qemu/hw/i386/kvmvapic.c
<<
>>
Prefs
   1/*
   2 * TPR optimization for 32-bit Windows guests (XP and Server 2003)
   3 *
   4 * Copyright (C) 2007-2008 Qumranet Technologies
   5 * Copyright (C) 2012      Jan Kiszka, Siemens AG
   6 *
   7 * This work is licensed under the terms of the GNU GPL version 2, or
   8 * (at your option) any later version. See the COPYING file in the
   9 * top-level directory.
  10 */
  11#include "qemu/osdep.h"
  12#include "qemu-common.h"
  13#include "cpu.h"
  14#include "sysemu/sysemu.h"
  15#include "sysemu/cpus.h"
  16#include "sysemu/hw_accel.h"
  17#include "sysemu/kvm.h"
  18#include "hw/i386/apic_internal.h"
  19#include "hw/sysbus.h"
  20#include "tcg/tcg.h"
  21
  22#define VAPIC_IO_PORT           0x7e
  23
  24#define VAPIC_CPU_SHIFT         7
  25
  26#define ROM_BLOCK_SIZE          512
  27#define ROM_BLOCK_MASK          (~(ROM_BLOCK_SIZE - 1))
  28
  29typedef enum VAPICMode {
  30    VAPIC_INACTIVE = 0,
  31    VAPIC_ACTIVE   = 1,
  32    VAPIC_STANDBY  = 2,
  33} VAPICMode;
  34
  35typedef struct VAPICHandlers {
  36    uint32_t set_tpr;
  37    uint32_t set_tpr_eax;
  38    uint32_t get_tpr[8];
  39    uint32_t get_tpr_stack;
  40} QEMU_PACKED VAPICHandlers;
  41
  42typedef struct GuestROMState {
  43    char signature[8];
  44    uint32_t vaddr;
  45    uint32_t fixup_start;
  46    uint32_t fixup_end;
  47    uint32_t vapic_vaddr;
  48    uint32_t vapic_size;
  49    uint32_t vcpu_shift;
  50    uint32_t real_tpr_addr;
  51    VAPICHandlers up;
  52    VAPICHandlers mp;
  53} QEMU_PACKED GuestROMState;
  54
  55typedef struct VAPICROMState {
  56    SysBusDevice busdev;
  57    MemoryRegion io;
  58    MemoryRegion rom;
  59    uint32_t state;
  60    uint32_t rom_state_paddr;
  61    uint32_t rom_state_vaddr;
  62    uint32_t vapic_paddr;
  63    uint32_t real_tpr_addr;
  64    GuestROMState rom_state;
  65    size_t rom_size;
  66    bool rom_mapped_writable;
  67    VMChangeStateEntry *vmsentry;
  68} VAPICROMState;
  69
  70#define TYPE_VAPIC "kvmvapic"
  71#define VAPIC(obj) OBJECT_CHECK(VAPICROMState, (obj), TYPE_VAPIC)
  72
  73#define TPR_INSTR_ABS_MODRM             0x1
  74#define TPR_INSTR_MATCH_MODRM_REG       0x2
  75
  76typedef struct TPRInstruction {
  77    uint8_t opcode;
  78    uint8_t modrm_reg;
  79    unsigned int flags;
  80    TPRAccess access;
  81    size_t length;
  82    off_t addr_offset;
  83} TPRInstruction;
  84
  85/* must be sorted by length, shortest first */
  86static const TPRInstruction tpr_instr[] = {
  87    { /* mov abs to eax */
  88        .opcode = 0xa1,
  89        .access = TPR_ACCESS_READ,
  90        .length = 5,
  91        .addr_offset = 1,
  92    },
  93    { /* mov eax to abs */
  94        .opcode = 0xa3,
  95        .access = TPR_ACCESS_WRITE,
  96        .length = 5,
  97        .addr_offset = 1,
  98    },
  99    { /* mov r32 to r/m32 */
 100        .opcode = 0x89,
 101        .flags = TPR_INSTR_ABS_MODRM,
 102        .access = TPR_ACCESS_WRITE,
 103        .length = 6,
 104        .addr_offset = 2,
 105    },
 106    { /* mov r/m32 to r32 */
 107        .opcode = 0x8b,
 108        .flags = TPR_INSTR_ABS_MODRM,
 109        .access = TPR_ACCESS_READ,
 110        .length = 6,
 111        .addr_offset = 2,
 112    },
 113    { /* push r/m32 */
 114        .opcode = 0xff,
 115        .modrm_reg = 6,
 116        .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
 117        .access = TPR_ACCESS_READ,
 118        .length = 6,
 119        .addr_offset = 2,
 120    },
 121    { /* mov imm32, r/m32 (c7/0) */
 122        .opcode = 0xc7,
 123        .modrm_reg = 0,
 124        .flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
 125        .access = TPR_ACCESS_WRITE,
 126        .length = 10,
 127        .addr_offset = 2,
 128    },
 129};
 130
 131static void read_guest_rom_state(VAPICROMState *s)
 132{
 133    cpu_physical_memory_read(s->rom_state_paddr, &s->rom_state,
 134                             sizeof(GuestROMState));
 135}
 136
 137static void write_guest_rom_state(VAPICROMState *s)
 138{
 139    cpu_physical_memory_write(s->rom_state_paddr, &s->rom_state,
 140                              sizeof(GuestROMState));
 141}
 142
 143static void update_guest_rom_state(VAPICROMState *s)
 144{
 145    read_guest_rom_state(s);
 146
 147    s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
 148    s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
 149
 150    write_guest_rom_state(s);
 151}
 152
 153static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
 154{
 155    CPUState *cs = CPU(x86_env_get_cpu(env));
 156    hwaddr paddr;
 157    target_ulong addr;
 158
 159    if (s->state == VAPIC_ACTIVE) {
 160        return 0;
 161    }
 162    /*
 163     * If there is no prior TPR access instruction we could analyze (which is
 164     * the case after resume from hibernation), we need to scan the possible
 165     * virtual address space for the APIC mapping.
 166     */
 167    for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
 168        paddr = cpu_get_phys_page_debug(cs, addr);
 169        if (paddr != APIC_DEFAULT_ADDRESS) {
 170            continue;
 171        }
 172        s->real_tpr_addr = addr + 0x80;
 173        update_guest_rom_state(s);
 174        return 0;
 175    }
 176    return -1;
 177}
 178
 179static uint8_t modrm_reg(uint8_t modrm)
 180{
 181    return (modrm >> 3) & 7;
 182}
 183
 184static bool is_abs_modrm(uint8_t modrm)
 185{
 186    return (modrm & 0xc7) == 0x05;
 187}
 188
 189static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
 190{
 191    return opcode[0] == instr->opcode &&
 192        (!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
 193        (!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
 194         modrm_reg(opcode[1]) == instr->modrm_reg);
 195}
 196
 197static int evaluate_tpr_instruction(VAPICROMState *s, X86CPU *cpu,
 198                                    target_ulong *pip, TPRAccess access)
 199{
 200    CPUState *cs = CPU(cpu);
 201    const TPRInstruction *instr;
 202    target_ulong ip = *pip;
 203    uint8_t opcode[2];
 204    uint32_t real_tpr_addr;
 205    int i;
 206
 207    if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
 208        (ip & 0xf0000000ULL) != 0xe0000000ULL) {
 209        return -1;
 210    }
 211
 212    /*
 213     * Early Windows 2003 SMP initialization contains a
 214     *
 215     *   mov imm32, r/m32
 216     *
 217     * instruction that is patched by TPR optimization. The problem is that
 218     * RSP, used by the patched instruction, is zero, so the guest gets a
 219     * double fault and dies.
 220     */
 221    if (cpu->env.regs[R_ESP] == 0) {
 222        return -1;
 223    }
 224
 225    if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
 226        /*
 227         * KVM without kernel-based TPR access reporting will pass an IP that
 228         * points after the accessing instruction. So we need to look backward
 229         * to find the reason.
 230         */
 231        for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
 232            instr = &tpr_instr[i];
 233            if (instr->access != access) {
 234                continue;
 235            }
 236            if (cpu_memory_rw_debug(cs, ip - instr->length, opcode,
 237                                    sizeof(opcode), 0) < 0) {
 238                return -1;
 239            }
 240            if (opcode_matches(opcode, instr)) {
 241                ip -= instr->length;
 242                goto instruction_ok;
 243            }
 244        }
 245        return -1;
 246    } else {
 247        if (cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0) < 0) {
 248            return -1;
 249        }
 250        for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
 251            instr = &tpr_instr[i];
 252            if (opcode_matches(opcode, instr)) {
 253                goto instruction_ok;
 254            }
 255        }
 256        return -1;
 257    }
 258
 259instruction_ok:
 260    /*
 261     * Grab the virtual TPR address from the instruction
 262     * and update the cached values.
 263     */
 264    if (cpu_memory_rw_debug(cs, ip + instr->addr_offset,
 265                            (void *)&real_tpr_addr,
 266                            sizeof(real_tpr_addr), 0) < 0) {
 267        return -1;
 268    }
 269    real_tpr_addr = le32_to_cpu(real_tpr_addr);
 270    if ((real_tpr_addr & 0xfff) != 0x80) {
 271        return -1;
 272    }
 273    s->real_tpr_addr = real_tpr_addr;
 274    update_guest_rom_state(s);
 275
 276    *pip = ip;
 277    return 0;
 278}
 279
 280static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
 281{
 282    CPUState *cs = CPU(x86_env_get_cpu(env));
 283    hwaddr paddr;
 284    uint32_t rom_state_vaddr;
 285    uint32_t pos, patch, offset;
 286
 287    /* nothing to do if already activated */
 288    if (s->state == VAPIC_ACTIVE) {
 289        return 0;
 290    }
 291
 292    /* bail out if ROM init code was not executed (missing ROM?) */
 293    if (s->state == VAPIC_INACTIVE) {
 294        return -1;
 295    }
 296
 297    /* find out virtual address of the ROM */
 298    rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
 299    paddr = cpu_get_phys_page_debug(cs, rom_state_vaddr);
 300    if (paddr == -1) {
 301        return -1;
 302    }
 303    paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
 304    if (paddr != s->rom_state_paddr) {
 305        return -1;
 306    }
 307    read_guest_rom_state(s);
 308    if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
 309        return -1;
 310    }
 311    s->rom_state_vaddr = rom_state_vaddr;
 312
 313    /* fixup addresses in ROM if needed */
 314    if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
 315        return 0;
 316    }
 317    for (pos = le32_to_cpu(s->rom_state.fixup_start);
 318         pos < le32_to_cpu(s->rom_state.fixup_end);
 319         pos += 4) {
 320        cpu_physical_memory_read(paddr + pos - s->rom_state.vaddr,
 321                                 &offset, sizeof(offset));
 322        offset = le32_to_cpu(offset);
 323        cpu_physical_memory_read(paddr + offset, &patch, sizeof(patch));
 324        patch = le32_to_cpu(patch);
 325        patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
 326        patch = cpu_to_le32(patch);
 327        cpu_physical_memory_write(paddr + offset, &patch, sizeof(patch));
 328    }
 329    read_guest_rom_state(s);
 330    s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
 331        le32_to_cpu(s->rom_state.vaddr);
 332
 333    return 0;
 334}
 335
 336/*
 337 * Tries to read the unique processor number from the Kernel Processor Control
 338 * Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
 339 * cannot be accessed or is considered invalid. This also ensures that we are
 340 * not patching the wrong guest.
 341 */
 342static int get_kpcr_number(X86CPU *cpu)
 343{
 344    CPUX86State *env = &cpu->env;
 345    struct kpcr {
 346        uint8_t  fill1[0x1c];
 347        uint32_t self;
 348        uint8_t  fill2[0x31];
 349        uint8_t  number;
 350    } QEMU_PACKED kpcr;
 351
 352    if (cpu_memory_rw_debug(CPU(cpu), env->segs[R_FS].base,
 353                            (void *)&kpcr, sizeof(kpcr), 0) < 0 ||
 354        kpcr.self != env->segs[R_FS].base) {
 355        return -1;
 356    }
 357    return kpcr.number;
 358}
 359
 360static int vapic_enable(VAPICROMState *s, X86CPU *cpu)
 361{
 362    int cpu_number = get_kpcr_number(cpu);
 363    hwaddr vapic_paddr;
 364    static const uint8_t enabled = 1;
 365
 366    if (cpu_number < 0) {
 367        return -1;
 368    }
 369    vapic_paddr = s->vapic_paddr +
 370        (((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
 371    cpu_physical_memory_write(vapic_paddr + offsetof(VAPICState, enabled),
 372                              &enabled, sizeof(enabled));
 373    apic_enable_vapic(cpu->apic_state, vapic_paddr);
 374
 375    s->state = VAPIC_ACTIVE;
 376
 377    return 0;
 378}
 379
 380static void patch_byte(X86CPU *cpu, target_ulong addr, uint8_t byte)
 381{
 382    cpu_memory_rw_debug(CPU(cpu), addr, &byte, 1, 1);
 383}
 384
 385static void patch_call(X86CPU *cpu, target_ulong ip, uint32_t target)
 386{
 387    uint32_t offset;
 388
 389    offset = cpu_to_le32(target - ip - 5);
 390    patch_byte(cpu, ip, 0xe8); /* call near */
 391    cpu_memory_rw_debug(CPU(cpu), ip + 1, (void *)&offset, sizeof(offset), 1);
 392}
 393
 394typedef struct PatchInfo {
 395    VAPICHandlers *handler;
 396    target_ulong ip;
 397} PatchInfo;
 398
 399static void do_patch_instruction(CPUState *cs, run_on_cpu_data data)
 400{
 401    X86CPU *x86_cpu = X86_CPU(cs);
 402    PatchInfo *info = (PatchInfo *) data.host_ptr;
 403    VAPICHandlers *handlers = info->handler;
 404    target_ulong ip = info->ip;
 405    uint8_t opcode[2];
 406    uint32_t imm32 = 0;
 407
 408    cpu_memory_rw_debug(cs, ip, opcode, sizeof(opcode), 0);
 409
 410    switch (opcode[0]) {
 411    case 0x89: /* mov r32 to r/m32 */
 412        patch_byte(x86_cpu, ip, 0x50 + modrm_reg(opcode[1]));  /* push reg */
 413        patch_call(x86_cpu, ip + 1, handlers->set_tpr);
 414        break;
 415    case 0x8b: /* mov r/m32 to r32 */
 416        patch_byte(x86_cpu, ip, 0x90);
 417        patch_call(x86_cpu, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
 418        break;
 419    case 0xa1: /* mov abs to eax */
 420        patch_call(x86_cpu, ip, handlers->get_tpr[0]);
 421        break;
 422    case 0xa3: /* mov eax to abs */
 423        patch_call(x86_cpu, ip, handlers->set_tpr_eax);
 424        break;
 425    case 0xc7: /* mov imm32, r/m32 (c7/0) */
 426        patch_byte(x86_cpu, ip, 0x68);  /* push imm32 */
 427        cpu_memory_rw_debug(cs, ip + 6, (void *)&imm32, sizeof(imm32), 0);
 428        cpu_memory_rw_debug(cs, ip + 1, (void *)&imm32, sizeof(imm32), 1);
 429        patch_call(x86_cpu, ip + 5, handlers->set_tpr);
 430        break;
 431    case 0xff: /* push r/m32 */
 432        patch_byte(x86_cpu, ip, 0x50); /* push eax */
 433        patch_call(x86_cpu, ip + 1, handlers->get_tpr_stack);
 434        break;
 435    default:
 436        abort();
 437    }
 438
 439    g_free(info);
 440}
 441
 442static void patch_instruction(VAPICROMState *s, X86CPU *cpu, target_ulong ip)
 443{
 444    CPUState *cs = CPU(cpu);
 445    VAPICHandlers *handlers;
 446    PatchInfo *info;
 447
 448    if (smp_cpus == 1) {
 449        handlers = &s->rom_state.up;
 450    } else {
 451        handlers = &s->rom_state.mp;
 452    }
 453
 454    info  = g_new(PatchInfo, 1);
 455    info->handler = handlers;
 456    info->ip = ip;
 457
 458    async_safe_run_on_cpu(cs, do_patch_instruction, RUN_ON_CPU_HOST_PTR(info));
 459}
 460
 461void vapic_report_tpr_access(DeviceState *dev, CPUState *cs, target_ulong ip,
 462                             TPRAccess access)
 463{
 464    VAPICROMState *s = VAPIC(dev);
 465    X86CPU *cpu = X86_CPU(cs);
 466    CPUX86State *env = &cpu->env;
 467
 468    cpu_synchronize_state(cs);
 469
 470    if (evaluate_tpr_instruction(s, cpu, &ip, access) < 0) {
 471        if (s->state == VAPIC_ACTIVE) {
 472            vapic_enable(s, cpu);
 473        }
 474        return;
 475    }
 476    if (update_rom_mapping(s, env, ip) < 0) {
 477        return;
 478    }
 479    if (vapic_enable(s, cpu) < 0) {
 480        return;
 481    }
 482    patch_instruction(s, cpu, ip);
 483}
 484
 485typedef struct VAPICEnableTPRReporting {
 486    DeviceState *apic;
 487    bool enable;
 488} VAPICEnableTPRReporting;
 489
 490static void vapic_do_enable_tpr_reporting(CPUState *cpu, run_on_cpu_data data)
 491{
 492    VAPICEnableTPRReporting *info = data.host_ptr;
 493    apic_enable_tpr_access_reporting(info->apic, info->enable);
 494}
 495
 496static void vapic_enable_tpr_reporting(bool enable)
 497{
 498    VAPICEnableTPRReporting info = {
 499        .enable = enable,
 500    };
 501    CPUState *cs;
 502    X86CPU *cpu;
 503
 504    CPU_FOREACH(cs) {
 505        cpu = X86_CPU(cs);
 506        info.apic = cpu->apic_state;
 507        run_on_cpu(cs, vapic_do_enable_tpr_reporting, RUN_ON_CPU_HOST_PTR(&info));
 508    }
 509}
 510
 511static void vapic_reset(DeviceState *dev)
 512{
 513    VAPICROMState *s = VAPIC(dev);
 514
 515    s->state = VAPIC_INACTIVE;
 516    s->rom_state_paddr = 0;
 517    vapic_enable_tpr_reporting(false);
 518}
 519
 520/*
 521 * Set the IRQ polling hypercalls to the supported variant:
 522 *  - vmcall if using KVM in-kernel irqchip
 523 *  - 32-bit VAPIC port write otherwise
 524 */
 525static int patch_hypercalls(VAPICROMState *s)
 526{
 527    hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
 528    static const uint8_t vmcall_pattern[] = { /* vmcall */
 529        0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
 530    };
 531    static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
 532        0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
 533    };
 534    uint8_t alternates[2];
 535    const uint8_t *pattern;
 536    const uint8_t *patch;
 537    off_t pos;
 538    uint8_t *rom;
 539
 540    rom = g_malloc(s->rom_size);
 541    cpu_physical_memory_read(rom_paddr, rom, s->rom_size);
 542
 543    for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
 544        if (kvm_irqchip_in_kernel()) {
 545            pattern = outl_pattern;
 546            alternates[0] = outl_pattern[7];
 547            alternates[1] = outl_pattern[7];
 548            patch = &vmcall_pattern[5];
 549        } else {
 550            pattern = vmcall_pattern;
 551            alternates[0] = vmcall_pattern[7];
 552            alternates[1] = 0xd9; /* AMD's VMMCALL */
 553            patch = &outl_pattern[5];
 554        }
 555        if (memcmp(rom + pos, pattern, 7) == 0 &&
 556            (rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
 557            cpu_physical_memory_write(rom_paddr + pos + 5, patch, 3);
 558            /*
 559             * Don't flush the tb here. Under ordinary conditions, the patched
 560             * calls are miles away from the current IP. Under malicious
 561             * conditions, the guest could trick us to crash.
 562             */
 563        }
 564    }
 565
 566    g_free(rom);
 567    return 0;
 568}
 569
 570/*
 571 * For TCG mode or the time KVM honors read-only memory regions, we need to
 572 * enable write access to the option ROM so that variables can be updated by
 573 * the guest.
 574 */
 575static int vapic_map_rom_writable(VAPICROMState *s)
 576{
 577    hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
 578    MemoryRegionSection section;
 579    MemoryRegion *as;
 580    size_t rom_size;
 581    uint8_t *ram;
 582
 583    as = sysbus_address_space(&s->busdev);
 584
 585    if (s->rom_mapped_writable) {
 586        memory_region_del_subregion(as, &s->rom);
 587        object_unparent(OBJECT(&s->rom));
 588    }
 589
 590    /* grab RAM memory region (region @rom_paddr may still be pc.rom) */
 591    section = memory_region_find(as, 0, 1);
 592
 593    /* read ROM size from RAM region */
 594    if (rom_paddr + 2 >= memory_region_size(section.mr)) {
 595        return -1;
 596    }
 597    ram = memory_region_get_ram_ptr(section.mr);
 598    rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
 599    if (rom_size == 0) {
 600        return -1;
 601    }
 602    s->rom_size = rom_size;
 603
 604    /* We need to round to avoid creating subpages
 605     * from which we cannot run code. */
 606    rom_size += rom_paddr & ~TARGET_PAGE_MASK;
 607    rom_paddr &= TARGET_PAGE_MASK;
 608    rom_size = TARGET_PAGE_ALIGN(rom_size);
 609
 610    memory_region_init_alias(&s->rom, OBJECT(s), "kvmvapic-rom", section.mr,
 611                             rom_paddr, rom_size);
 612    memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
 613    s->rom_mapped_writable = true;
 614    memory_region_unref(section.mr);
 615
 616    return 0;
 617}
 618
 619static int vapic_prepare(VAPICROMState *s)
 620{
 621    if (vapic_map_rom_writable(s) < 0) {
 622        return -1;
 623    }
 624
 625    if (patch_hypercalls(s) < 0) {
 626        return -1;
 627    }
 628
 629    vapic_enable_tpr_reporting(true);
 630
 631    return 0;
 632}
 633
 634static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
 635                        unsigned int size)
 636{
 637    VAPICROMState *s = opaque;
 638    X86CPU *cpu;
 639    CPUX86State *env;
 640    hwaddr rom_paddr;
 641
 642    if (!current_cpu) {
 643        return;
 644    }
 645
 646    cpu_synchronize_state(current_cpu);
 647    cpu = X86_CPU(current_cpu);
 648    env = &cpu->env;
 649
 650    /*
 651     * The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
 652     *  o 16-bit write access:
 653     *    Reports the option ROM initialization to the hypervisor. Written
 654     *    value is the offset of the state structure in the ROM.
 655     *  o 8-bit write access:
 656     *    Reactivates the VAPIC after a guest hibernation, i.e. after the
 657     *    option ROM content has been re-initialized by a guest power cycle.
 658     *  o 32-bit write access:
 659     *    Poll for pending IRQs, considering the current VAPIC state.
 660     */
 661    switch (size) {
 662    case 2:
 663        if (s->state == VAPIC_INACTIVE) {
 664            rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
 665            s->rom_state_paddr = rom_paddr + data;
 666
 667            s->state = VAPIC_STANDBY;
 668        }
 669        if (vapic_prepare(s) < 0) {
 670            s->state = VAPIC_INACTIVE;
 671            s->rom_state_paddr = 0;
 672            break;
 673        }
 674        break;
 675    case 1:
 676        if (kvm_enabled()) {
 677            /*
 678             * Disable triggering instruction in ROM by writing a NOP.
 679             *
 680             * We cannot do this in TCG mode as the reported IP is not
 681             * accurate.
 682             */
 683            pause_all_vcpus();
 684            patch_byte(cpu, env->eip - 2, 0x66);
 685            patch_byte(cpu, env->eip - 1, 0x90);
 686            resume_all_vcpus();
 687        }
 688
 689        if (s->state == VAPIC_ACTIVE) {
 690            break;
 691        }
 692        if (update_rom_mapping(s, env, env->eip) < 0) {
 693            break;
 694        }
 695        if (find_real_tpr_addr(s, env) < 0) {
 696            break;
 697        }
 698        vapic_enable(s, cpu);
 699        break;
 700    default:
 701    case 4:
 702        if (!kvm_irqchip_in_kernel()) {
 703            apic_poll_irq(cpu->apic_state);
 704        }
 705        break;
 706    }
 707}
 708
 709static uint64_t vapic_read(void *opaque, hwaddr addr, unsigned size)
 710{
 711    return 0xffffffff;
 712}
 713
 714static const MemoryRegionOps vapic_ops = {
 715    .write = vapic_write,
 716    .read = vapic_read,
 717    .endianness = DEVICE_NATIVE_ENDIAN,
 718};
 719
 720static void vapic_realize(DeviceState *dev, Error **errp)
 721{
 722    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 723    VAPICROMState *s = VAPIC(dev);
 724
 725    memory_region_init_io(&s->io, OBJECT(s), &vapic_ops, s, "kvmvapic", 2);
 726    sysbus_add_io(sbd, VAPIC_IO_PORT, &s->io);
 727    sysbus_init_ioports(sbd, VAPIC_IO_PORT, 2);
 728
 729    option_rom[nb_option_roms].name = "kvmvapic.bin";
 730    option_rom[nb_option_roms].bootindex = -1;
 731    nb_option_roms++;
 732}
 733
 734static void do_vapic_enable(CPUState *cs, run_on_cpu_data data)
 735{
 736    VAPICROMState *s = data.host_ptr;
 737    X86CPU *cpu = X86_CPU(cs);
 738
 739    static const uint8_t enabled = 1;
 740    cpu_physical_memory_write(s->vapic_paddr + offsetof(VAPICState, enabled),
 741                              &enabled, sizeof(enabled));
 742    apic_enable_vapic(cpu->apic_state, s->vapic_paddr);
 743    s->state = VAPIC_ACTIVE;
 744}
 745
 746static void kvmvapic_vm_state_change(void *opaque, int running,
 747                                     RunState state)
 748{
 749    VAPICROMState *s = opaque;
 750    uint8_t *zero;
 751
 752    if (!running) {
 753        return;
 754    }
 755
 756    if (s->state == VAPIC_ACTIVE) {
 757        if (smp_cpus == 1) {
 758            run_on_cpu(first_cpu, do_vapic_enable, RUN_ON_CPU_HOST_PTR(s));
 759        } else {
 760            zero = g_malloc0(s->rom_state.vapic_size);
 761            cpu_physical_memory_write(s->vapic_paddr, zero,
 762                                      s->rom_state.vapic_size);
 763            g_free(zero);
 764        }
 765    }
 766
 767    qemu_del_vm_change_state_handler(s->vmsentry);
 768    s->vmsentry = NULL;
 769}
 770
 771static int vapic_post_load(void *opaque, int version_id)
 772{
 773    VAPICROMState *s = opaque;
 774
 775    /*
 776     * The old implementation of qemu-kvm did not provide the state
 777     * VAPIC_STANDBY. Reconstruct it.
 778     */
 779    if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
 780        s->state = VAPIC_STANDBY;
 781    }
 782
 783    if (s->state != VAPIC_INACTIVE) {
 784        if (vapic_prepare(s) < 0) {
 785            return -1;
 786        }
 787    }
 788
 789    if (!s->vmsentry) {
 790        s->vmsentry =
 791            qemu_add_vm_change_state_handler(kvmvapic_vm_state_change, s);
 792    }
 793    return 0;
 794}
 795
 796static const VMStateDescription vmstate_handlers = {
 797    .name = "kvmvapic-handlers",
 798    .version_id = 1,
 799    .minimum_version_id = 1,
 800    .fields = (VMStateField[]) {
 801        VMSTATE_UINT32(set_tpr, VAPICHandlers),
 802        VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
 803        VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
 804        VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
 805        VMSTATE_END_OF_LIST()
 806    }
 807};
 808
 809static const VMStateDescription vmstate_guest_rom = {
 810    .name = "kvmvapic-guest-rom",
 811    .version_id = 1,
 812    .minimum_version_id = 1,
 813    .fields = (VMStateField[]) {
 814        VMSTATE_UNUSED(8),     /* signature */
 815        VMSTATE_UINT32(vaddr, GuestROMState),
 816        VMSTATE_UINT32(fixup_start, GuestROMState),
 817        VMSTATE_UINT32(fixup_end, GuestROMState),
 818        VMSTATE_UINT32(vapic_vaddr, GuestROMState),
 819        VMSTATE_UINT32(vapic_size, GuestROMState),
 820        VMSTATE_UINT32(vcpu_shift, GuestROMState),
 821        VMSTATE_UINT32(real_tpr_addr, GuestROMState),
 822        VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
 823        VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
 824        VMSTATE_END_OF_LIST()
 825    }
 826};
 827
 828static const VMStateDescription vmstate_vapic = {
 829    .name = "kvm-tpr-opt",      /* compatible with qemu-kvm VAPIC */
 830    .version_id = 1,
 831    .minimum_version_id = 1,
 832    .post_load = vapic_post_load,
 833    .fields = (VMStateField[]) {
 834        VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
 835                       GuestROMState),
 836        VMSTATE_UINT32(state, VAPICROMState),
 837        VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
 838        VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
 839        VMSTATE_UINT32(vapic_paddr, VAPICROMState),
 840        VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
 841        VMSTATE_END_OF_LIST()
 842    }
 843};
 844
 845static void vapic_class_init(ObjectClass *klass, void *data)
 846{
 847    DeviceClass *dc = DEVICE_CLASS(klass);
 848
 849    dc->reset   = vapic_reset;
 850    dc->vmsd    = &vmstate_vapic;
 851    dc->realize = vapic_realize;
 852}
 853
 854static const TypeInfo vapic_type = {
 855    .name          = TYPE_VAPIC,
 856    .parent        = TYPE_SYS_BUS_DEVICE,
 857    .instance_size = sizeof(VAPICROMState),
 858    .class_init    = vapic_class_init,
 859};
 860
 861static void vapic_register(void)
 862{
 863    type_register_static(&vapic_type);
 864}
 865
 866type_init(vapic_register);
 867