qemu/hw/char/cadence_uart.c
<<
>>
Prefs
   1/*
   2 * Device model for Cadence UART
   3 *
   4 * Reference: Xilinx Zynq 7000 reference manual
   5 *   - http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
   6 *   - Chapter 19 UART Controller
   7 *   - Appendix B for Register details
   8 *
   9 * Copyright (c) 2010 Xilinx Inc.
  10 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
  11 * Copyright (c) 2012 PetaLogix Pty Ltd.
  12 * Written by Haibing Ma
  13 *            M.Habib
  14 *
  15 * This program is free software; you can redistribute it and/or
  16 * modify it under the terms of the GNU General Public License
  17 * as published by the Free Software Foundation; either version
  18 * 2 of the License, or (at your option) any later version.
  19 *
  20 * You should have received a copy of the GNU General Public License along
  21 * with this program; if not, see <http://www.gnu.org/licenses/>.
  22 */
  23
  24#include "qemu/osdep.h"
  25#include "hw/sysbus.h"
  26#include "chardev/char-fe.h"
  27#include "chardev/char-serial.h"
  28#include "qemu/timer.h"
  29#include "qemu/log.h"
  30#include "hw/char/cadence_uart.h"
  31
  32#ifdef CADENCE_UART_ERR_DEBUG
  33#define DB_PRINT(...) do { \
  34    fprintf(stderr,  ": %s: ", __func__); \
  35    fprintf(stderr, ## __VA_ARGS__); \
  36    } while (0)
  37#else
  38    #define DB_PRINT(...)
  39#endif
  40
  41#define UART_SR_INTR_RTRIG     0x00000001
  42#define UART_SR_INTR_REMPTY    0x00000002
  43#define UART_SR_INTR_RFUL      0x00000004
  44#define UART_SR_INTR_TEMPTY    0x00000008
  45#define UART_SR_INTR_TFUL      0x00000010
  46/* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
  47#define UART_SR_TTRIG          0x00002000
  48#define UART_INTR_TTRIG        0x00000400
  49/* bits fields in CSR that correlate to CISR. If any of these bits are set in
  50 * SR, then the same bit in CISR is set high too */
  51#define UART_SR_TO_CISR_MASK   0x0000001F
  52
  53#define UART_INTR_ROVR         0x00000020
  54#define UART_INTR_FRAME        0x00000040
  55#define UART_INTR_PARE         0x00000080
  56#define UART_INTR_TIMEOUT      0x00000100
  57#define UART_INTR_DMSI         0x00000200
  58#define UART_INTR_TOVR         0x00001000
  59
  60#define UART_SR_RACTIVE    0x00000400
  61#define UART_SR_TACTIVE    0x00000800
  62#define UART_SR_FDELT      0x00001000
  63
  64#define UART_CR_RXRST       0x00000001
  65#define UART_CR_TXRST       0x00000002
  66#define UART_CR_RX_EN       0x00000004
  67#define UART_CR_RX_DIS      0x00000008
  68#define UART_CR_TX_EN       0x00000010
  69#define UART_CR_TX_DIS      0x00000020
  70#define UART_CR_RST_TO      0x00000040
  71#define UART_CR_STARTBRK    0x00000080
  72#define UART_CR_STOPBRK     0x00000100
  73
  74#define UART_MR_CLKS            0x00000001
  75#define UART_MR_CHRL            0x00000006
  76#define UART_MR_CHRL_SH         1
  77#define UART_MR_PAR             0x00000038
  78#define UART_MR_PAR_SH          3
  79#define UART_MR_NBSTOP          0x000000C0
  80#define UART_MR_NBSTOP_SH       6
  81#define UART_MR_CHMODE          0x00000300
  82#define UART_MR_CHMODE_SH       8
  83#define UART_MR_UCLKEN          0x00000400
  84#define UART_MR_IRMODE          0x00000800
  85
  86#define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
  87#define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
  88#define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
  89#define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
  90#define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
  91#define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
  92#define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
  93#define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
  94#define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
  95#define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
  96
  97#define UART_INPUT_CLK         50000000
  98
  99#define R_CR       (0x00/4)
 100#define R_MR       (0x04/4)
 101#define R_IER      (0x08/4)
 102#define R_IDR      (0x0C/4)
 103#define R_IMR      (0x10/4)
 104#define R_CISR     (0x14/4)
 105#define R_BRGR     (0x18/4)
 106#define R_RTOR     (0x1C/4)
 107#define R_RTRIG    (0x20/4)
 108#define R_MCR      (0x24/4)
 109#define R_MSR      (0x28/4)
 110#define R_SR       (0x2C/4)
 111#define R_TX_RX    (0x30/4)
 112#define R_BDIV     (0x34/4)
 113#define R_FDEL     (0x38/4)
 114#define R_PMIN     (0x3C/4)
 115#define R_PWID     (0x40/4)
 116#define R_TTRIG    (0x44/4)
 117
 118
 119static void uart_update_status(CadenceUARTState *s)
 120{
 121    s->r[R_SR] = 0;
 122
 123    s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
 124                                                           : 0;
 125    s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
 126    s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
 127
 128    s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
 129                                                           : 0;
 130    s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
 131    s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
 132
 133    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
 134    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
 135    qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
 136}
 137
 138static void fifo_trigger_update(void *opaque)
 139{
 140    CadenceUARTState *s = opaque;
 141
 142    if (s->r[R_RTOR]) {
 143        s->r[R_CISR] |= UART_INTR_TIMEOUT;
 144        uart_update_status(s);
 145    }
 146}
 147
 148static void uart_rx_reset(CadenceUARTState *s)
 149{
 150    s->rx_wpos = 0;
 151    s->rx_count = 0;
 152    qemu_chr_fe_accept_input(&s->chr);
 153}
 154
 155static void uart_tx_reset(CadenceUARTState *s)
 156{
 157    s->tx_count = 0;
 158}
 159
 160static void uart_send_breaks(CadenceUARTState *s)
 161{
 162    int break_enabled = 1;
 163
 164    qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
 165                      &break_enabled);
 166}
 167
 168static void uart_parameters_setup(CadenceUARTState *s)
 169{
 170    QEMUSerialSetParams ssp;
 171    unsigned int baud_rate, packet_size;
 172
 173    baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
 174            UART_INPUT_CLK / 8 : UART_INPUT_CLK;
 175
 176    ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
 177    packet_size = 1;
 178
 179    switch (s->r[R_MR] & UART_MR_PAR) {
 180    case UART_PARITY_EVEN:
 181        ssp.parity = 'E';
 182        packet_size++;
 183        break;
 184    case UART_PARITY_ODD:
 185        ssp.parity = 'O';
 186        packet_size++;
 187        break;
 188    default:
 189        ssp.parity = 'N';
 190        break;
 191    }
 192
 193    switch (s->r[R_MR] & UART_MR_CHRL) {
 194    case UART_DATA_BITS_6:
 195        ssp.data_bits = 6;
 196        break;
 197    case UART_DATA_BITS_7:
 198        ssp.data_bits = 7;
 199        break;
 200    default:
 201        ssp.data_bits = 8;
 202        break;
 203    }
 204
 205    switch (s->r[R_MR] & UART_MR_NBSTOP) {
 206    case UART_STOP_BITS_1:
 207        ssp.stop_bits = 1;
 208        break;
 209    default:
 210        ssp.stop_bits = 2;
 211        break;
 212    }
 213
 214    packet_size += ssp.data_bits + ssp.stop_bits;
 215    s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
 216    qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
 217}
 218
 219static int uart_can_receive(void *opaque)
 220{
 221    CadenceUARTState *s = opaque;
 222    int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
 223    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
 224
 225    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
 226        ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
 227    }
 228    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
 229        ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
 230    }
 231    return ret;
 232}
 233
 234static void uart_ctrl_update(CadenceUARTState *s)
 235{
 236    if (s->r[R_CR] & UART_CR_TXRST) {
 237        uart_tx_reset(s);
 238    }
 239
 240    if (s->r[R_CR] & UART_CR_RXRST) {
 241        uart_rx_reset(s);
 242    }
 243
 244    s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
 245
 246    if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
 247        uart_send_breaks(s);
 248    }
 249}
 250
 251static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
 252{
 253    CadenceUARTState *s = opaque;
 254    uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 255    int i;
 256
 257    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 258        return;
 259    }
 260
 261    if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
 262        s->r[R_CISR] |= UART_INTR_ROVR;
 263    } else {
 264        for (i = 0; i < size; i++) {
 265            s->rx_fifo[s->rx_wpos] = buf[i];
 266            s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
 267            s->rx_count++;
 268        }
 269        timer_mod(s->fifo_trigger_handle, new_rx_time +
 270                                                (s->char_tx_time * 4));
 271    }
 272    uart_update_status(s);
 273}
 274
 275static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
 276                                  void *opaque)
 277{
 278    CadenceUARTState *s = opaque;
 279    int ret;
 280
 281    /* instant drain the fifo when there's no back-end */
 282    if (!qemu_chr_fe_backend_connected(&s->chr)) {
 283        s->tx_count = 0;
 284        return FALSE;
 285    }
 286
 287    if (!s->tx_count) {
 288        return FALSE;
 289    }
 290
 291    ret = qemu_chr_fe_write(&s->chr, s->tx_fifo, s->tx_count);
 292
 293    if (ret >= 0) {
 294        s->tx_count -= ret;
 295        memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
 296    }
 297
 298    if (s->tx_count) {
 299        guint r = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
 300                                        cadence_uart_xmit, s);
 301        if (!r) {
 302            s->tx_count = 0;
 303            return FALSE;
 304        }
 305    }
 306
 307    uart_update_status(s);
 308    return FALSE;
 309}
 310
 311static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
 312                               int size)
 313{
 314    if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
 315        return;
 316    }
 317
 318    if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
 319        size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
 320        /*
 321         * This can only be a guest error via a bad tx fifo register push,
 322         * as can_receive() should stop remote loop and echo modes ever getting
 323         * us to here.
 324         */
 325        qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
 326        s->r[R_CISR] |= UART_INTR_ROVR;
 327    }
 328
 329    memcpy(s->tx_fifo + s->tx_count, buf, size);
 330    s->tx_count += size;
 331
 332    cadence_uart_xmit(NULL, G_IO_OUT, s);
 333}
 334
 335static void uart_receive(void *opaque, const uint8_t *buf, int size)
 336{
 337    CadenceUARTState *s = opaque;
 338    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
 339
 340    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
 341        uart_write_rx_fifo(opaque, buf, size);
 342    }
 343    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
 344        uart_write_tx_fifo(s, buf, size);
 345    }
 346}
 347
 348static void uart_event(void *opaque, int event)
 349{
 350    CadenceUARTState *s = opaque;
 351    uint8_t buf = '\0';
 352
 353    if (event == CHR_EVENT_BREAK) {
 354        uart_write_rx_fifo(opaque, &buf, 1);
 355    }
 356
 357    uart_update_status(s);
 358}
 359
 360static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
 361{
 362    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
 363        return;
 364    }
 365
 366    if (s->rx_count) {
 367        uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
 368                            s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
 369        *c = s->rx_fifo[rx_rpos];
 370        s->rx_count--;
 371
 372        qemu_chr_fe_accept_input(&s->chr);
 373    } else {
 374        *c = 0;
 375    }
 376
 377    uart_update_status(s);
 378}
 379
 380static void uart_write(void *opaque, hwaddr offset,
 381                          uint64_t value, unsigned size)
 382{
 383    CadenceUARTState *s = opaque;
 384
 385    DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
 386    offset >>= 2;
 387    if (offset >= CADENCE_UART_R_MAX) {
 388        return;
 389    }
 390    switch (offset) {
 391    case R_IER: /* ier (wts imr) */
 392        s->r[R_IMR] |= value;
 393        break;
 394    case R_IDR: /* idr (wtc imr) */
 395        s->r[R_IMR] &= ~value;
 396        break;
 397    case R_IMR: /* imr (read only) */
 398        break;
 399    case R_CISR: /* cisr (wtc) */
 400        s->r[R_CISR] &= ~value;
 401        break;
 402    case R_TX_RX: /* UARTDR */
 403        switch (s->r[R_MR] & UART_MR_CHMODE) {
 404        case NORMAL_MODE:
 405            uart_write_tx_fifo(s, (uint8_t *) &value, 1);
 406            break;
 407        case LOCAL_LOOPBACK:
 408            uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
 409            break;
 410        }
 411        break;
 412    case R_BRGR: /* Baud rate generator */
 413        if (value >= 0x01) {
 414            s->r[offset] = value & 0xFFFF;
 415        }
 416        break;
 417    case R_BDIV:    /* Baud rate divider */
 418        if (value >= 0x04) {
 419            s->r[offset] = value & 0xFF;
 420        }
 421        break;
 422    default:
 423        s->r[offset] = value;
 424    }
 425
 426    switch (offset) {
 427    case R_CR:
 428        uart_ctrl_update(s);
 429        break;
 430    case R_MR:
 431        uart_parameters_setup(s);
 432        break;
 433    }
 434    uart_update_status(s);
 435}
 436
 437static uint64_t uart_read(void *opaque, hwaddr offset,
 438        unsigned size)
 439{
 440    CadenceUARTState *s = opaque;
 441    uint32_t c = 0;
 442
 443    offset >>= 2;
 444    if (offset >= CADENCE_UART_R_MAX) {
 445        c = 0;
 446    } else if (offset == R_TX_RX) {
 447        uart_read_rx_fifo(s, &c);
 448    } else {
 449       c = s->r[offset];
 450    }
 451
 452    DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
 453    return c;
 454}
 455
 456static const MemoryRegionOps uart_ops = {
 457    .read = uart_read,
 458    .write = uart_write,
 459    .endianness = DEVICE_NATIVE_ENDIAN,
 460};
 461
 462static void cadence_uart_reset(DeviceState *dev)
 463{
 464    CadenceUARTState *s = CADENCE_UART(dev);
 465
 466    s->r[R_CR] = 0x00000128;
 467    s->r[R_IMR] = 0;
 468    s->r[R_CISR] = 0;
 469    s->r[R_RTRIG] = 0x00000020;
 470    s->r[R_BRGR] = 0x0000028B;
 471    s->r[R_BDIV] = 0x0000000F;
 472    s->r[R_TTRIG] = 0x00000020;
 473
 474    uart_rx_reset(s);
 475    uart_tx_reset(s);
 476
 477    uart_update_status(s);
 478}
 479
 480static void cadence_uart_realize(DeviceState *dev, Error **errp)
 481{
 482    CadenceUARTState *s = CADENCE_UART(dev);
 483
 484    s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
 485                                          fifo_trigger_update, s);
 486
 487    qemu_chr_fe_set_handlers(&s->chr, uart_can_receive, uart_receive,
 488                             uart_event, NULL, s, NULL, true);
 489}
 490
 491static void cadence_uart_init(Object *obj)
 492{
 493    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 494    CadenceUARTState *s = CADENCE_UART(obj);
 495
 496    memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
 497    sysbus_init_mmio(sbd, &s->iomem);
 498    sysbus_init_irq(sbd, &s->irq);
 499
 500    s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
 501}
 502
 503static int cadence_uart_post_load(void *opaque, int version_id)
 504{
 505    CadenceUARTState *s = opaque;
 506
 507    /* Ensure these two aren't invalid numbers */
 508    if (s->r[R_BRGR] < 1 || s->r[R_BRGR] & ~0xFFFF ||
 509        s->r[R_BDIV] <= 3 || s->r[R_BDIV] & ~0xFF) {
 510        /* Value is invalid, abort */
 511        return 1;
 512    }
 513
 514    uart_parameters_setup(s);
 515    uart_update_status(s);
 516    return 0;
 517}
 518
 519static const VMStateDescription vmstate_cadence_uart = {
 520    .name = "cadence_uart",
 521    .version_id = 2,
 522    .minimum_version_id = 2,
 523    .post_load = cadence_uart_post_load,
 524    .fields = (VMStateField[]) {
 525        VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
 526        VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
 527                            CADENCE_UART_RX_FIFO_SIZE),
 528        VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
 529                            CADENCE_UART_TX_FIFO_SIZE),
 530        VMSTATE_UINT32(rx_count, CadenceUARTState),
 531        VMSTATE_UINT32(tx_count, CadenceUARTState),
 532        VMSTATE_UINT32(rx_wpos, CadenceUARTState),
 533        VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
 534        VMSTATE_END_OF_LIST()
 535    }
 536};
 537
 538static Property cadence_uart_properties[] = {
 539    DEFINE_PROP_CHR("chardev", CadenceUARTState, chr),
 540    DEFINE_PROP_END_OF_LIST(),
 541};
 542
 543static void cadence_uart_class_init(ObjectClass *klass, void *data)
 544{
 545    DeviceClass *dc = DEVICE_CLASS(klass);
 546
 547    dc->realize = cadence_uart_realize;
 548    dc->vmsd = &vmstate_cadence_uart;
 549    dc->reset = cadence_uart_reset;
 550    dc->props = cadence_uart_properties;
 551  }
 552
 553static const TypeInfo cadence_uart_info = {
 554    .name          = TYPE_CADENCE_UART,
 555    .parent        = TYPE_SYS_BUS_DEVICE,
 556    .instance_size = sizeof(CadenceUARTState),
 557    .instance_init = cadence_uart_init,
 558    .class_init    = cadence_uart_class_init,
 559};
 560
 561static void cadence_uart_register_types(void)
 562{
 563    type_register_static(&cadence_uart_info);
 564}
 565
 566type_init(cadence_uart_register_types)
 567