kvm_arm_pmu_init(cpu);
 497        }
 498    }
 499
 500    if (vms->gic_version == 2) {
 501        irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 502                             GIC_FDT_IRQ_PPI_CPU_WIDTH,
 503                             (1 << vms->smp_cpus) - 1);
 504    }
 505
 506    armcpu = ARM_CPU(qemu_get_cpu(0));
 507    qemu_fdt_add_subnode(vms->fdt, "/pmu");
 508    if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 509        const char compat[] = "arm,armv8-pmuv3";
 510        qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
 511                         compat, sizeof(compat));
 512        qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
 513                               GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
 514    }
 515}
 516
 517static void create_its(VirtMachineState *vms, DeviceState *gicdev)
 518{
 519    const char *itsclass = its_class_name();
 520    DeviceState *dev;
 521
 522    if (!itsclass) {
 523        /* Do nothing if not supported */
 524        return;
 525    }
 526
 527    dev = qdev_create(NULL, itsclass);
 528
 529    object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
 530                             &error_abort);
 531    qdev_init_nofail(dev);
 532    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
 533
 534    fdt_add_its_gic_node(vms);
 535}
 536
 537static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
 538{
 539    int i;
 540    int irq = vms->irqmap[VIRT_GIC_V2M];
 541    DeviceState *dev;
 542
 543    dev = qdev_create(NULL, "arm-gicv2m");
 544    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
 545    qdev_prop_set_uint32(dev, "base-spi", irq);
 546    qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
 547    qdev_init_nofail(dev);
 548
 549    for (i = 0; i < NUM_GICV2M_SPIS; i++) {
 550        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 551    }
 552
 553    fdt_add_v2m_gic_node(vms);
 554}
 555
 556static void create_gic(VirtMachineState *vms, qemu_irq *pic)
 557{
 558    /* We create a standalone GIC */
 559    DeviceState *gicdev;
 560    SysBusDevice *gicbusdev;
 561    const char *gictype;
 562    int type = vms->gic_version, i;
 563    uint32_t nb_redist_regions = 0;
 564
 565    gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
 566
 567    gicdev = qdev_create(NULL, gictype);
 568    qdev_prop_set_uint32(gicdev, "revision", type);
 569    qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
 570    /* Note that the num-irq property counts both internal and external
 571     * interrupts; there are always 32 of the former (mandated by GIC spec).
 572     */
 573    qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
 574    if (!kvm_irqchip_in_kernel()) {
 575        qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
 576    }
 577
 578    if (type == 3) {
 579        uint32_t redist0_capacity =
 580                    vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
 581        uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
 582
 583        nb_redist_regions = virt_gicv3_redist_region_count(vms);
 584
 585        qdev_prop_set_uint32(gicdev, "len-redist-region-count",
 586                             nb_redist_regions);
 587        qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
 588
 589        if (nb_redist_regions == 2) {
 590            uint32_t redist1_capacity =
 591                    vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
 592
 593            qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
 594                MIN(smp_cpus - redist0_count, redist1_capacity));
 595        }
 596    } else {
 597        if (!kvm_irqchip_in_kernel()) {
 598            qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
 599                              vms->virt);
 600        }
 601    }
 602    qdev_init_nofail(gicdev);
 603    gicbusdev = SYS_BUS_DEVICE(gicdev);
 604    sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
 605    if (type == 3) {
 606        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
 607        if (nb_redist_regions == 2) {
 608            sysbus_mmio_map(gicbusdev, 2,
 609                            vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
 610        }
 611    } else {
 612        sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
 613        if (vms->virt) {
 614            sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
 615            sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
 616        }
 617    }
 618
 619    /* Wire the outputs from each CPU's generic timer and the GICv3
 620     * maintenance interrupt signal to the appropriate GIC PPI inputs,
 621     * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
 622     */
 623    for (i = 0; i < smp_cpus; i++) {
 624        DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 625        int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 626        int irq;
 627        /* Mapping from the output timer irq lines from the CPU to the
 628         * GIC PPI inputs we use for the virt board.
 629         */
 630        const int timer_irq[] = {
 631            [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 632            [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 633            [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 634            [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 635        };
 636
 637        for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 638            qdev_connect_gpio_out(cpudev, irq,
 639                                  qdev_get_gpio_in(gicdev,
 640                                                   ppibase + timer_irq[irq]));
 641        }
 642
 643        if (type == 3) {
 644            qemu_irq irq = qdev_get_gpio_in(gicdev,
 645                                            ppibase + ARCH_GIC_MAINT_IRQ);
 646            qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
 647                                        0, irq);
 648        } else if (vms->virt) {
 649            qemu_irq irq = qdev_get_gpio_in(gicdev,
 650                                            ppibase + ARCH_GIC_MAINT_IRQ);
 651            sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
 652        }
 653
 654        qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
 655                                    qdev_get_gpio_in(gicdev, ppibase
 656                                                     + VIRTUAL_PMU_IRQ));
 657
 658        sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 659        sysbus_connect_irq(gicbusdev, i + smp_cpus,
 660                           qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 661        sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
 662                           qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
 663        sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
 664                           qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
 665    }
 666
 667    for (i = 0; i < NUM_IRQS; i++) {
 668        pic[i] = qdev_get_gpio_in(gicdev, i);
 669    }
 670
 671    fdt_add_gic_node(vms);
 672
 673    if (type == 3 && vms->its) {
 674        create_its(vms, gicdev);
 675    } else if (type == 2) {
 676        create_v2m(vms, pic);
 677    }
 678}
 679
 680static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
 681                        MemoryRegion *mem, Chardev *chr)
 682{
 683    char *nodename;
 684    hwaddr base = vms->memmap[uart].base;
 685    hwaddr size = vms->memmap[uart].size;
 686    int irq = vms->irqmap[uart];
 687    const char compat[] = "arm,pl011\0arm,primecell";
 688    const char clocknames[] = "uartclk\0apb_pclk";
 689    DeviceState *dev = qdev_create(NULL, "pl011");
 690    SysBusDevice *s = SYS_BUS_DEVICE(dev);
 691
 692    qdev_prop_set_chr(dev, "chardev", chr);
 693    qdev_init_nofail(dev);
 694    memory_region_add_subregion(mem, base,
 695                                sysbus_mmio_get_region(s, 0));
 696    sysbus_connect_irq(s, 0, pic[irq]);
 697
 698    nodename = g_strdup_printf("/pl011@%" PRIx64, base);
 699    qemu_fdt_add_subnode(vms->fdt, nodename);
 700    /* Note that we can't use setprop_string because of the embedded NUL */
 701    qemu_fdt_setprop(vms->fdt, nodename, "compatible",
 702                         compat, sizeof(compat));
 703    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 704                                     2, base, 2, size);
 705    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 706                               GIC_FDT_IRQ_TYPE_SPI, irq,
 707                               GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 708    qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
 709                               vms->clock_phandle, vms->clock_phandle);
 710    qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
 711                         clocknames, sizeof(clocknames));
 712
 713    if (uart == VIRT_UART) {
 714        qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
 715    } else {
 716        /* Mark as not usable by the normal world */
 717        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 718        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 719
 720        qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
 721        qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
 722                                nodename);
 723    }
 724
 725    g_free(nodename);
 726}
 727
 728static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
 729{
 730    char *nodename;
 731    hwaddr base = vms->memmap[VIRT_RTC].base;
 732    hwaddr size = vms->memmap[VIRT_RTC].size;
 733    int irq = vms->irqmap[VIRT_RTC];
 734    const char compat[] = "arm,pl031\0arm,primecell";
 735
 736    sysbus_create_simple("pl031", base, pic[irq]);
 737
 738    nodename = g_strdup_printf("/pl031@%" PRIx64, base);
 739    qemu_fdt_add_subnode(vms->fdt, nodename);
 740    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 741    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 742                                 2, base, 2, size);
 743    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 744                           GIC_FDT_IRQ_TYPE_SPI, irq,
 745                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 746    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 747    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 748    g_free(nodename);
 749}
 750
 751static DeviceState *gpio_key_dev;
 752static void virt_powerdown_req(Notifier *n, void *opaque)
 753{
 754    /* use gpio Pin 3 for power button event */
 755    qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 756}
 757
 758static Notifier virt_system_powerdown_notifier = {
 759    .notify = virt_powerdown_req
 760};
 761
 762static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
 763{
 764    char *nodename;
 765    DeviceState *pl061_dev;
 766    hwaddr base = vms->memmap[VIRT_GPIO].base;
 767    hwaddr size = vms->memmap[VIRT_GPIO].size;
 768    int irq = vms->irqmap[VIRT_GPIO];
 769    const char compat[] = "arm,pl061\0arm,primecell";
 770
 771    pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
 772
 773    uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
 774    nodename = g_strdup_printf("/pl061@%" PRIx64, base);
 775    qemu_fdt_add_subnode(vms->fdt, nodename);
 776    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 777                                 2, base, 2, size);
 778    qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 779    qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
 780    qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
 781    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 782                           GIC_FDT_IRQ_TYPE_SPI, irq,
 783                           GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 784    qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 785    qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 786    qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
 787
 788    gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 789                                        qdev_get_gpio_in(pl061_dev, 3));
 790    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
 791    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
 792    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
 793    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
 794
 795    qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
 796    qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
 797                            "label", "GPIO Key Poweroff");
 798    qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
 799                          KEY_POWER);
 800    qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
 801                           "gpios", phandle, 3, 0);
 802
 803    /* connect powerdown request */
 804    qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
 805
 806    g_free(nodename);
 807}
 808
 809static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
 810{
 811    int i;
 812    hwaddr size = vms->memmap[VIRT_MMIO].size;
 813
 814    /* We create the transports in forwards order. Since qbus_realize()
 815     * prepends (not appends) new child buses, the incrementing loop below will
 816     * create a list of virtio-mmio buses with decreasing base addresses.
 817     *
 818     * When a -device option is processed from the command line,
 819     * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
 820     * order. The upshot is that -device options in increasing command line
 821     * order are mapped to virtio-mmio buses with decreasing base addresses.
 822     *
 823     * When this code was originally written, that arrangement ensured that the
 824     * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
 825     * the first -device on the command line. (The end-to-end order is a
 826     * function of this loop, qbus_realize(), qbus_find_recursive(), and the
 827     * guest kernel's name-to-address assignment strategy.)
 828     *
 829     * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
 830     * the message, if not necessarily the code, of commit 70161ff336.
 831     * Therefore the loop now establishes the inverse of the original intent.
 832     *
 833     * Unfortunately, we can't counteract the kernel change by reversing the
 834     * loop; it would break existing command lines.
 835     *
 836     * In any case, the kernel makes no guarantee about the stability of
 837     * enumeration order of virtio devices (as demonstrated by it changing
 838     * between kernel versions). For reliable and stable identification
 839     * of disks users must use UUIDs or similar mechanisms.
 840     */
 841    for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
 842        int irq = vms->irqmap[VIRT_MMIO] + i;
 843        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 844
 845        sysbus_create_simple("virtio-mmio", base, pic[irq]);
 846    }
 847
 848    /* We add dtb nodes in reverse order so that they appear in the finished
 849     * device tree lowest address first.
 850     *
 851     * Note that this mapping is independent of the loop above. The previous
 852     * loop influences virtio device to virtio transport assignment, whereas
 853     * this loop controls how virtio transports are laid out in the dtb.
 854     */
 855    for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
 856        char *nodename;
 857        int irq = vms->irqmap[VIRT_MMIO] + i;
 858        hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 859
 860        nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
 861        qemu_fdt_add_subnode(vms->fdt, nodename);
 862        qemu_fdt_setprop_string(vms->fdt, nodename,
 863                                "compatible", "virtio,mmio");
 864        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 865                                     2, base, 2, size);
 866        qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 867                               GIC_FDT_IRQ_TYPE_SPI, irq,
 868                               GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
 869        qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 870        g_free(nodename);
 871    }
 872}
 873
 874static void create_one_flash(const char *name, hwaddr flashbase,
 875                             hwaddr flashsize, const char *file,
 876                             MemoryRegion *sysmem)
 877{
 878    /* Create and map a single flash device. We use the same
 879     * parameters as the flash devices on the Versatile Express board.
 880     */
 881    DriveInfo *dinfo = drive_get_next(IF_PFLASH);
 882    DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
 883    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 884    const uint64_t sectorlength = 256 * 1024;
 885
 886    if (dinfo) {
 887        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
 888                            &error_abort);
 889    }
 890
 891    qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
 892    qdev_prop_set_uint64(dev, "sector-length", sectorlength);
 893    qdev_prop_set_uint8(dev, "width", 4);
 894    qdev_prop_set_uint8(dev, "device-width", 2);
 895    qdev_prop_set_bit(dev, "big-endian", false);
 896    qdev_prop_set_uint16(dev, "id0", 0x89);
 897    qdev_prop_set_uint16(dev, "id1", 0x18);
 898    qdev_prop_set_uint16(dev, "id2", 0x00);
 899    qdev_prop_set_uint16(dev, "id3", 0x00);
 900    qdev_prop_set_string(dev, "name", name);
 901    qdev_init_nofail(dev);
 902
 903    memory_region_add_subregion(sysmem, flashbase,
 904                                sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
 905
 906    if (file) {
 907        char *fn;
 908        int image_size;
 909
 910        if (drive_get(IF_PFLASH, 0, 0)) {
 911            error_report("The contents of the first flash device may be "
 912                         "specified with -bios or with -drive if=pflash... "
 913                         "but you cannot use both options at once");
 914            exit(1);
 915        }
 916        fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
 917        if (!fn) {
 918            error_report("Could not find ROM image '%s'", file);
 919            exit(1);
 920        }
 921        image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
 922        g_free(fn);
 923        if (image_size < 0) {
 924            error_report("Could not load ROM image '%s'", file);
 925            exit(1);
 926        }
 927    }
 928}
 929
 930static void create_flash(const VirtMachineState *vms,
 931                         MemoryRegion *sysmem,
 932                         MemoryRegion *secure_sysmem)
 933{
 934    /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
 935     * Any file passed via -bios goes in the first of these.
 936     * sysmem is the system memory space. secure_sysmem is the secure view
 937     * of the system, and the first flash device should be made visible only
 938     * there. The second flash device is visible to both secure and nonsecure.
 939     * If sysmem == secure_sysmem this means there is no separate Secure
 940     * address space and both flash devices are generally visible.
 941     */
 942    hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
 943    hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
 944    char *nodename;
 945
 946    create_one_flash("virt.flash0", flashbase, flashsize,
 947                     bios_name, secure_sysmem);
 948    create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
 949                     NULL, sysmem);
 950
 951    if (sysmem == secure_sysmem) {
 952        /* Report both flash devices as a single node in the DT */
 953        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 954        qemu_fdt_add_subnode(vms->fdt, nodename);
 955        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 956        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 957                                     2, flashbase, 2, flashsize,
 958                                     2, flashbase + flashsize, 2, flashsize);
 959        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 960        g_free(nodename);
 961    } else {
 962        /* Report the devices as separate nodes so we can mark one as
 963         * only visible to the secure world.
 964         */
 965        nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
 966        qemu_fdt_add_subnode(vms->fdt, nodename);
 967        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 968        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 969                                     2, flashbase, 2, flashsize);
 970        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 971        qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 972        qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 973        g_free(nodename);
 974
 975        nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 976        qemu_fdt_add_subnode(vms->fdt, nodename);
 977        qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 978        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 979                                     2, flashbase + flashsize, 2, flashsize);
 980        qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 981        g_free(nodename);
 982    }
 983}
 984
 985static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
 986{
 987    hwaddr base = vms->memmap[VIRT_FW_CFG].base;
 988    hwaddr size = vms->memmap[VIRT_FW_CFG].size;
 989    FWCfgState *fw_cfg;
 990    char *nodename;
 991
 992    fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
 993    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
 994
 995    nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
 996    qemu_fdt_add_subnode(vms->fdt, nodename);
 997    qemu_fdt_setprop_string(vms->fdt, nodename,
 998                            "compatible", "qemu,fw-cfg-mmio");
 999    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1000                                 2, base, 2, size);
1001    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1002    g_free(nodename);
1003    return fw_cfg;
1004}
1005
1006static void create_pcie_irq_map(const VirtMachineState *vms,
1007                                uint32_t gic_phandle,
1008                                int first_irq, const char *nodename)
1009{
1010    int devfn, pin;
1011    uint32_t full_irq_map[4 * 4 * 10] = { 0 };
1012    uint32_t *irq_map = full_irq_map;
1013
1014    for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1015        for (pin = 0; pin < 4; pin++) {
1016            int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1017            int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1018            int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1019            int i;
1020
1021            uint32_t map[] = {
1022                devfn << 8, 0, 0,                           /* devfn */
1023                pin + 1,                                    /* PCI pin */
1024                gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
1025
1026            /* Convert map to big endian */
1027            for (i = 0; i < 10; i++) {
1028                irq_map[i] = cpu_to_be32(map[i]);
1029            }
1030            irq_map += 10;
1031        }
1032    }
1033
1034    qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
1035                     full_irq_map, sizeof(full_irq_map));
1036
1037    qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
1038                           0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1039                           0x7           /* PCI irq */);
1040}
1041
1042static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1043                        PCIBus *bus)
1044{
1045    char *node;
1046    const char compat[] = "arm,smmu-v3";
1047    int irq =  vms->irqmap[VIRT_SMMU];
1048    int i;
1049    hwaddr base = vms->memmap[VIRT_SMMU].base;
1050    hwaddr size = vms->memmap[VIRT_SMMU].size;
1051    const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1052    DeviceState *dev;
1053
1054    if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1055        return;
1056    }
1057
1058    dev = qdev_create(NULL, "arm-smmuv3");
1059
1060    object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1061                             &error_abort);
1062    qdev_init_nofail(dev);
1063    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1064    for (i = 0; i < NUM_SMMU_IRQS; i++) {
1065        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1066    }
1067
1068    node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1069    qemu_fdt_add_subnode(vms->fdt, node);
1070    qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1071    qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1072
1073    qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1074            GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1075            GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1076            GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1077            GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1078
1079    qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1080                     sizeof(irq_names));
1081
1082    qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1083    qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1084    qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1085
1086    qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1087
1088    qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1089    g_free(node);
1090}
1091
1092static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
1093{
1094    hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1095    hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1096    hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1097    hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
1098    hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1099    hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1100    hwaddr base_ecam, size_ecam;
1101    hwaddr base = base_mmio;
1102    int nr_pcie_buses;
1103    int irq = vms->irqmap[VIRT_PCIE];
1104    MemoryRegion *mmio_alias;
1105    MemoryRegion *mmio_reg;
1106    MemoryRegion *ecam_alias;
1107    MemoryRegion *ecam_reg;
1108    DeviceState *dev;
1109    char *nodename;
1110    int i, ecam_id;
1111    PCIHostState *pci;
1112
1113    dev = qdev_create(NULL, TYPE_GPEX_HOST);
1114    qdev_init_nofail(dev);
1115
1116    ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1117    base_ecam = vms->memmap[ecam_id].base;
1118    size_ecam = vms->memmap[ecam_id].size;
1119    nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
1120    /* Map only the first size_ecam bytes of ECAM space */
1121    ecam_alias = g_new0(MemoryRegion, 1);
1122    ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1123    memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1124                             ecam_reg, 0, size_ecam);
1125    memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1126
1127    /* Map the MMIO window into system address space so as to expose
1128     * the section of PCI MMIO space which starts at the same base address
1129     * (ie 1:1 mapping for that part of PCI MMIO space visible through
1130     * the window).
1131     */
1132    mmio_alias = g_new0(MemoryRegion, 1);
1133    mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1134    memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1135                             mmio_reg, base_mmio, size_mmio);
1136    memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1137
1138    if (vms->highmem) {
1139        /* Map high MMIO space */
1140        MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1141
1142        memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1143                                 mmio_reg, base_mmio_high, size_mmio_high);
1144        memory_region_add_subregion(get_system_memory(), base_mmio_high,
1145                                    high_mmio_alias);
1146    }
1147
1148    /* Map IO port space */
1149    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
1150
1151    for (i = 0; i < GPEX_NUM_IRQS; i++) {
1152        sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1153        gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
1154    }
1155
1156    pci = PCI_HOST_BRIDGE(dev);
1157    if (pci->bus) {
1158        for (i = 0; i < nb_nics; i++) {
1159            NICInfo *nd = &nd_table[i];
1160
1161            if (!nd->model) {
1162                nd->model = g_strdup("virtio");
1163            }
1164
1165            pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1166        }
1167    }
1168
1169    nodename = g_strdup_printf("/pcie@%" PRIx64, base);
1170    qemu_fdt_add_subnode(vms->fdt, nodename);
1171    qemu_fdt_setprop_string(vms->fdt, nodename,
1172                            "compatible", "pci-host-ecam-generic");
1173    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1174    qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1175    qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1176    qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
1177    qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
1178                           nr_pcie_buses - 1);
1179    qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
1180
1181    if (vms->msi_phandle) {
1182        qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1183                               vms->msi_phandle);
1184    }
1185
1186    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
1187                                 2, base_ecam, 2, size_ecam);
1188
1189    if (vms->highmem) {
1190        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1191                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1192                                     2, base_pio, 2, size_pio,
1193                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1194                                     2, base_mmio, 2, size_mmio,
1195                                     1, FDT_PCI_RANGE_MMIO_64BIT,
1196                                     2, base_mmio_high,
1197                                     2, base_mmio_high, 2, size_mmio_high);
1198    } else {
1199        qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
1200                                     1, FDT_PCI_RANGE_IOPORT, 2, 0,
1201                                     2, base_pio, 2, size_pio,
1202                                     1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1203                                     2, base_mmio, 2, size_mmio);
1204    }
1205
1206    qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1207    create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
1208
1209    if (vms->iommu) {
1210        vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1211
1212        create_smmu(vms, pic, pci->bus);
1213
1214        qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1215                               0x0, vms->iommu_phandle, 0x0, 0x10000);
1216    }
1217
1218    g_free(nodename);
1219}
1220
1221static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
1222{
1223    DeviceState *dev;
1224    SysBusDevice *s;
1225    int i;
1226    MemoryRegion *sysmem = get_system_memory();
1227
1228    dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1229    dev->id = TYPE_PLATFORM_BUS_DEVICE;
1230    qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1231    qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
1232    qdev_init_nofail(dev);
1233    vms->platform_bus_dev = dev;
1234
1235    s = SYS_BUS_DEVICE(dev);
1236    for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1237        int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1238        sysbus_connect_irq(s, i, pic[irqn]);
1239    }
1240
1241    memory_region_add_subregion(sysmem,
1242                                vms->memmap[VIRT_PLATFORM_BUS].base,
1243                                sysbus_mmio_get_region(s, 0));
1244}
1245
1246static void create_secure_ram(VirtMachineState *vms,
1247                              MemoryRegion *secure_sysmem)
1248{
1249    MemoryRegion *secram = g_new(MemoryRegion, 1);
1250    char *nodename;
1251    hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1252    hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
1253
1254    memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1255                           &error_fatal);
1256    memory_region_add_subregion(secure_sysmem, base, secram);
1257
1258    nodename = g_strdup_printf("/secram@%" PRIx64, base);
1259    qemu_fdt_add_subnode(vms->fdt, nodename);
1260    qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1261    qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1262    qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1263    qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
1264
1265    g_free(nodename);
1266}
1267
1268static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1269{
1270    const VirtMachineState *board = container_of(binfo, VirtMachineState,
1271                                                 bootinfo);
1272
1273    *fdt_size = board->fdt_size;
1274    return board->fdt;
1275}
1276
1277static void virt_build_smbios(VirtMachineState *vms)
1278{
1279    MachineClass *mc = MACHINE_GET_CLASS(vms);
1280    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1281    uint8_t *smbios_tables, *smbios_anchor;
1282    size_t smbios_tables_len, smbios_anchor_len;
1283    const char *product = "QEMU Virtual Machine";
1284
1285    if (kvm_enabled()) {
1286        product = "KVM Virtual Machine";
1287    }
1288
1289    smbios_set_defaults("QEMU", product,
1290                        vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1291                        true, SMBIOS_ENTRY_POINT_30);
1292
1293    smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1294                      &smbios_anchor, &smbios_anchor_len);
1295
1296    if (smbios_anchor) {
1297        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
1298                        smbios_tables, smbios_tables_len);
1299        fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
1300                        smbios_anchor, smbios_anchor_len);
1301    }
1302}
1303
1304static
1305void virt_machine_done(Notifier *notifier, void *data)
1306{
1307    VirtMachineState *vms = container_of(notifier, VirtMachineState,
1308                                         machine_done);
1309    ARMCPU *cpu = ARM_CPU(first_cpu);
1310    struct arm_boot_info *info = &vms->bootinfo;
1311    AddressSpace *as = arm_boot_address_space(cpu, info);
1312
1313    /*
1314     * If the user provided a dtb, we assume the dynamic sysbus nodes
1315     * already are integrated there. This corresponds to a use case where
1316     * the dynamic sysbus nodes are complex and their generation is not yet
1317     * supported. In that case the user can take charge of the guest dt
1318     * while qemu takes charge of the qom stuff.
1319     */
1320    if (info->dtb_filename == NULL) {
1321        platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1322                                       vms->memmap[VIRT_PLATFORM_BUS].base,
1323                                       vms->memmap[VIRT_PLATFORM_BUS].size,
1324                                       vms->irqmap[VIRT_PLATFORM_BUS]);
1325    }
1326    if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1327        exit(1);
1328    }
1329
1330    virt_acpi_setup(vms);
1331    virt_build_smbios(vms);
1332}
1333
1334static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1335{
1336    uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1337    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1338
1339    if (!vmc->disallow_affinity_adjustment) {
1340        /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1341         * GIC's target-list limitations. 32-bit KVM hosts currently
1342         * always create clusters of 4 CPUs, but that is expected to
1343         * change when they gain support for gicv3. When KVM is enabled
1344         * it will override the changes we make here, therefore our
1345         * purposes are to make TCG consistent (with 64-bit KVM hosts)
1346         * and to improve SGI efficiency.
1347         */
1348        if (vms->gic_version == 3) {
1349            clustersz = GICV3_TARGETLIST_BITS;
1350        } else {
1351            clustersz = GIC_TARGETLIST_BITS;
1352        }
1353    }
1354    return arm_cpu_mp_affinity(idx, clustersz);
1355}
1356
1357static void virt_set_memmap(VirtMachineState *vms)
1358{
1359    MachineState *ms = MACHINE(vms);
1360    hwaddr base, device_memory_base, device_memory_size;
1361    int i;
1362
1363    vms->memmap = extended_memmap;
1364
1365    for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1366        vms->memmap[i] = base_memmap[i];
1367    }
1368
1369    if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1370        error_report("unsupported number of memory slots: %"PRIu64,
1371                     ms->ram_slots);
1372        exit(EXIT_FAILURE);
1373    }
1374
1375    /*
1376     * We compute the base of the high IO region depending on the
1377     * amount of initial and device memory. The device memory start/size
1378     * is aligned on 1GiB. We never put the high IO region below 256GiB
1379     * so that if maxram_size is < 255GiB we keep the legacy memory map.
1380     * The device region size assumes 1GiB page max alignment per slot.
1381     */
1382    device_memory_base =
1383        ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1384    device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1385
1386    /* Base address of the high IO region */
1387    base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1388    if (base < device_memory_base) {
1389        error_report("maxmem/slots too huge");
1390        exit(EXIT_FAILURE);
1391    }
1392    if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1393        base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1394    }
1395
1396    for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1397        hwaddr size = extended_memmap[i].size;
1398
1399        base = ROUND_UP(base, size);
1400        vms->memmap[i].base = base;
1401        vms->memmap[i].size = size;
1402        base += size;
1403    }
1404    vms->highest_gpa = base - 1;
1405    if (device_memory_size > 0) {
1406        ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1407        ms->device_memory->base = device_memory_base;
1408        memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1409                           "device-memory", device_memory_size);
1410    }
1411}
1412
1413static void machvirt_init(MachineState *machine)
1414{
1415    VirtMachineState *vms = VIRT_MACHINE(machine);
1416    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
1417    MachineClass *mc = MACHINE_GET_CLASS(machine);
1418    const CPUArchIdList *possible_cpus;
1419    qemu_irq pic[NUM_IRQS];
1420    MemoryRegion *sysmem = get_system_memory();
1421    MemoryRegion *secure_sysmem = NULL;
1422    int n, virt_max_cpus;
1423    MemoryRegion *ram = g_new(MemoryRegion, 1);
1424    bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
1425    bool aarch64 = true;
1426
1427    /*
1428     * In accelerated mode, the memory map is computed earlier in kvm_type()
1429     * to create a VM with the right number of IPA bits.
1430     */
1431    if (!vms->memmap) {
1432        virt_set_memmap(vms);
1433    }
1434
1435    /* We can probe only here because during property set
1436     * KVM is not available yet
1437     */
1438    if (vms->gic_version <= 0) {
1439        /* "host" or "max" */
1440        if (!kvm_enabled()) {
1441            if (vms->gic_version == 0) {
1442                error_report("gic-version=host requires KVM");
1443                exit(1);
1444            } else {
1445                /* "max": currently means 3 for TCG */
1446                vms->gic_version = 3;
1447            }
1448        } else {
1449            vms->gic_version = kvm_arm_vgic_probe();
1450            if (!vms->gic_version) {
1451                error_report(
1452                    "Unable to determine GIC version supported by host");
1453                exit(1);
1454            }
1455        }
1456    }
1457
1458    if (!cpu_type_valid(machine->cpu_type)) {
1459        error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
1460        exit(1);
1461    }
1462
1463    /* If we have an EL3 boot ROM then the assumption is that it will
1464     * implement PSCI itself, so disable QEMU's internal implementation
1465     * so it doesn't get in the way. Instead of starting secondary
1466     * CPUs in PSCI powerdown state we will start them all running and
1467     * let the boot ROM sort them out.
1468     * The usual case is that we do use QEMU's PSCI implementation;
1469     * if the guest has EL2 then we will use SMC as the conduit,
1470     * and otherwise we will use HVC (for backwards compatibility and
1471     * because if we're using KVM then we must use HVC).
1472     */
1473    if (vms->secure && firmware_loaded) {
1474        vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1475    } else if (vms->virt) {
1476        vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
1477    } else {
1478        vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1479    }
1480
1481    /* The maximum number of CPUs depends on the GIC version, or on how
1482     * many redistributors we can fit into the memory map.
1483     */
1484    if (vms->gic_version == 3) {
1485        virt_max_cpus =
1486            vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1487        virt_max_cpus +=
1488            vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
1489    } else {
1490        virt_max_cpus = GIC_NCPU;
1491    }
1492
1493    if (max_cpus > virt_max_cpus) {
1494        error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1495                     "supported by machine 'mach-virt' (%d)",
1496                     max_cpus, virt_max_cpus);
1497        exit(1);
1498    }
1499
1500    vms->smp_cpus = smp_cpus;
1501
1502    if (vms->virt && kvm_enabled()) {
1503        error_report("mach-virt: KVM does not support providing "
1504                     "Virtualization extensions to the guest CPU");
1505        exit(1);
1506    }
1507
1508    if (vms->secure) {
1509        if (kvm_enabled()) {
1510            error_report("mach-virt: KVM does not support Security extensions");
1511            exit(1);
1512        }
1513
1514        /* The Secure view of the world is the same as the NonSecure,
1515         * but with a few extra devices. Create it as a container region
1516         * containing the system memory at low priority; any secure-only
1517         * devices go in at higher priority and take precedence.
1518         */
1519        secure_sysmem = g_new(MemoryRegion, 1);
1520        memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1521                           UINT64_MAX);
1522        memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1523    }
1524
1525    create_fdt(vms);
1526
1527    possible_cpus = mc->possible_cpu_arch_ids(machine);
1528    for (n = 0; n < possible_cpus->len; n++) {
1529        Object *cpuobj;
1530        CPUState *cs;
1531
1532        if (n >= smp_cpus) {
1533            break;
1534        }
1535
1536        cpuobj = object_new(possible_cpus->cpus[n].type);
1537        object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
1538                                "mp-affinity", NULL);
1539
1540        cs = CPU(cpuobj);
1541        cs->cpu_index = n;
1542
1543        numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1544                          &error_fatal);
1545
1546        aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1547
1548        if (!vms->secure) {
1549            object_property_set_bool(cpuobj, false, "has_el3", NULL);
1550        }
1551
1552        if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
1553            object_property_set_bool(cpuobj, false, "has_el2", NULL);
1554        }
1555
1556        if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1557            object_property_set_int(cpuobj, vms->psci_conduit,
1558                                    "psci-conduit", NULL);
1559
1560            /* Secondary CPUs start in PSCI powered-down state */
1561            if (n > 0) {
1562                object_property_set_bool(cpuobj, true,
1563                                         "start-powered-off", NULL);
1564            }
1565        }
1566
1567        if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1568            object_property_set_bool(cpuobj, false, "pmu", NULL);
1569        }
1570
1571        if (object_property_find(cpuobj, "reset-cbar", NULL)) {
1572            object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
1573                                    "reset-cbar", &error_abort);
1574        }
1575
1576        object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1577                                 &error_abort);
1578        if (vms->secure) {
1579            object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1580                                     "secure-memory", &error_abort);
1581        }
1582
1583        object_property_set_bool(cpuobj, true, "realized", &error_fatal);
1584        object_unref(cpuobj);
1585    }
1586    fdt_add_timer_nodes(vms);
1587    fdt_add_cpu_nodes(vms);
1588
1589   if (!kvm_enabled()) {
1590        ARMCPU *cpu = ARM_CPU(first_cpu);
1591        bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1592
1593        if (aarch64 && vms->highmem) {
1594            int requested_pa_size, pamax = arm_pamax(cpu);
1595
1596            requested_pa_size = 64 - clz64(vms->highest_gpa);
1597            if (pamax < requested_pa_size) {
1598                error_report("VCPU supports less PA bits (%d) than requested "
1599                            "by the memory map (%d)", pamax, requested_pa_size);
1600                exit(1);
1601            }
1602        }
1603    }
1604
1605    memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1606                                         machine->ram_size);
1607    memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
1608    if (machine->device_memory) {
1609        memory_region_add_subregion(sysmem, machine->device_memory->base,
1610                                    &machine->device_memory->mr);
1611    }
1612
1613    create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
1614
1615    create_gic(vms, pic);
1616
1617    fdt_add_pmu_nodes(vms);
1618
1619    create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
1620
1621    if (vms->secure) {
1622        create_secure_ram(vms, secure_sysmem);
1623        create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
1624    }
1625
1626    vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1627
1628    create_rtc(vms, pic);
1629
1630    create_pcie(vms, pic);
1631
1632    create_gpio(vms, pic);
1633
1634    /* Create mmio transports, so the user can create virtio backends
1635     * (which will be automatically plugged in to the transports). If
1636     * no backend is created the transport will just sit harmlessly idle.
1637     */
1638    create_virtio_devices(vms, pic);
1639
1640    vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1641    rom_set_fw(vms->fw_cfg);
1642
1643    create_platform_bus(vms, pic);
1644
1645    vms->bootinfo.ram_size = machine->ram_size;
1646    vms->bootinfo.kernel_filename = machine->kernel_filename;
1647    vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1648    vms->bootinfo.initrd_filename = machine->initrd_filename;
1649    vms->bootinfo.nb_cpus = smp_cpus;
1650    vms->bootinfo.board_id = -1;
1651    vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1652    vms->bootinfo.get_dtb = machvirt_dtb;
1653    vms->bootinfo.skip_dtb_autoload = true;
1654    vms->bootinfo.firmware_loaded = firmware_loaded;
1655    arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
1656
1657    vms->machine_done.notify = virt_machine_done;
1658    qemu_add_machine_init_done_notifier(&vms->machine_done);
1659}
1660
1661static bool virt_get_secure(Object *obj, Error **errp)
1662{
1663    VirtMachineState *vms = VIRT_MACHINE(obj);
1664
1665    return vms->secure;
1666}
1667
1668static void virt_set_secure(Object *obj, bool value, Error **errp)
1669{
1670    VirtMachineState *vms = VIRT_MACHINE(obj);
1671
1672    vms->secure = value;
1673}
1674
1675static bool virt_get_virt(Object *obj, Error **errp)
1676{
1677    VirtMachineState *vms = VIRT_MACHINE(obj);
1678
1679    return vms->virt;
1680}
1681
1682static void virt_set_virt(Object *obj, bool value, Error **errp)
1683{
1684    VirtMachineState *vms = VIRT_MACHINE(obj);
1685
1686    vms->virt = value;
1687}
1688
1689static bool virt_get_highmem(Object *obj, Error **errp)
1690{
1691    VirtMachineState *vms = VIRT_MACHINE(obj);
1692
1693    return vms->highmem;
1694}
1695
1696static void virt_set_highmem(Object *obj, bool value, Error **errp)
1697{
1698    VirtMachineState *vms = VIRT_MACHINE(obj);
1699
1700    vms->highmem = value;
1701}
1702
1703static bool virt_get_its(Object *obj, Error **errp)
1704{
1705    VirtMachineState *vms = VIRT_MACHINE(obj);
1706
1707    return vms->its;
1708}
1709
1710static void virt_set_its(Object *obj, bool value, Error **errp)
1711{
1712    VirtMachineState *vms = VIRT_MACHINE(obj);
1713
1714    vms->its = value;
1715}
1716
1717static char *virt_get_gic_version(Object *obj, Error **errp)
1718{
1719    VirtMachineState *vms = VIRT_MACHINE(obj);
1720    const char *val = vms->gic_version == 3 ? "3" : "2";
1721
1722    return g_strdup(val);
1723}
1724
1725static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1726{
1727    VirtMachineState *vms = VIRT_MACHINE(obj);
1728
1729    if (!strcmp(value, "3")) {
1730        vms->gic_version = 3;
1731    } else if (!strcmp(value, "2")) {
1732        vms->gic_version = 2;
1733    } else if (!strcmp(value, "host")) {
1734        vms->gic_version = 0; /* Will probe later */
1735    } else if (!strcmp(value, "max")) {
1736        vms->gic_version = -1; /* Will probe later */
1737    } else {
1738        error_setg(errp, "Invalid gic-version value");
1739        error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
1740    }
1741}
1742
1743static char *virt_get_iommu(Object *obj, Error **errp)
1744{
1745    VirtMachineState *vms = VIRT_MACHINE(obj);
1746
1747    switch (vms->iommu) {
1748    case VIRT_IOMMU_NONE:
1749        return g_strdup("none");
1750    case VIRT_IOMMU_SMMUV3:
1751        return g_strdup("smmuv3");
1752    default:
1753        g_assert_not_reached();
1754    }
1755}
1756
1757static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1758{
1759    VirtMachineState *vms = VIRT_MACHINE(obj);
1760
1761    if (!strcmp(value, "smmuv3")) {
1762        vms->iommu = VIRT_IOMMU_SMMUV3;
1763    } else if (!strcmp(value, "none")) {
1764        vms->iommu = VIRT_IOMMU_NONE;
1765    } else {
1766        error_setg(errp, "Invalid iommu value");
1767        error_append_hint(errp, "Valid values are none, smmuv3.\n");
1768    }
1769}
1770
1771static CpuInstanceProperties
1772virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1773{
1774    MachineClass *mc = MACHINE_GET_CLASS(ms);
1775    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1776
1777    assert(cpu_index < possible_cpus->len);
1778    return possible_cpus->cpus[cpu_index].props;
1779}
1780
1781static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1782{
1783    return idx % nb_numa_nodes;
1784}
1785
1786static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1787{
1788    int n;
1789    VirtMachineState *vms = VIRT_MACHINE(ms);
1790
1791    if (ms->possible_cpus) {
1792        assert(ms->possible_cpus->len == max_cpus);
1793        return ms->possible_cpus;
1794    }
1795
1796    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1797                                  sizeof(CPUArchId) * max_cpus);
1798    ms->possible_cpus->len = max_cpus;
1799    for (n = 0; n < ms->possible_cpus->len; n++) {
1800        ms->possible_cpus->cpus[n].type = ms->cpu_type;
1801        ms->possible_cpus->cpus[n].arch_id =
1802            virt_cpu_mp_affinity(vms, n);
1803        ms->possible_cpus->cpus[n].props.has_thread_id = true;
1804        ms->possible_cpus->cpus[n].props.thread_id = n;
1805    }
1806    return ms->possible_cpus;
1807}
1808
1809static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1810                                        DeviceState *dev, Error **errp)
1811{
1812    VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1813
1814    if (vms->platform_bus_dev) {
1815        if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1816            platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1817                                     SYS_BUS_DEVICE(dev));
1818        }
1819    }
1820}
1821
1822static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1823                                                        DeviceState *dev)
1824{
1825    if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1826        return HOTPLUG_HANDLER(machine);
1827    }
1828
1829    return NULL;
1830}
1831
1832/*
1833 * for arm64 kvm_type [7-0] encodes the requested number of bits
1834 * in the IPA address space
1835 */
1836static int virt_kvm_type(MachineState *ms, const char *type_str)
1837{
1838    VirtMachineState *vms = VIRT_MACHINE(ms);
1839    int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1840    int requested_pa_size;
1841
1842    /* we freeze the memory map to compute the highest gpa */
1843    virt_set_memmap(vms);
1844
1845    requested_pa_size = 64 - clz64(vms->highest_gpa);
1846
1847    if (requested_pa_size > max_vm_pa_size) {
1848        error_report("-m and ,maxmem option values "
1849                     "require an IPA range (%d bits) larger than "
1850                     "the one supported by the host (%d bits)",
1851                     requested_pa_size, max_vm_pa_size);
1852       exit(1);
1853    }
1854    /*
1855     * By default we return 0 which corresponds to an implicit legacy
1856     * 40b IPA setting. Otherwise we return the actual requested PA
1857     * logsize
1858     */
1859    return requested_pa_size > 40 ? requested_pa_size : 0;
1860}
1861
1862static void virt_machine_class_init(ObjectClass *oc, void *data)
1863{
1864    MachineClass *mc = MACHINE_CLASS(oc);
1865    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1866
1867    mc->init = machvirt_init;
1868    /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1869     * The value may be reduced later when we have more information about the
1870     * configuration of the particular instance.
1871     */
1872    mc->max_cpus = 512;
1873    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1874    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
1875    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1876    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
1877    mc->block_default_type = IF_VIRTIO;
1878    mc->no_cdrom = 1;
1879    mc->pci_allow_0_address = true;
1880    /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1881    mc->minimum_page_bits = 12;
1882    mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
1883    mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
1884    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
1885    mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
1886    mc->kvm_type = virt_kvm_type;
1887    assert(!mc->get_hotplug_handler);
1888    mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1889    hc->plug = virt_machine_device_plug_cb;
1890}
1891
1892static void virt_instance_init(Object *obj)
1893{
1894    VirtMachineState *vms = VIRT_MACHINE(obj);
1895    VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1896
1897    /* EL3 is disabled by default on virt: this makes us consistent
1898     * between KVM and TCG for this board, and it also allows us to
1899     * boot UEFI blobs which assume no TrustZone support.
1900     */
1901    vms->secure = false;
1902    object_property_add_bool(obj, "secure", virt_get_secure,
1903                             virt_set_secure, NULL);
1904    object_property_set_description(obj, "secure",
1905                                    "Set on/off to enable/disable the ARM "
1906                                    "Security Extensions (TrustZone)",
1907                                    NULL);
1908
1909    /* EL2 is also disabled by default, for similar reasons */
1910    vms->virt = false;
1911    object_property_add_bool(obj, "virtualization", virt_get_virt,
1912                             virt_set_virt, NULL);
1913    object_property_set_description(obj, "virtualization",
1914                                    "Set on/off to enable/disable emulating a "
1915                                    "guest CPU which implements the ARM "
1916                                    "Virtualization Extensions",
1917                                    NULL);
1918
1919    /* High memory is enabled by default */
1920    vms->highmem = true;
1921    object_property_add_bool(obj, "highmem", virt_get_highmem,
1922                             virt_set_highmem, NULL);
1923    object_property_set_description(obj, "highmem",
1924                                    "Set on/off to enable/disable using "
1925                                    "physical address space above 32 bits",
1926                                    NULL);
1927    /* Default GIC type is v2 */
1928    vms->gic_version = 2;
1929    object_property_add_str(obj, "gic-version", virt_get_gic_version,
1930                        virt_set_gic_version, NULL);
1931    object_property_set_description(obj, "gic-version",
1932                                    "Set GIC version. "
1933                                    "Valid values are 2, 3 and host", NULL);
1934
1935    vms->highmem_ecam = !vmc->no_highmem_ecam;
1936
1937    if (vmc->no_its) {
1938        vms->its = false;
1939    } else {
1940        /* Default allows ITS instantiation */
1941        vms->its = true;
1942        object_property_add_bool(obj, "its", virt_get_its,
1943                                 virt_set_its, NULL);
1944        object_property_set_description(obj, "its",
1945                                        "Set on/off to enable/disable "
1946                                        "ITS instantiation",
1947                                        NULL);
1948    }
1949
1950    /* Default disallows iommu instantiation */
1951    vms->iommu = VIRT_IOMMU_NONE;
1952    object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
1953    object_property_set_description(obj, "iommu",
1954                                    "Set the IOMMU type. "
1955                                    "Valid values are none and smmuv3",
1956                                    NULL);
1957
1958    vms->irqmap = a15irqmap;
1959}
1960
1961static const TypeInfo virt_machine_info = {
1962    .name          = TYPE_VIRT_MACHINE,
1963    .parent        = TYPE_MACHINE,
1964    .abstract      = true,
1965    .instance_size = sizeof(VirtMachineState),
1966    .class_size    = sizeof(VirtMachineClass),
1967    .class_init    = virt_machine_class_init,
1968    .instance_init = virt_instance_init,
1969    .interfaces = (InterfaceInfo[]) {
1970         { TYPE_HOTPLUG_HANDLER },
1971         { }
1972    },
1973};
1974
1975static void machvirt_machine_init(void)
1976{
1977    type_register_static(&virt_machine_info);
1978}
1979type_init(machvirt_machine_init);
1980
1981static void virt_machine_4_0_options(MachineClass *mc)
1982{
1983}
1984DEFINE_VIRT_MACHINE_AS_LATEST(4, 0)
1985
1986static void virt_machine_3_1_options(MachineClass *mc)
1987{
1988    virt_machine_4_0_options(mc);
1989    compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
1990}
1991DEFINE_VIRT_MACHINE(3, 1)
1992
1993static void virt_machine_3_0_options(MachineClass *mc)
1994{
1995    virt_machine_3_1_options(mc);
1996    compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
1997}
1998DEFINE_VIRT_MACHINE(3, 0)
1999
2000static void virt_machine_2_12_options(MachineClass *mc)
2001{
2002    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2003
2004    virt_machine_3_0_options(mc);
2005    compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
2006    vmc->no_highmem_ecam = true;
2007    mc->max_cpus = 255;
2008}
2009DEFINE_VIRT_MACHINE(2, 12)
2010
2011static void virt_machine_2_11_options(MachineClass *mc)
2012{
2013    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2014
2015    virt_machine_2_12_options(mc);
2016    compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
2017    vmc->smbios_old_sys_ver = true;
2018}
2019DEFINE_VIRT_MACHINE(2, 11)
2020
2021static void virt_machine_2_10_options(MachineClass *mc)
2022{
2023    virt_machine_2_11_options(mc);
2024    compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
2025    /* before 2.11 we never faulted accesses to bad addresses */
2026    mc->ignore_memory_transaction_failures = true;
2027}
2028DEFINE_VIRT_MACHINE(2, 10)
2029
2030static void virt_machine_2_9_options(MachineClass *mc)
2031{
2032    virt_machine_2_10_options(mc);
2033    compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
2034}
2035DEFINE_VIRT_MACHINE(2, 9)
2036
2037static void virt_machine_2_8_options(MachineClass *mc)
2038{
2039    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2040
2041    virt_machine_2_9_options(mc);
2042    compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
2043    /* For 2.8 and earlier we falsely claimed in the DT that
2044     * our timers were edge-triggered, not level-triggered.
2045     */
2046    vmc->claim_edge_triggered_timers = true;
2047}
2048DEFINE_VIRT_MACHINE(2, 8)
2049
2050static void virt_machine_2_7_options(MachineClass *mc)
2051{
2052    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2053
2054    virt_machine_2_8_options(mc);
2055    compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2056    /* ITS was introduced with 2.8 */
2057    vmc->no_its = true;
2058    /* Stick with 1K pages for migration compatibility */
2059    mc->minimum_page_bits = 0;
2060}
2061DEFINE_VIRT_MACHINE(2, 7)
2062
2063static void virt_machine_2_6_options(MachineClass *mc)
2064{
2065    VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2066
2067    virt_machine_2_7_options(mc);
2068    compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
2069    vmc->disallow_affinity_adjustment = true;
2070    /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2071    vmc->no_pmu = true;
2072}
2073DEFINE_VIRT_MACHINE(2, 6)
2074