qemu/hw/block/nvme.c
<<
>>
Prefs
   1/*
   2 * QEMU NVM Express Controller
   3 *
   4 * Copyright (c) 2012, Intel Corporation
   5 *
   6 * Written by Keith Busch <keith.busch@intel.com>
   7 *
   8 * This code is licensed under the GNU GPL v2 or later.
   9 */
  10
  11/**
  12 * Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
  13 *
  14 *  http://www.nvmexpress.org/resources/
  15 */
  16
  17/**
  18 * Usage: add options:
  19 *      -drive file=<file>,if=none,id=<drive_id>
  20 *      -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
  21 *              cmb_size_mb=<cmb_size_mb[optional]>, \
  22 *              num_queues=<N[optional]>
  23 *
  24 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
  25 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
  26 */
  27
  28#include "qemu/osdep.h"
  29#include "qemu/units.h"
  30#include "hw/block/block.h"
  31#include "hw/hw.h"
  32#include "hw/pci/msix.h"
  33#include "hw/pci/pci.h"
  34#include "sysemu/sysemu.h"
  35#include "qapi/error.h"
  36#include "qapi/visitor.h"
  37#include "sysemu/block-backend.h"
  38
  39#include "qemu/log.h"
  40#include "qemu/cutils.h"
  41#include "trace.h"
  42#include "nvme.h"
  43
  44#define NVME_GUEST_ERR(trace, fmt, ...) \
  45    do { \
  46        (trace_##trace)(__VA_ARGS__); \
  47        qemu_log_mask(LOG_GUEST_ERROR, #trace \
  48            " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
  49    } while (0)
  50
  51static void nvme_process_sq(void *opaque);
  52
  53static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
  54{
  55    if (n->cmbsz && addr >= n->ctrl_mem.addr &&
  56                addr < (n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size))) {
  57        memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
  58    } else {
  59        pci_dma_read(&n->parent_obj, addr, buf, size);
  60    }
  61}
  62
  63static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
  64{
  65    return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
  66}
  67
  68static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
  69{
  70    return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
  71}
  72
  73static void nvme_inc_cq_tail(NvmeCQueue *cq)
  74{
  75    cq->tail++;
  76    if (cq->tail >= cq->size) {
  77        cq->tail = 0;
  78        cq->phase = !cq->phase;
  79    }
  80}
  81
  82static void nvme_inc_sq_head(NvmeSQueue *sq)
  83{
  84    sq->head = (sq->head + 1) % sq->size;
  85}
  86
  87static uint8_t nvme_cq_full(NvmeCQueue *cq)
  88{
  89    return (cq->tail + 1) % cq->size == cq->head;
  90}
  91
  92static uint8_t nvme_sq_empty(NvmeSQueue *sq)
  93{
  94    return sq->head == sq->tail;
  95}
  96
  97static void nvme_irq_check(NvmeCtrl *n)
  98{
  99    if (msix_enabled(&(n->parent_obj))) {
 100        return;
 101    }
 102    if (~n->bar.intms & n->irq_status) {
 103        pci_irq_assert(&n->parent_obj);
 104    } else {
 105        pci_irq_deassert(&n->parent_obj);
 106    }
 107}
 108
 109static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
 110{
 111    if (cq->irq_enabled) {
 112        if (msix_enabled(&(n->parent_obj))) {
 113            trace_nvme_irq_msix(cq->vector);
 114            msix_notify(&(n->parent_obj), cq->vector);
 115        } else {
 116            trace_nvme_irq_pin();
 117            assert(cq->cqid < 64);
 118            n->irq_status |= 1 << cq->cqid;
 119            nvme_irq_check(n);
 120        }
 121    } else {
 122        trace_nvme_irq_masked();
 123    }
 124}
 125
 126static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
 127{
 128    if (cq->irq_enabled) {
 129        if (msix_enabled(&(n->parent_obj))) {
 130            return;
 131        } else {
 132            assert(cq->cqid < 64);
 133            n->irq_status &= ~(1 << cq->cqid);
 134            nvme_irq_check(n);
 135        }
 136    }
 137}
 138
 139static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
 140                             uint64_t prp2, uint32_t len, NvmeCtrl *n)
 141{
 142    hwaddr trans_len = n->page_size - (prp1 % n->page_size);
 143    trans_len = MIN(len, trans_len);
 144    int num_prps = (len >> n->page_bits) + 1;
 145
 146    if (unlikely(!prp1)) {
 147        trace_nvme_err_invalid_prp();
 148        return NVME_INVALID_FIELD | NVME_DNR;
 149    } else if (n->cmbsz && prp1 >= n->ctrl_mem.addr &&
 150               prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
 151        qsg->nsg = 0;
 152        qemu_iovec_init(iov, num_prps);
 153        qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
 154    } else {
 155        pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
 156        qemu_sglist_add(qsg, prp1, trans_len);
 157    }
 158    len -= trans_len;
 159    if (len) {
 160        if (unlikely(!prp2)) {
 161            trace_nvme_err_invalid_prp2_missing();
 162            goto unmap;
 163        }
 164        if (len > n->page_size) {
 165            uint64_t prp_list[n->max_prp_ents];
 166            uint32_t nents, prp_trans;
 167            int i = 0;
 168
 169            nents = (len + n->page_size - 1) >> n->page_bits;
 170            prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 171            nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
 172            while (len != 0) {
 173                uint64_t prp_ent = le64_to_cpu(prp_list[i]);
 174
 175                if (i == n->max_prp_ents - 1 && len > n->page_size) {
 176                    if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
 177                        trace_nvme_err_invalid_prplist_ent(prp_ent);
 178                        goto unmap;
 179                    }
 180
 181                    i = 0;
 182                    nents = (len + n->page_size - 1) >> n->page_bits;
 183                    prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 184                    nvme_addr_read(n, prp_ent, (void *)prp_list,
 185                        prp_trans);
 186                    prp_ent = le64_to_cpu(prp_list[i]);
 187                }
 188
 189                if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
 190                    trace_nvme_err_invalid_prplist_ent(prp_ent);
 191                    goto unmap;
 192                }
 193
 194                trans_len = MIN(len, n->page_size);
 195                if (qsg->nsg){
 196                    qemu_sglist_add(qsg, prp_ent, trans_len);
 197                } else {
 198                    qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
 199                }
 200                len -= trans_len;
 201                i++;
 202            }
 203        } else {
 204            if (unlikely(prp2 & (n->page_size - 1))) {
 205                trace_nvme_err_invalid_prp2_align(prp2);
 206                goto unmap;
 207            }
 208            if (qsg->nsg) {
 209                qemu_sglist_add(qsg, prp2, len);
 210            } else {
 211                qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
 212            }
 213        }
 214    }
 215    return NVME_SUCCESS;
 216
 217 unmap:
 218    qemu_sglist_destroy(qsg);
 219    return NVME_INVALID_FIELD | NVME_DNR;
 220}
 221
 222static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
 223    uint64_t prp1, uint64_t prp2)
 224{
 225    QEMUSGList qsg;
 226    QEMUIOVector iov;
 227    uint16_t status = NVME_SUCCESS;
 228
 229    trace_nvme_dma_read(prp1, prp2);
 230
 231    if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
 232        return NVME_INVALID_FIELD | NVME_DNR;
 233    }
 234    if (qsg.nsg > 0) {
 235        if (unlikely(dma_buf_read(ptr, len, &qsg))) {
 236            trace_nvme_err_invalid_dma();
 237            status = NVME_INVALID_FIELD | NVME_DNR;
 238        }
 239        qemu_sglist_destroy(&qsg);
 240    } else {
 241        if (unlikely(qemu_iovec_to_buf(&iov, 0, ptr, len) != len)) {
 242            trace_nvme_err_invalid_dma();
 243            status = NVME_INVALID_FIELD | NVME_DNR;
 244        }
 245        qemu_iovec_destroy(&iov);
 246    }
 247    return status;
 248}
 249
 250static void nvme_post_cqes(void *opaque)
 251{
 252    NvmeCQueue *cq = opaque;
 253    NvmeCtrl *n = cq->ctrl;
 254    NvmeRequest *req, *next;
 255
 256    QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
 257        NvmeSQueue *sq;
 258        hwaddr addr;
 259
 260        if (nvme_cq_full(cq)) {
 261            break;
 262        }
 263
 264        QTAILQ_REMOVE(&cq->req_list, req, entry);
 265        sq = req->sq;
 266        req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
 267        req->cqe.sq_id = cpu_to_le16(sq->sqid);
 268        req->cqe.sq_head = cpu_to_le16(sq->head);
 269        addr = cq->dma_addr + cq->tail * n->cqe_size;
 270        nvme_inc_cq_tail(cq);
 271        pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
 272            sizeof(req->cqe));
 273        QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
 274    }
 275    if (cq->tail != cq->head) {
 276        nvme_irq_assert(n, cq);
 277    }
 278}
 279
 280static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
 281{
 282    assert(cq->cqid == req->sq->cqid);
 283    QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
 284    QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
 285    timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 286}
 287
 288static void nvme_rw_cb(void *opaque, int ret)
 289{
 290    NvmeRequest *req = opaque;
 291    NvmeSQueue *sq = req->sq;
 292    NvmeCtrl *n = sq->ctrl;
 293    NvmeCQueue *cq = n->cq[sq->cqid];
 294
 295    if (!ret) {
 296        block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
 297        req->status = NVME_SUCCESS;
 298    } else {
 299        block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
 300        req->status = NVME_INTERNAL_DEV_ERROR;
 301    }
 302    if (req->has_sg) {
 303        qemu_sglist_destroy(&req->qsg);
 304    }
 305    nvme_enqueue_req_completion(cq, req);
 306}
 307
 308static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
 309    NvmeRequest *req)
 310{
 311    req->has_sg = false;
 312    block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
 313         BLOCK_ACCT_FLUSH);
 314    req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
 315
 316    return NVME_NO_COMPLETE;
 317}
 318
 319static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
 320    NvmeRequest *req)
 321{
 322    NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
 323    const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
 324    const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
 325    uint64_t slba = le64_to_cpu(rw->slba);
 326    uint32_t nlb  = le16_to_cpu(rw->nlb) + 1;
 327    uint64_t offset = slba << data_shift;
 328    uint32_t count = nlb << data_shift;
 329
 330    if (unlikely(slba + nlb > ns->id_ns.nsze)) {
 331        trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
 332        return NVME_LBA_RANGE | NVME_DNR;
 333    }
 334
 335    req->has_sg = false;
 336    block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
 337                     BLOCK_ACCT_WRITE);
 338    req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, offset, count,
 339                                        BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
 340    return NVME_NO_COMPLETE;
 341}
 342
 343static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
 344    NvmeRequest *req)
 345{
 346    NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
 347    uint32_t nlb  = le32_to_cpu(rw->nlb) + 1;
 348    uint64_t slba = le64_to_cpu(rw->slba);
 349    uint64_t prp1 = le64_to_cpu(rw->prp1);
 350    uint64_t prp2 = le64_to_cpu(rw->prp2);
 351
 352    uint8_t lba_index  = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
 353    uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
 354    uint64_t data_size = (uint64_t)nlb << data_shift;
 355    uint64_t data_offset = slba << data_shift;
 356    int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
 357    enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
 358
 359    trace_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
 360
 361    if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
 362        block_acct_invalid(blk_get_stats(n->conf.blk), acct);
 363        trace_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
 364        return NVME_LBA_RANGE | NVME_DNR;
 365    }
 366
 367    if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
 368        block_acct_invalid(blk_get_stats(n->conf.blk), acct);
 369        return NVME_INVALID_FIELD | NVME_DNR;
 370    }
 371
 372    dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
 373    if (req->qsg.nsg > 0) {
 374        req->has_sg = true;
 375        req->aiocb = is_write ?
 376            dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
 377                          nvme_rw_cb, req) :
 378            dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
 379                         nvme_rw_cb, req);
 380    } else {
 381        req->has_sg = false;
 382        req->aiocb = is_write ?
 383            blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
 384                            req) :
 385            blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
 386                           req);
 387    }
 388
 389    return NVME_NO_COMPLETE;
 390}
 391
 392static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 393{
 394    NvmeNamespace *ns;
 395    uint32_t nsid = le32_to_cpu(cmd->nsid);
 396
 397    if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
 398        trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
 399        return NVME_INVALID_NSID | NVME_DNR;
 400    }
 401
 402    ns = &n->namespaces[nsid - 1];
 403    switch (cmd->opcode) {
 404    case NVME_CMD_FLUSH:
 405        return nvme_flush(n, ns, cmd, req);
 406    case NVME_CMD_WRITE_ZEROS:
 407        return nvme_write_zeros(n, ns, cmd, req);
 408    case NVME_CMD_WRITE:
 409    case NVME_CMD_READ:
 410        return nvme_rw(n, ns, cmd, req);
 411    default:
 412        trace_nvme_err_invalid_opc(cmd->opcode);
 413        return NVME_INVALID_OPCODE | NVME_DNR;
 414    }
 415}
 416
 417static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
 418{
 419    n->sq[sq->sqid] = NULL;
 420    timer_del(sq->timer);
 421    timer_free(sq->timer);
 422    g_free(sq->io_req);
 423    if (sq->sqid) {
 424        g_free(sq);
 425    }
 426}
 427
 428static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
 429{
 430    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
 431    NvmeRequest *req, *next;
 432    NvmeSQueue *sq;
 433    NvmeCQueue *cq;
 434    uint16_t qid = le16_to_cpu(c->qid);
 435
 436    if (unlikely(!qid || nvme_check_sqid(n, qid))) {
 437        trace_nvme_err_invalid_del_sq(qid);
 438        return NVME_INVALID_QID | NVME_DNR;
 439    }
 440
 441    trace_nvme_del_sq(qid);
 442
 443    sq = n->sq[qid];
 444    while (!QTAILQ_EMPTY(&sq->out_req_list)) {
 445        req = QTAILQ_FIRST(&sq->out_req_list);
 446        assert(req->aiocb);
 447        blk_aio_cancel(req->aiocb);
 448    }
 449    if (!nvme_check_cqid(n, sq->cqid)) {
 450        cq = n->cq[sq->cqid];
 451        QTAILQ_REMOVE(&cq->sq_list, sq, entry);
 452
 453        nvme_post_cqes(cq);
 454        QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
 455            if (req->sq == sq) {
 456                QTAILQ_REMOVE(&cq->req_list, req, entry);
 457                QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
 458            }
 459        }
 460    }
 461
 462    nvme_free_sq(sq, n);
 463    return NVME_SUCCESS;
 464}
 465
 466static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
 467    uint16_t sqid, uint16_t cqid, uint16_t size)
 468{
 469    int i;
 470    NvmeCQueue *cq;
 471
 472    sq->ctrl = n;
 473    sq->dma_addr = dma_addr;
 474    sq->sqid = sqid;
 475    sq->size = size;
 476    sq->cqid = cqid;
 477    sq->head = sq->tail = 0;
 478    sq->io_req = g_new(NvmeRequest, sq->size);
 479
 480    QTAILQ_INIT(&sq->req_list);
 481    QTAILQ_INIT(&sq->out_req_list);
 482    for (i = 0; i < sq->size; i++) {
 483        sq->io_req[i].sq = sq;
 484        QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
 485    }
 486    sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
 487
 488    assert(n->cq[cqid]);
 489    cq = n->cq[cqid];
 490    QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
 491    n->sq[sqid] = sq;
 492}
 493
 494static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
 495{
 496    NvmeSQueue *sq;
 497    NvmeCreateSq *c = (NvmeCreateSq *)cmd;
 498
 499    uint16_t cqid = le16_to_cpu(c->cqid);
 500    uint16_t sqid = le16_to_cpu(c->sqid);
 501    uint16_t qsize = le16_to_cpu(c->qsize);
 502    uint16_t qflags = le16_to_cpu(c->sq_flags);
 503    uint64_t prp1 = le64_to_cpu(c->prp1);
 504
 505    trace_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
 506
 507    if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
 508        trace_nvme_err_invalid_create_sq_cqid(cqid);
 509        return NVME_INVALID_CQID | NVME_DNR;
 510    }
 511    if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
 512        trace_nvme_err_invalid_create_sq_sqid(sqid);
 513        return NVME_INVALID_QID | NVME_DNR;
 514    }
 515    if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
 516        trace_nvme_err_invalid_create_sq_size(qsize);
 517        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
 518    }
 519    if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
 520        trace_nvme_err_invalid_create_sq_addr(prp1);
 521        return NVME_INVALID_FIELD | NVME_DNR;
 522    }
 523    if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
 524        trace_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
 525        return NVME_INVALID_FIELD | NVME_DNR;
 526    }
 527    sq = g_malloc0(sizeof(*sq));
 528    nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
 529    return NVME_SUCCESS;
 530}
 531
 532static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
 533{
 534    n->cq[cq->cqid] = NULL;
 535    timer_del(cq->timer);
 536    timer_free(cq->timer);
 537    msix_vector_unuse(&n->parent_obj, cq->vector);
 538    if (cq->cqid) {
 539        g_free(cq);
 540    }
 541}
 542
 543static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
 544{
 545    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
 546    NvmeCQueue *cq;
 547    uint16_t qid = le16_to_cpu(c->qid);
 548
 549    if (unlikely(!qid || nvme_check_cqid(n, qid))) {
 550        trace_nvme_err_invalid_del_cq_cqid(qid);
 551        return NVME_INVALID_CQID | NVME_DNR;
 552    }
 553
 554    cq = n->cq[qid];
 555    if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
 556        trace_nvme_err_invalid_del_cq_notempty(qid);
 557        return NVME_INVALID_QUEUE_DEL;
 558    }
 559    nvme_irq_deassert(n, cq);
 560    trace_nvme_del_cq(qid);
 561    nvme_free_cq(cq, n);
 562    return NVME_SUCCESS;
 563}
 564
 565static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
 566    uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
 567{
 568    cq->ctrl = n;
 569    cq->cqid = cqid;
 570    cq->size = size;
 571    cq->dma_addr = dma_addr;
 572    cq->phase = 1;
 573    cq->irq_enabled = irq_enabled;
 574    cq->vector = vector;
 575    cq->head = cq->tail = 0;
 576    QTAILQ_INIT(&cq->req_list);
 577    QTAILQ_INIT(&cq->sq_list);
 578    msix_vector_use(&n->parent_obj, cq->vector);
 579    n->cq[cqid] = cq;
 580    cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
 581}
 582
 583static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
 584{
 585    NvmeCQueue *cq;
 586    NvmeCreateCq *c = (NvmeCreateCq *)cmd;
 587    uint16_t cqid = le16_to_cpu(c->cqid);
 588    uint16_t vector = le16_to_cpu(c->irq_vector);
 589    uint16_t qsize = le16_to_cpu(c->qsize);
 590    uint16_t qflags = le16_to_cpu(c->cq_flags);
 591    uint64_t prp1 = le64_to_cpu(c->prp1);
 592
 593    trace_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
 594                         NVME_CQ_FLAGS_IEN(qflags) != 0);
 595
 596    if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
 597        trace_nvme_err_invalid_create_cq_cqid(cqid);
 598        return NVME_INVALID_CQID | NVME_DNR;
 599    }
 600    if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
 601        trace_nvme_err_invalid_create_cq_size(qsize);
 602        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
 603    }
 604    if (unlikely(!prp1)) {
 605        trace_nvme_err_invalid_create_cq_addr(prp1);
 606        return NVME_INVALID_FIELD | NVME_DNR;
 607    }
 608    if (unlikely(vector > n->num_queues)) {
 609        trace_nvme_err_invalid_create_cq_vector(vector);
 610        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
 611    }
 612    if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
 613        trace_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
 614        return NVME_INVALID_FIELD | NVME_DNR;
 615    }
 616
 617    cq = g_malloc0(sizeof(*cq));
 618    nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
 619        NVME_CQ_FLAGS_IEN(qflags));
 620    return NVME_SUCCESS;
 621}
 622
 623static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
 624{
 625    uint64_t prp1 = le64_to_cpu(c->prp1);
 626    uint64_t prp2 = le64_to_cpu(c->prp2);
 627
 628    trace_nvme_identify_ctrl();
 629
 630    return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
 631        prp1, prp2);
 632}
 633
 634static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
 635{
 636    NvmeNamespace *ns;
 637    uint32_t nsid = le32_to_cpu(c->nsid);
 638    uint64_t prp1 = le64_to_cpu(c->prp1);
 639    uint64_t prp2 = le64_to_cpu(c->prp2);
 640
 641    trace_nvme_identify_ns(nsid);
 642
 643    if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
 644        trace_nvme_err_invalid_ns(nsid, n->num_namespaces);
 645        return NVME_INVALID_NSID | NVME_DNR;
 646    }
 647
 648    ns = &n->namespaces[nsid - 1];
 649
 650    return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
 651        prp1, prp2);
 652}
 653
 654static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
 655{
 656    static const int data_len = 4 * KiB;
 657    uint32_t min_nsid = le32_to_cpu(c->nsid);
 658    uint64_t prp1 = le64_to_cpu(c->prp1);
 659    uint64_t prp2 = le64_to_cpu(c->prp2);
 660    uint32_t *list;
 661    uint16_t ret;
 662    int i, j = 0;
 663
 664    trace_nvme_identify_nslist(min_nsid);
 665
 666    list = g_malloc0(data_len);
 667    for (i = 0; i < n->num_namespaces; i++) {
 668        if (i < min_nsid) {
 669            continue;
 670        }
 671        list[j++] = cpu_to_le32(i + 1);
 672        if (j == data_len / sizeof(uint32_t)) {
 673            break;
 674        }
 675    }
 676    ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
 677    g_free(list);
 678    return ret;
 679}
 680
 681
 682static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
 683{
 684    NvmeIdentify *c = (NvmeIdentify *)cmd;
 685
 686    switch (le32_to_cpu(c->cns)) {
 687    case 0x00:
 688        return nvme_identify_ns(n, c);
 689    case 0x01:
 690        return nvme_identify_ctrl(n, c);
 691    case 0x02:
 692        return nvme_identify_nslist(n, c);
 693    default:
 694        trace_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
 695        return NVME_INVALID_FIELD | NVME_DNR;
 696    }
 697}
 698
 699static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 700{
 701    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
 702    uint32_t result;
 703
 704    switch (dw10) {
 705    case NVME_VOLATILE_WRITE_CACHE:
 706        result = blk_enable_write_cache(n->conf.blk);
 707        trace_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
 708        break;
 709    case NVME_NUMBER_OF_QUEUES:
 710        result = cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
 711        trace_nvme_getfeat_numq(result);
 712        break;
 713    default:
 714        trace_nvme_err_invalid_getfeat(dw10);
 715        return NVME_INVALID_FIELD | NVME_DNR;
 716    }
 717
 718    req->cqe.result = result;
 719    return NVME_SUCCESS;
 720}
 721
 722static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 723{
 724    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
 725    uint32_t dw11 = le32_to_cpu(cmd->cdw11);
 726
 727    switch (dw10) {
 728    case NVME_VOLATILE_WRITE_CACHE:
 729        blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
 730        break;
 731    case NVME_NUMBER_OF_QUEUES:
 732        trace_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
 733                                ((dw11 >> 16) & 0xFFFF) + 1,
 734                                n->num_queues - 1, n->num_queues - 1);
 735        req->cqe.result =
 736            cpu_to_le32((n->num_queues - 2) | ((n->num_queues - 2) << 16));
 737        break;
 738    default:
 739        trace_nvme_err_invalid_setfeat(dw10);
 740        return NVME_INVALID_FIELD | NVME_DNR;
 741    }
 742    return NVME_SUCCESS;
 743}
 744
 745static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
 746{
 747    switch (cmd->opcode) {
 748    case NVME_ADM_CMD_DELETE_SQ:
 749        return nvme_del_sq(n, cmd);
 750    case NVME_ADM_CMD_CREATE_SQ:
 751        return nvme_create_sq(n, cmd);
 752    case NVME_ADM_CMD_DELETE_CQ:
 753        return nvme_del_cq(n, cmd);
 754    case NVME_ADM_CMD_CREATE_CQ:
 755        return nvme_create_cq(n, cmd);
 756    case NVME_ADM_CMD_IDENTIFY:
 757        return nvme_identify(n, cmd);
 758    case NVME_ADM_CMD_SET_FEATURES:
 759        return nvme_set_feature(n, cmd, req);
 760    case NVME_ADM_CMD_GET_FEATURES:
 761        return nvme_get_feature(n, cmd, req);
 762    default:
 763        trace_nvme_err_invalid_admin_opc(cmd->opcode);
 764        return NVME_INVALID_OPCODE | NVME_DNR;
 765    }
 766}
 767
 768static void nvme_process_sq(void *opaque)
 769{
 770    NvmeSQueue *sq = opaque;
 771    NvmeCtrl *n = sq->ctrl;
 772    NvmeCQueue *cq = n->cq[sq->cqid];
 773
 774    uint16_t status;
 775    hwaddr addr;
 776    NvmeCmd cmd;
 777    NvmeRequest *req;
 778
 779    while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
 780        addr = sq->dma_addr + sq->head * n->sqe_size;
 781        nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
 782        nvme_inc_sq_head(sq);
 783
 784        req = QTAILQ_FIRST(&sq->req_list);
 785        QTAILQ_REMOVE(&sq->req_list, req, entry);
 786        QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
 787        memset(&req->cqe, 0, sizeof(req->cqe));
 788        req->cqe.cid = cmd.cid;
 789
 790        status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
 791            nvme_admin_cmd(n, &cmd, req);
 792        if (status != NVME_NO_COMPLETE) {
 793            req->status = status;
 794            nvme_enqueue_req_completion(cq, req);
 795        }
 796    }
 797}
 798
 799static void nvme_clear_ctrl(NvmeCtrl *n)
 800{
 801    int i;
 802
 803    blk_drain(n->conf.blk);
 804
 805    for (i = 0; i < n->num_queues; i++) {
 806        if (n->sq[i] != NULL) {
 807            nvme_free_sq(n->sq[i], n);
 808        }
 809    }
 810    for (i = 0; i < n->num_queues; i++) {
 811        if (n->cq[i] != NULL) {
 812            nvme_free_cq(n->cq[i], n);
 813        }
 814    }
 815
 816    blk_flush(n->conf.blk);
 817    n->bar.cc = 0;
 818}
 819
 820static int nvme_start_ctrl(NvmeCtrl *n)
 821{
 822    uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
 823    uint32_t page_size = 1 << page_bits;
 824
 825    if (unlikely(n->cq[0])) {
 826        trace_nvme_err_startfail_cq();
 827        return -1;
 828    }
 829    if (unlikely(n->sq[0])) {
 830        trace_nvme_err_startfail_sq();
 831        return -1;
 832    }
 833    if (unlikely(!n->bar.asq)) {
 834        trace_nvme_err_startfail_nbarasq();
 835        return -1;
 836    }
 837    if (unlikely(!n->bar.acq)) {
 838        trace_nvme_err_startfail_nbaracq();
 839        return -1;
 840    }
 841    if (unlikely(n->bar.asq & (page_size - 1))) {
 842        trace_nvme_err_startfail_asq_misaligned(n->bar.asq);
 843        return -1;
 844    }
 845    if (unlikely(n->bar.acq & (page_size - 1))) {
 846        trace_nvme_err_startfail_acq_misaligned(n->bar.acq);
 847        return -1;
 848    }
 849    if (unlikely(NVME_CC_MPS(n->bar.cc) <
 850                 NVME_CAP_MPSMIN(n->bar.cap))) {
 851        trace_nvme_err_startfail_page_too_small(
 852                    NVME_CC_MPS(n->bar.cc),
 853                    NVME_CAP_MPSMIN(n->bar.cap));
 854        return -1;
 855    }
 856    if (unlikely(NVME_CC_MPS(n->bar.cc) >
 857                 NVME_CAP_MPSMAX(n->bar.cap))) {
 858        trace_nvme_err_startfail_page_too_large(
 859                    NVME_CC_MPS(n->bar.cc),
 860                    NVME_CAP_MPSMAX(n->bar.cap));
 861        return -1;
 862    }
 863    if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
 864                 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
 865        trace_nvme_err_startfail_cqent_too_small(
 866                    NVME_CC_IOCQES(n->bar.cc),
 867                    NVME_CTRL_CQES_MIN(n->bar.cap));
 868        return -1;
 869    }
 870    if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
 871                 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
 872        trace_nvme_err_startfail_cqent_too_large(
 873                    NVME_CC_IOCQES(n->bar.cc),
 874                    NVME_CTRL_CQES_MAX(n->bar.cap));
 875        return -1;
 876    }
 877    if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
 878                 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
 879        trace_nvme_err_startfail_sqent_too_small(
 880                    NVME_CC_IOSQES(n->bar.cc),
 881                    NVME_CTRL_SQES_MIN(n->bar.cap));
 882        return -1;
 883    }
 884    if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
 885                 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
 886        trace_nvme_err_startfail_sqent_too_large(
 887                    NVME_CC_IOSQES(n->bar.cc),
 888                    NVME_CTRL_SQES_MAX(n->bar.cap));
 889        return -1;
 890    }
 891    if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
 892        trace_nvme_err_startfail_asqent_sz_zero();
 893        return -1;
 894    }
 895    if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
 896        trace_nvme_err_startfail_acqent_sz_zero();
 897        return -1;
 898    }
 899
 900    n->page_bits = page_bits;
 901    n->page_size = page_size;
 902    n->max_prp_ents = n->page_size / sizeof(uint64_t);
 903    n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
 904    n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
 905    nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
 906        NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
 907    nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
 908        NVME_AQA_ASQS(n->bar.aqa) + 1);
 909
 910    return 0;
 911}
 912
 913static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
 914    unsigned size)
 915{
 916    if (unlikely(offset & (sizeof(uint32_t) - 1))) {
 917        NVME_GUEST_ERR(nvme_ub_mmiowr_misaligned32,
 918                       "MMIO write not 32-bit aligned,"
 919                       " offset=0x%"PRIx64"", offset);
 920        /* should be ignored, fall through for now */
 921    }
 922
 923    if (unlikely(size < sizeof(uint32_t))) {
 924        NVME_GUEST_ERR(nvme_ub_mmiowr_toosmall,
 925                       "MMIO write smaller than 32-bits,"
 926                       " offset=0x%"PRIx64", size=%u",
 927                       offset, size);
 928        /* should be ignored, fall through for now */
 929    }
 930
 931    switch (offset) {
 932    case 0xc:   /* INTMS */
 933        if (unlikely(msix_enabled(&(n->parent_obj)))) {
 934            NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
 935                           "undefined access to interrupt mask set"
 936                           " when MSI-X is enabled");
 937            /* should be ignored, fall through for now */
 938        }
 939        n->bar.intms |= data & 0xffffffff;
 940        n->bar.intmc = n->bar.intms;
 941        trace_nvme_mmio_intm_set(data & 0xffffffff,
 942                                 n->bar.intmc);
 943        nvme_irq_check(n);
 944        break;
 945    case 0x10:  /* INTMC */
 946        if (unlikely(msix_enabled(&(n->parent_obj)))) {
 947            NVME_GUEST_ERR(nvme_ub_mmiowr_intmask_with_msix,
 948                           "undefined access to interrupt mask clr"
 949                           " when MSI-X is enabled");
 950            /* should be ignored, fall through for now */
 951        }
 952        n->bar.intms &= ~(data & 0xffffffff);
 953        n->bar.intmc = n->bar.intms;
 954        trace_nvme_mmio_intm_clr(data & 0xffffffff,
 955                                 n->bar.intmc);
 956        nvme_irq_check(n);
 957        break;
 958    case 0x14:  /* CC */
 959        trace_nvme_mmio_cfg(data & 0xffffffff);
 960        /* Windows first sends data, then sends enable bit */
 961        if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
 962            !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
 963        {
 964            n->bar.cc = data;
 965        }
 966
 967        if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
 968            n->bar.cc = data;
 969            if (unlikely(nvme_start_ctrl(n))) {
 970                trace_nvme_err_startfail();
 971                n->bar.csts = NVME_CSTS_FAILED;
 972            } else {
 973                trace_nvme_mmio_start_success();
 974                n->bar.csts = NVME_CSTS_READY;
 975            }
 976        } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
 977            trace_nvme_mmio_stopped();
 978            nvme_clear_ctrl(n);
 979            n->bar.csts &= ~NVME_CSTS_READY;
 980        }
 981        if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
 982            trace_nvme_mmio_shutdown_set();
 983            nvme_clear_ctrl(n);
 984            n->bar.cc = data;
 985            n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
 986        } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
 987            trace_nvme_mmio_shutdown_cleared();
 988            n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
 989            n->bar.cc = data;
 990        }
 991        break;
 992    case 0x1C:  /* CSTS */
 993        if (data & (1 << 4)) {
 994            NVME_GUEST_ERR(nvme_ub_mmiowr_ssreset_w1c_unsupported,
 995                           "attempted to W1C CSTS.NSSRO"
 996                           " but CAP.NSSRS is zero (not supported)");
 997        } else if (data != 0) {
 998            NVME_GUEST_ERR(nvme_ub_mmiowr_ro_csts,
 999                           "attempted to set a read only bit"
1000                           " of controller status");
1001        }
1002        break;
1003    case 0x20:  /* NSSR */
1004        if (data == 0x4E564D65) {
1005            trace_nvme_ub_mmiowr_ssreset_unsupported();
1006        } else {
1007            /* The spec says that writes of other values have no effect */
1008            return;
1009        }
1010        break;
1011    case 0x24:  /* AQA */
1012        n->bar.aqa = data & 0xffffffff;
1013        trace_nvme_mmio_aqattr(data & 0xffffffff);
1014        break;
1015    case 0x28:  /* ASQ */
1016        n->bar.asq = data;
1017        trace_nvme_mmio_asqaddr(data);
1018        break;
1019    case 0x2c:  /* ASQ hi */
1020        n->bar.asq |= data << 32;
1021        trace_nvme_mmio_asqaddr_hi(data, n->bar.asq);
1022        break;
1023    case 0x30:  /* ACQ */
1024        trace_nvme_mmio_acqaddr(data);
1025        n->bar.acq = data;
1026        break;
1027    case 0x34:  /* ACQ hi */
1028        n->bar.acq |= data << 32;
1029        trace_nvme_mmio_acqaddr_hi(data, n->bar.acq);
1030        break;
1031    case 0x38:  /* CMBLOC */
1032        NVME_GUEST_ERR(nvme_ub_mmiowr_cmbloc_reserved,
1033                       "invalid write to reserved CMBLOC"
1034                       " when CMBSZ is zero, ignored");
1035        return;
1036    case 0x3C:  /* CMBSZ */
1037        NVME_GUEST_ERR(nvme_ub_mmiowr_cmbsz_readonly,
1038                       "invalid write to read only CMBSZ, ignored");
1039        return;
1040    default:
1041        NVME_GUEST_ERR(nvme_ub_mmiowr_invalid,
1042                       "invalid MMIO write,"
1043                       " offset=0x%"PRIx64", data=%"PRIx64"",
1044                       offset, data);
1045        break;
1046    }
1047}
1048
1049static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
1050{
1051    NvmeCtrl *n = (NvmeCtrl *)opaque;
1052    uint8_t *ptr = (uint8_t *)&n->bar;
1053    uint64_t val = 0;
1054
1055    if (unlikely(addr & (sizeof(uint32_t) - 1))) {
1056        NVME_GUEST_ERR(nvme_ub_mmiord_misaligned32,
1057                       "MMIO read not 32-bit aligned,"
1058                       " offset=0x%"PRIx64"", addr);
1059        /* should RAZ, fall through for now */
1060    } else if (unlikely(size < sizeof(uint32_t))) {
1061        NVME_GUEST_ERR(nvme_ub_mmiord_toosmall,
1062                       "MMIO read smaller than 32-bits,"
1063                       " offset=0x%"PRIx64"", addr);
1064        /* should RAZ, fall through for now */
1065    }
1066
1067    if (addr < sizeof(n->bar)) {
1068        memcpy(&val, ptr + addr, size);
1069    } else {
1070        NVME_GUEST_ERR(nvme_ub_mmiord_invalid_ofs,
1071                       "MMIO read beyond last register,"
1072                       " offset=0x%"PRIx64", returning 0", addr);
1073    }
1074
1075    return val;
1076}
1077
1078static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
1079{
1080    uint32_t qid;
1081
1082    if (unlikely(addr & ((1 << 2) - 1))) {
1083        NVME_GUEST_ERR(nvme_ub_db_wr_misaligned,
1084                       "doorbell write not 32-bit aligned,"
1085                       " offset=0x%"PRIx64", ignoring", addr);
1086        return;
1087    }
1088
1089    if (((addr - 0x1000) >> 2) & 1) {
1090        /* Completion queue doorbell write */
1091
1092        uint16_t new_head = val & 0xffff;
1093        int start_sqs;
1094        NvmeCQueue *cq;
1095
1096        qid = (addr - (0x1000 + (1 << 2))) >> 3;
1097        if (unlikely(nvme_check_cqid(n, qid))) {
1098            NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cq,
1099                           "completion queue doorbell write"
1100                           " for nonexistent queue,"
1101                           " sqid=%"PRIu32", ignoring", qid);
1102            return;
1103        }
1104
1105        cq = n->cq[qid];
1106        if (unlikely(new_head >= cq->size)) {
1107            NVME_GUEST_ERR(nvme_ub_db_wr_invalid_cqhead,
1108                           "completion queue doorbell write value"
1109                           " beyond queue size, sqid=%"PRIu32","
1110                           " new_head=%"PRIu16", ignoring",
1111                           qid, new_head);
1112            return;
1113        }
1114
1115        start_sqs = nvme_cq_full(cq) ? 1 : 0;
1116        cq->head = new_head;
1117        if (start_sqs) {
1118            NvmeSQueue *sq;
1119            QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
1120                timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1121            }
1122            timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1123        }
1124
1125        if (cq->tail == cq->head) {
1126            nvme_irq_deassert(n, cq);
1127        }
1128    } else {
1129        /* Submission queue doorbell write */
1130
1131        uint16_t new_tail = val & 0xffff;
1132        NvmeSQueue *sq;
1133
1134        qid = (addr - 0x1000) >> 3;
1135        if (unlikely(nvme_check_sqid(n, qid))) {
1136            NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sq,
1137                           "submission queue doorbell write"
1138                           " for nonexistent queue,"
1139                           " sqid=%"PRIu32", ignoring", qid);
1140            return;
1141        }
1142
1143        sq = n->sq[qid];
1144        if (unlikely(new_tail >= sq->size)) {
1145            NVME_GUEST_ERR(nvme_ub_db_wr_invalid_sqtail,
1146                           "submission queue doorbell write value"
1147                           " beyond queue size, sqid=%"PRIu32","
1148                           " new_tail=%"PRIu16", ignoring",
1149                           qid, new_tail);
1150            return;
1151        }
1152
1153        sq->tail = new_tail;
1154        timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1155    }
1156}
1157
1158static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
1159    unsigned size)
1160{
1161    NvmeCtrl *n = (NvmeCtrl *)opaque;
1162    if (addr < sizeof(n->bar)) {
1163        nvme_write_bar(n, addr, data, size);
1164    } else if (addr >= 0x1000) {
1165        nvme_process_db(n, addr, data);
1166    }
1167}
1168
1169static const MemoryRegionOps nvme_mmio_ops = {
1170    .read = nvme_mmio_read,
1171    .write = nvme_mmio_write,
1172    .endianness = DEVICE_LITTLE_ENDIAN,
1173    .impl = {
1174        .min_access_size = 2,
1175        .max_access_size = 8,
1176    },
1177};
1178
1179static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
1180    unsigned size)
1181{
1182    NvmeCtrl *n = (NvmeCtrl *)opaque;
1183    stn_le_p(&n->cmbuf[addr], size, data);
1184}
1185
1186static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
1187{
1188    NvmeCtrl *n = (NvmeCtrl *)opaque;
1189    return ldn_le_p(&n->cmbuf[addr], size);
1190}
1191
1192static const MemoryRegionOps nvme_cmb_ops = {
1193    .read = nvme_cmb_read,
1194    .write = nvme_cmb_write,
1195    .endianness = DEVICE_LITTLE_ENDIAN,
1196    .impl = {
1197        .min_access_size = 1,
1198        .max_access_size = 8,
1199    },
1200};
1201
1202static void nvme_realize(PCIDevice *pci_dev, Error **errp)
1203{
1204    NvmeCtrl *n = NVME(pci_dev);
1205    NvmeIdCtrl *id = &n->id_ctrl;
1206
1207    int i;
1208    int64_t bs_size;
1209    uint8_t *pci_conf;
1210
1211    if (!n->num_queues) {
1212        error_setg(errp, "num_queues can't be zero");
1213        return;
1214    }
1215
1216    if (!n->conf.blk) {
1217        error_setg(errp, "drive property not set");
1218        return;
1219    }
1220
1221    bs_size = blk_getlength(n->conf.blk);
1222    if (bs_size < 0) {
1223        error_setg(errp, "could not get backing file size");
1224        return;
1225    }
1226
1227    if (!n->serial) {
1228        error_setg(errp, "serial property not set");
1229        return;
1230    }
1231    blkconf_blocksizes(&n->conf);
1232    if (!blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
1233                                       false, errp)) {
1234        return;
1235    }
1236
1237    pci_conf = pci_dev->config;
1238    pci_conf[PCI_INTERRUPT_PIN] = 1;
1239    pci_config_set_prog_interface(pci_dev->config, 0x2);
1240    pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
1241    pcie_endpoint_cap_init(pci_dev, 0x80);
1242
1243    n->num_namespaces = 1;
1244    n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
1245    n->ns_size = bs_size / (uint64_t)n->num_namespaces;
1246
1247    n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
1248    n->sq = g_new0(NvmeSQueue *, n->num_queues);
1249    n->cq = g_new0(NvmeCQueue *, n->num_queues);
1250
1251    memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
1252                          "nvme", n->reg_size);
1253    pci_register_bar(pci_dev, 0,
1254        PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
1255        &n->iomem);
1256    msix_init_exclusive_bar(pci_dev, n->num_queues, 4, NULL);
1257
1258    id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
1259    id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
1260    strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
1261    strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
1262    strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
1263    id->rab = 6;
1264    id->ieee[0] = 0x00;
1265    id->ieee[1] = 0x02;
1266    id->ieee[2] = 0xb3;
1267    id->oacs = cpu_to_le16(0);
1268    id->frmw = 7 << 1;
1269    id->lpa = 1 << 0;
1270    id->sqes = (0x6 << 4) | 0x6;
1271    id->cqes = (0x4 << 4) | 0x4;
1272    id->nn = cpu_to_le32(n->num_namespaces);
1273    id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS);
1274    id->psd[0].mp = cpu_to_le16(0x9c4);
1275    id->psd[0].enlat = cpu_to_le32(0x10);
1276    id->psd[0].exlat = cpu_to_le32(0x4);
1277    if (blk_enable_write_cache(n->conf.blk)) {
1278        id->vwc = 1;
1279    }
1280
1281    n->bar.cap = 0;
1282    NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
1283    NVME_CAP_SET_CQR(n->bar.cap, 1);
1284    NVME_CAP_SET_AMS(n->bar.cap, 1);
1285    NVME_CAP_SET_TO(n->bar.cap, 0xf);
1286    NVME_CAP_SET_CSS(n->bar.cap, 1);
1287    NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
1288
1289    n->bar.vs = 0x00010200;
1290    n->bar.intmc = n->bar.intms = 0;
1291
1292    if (n->cmb_size_mb) {
1293
1294        NVME_CMBLOC_SET_BIR(n->bar.cmbloc, 2);
1295        NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
1296
1297        NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
1298        NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
1299        NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
1300        NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
1301        NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
1302        NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
1303        NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->cmb_size_mb);
1304
1305        n->cmbloc = n->bar.cmbloc;
1306        n->cmbsz = n->bar.cmbsz;
1307
1308        n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1309        memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
1310                              "nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
1311        pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
1312            PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64 |
1313            PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
1314
1315    }
1316
1317    for (i = 0; i < n->num_namespaces; i++) {
1318        NvmeNamespace *ns = &n->namespaces[i];
1319        NvmeIdNs *id_ns = &ns->id_ns;
1320        id_ns->nsfeat = 0;
1321        id_ns->nlbaf = 0;
1322        id_ns->flbas = 0;
1323        id_ns->mc = 0;
1324        id_ns->dpc = 0;
1325        id_ns->dps = 0;
1326        id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
1327        id_ns->ncap  = id_ns->nuse = id_ns->nsze =
1328            cpu_to_le64(n->ns_size >>
1329                id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
1330    }
1331}
1332
1333static void nvme_exit(PCIDevice *pci_dev)
1334{
1335    NvmeCtrl *n = NVME(pci_dev);
1336
1337    nvme_clear_ctrl(n);
1338    g_free(n->namespaces);
1339    g_free(n->cq);
1340    g_free(n->sq);
1341
1342    if (n->cmb_size_mb) {
1343        g_free(n->cmbuf);
1344    }
1345    msix_uninit_exclusive_bar(pci_dev);
1346}
1347
1348static Property nvme_props[] = {
1349    DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
1350    DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
1351    DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, cmb_size_mb, 0),
1352    DEFINE_PROP_UINT32("num_queues", NvmeCtrl, num_queues, 64),
1353    DEFINE_PROP_END_OF_LIST(),
1354};
1355
1356static const VMStateDescription nvme_vmstate = {
1357    .name = "nvme",
1358    .unmigratable = 1,
1359};
1360
1361static void nvme_class_init(ObjectClass *oc, void *data)
1362{
1363    DeviceClass *dc = DEVICE_CLASS(oc);
1364    PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
1365
1366    pc->realize = nvme_realize;
1367    pc->exit = nvme_exit;
1368    pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
1369    pc->vendor_id = PCI_VENDOR_ID_INTEL;
1370    pc->device_id = 0x5845;
1371    pc->revision = 2;
1372
1373    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1374    dc->desc = "Non-Volatile Memory Express";
1375    dc->props = nvme_props;
1376    dc->vmsd = &nvme_vmstate;
1377}
1378
1379static void nvme_instance_init(Object *obj)
1380{
1381    NvmeCtrl *s = NVME(obj);
1382
1383    device_add_bootindex_property(obj, &s->conf.bootindex,
1384                                  "bootindex", "/namespace@1,0",
1385                                  DEVICE(obj), &error_abort);
1386}
1387
1388static const TypeInfo nvme_info = {
1389    .name          = TYPE_NVME,
1390    .parent        = TYPE_PCI_DEVICE,
1391    .instance_size = sizeof(NvmeCtrl),
1392    .class_init    = nvme_class_init,
1393    .instance_init = nvme_instance_init,
1394    .interfaces = (InterfaceInfo[]) {
1395        { INTERFACE_PCIE_DEVICE },
1396        { }
1397    },
1398};
1399
1400static void nvme_register_types(void)
1401{
1402    type_register_static(&nvme_info);
1403}
1404
1405type_init(nvme_register_types)
1406