qemu/hw/i386/pc.c
<<
>>
Prefs
   1/*
   2 * QEMU PC System Emulator
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu/units.h"
  27#include "hw/hw.h"
  28#include "hw/i386/pc.h"
  29#include "hw/char/serial.h"
  30#include "hw/char/parallel.h"
  31#include "hw/i386/apic.h"
  32#include "hw/i386/topology.h"
  33#include "sysemu/cpus.h"
  34#include "hw/block/fdc.h"
  35#include "hw/ide.h"
  36#include "hw/pci/pci.h"
  37#include "hw/pci/pci_bus.h"
  38#include "hw/nvram/fw_cfg.h"
  39#include "hw/timer/hpet.h"
  40#include "hw/firmware/smbios.h"
  41#include "hw/loader.h"
  42#include "elf.h"
  43#include "multiboot.h"
  44#include "hw/timer/mc146818rtc.h"
  45#include "hw/dma/i8257.h"
  46#include "hw/timer/i8254.h"
  47#include "hw/input/i8042.h"
  48#include "hw/audio/pcspk.h"
  49#include "hw/pci/msi.h"
  50#include "hw/sysbus.h"
  51#include "sysemu/sysemu.h"
  52#include "sysemu/numa.h"
  53#include "sysemu/kvm.h"
  54#include "sysemu/qtest.h"
  55#include "kvm_i386.h"
  56#include "hw/xen/xen.h"
  57#include "hw/xen/start_info.h"
  58#include "ui/qemu-spice.h"
  59#include "exec/memory.h"
  60#include "exec/address-spaces.h"
  61#include "sysemu/arch_init.h"
  62#include "qemu/bitmap.h"
  63#include "qemu/config-file.h"
  64#include "qemu/error-report.h"
  65#include "qemu/option.h"
  66#include "hw/acpi/acpi.h"
  67#include "hw/acpi/cpu_hotplug.h"
  68#include "hw/boards.h"
  69#include "acpi-build.h"
  70#include "hw/mem/pc-dimm.h"
  71#include "qapi/error.h"
  72#include "qapi/qapi-visit-common.h"
  73#include "qapi/visitor.h"
  74#include "qom/cpu.h"
  75#include "hw/nmi.h"
  76#include "hw/usb.h"
  77#include "hw/i386/intel_iommu.h"
  78#include "hw/net/ne2000-isa.h"
  79#include "standard-headers/asm-x86/bootparam.h"
  80
  81/* debug PC/ISA interrupts */
  82//#define DEBUG_IRQ
  83
  84#ifdef DEBUG_IRQ
  85#define DPRINTF(fmt, ...)                                       \
  86    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
  87#else
  88#define DPRINTF(fmt, ...)
  89#endif
  90
  91#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
  92#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
  93#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
  94#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
  95#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
  96
  97#define E820_NR_ENTRIES         16
  98
  99struct e820_entry {
 100    uint64_t address;
 101    uint64_t length;
 102    uint32_t type;
 103} QEMU_PACKED __attribute((__aligned__(4)));
 104
 105struct e820_table {
 106    uint32_t count;
 107    struct e820_entry entry[E820_NR_ENTRIES];
 108} QEMU_PACKED __attribute((__aligned__(4)));
 109
 110static struct e820_table e820_reserve;
 111static struct e820_entry *e820_table;
 112static unsigned e820_entries;
 113struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
 114
 115/* Physical Address of PVH entry point read from kernel ELF NOTE */
 116static size_t pvh_start_addr;
 117
 118GlobalProperty pc_compat_3_1[] = {
 119    { "intel-iommu", "dma-drain", "off" },
 120    { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
 121    { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
 122    { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
 123    { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
 124    { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
 125    { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
 126    { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
 127    { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
 128    { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
 129    { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
 130    { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
 131    { "Skylake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
 132    { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
 133    { "Skylake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
 134    { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
 135    { "Cascadelake-Server" "-" TYPE_X86_CPU,  "mpx", "on" },
 136    { "Icelake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
 137    { "Icelake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
 138    { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
 139    { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
 140};
 141const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
 142
 143GlobalProperty pc_compat_3_0[] = {
 144    { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
 145    { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
 146    { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
 147};
 148const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
 149
 150GlobalProperty pc_compat_2_12[] = {
 151    { TYPE_X86_CPU, "legacy-cache", "on" },
 152    { TYPE_X86_CPU, "topoext", "off" },
 153    { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
 154    { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
 155};
 156const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
 157
 158GlobalProperty pc_compat_2_11[] = {
 159    { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
 160    { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
 161};
 162const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
 163
 164GlobalProperty pc_compat_2_10[] = {
 165    { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
 166    { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
 167    { "q35-pcihost", "x-pci-hole64-fix", "off" },
 168};
 169const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
 170
 171GlobalProperty pc_compat_2_9[] = {
 172    { "mch", "extended-tseg-mbytes", "0" },
 173};
 174const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
 175
 176GlobalProperty pc_compat_2_8[] = {
 177    { TYPE_X86_CPU, "tcg-cpuid", "off" },
 178    { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
 179    { "ICH9-LPC", "x-smi-broadcast", "off" },
 180    { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
 181    { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
 182};
 183const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
 184
 185GlobalProperty pc_compat_2_7[] = {
 186    { TYPE_X86_CPU, "l3-cache", "off" },
 187    { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
 188    { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
 189    { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
 190    { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
 191    { "isa-pcspk", "migrate", "off" },
 192};
 193const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
 194
 195GlobalProperty pc_compat_2_6[] = {
 196    { TYPE_X86_CPU, "cpuid-0xb", "off" },
 197    { "vmxnet3", "romfile", "" },
 198    { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
 199    { "apic-common", "legacy-instance-id", "on", }
 200};
 201const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
 202
 203GlobalProperty pc_compat_2_5[] = {};
 204const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
 205
 206GlobalProperty pc_compat_2_4[] = {
 207    PC_CPU_MODEL_IDS("2.4.0")
 208    { "Haswell-" TYPE_X86_CPU, "abm", "off" },
 209    { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
 210    { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
 211    { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
 212    { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
 213    { TYPE_X86_CPU, "check", "off" },
 214    { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
 215    { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
 216    { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
 217    { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
 218    { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
 219    { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
 220    { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
 221    { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
 222};
 223const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
 224
 225GlobalProperty pc_compat_2_3[] = {
 226    PC_CPU_MODEL_IDS("2.3.0")
 227    { TYPE_X86_CPU, "arat", "off" },
 228    { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
 229    { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
 230    { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
 231    { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
 232    { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
 233    { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
 234    { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
 235    { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 236    { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 237    { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 238    { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 239    { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 240    { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 241    { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 242    { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 243    { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 244    { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 245    { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 246    { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
 247};
 248const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
 249
 250GlobalProperty pc_compat_2_2[] = {
 251    PC_CPU_MODEL_IDS("2.2.0")
 252    { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
 253    { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
 254    { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
 255    { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
 256    { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
 257    { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
 258    { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
 259    { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
 260    { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
 261    { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
 262    { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
 263    { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
 264    { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
 265    { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
 266    { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
 267    { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
 268    { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
 269    { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
 270};
 271const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
 272
 273GlobalProperty pc_compat_2_1[] = {
 274    PC_CPU_MODEL_IDS("2.1.0")
 275    { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
 276    { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
 277};
 278const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
 279
 280GlobalProperty pc_compat_2_0[] = {
 281    PC_CPU_MODEL_IDS("2.0.0")
 282    { "virtio-scsi-pci", "any_layout", "off" },
 283    { "PIIX4_PM", "memory-hotplug-support", "off" },
 284    { "apic", "version", "0x11" },
 285    { "nec-usb-xhci", "superspeed-ports-first", "off" },
 286    { "nec-usb-xhci", "force-pcie-endcap", "on" },
 287    { "pci-serial", "prog_if", "0" },
 288    { "pci-serial-2x", "prog_if", "0" },
 289    { "pci-serial-4x", "prog_if", "0" },
 290    { "virtio-net-pci", "guest_announce", "off" },
 291    { "ICH9-LPC", "memory-hotplug-support", "off" },
 292    { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
 293    { "ioh3420", COMPAT_PROP_PCP, "off" },
 294};
 295const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
 296
 297GlobalProperty pc_compat_1_7[] = {
 298    PC_CPU_MODEL_IDS("1.7.0")
 299    { TYPE_USB_DEVICE, "msos-desc", "no" },
 300    { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
 301    { "hpet", HPET_INTCAP, "4" },
 302};
 303const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
 304
 305GlobalProperty pc_compat_1_6[] = {
 306    PC_CPU_MODEL_IDS("1.6.0")
 307    { "e1000", "mitigation", "off" },
 308    { "qemu64-" TYPE_X86_CPU, "model", "2" },
 309    { "qemu32-" TYPE_X86_CPU, "model", "3" },
 310    { "i440FX-pcihost", "short_root_bus", "1" },
 311    { "q35-pcihost", "short_root_bus", "1" },
 312};
 313const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
 314
 315GlobalProperty pc_compat_1_5[] = {
 316    PC_CPU_MODEL_IDS("1.5.0")
 317    { "Conroe-" TYPE_X86_CPU, "model", "2" },
 318    { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
 319    { "Penryn-" TYPE_X86_CPU, "model", "2" },
 320    { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
 321    { "Nehalem-" TYPE_X86_CPU, "model", "2" },
 322    { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
 323    { "virtio-net-pci", "any_layout", "off" },
 324    { TYPE_X86_CPU, "pmu", "on" },
 325    { "i440FX-pcihost", "short_root_bus", "0" },
 326    { "q35-pcihost", "short_root_bus", "0" },
 327};
 328const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
 329
 330GlobalProperty pc_compat_1_4[] = {
 331    PC_CPU_MODEL_IDS("1.4.0")
 332    { "scsi-hd", "discard_granularity", "0" },
 333    { "scsi-cd", "discard_granularity", "0" },
 334    { "scsi-disk", "discard_granularity", "0" },
 335    { "ide-hd", "discard_granularity", "0" },
 336    { "ide-cd", "discard_granularity", "0" },
 337    { "ide-drive", "discard_granularity", "0" },
 338    { "virtio-blk-pci", "discard_granularity", "0" },
 339    /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
 340    { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
 341    { "virtio-net-pci", "ctrl_guest_offloads", "off" },
 342    { "e1000", "romfile", "pxe-e1000.rom" },
 343    { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
 344    { "pcnet", "romfile", "pxe-pcnet.rom" },
 345    { "rtl8139", "romfile", "pxe-rtl8139.rom" },
 346    { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
 347    { "486-" TYPE_X86_CPU, "model", "0" },
 348    { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
 349    { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
 350};
 351const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
 352
 353void gsi_handler(void *opaque, int n, int level)
 354{
 355    GSIState *s = opaque;
 356
 357    DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
 358    if (n < ISA_NUM_IRQS) {
 359        qemu_set_irq(s->i8259_irq[n], level);
 360    }
 361    qemu_set_irq(s->ioapic_irq[n], level);
 362}
 363
 364static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
 365                           unsigned size)
 366{
 367}
 368
 369static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
 370{
 371    return 0xffffffffffffffffULL;
 372}
 373
 374/* MSDOS compatibility mode FPU exception support */
 375static qemu_irq ferr_irq;
 376
 377void pc_register_ferr_irq(qemu_irq irq)
 378{
 379    ferr_irq = irq;
 380}
 381
 382/* XXX: add IGNNE support */
 383void cpu_set_ferr(CPUX86State *s)
 384{
 385    qemu_irq_raise(ferr_irq);
 386}
 387
 388static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
 389                           unsigned size)
 390{
 391    qemu_irq_lower(ferr_irq);
 392}
 393
 394static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
 395{
 396    return 0xffffffffffffffffULL;
 397}
 398
 399/* TSC handling */
 400uint64_t cpu_get_tsc(CPUX86State *env)
 401{
 402    return cpu_get_ticks();
 403}
 404
 405/* IRQ handling */
 406int cpu_get_pic_interrupt(CPUX86State *env)
 407{
 408    X86CPU *cpu = x86_env_get_cpu(env);
 409    int intno;
 410
 411    if (!kvm_irqchip_in_kernel()) {
 412        intno = apic_get_interrupt(cpu->apic_state);
 413        if (intno >= 0) {
 414            return intno;
 415        }
 416        /* read the irq from the PIC */
 417        if (!apic_accept_pic_intr(cpu->apic_state)) {
 418            return -1;
 419        }
 420    }
 421
 422    intno = pic_read_irq(isa_pic);
 423    return intno;
 424}
 425
 426static void pic_irq_request(void *opaque, int irq, int level)
 427{
 428    CPUState *cs = first_cpu;
 429    X86CPU *cpu = X86_CPU(cs);
 430
 431    DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
 432    if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
 433        CPU_FOREACH(cs) {
 434            cpu = X86_CPU(cs);
 435            if (apic_accept_pic_intr(cpu->apic_state)) {
 436                apic_deliver_pic_intr(cpu->apic_state, level);
 437            }
 438        }
 439    } else {
 440        if (level) {
 441            cpu_interrupt(cs, CPU_INTERRUPT_HARD);
 442        } else {
 443            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
 444        }
 445    }
 446}
 447
 448/* PC cmos mappings */
 449
 450#define REG_EQUIPMENT_BYTE          0x14
 451
 452int cmos_get_fd_drive_type(FloppyDriveType fd0)
 453{
 454    int val;
 455
 456    switch (fd0) {
 457    case FLOPPY_DRIVE_TYPE_144:
 458        /* 1.44 Mb 3"5 drive */
 459        val = 4;
 460        break;
 461    case FLOPPY_DRIVE_TYPE_288:
 462        /* 2.88 Mb 3"5 drive */
 463        val = 5;
 464        break;
 465    case FLOPPY_DRIVE_TYPE_120:
 466        /* 1.2 Mb 5"5 drive */
 467        val = 2;
 468        break;
 469    case FLOPPY_DRIVE_TYPE_NONE:
 470    default:
 471        val = 0;
 472        break;
 473    }
 474    return val;
 475}
 476
 477static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
 478                         int16_t cylinders, int8_t heads, int8_t sectors)
 479{
 480    rtc_set_memory(s, type_ofs, 47);
 481    rtc_set_memory(s, info_ofs, cylinders);
 482    rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
 483    rtc_set_memory(s, info_ofs + 2, heads);
 484    rtc_set_memory(s, info_ofs + 3, 0xff);
 485    rtc_set_memory(s, info_ofs + 4, 0xff);
 486    rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
 487    rtc_set_memory(s, info_ofs + 6, cylinders);
 488    rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
 489    rtc_set_memory(s, info_ofs + 8, sectors);
 490}
 491
 492/* convert boot_device letter to something recognizable by the bios */
 493static int boot_device2nibble(char boot_device)
 494{
 495    switch(boot_device) {
 496    case 'a':
 497    case 'b':
 498        return 0x01; /* floppy boot */
 499    case 'c':
 500        return 0x02; /* hard drive boot */
 501    case 'd':
 502        return 0x03; /* CD-ROM boot */
 503    case 'n':
 504        return 0x04; /* Network boot */
 505    }
 506    return 0;
 507}
 508
 509static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
 510{
 511#define PC_MAX_BOOT_DEVICES 3
 512    int nbds, bds[3] = { 0, };
 513    int i;
 514
 515    nbds = strlen(boot_device);
 516    if (nbds > PC_MAX_BOOT_DEVICES) {
 517        error_setg(errp, "Too many boot devices for PC");
 518        return;
 519    }
 520    for (i = 0; i < nbds; i++) {
 521        bds[i] = boot_device2nibble(boot_device[i]);
 522        if (bds[i] == 0) {
 523            error_setg(errp, "Invalid boot device for PC: '%c'",
 524                       boot_device[i]);
 525            return;
 526        }
 527    }
 528    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
 529    rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
 530}
 531
 532static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
 533{
 534    set_boot_dev(opaque, boot_device, errp);
 535}
 536
 537static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
 538{
 539    int val, nb, i;
 540    FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
 541                                   FLOPPY_DRIVE_TYPE_NONE };
 542
 543    /* floppy type */
 544    if (floppy) {
 545        for (i = 0; i < 2; i++) {
 546            fd_type[i] = isa_fdc_get_drive_type(floppy, i);
 547        }
 548    }
 549    val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
 550        cmos_get_fd_drive_type(fd_type[1]);
 551    rtc_set_memory(rtc_state, 0x10, val);
 552
 553    val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
 554    nb = 0;
 555    if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
 556        nb++;
 557    }
 558    if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
 559        nb++;
 560    }
 561    switch (nb) {
 562    case 0:
 563        break;
 564    case 1:
 565        val |= 0x01; /* 1 drive, ready for boot */
 566        break;
 567    case 2:
 568        val |= 0x41; /* 2 drives, ready for boot */
 569        break;
 570    }
 571    rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
 572}
 573
 574typedef struct pc_cmos_init_late_arg {
 575    ISADevice *rtc_state;
 576    BusState *idebus[2];
 577} pc_cmos_init_late_arg;
 578
 579typedef struct check_fdc_state {
 580    ISADevice *floppy;
 581    bool multiple;
 582} CheckFdcState;
 583
 584static int check_fdc(Object *obj, void *opaque)
 585{
 586    CheckFdcState *state = opaque;
 587    Object *fdc;
 588    uint32_t iobase;
 589    Error *local_err = NULL;
 590
 591    fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
 592    if (!fdc) {
 593        return 0;
 594    }
 595
 596    iobase = object_property_get_uint(obj, "iobase", &local_err);
 597    if (local_err || iobase != 0x3f0) {
 598        error_free(local_err);
 599        return 0;
 600    }
 601
 602    if (state->floppy) {
 603        state->multiple = true;
 604    } else {
 605        state->floppy = ISA_DEVICE(obj);
 606    }
 607    return 0;
 608}
 609
 610static const char * const fdc_container_path[] = {
 611    "/unattached", "/peripheral", "/peripheral-anon"
 612};
 613
 614/*
 615 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
 616 * and ACPI objects.
 617 */
 618ISADevice *pc_find_fdc0(void)
 619{
 620    int i;
 621    Object *container;
 622    CheckFdcState state = { 0 };
 623
 624    for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
 625        container = container_get(qdev_get_machine(), fdc_container_path[i]);
 626        object_child_foreach(container, check_fdc, &state);
 627    }
 628
 629    if (state.multiple) {
 630        warn_report("multiple floppy disk controllers with "
 631                    "iobase=0x3f0 have been found");
 632        error_printf("the one being picked for CMOS setup might not reflect "
 633                     "your intent");
 634    }
 635
 636    return state.floppy;
 637}
 638
 639static void pc_cmos_init_late(void *opaque)
 640{
 641    pc_cmos_init_late_arg *arg = opaque;
 642    ISADevice *s = arg->rtc_state;
 643    int16_t cylinders;
 644    int8_t heads, sectors;
 645    int val;
 646    int i, trans;
 647
 648    val = 0;
 649    if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
 650                                           &cylinders, &heads, &sectors) >= 0) {
 651        cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
 652        val |= 0xf0;
 653    }
 654    if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
 655                                           &cylinders, &heads, &sectors) >= 0) {
 656        cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
 657        val |= 0x0f;
 658    }
 659    rtc_set_memory(s, 0x12, val);
 660
 661    val = 0;
 662    for (i = 0; i < 4; i++) {
 663        /* NOTE: ide_get_geometry() returns the physical
 664           geometry.  It is always such that: 1 <= sects <= 63, 1
 665           <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
 666           geometry can be different if a translation is done. */
 667        if (arg->idebus[i / 2] &&
 668            ide_get_geometry(arg->idebus[i / 2], i % 2,
 669                             &cylinders, &heads, &sectors) >= 0) {
 670            trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
 671            assert((trans & ~3) == 0);
 672            val |= trans << (i * 2);
 673        }
 674    }
 675    rtc_set_memory(s, 0x39, val);
 676
 677    pc_cmos_init_floppy(s, pc_find_fdc0());
 678
 679    qemu_unregister_reset(pc_cmos_init_late, opaque);
 680}
 681
 682void pc_cmos_init(PCMachineState *pcms,
 683                  BusState *idebus0, BusState *idebus1,
 684                  ISADevice *s)
 685{
 686    int val;
 687    static pc_cmos_init_late_arg arg;
 688
 689    /* various important CMOS locations needed by PC/Bochs bios */
 690
 691    /* memory size */
 692    /* base memory (first MiB) */
 693    val = MIN(pcms->below_4g_mem_size / KiB, 640);
 694    rtc_set_memory(s, 0x15, val);
 695    rtc_set_memory(s, 0x16, val >> 8);
 696    /* extended memory (next 64MiB) */
 697    if (pcms->below_4g_mem_size > 1 * MiB) {
 698        val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
 699    } else {
 700        val = 0;
 701    }
 702    if (val > 65535)
 703        val = 65535;
 704    rtc_set_memory(s, 0x17, val);
 705    rtc_set_memory(s, 0x18, val >> 8);
 706    rtc_set_memory(s, 0x30, val);
 707    rtc_set_memory(s, 0x31, val >> 8);
 708    /* memory between 16MiB and 4GiB */
 709    if (pcms->below_4g_mem_size > 16 * MiB) {
 710        val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
 711    } else {
 712        val = 0;
 713    }
 714    if (val > 65535)
 715        val = 65535;
 716    rtc_set_memory(s, 0x34, val);
 717    rtc_set_memory(s, 0x35, val >> 8);
 718    /* memory above 4GiB */
 719    val = pcms->above_4g_mem_size / 65536;
 720    rtc_set_memory(s, 0x5b, val);
 721    rtc_set_memory(s, 0x5c, val >> 8);
 722    rtc_set_memory(s, 0x5d, val >> 16);
 723
 724    object_property_add_link(OBJECT(pcms), "rtc_state",
 725                             TYPE_ISA_DEVICE,
 726                             (Object **)&pcms->rtc,
 727                             object_property_allow_set_link,
 728                             OBJ_PROP_LINK_STRONG, &error_abort);
 729    object_property_set_link(OBJECT(pcms), OBJECT(s),
 730                             "rtc_state", &error_abort);
 731
 732    set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
 733
 734    val = 0;
 735    val |= 0x02; /* FPU is there */
 736    val |= 0x04; /* PS/2 mouse installed */
 737    rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
 738
 739    /* hard drives and FDC */
 740    arg.rtc_state = s;
 741    arg.idebus[0] = idebus0;
 742    arg.idebus[1] = idebus1;
 743    qemu_register_reset(pc_cmos_init_late, &arg);
 744}
 745
 746#define TYPE_PORT92 "port92"
 747#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
 748
 749/* port 92 stuff: could be split off */
 750typedef struct Port92State {
 751    ISADevice parent_obj;
 752
 753    MemoryRegion io;
 754    uint8_t outport;
 755    qemu_irq a20_out;
 756} Port92State;
 757
 758static void port92_write(void *opaque, hwaddr addr, uint64_t val,
 759                         unsigned size)
 760{
 761    Port92State *s = opaque;
 762    int oldval = s->outport;
 763
 764    DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
 765    s->outport = val;
 766    qemu_set_irq(s->a20_out, (val >> 1) & 1);
 767    if ((val & 1) && !(oldval & 1)) {
 768        qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 769    }
 770}
 771
 772static uint64_t port92_read(void *opaque, hwaddr addr,
 773                            unsigned size)
 774{
 775    Port92State *s = opaque;
 776    uint32_t ret;
 777
 778    ret = s->outport;
 779    DPRINTF("port92: read 0x%02x\n", ret);
 780    return ret;
 781}
 782
 783static void port92_init(ISADevice *dev, qemu_irq a20_out)
 784{
 785    qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
 786}
 787
 788static const VMStateDescription vmstate_port92_isa = {
 789    .name = "port92",
 790    .version_id = 1,
 791    .minimum_version_id = 1,
 792    .fields = (VMStateField[]) {
 793        VMSTATE_UINT8(outport, Port92State),
 794        VMSTATE_END_OF_LIST()
 795    }
 796};
 797
 798static void port92_reset(DeviceState *d)
 799{
 800    Port92State *s = PORT92(d);
 801
 802    s->outport &= ~1;
 803}
 804
 805static const MemoryRegionOps port92_ops = {
 806    .read = port92_read,
 807    .write = port92_write,
 808    .impl = {
 809        .min_access_size = 1,
 810        .max_access_size = 1,
 811    },
 812    .endianness = DEVICE_LITTLE_ENDIAN,
 813};
 814
 815static void port92_initfn(Object *obj)
 816{
 817    Port92State *s = PORT92(obj);
 818
 819    memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
 820
 821    s->outport = 0;
 822
 823    qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
 824}
 825
 826static void port92_realizefn(DeviceState *dev, Error **errp)
 827{
 828    ISADevice *isadev = ISA_DEVICE(dev);
 829    Port92State *s = PORT92(dev);
 830
 831    isa_register_ioport(isadev, &s->io, 0x92);
 832}
 833
 834static void port92_class_initfn(ObjectClass *klass, void *data)
 835{
 836    DeviceClass *dc = DEVICE_CLASS(klass);
 837
 838    dc->realize = port92_realizefn;
 839    dc->reset = port92_reset;
 840    dc->vmsd = &vmstate_port92_isa;
 841    /*
 842     * Reason: unlike ordinary ISA devices, this one needs additional
 843     * wiring: its A20 output line needs to be wired up by
 844     * port92_init().
 845     */
 846    dc->user_creatable = false;
 847}
 848
 849static const TypeInfo port92_info = {
 850    .name          = TYPE_PORT92,
 851    .parent        = TYPE_ISA_DEVICE,
 852    .instance_size = sizeof(Port92State),
 853    .instance_init = port92_initfn,
 854    .class_init    = port92_class_initfn,
 855};
 856
 857static void port92_register_types(void)
 858{
 859    type_register_static(&port92_info);
 860}
 861
 862type_init(port92_register_types)
 863
 864static void handle_a20_line_change(void *opaque, int irq, int level)
 865{
 866    X86CPU *cpu = opaque;
 867
 868    /* XXX: send to all CPUs ? */
 869    /* XXX: add logic to handle multiple A20 line sources */
 870    x86_cpu_set_a20(cpu, level);
 871}
 872
 873int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
 874{
 875    int index = le32_to_cpu(e820_reserve.count);
 876    struct e820_entry *entry;
 877
 878    if (type != E820_RAM) {
 879        /* old FW_CFG_E820_TABLE entry -- reservations only */
 880        if (index >= E820_NR_ENTRIES) {
 881            return -EBUSY;
 882        }
 883        entry = &e820_reserve.entry[index++];
 884
 885        entry->address = cpu_to_le64(address);
 886        entry->length = cpu_to_le64(length);
 887        entry->type = cpu_to_le32(type);
 888
 889        e820_reserve.count = cpu_to_le32(index);
 890    }
 891
 892    /* new "etc/e820" file -- include ram too */
 893    e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
 894    e820_table[e820_entries].address = cpu_to_le64(address);
 895    e820_table[e820_entries].length = cpu_to_le64(length);
 896    e820_table[e820_entries].type = cpu_to_le32(type);
 897    e820_entries++;
 898
 899    return e820_entries;
 900}
 901
 902int e820_get_num_entries(void)
 903{
 904    return e820_entries;
 905}
 906
 907bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
 908{
 909    if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
 910        *address = le64_to_cpu(e820_table[idx].address);
 911        *length = le64_to_cpu(e820_table[idx].length);
 912        return true;
 913    }
 914    return false;
 915}
 916
 917/* Enables contiguous-apic-ID mode, for compatibility */
 918static bool compat_apic_id_mode;
 919
 920void enable_compat_apic_id_mode(void)
 921{
 922    compat_apic_id_mode = true;
 923}
 924
 925/* Calculates initial APIC ID for a specific CPU index
 926 *
 927 * Currently we need to be able to calculate the APIC ID from the CPU index
 928 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
 929 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
 930 * all CPUs up to max_cpus.
 931 */
 932static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
 933{
 934    uint32_t correct_id;
 935    static bool warned;
 936
 937    correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
 938    if (compat_apic_id_mode) {
 939        if (cpu_index != correct_id && !warned && !qtest_enabled()) {
 940            error_report("APIC IDs set in compatibility mode, "
 941                         "CPU topology won't match the configuration");
 942            warned = true;
 943        }
 944        return cpu_index;
 945    } else {
 946        return correct_id;
 947    }
 948}
 949
 950static void pc_build_smbios(PCMachineState *pcms)
 951{
 952    uint8_t *smbios_tables, *smbios_anchor;
 953    size_t smbios_tables_len, smbios_anchor_len;
 954    struct smbios_phys_mem_area *mem_array;
 955    unsigned i, array_count;
 956    MachineState *ms = MACHINE(pcms);
 957    X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
 958
 959    /* tell smbios about cpuid version and features */
 960    smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
 961
 962    smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
 963    if (smbios_tables) {
 964        fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
 965                         smbios_tables, smbios_tables_len);
 966    }
 967
 968    /* build the array of physical mem area from e820 table */
 969    mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
 970    for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
 971        uint64_t addr, len;
 972
 973        if (e820_get_entry(i, E820_RAM, &addr, &len)) {
 974            mem_array[array_count].address = addr;
 975            mem_array[array_count].length = len;
 976            array_count++;
 977        }
 978    }
 979    smbios_get_tables(mem_array, array_count,
 980                      &smbios_tables, &smbios_tables_len,
 981                      &smbios_anchor, &smbios_anchor_len);
 982    g_free(mem_array);
 983
 984    if (smbios_anchor) {
 985        fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
 986                        smbios_tables, smbios_tables_len);
 987        fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
 988                        smbios_anchor, smbios_anchor_len);
 989    }
 990}
 991
 992static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
 993{
 994    FWCfgState *fw_cfg;
 995    uint64_t *numa_fw_cfg;
 996    int i;
 997    const CPUArchIdList *cpus;
 998    MachineClass *mc = MACHINE_GET_CLASS(pcms);
 999
1000    fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
1001    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1002
1003    /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1004     *
1005     * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1006     * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1007     * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1008     * for CPU hotplug also uses APIC ID and not "CPU index".
1009     * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1010     * but the "limit to the APIC ID values SeaBIOS may see".
1011     *
1012     * So for compatibility reasons with old BIOSes we are stuck with
1013     * "etc/max-cpus" actually being apic_id_limit
1014     */
1015    fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1016    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1017    fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1018                     acpi_tables, acpi_tables_len);
1019    fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1020
1021    fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1022                     &e820_reserve, sizeof(e820_reserve));
1023    fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1024                    sizeof(struct e820_entry) * e820_entries);
1025
1026    fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1027    /* allocate memory for the NUMA channel: one (64bit) word for the number
1028     * of nodes, one word for each VCPU->node and one word for each node to
1029     * hold the amount of memory.
1030     */
1031    numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1032    numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1033    cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1034    for (i = 0; i < cpus->len; i++) {
1035        unsigned int apic_id = cpus->cpus[i].arch_id;
1036        assert(apic_id < pcms->apic_id_limit);
1037        numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1038    }
1039    for (i = 0; i < nb_numa_nodes; i++) {
1040        numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1041            cpu_to_le64(numa_info[i].node_mem);
1042    }
1043    fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1044                     (1 + pcms->apic_id_limit + nb_numa_nodes) *
1045                     sizeof(*numa_fw_cfg));
1046
1047    return fw_cfg;
1048}
1049
1050static long get_file_size(FILE *f)
1051{
1052    long where, size;
1053
1054    /* XXX: on Unix systems, using fstat() probably makes more sense */
1055
1056    where = ftell(f);
1057    fseek(f, 0, SEEK_END);
1058    size = ftell(f);
1059    fseek(f, where, SEEK_SET);
1060
1061    return size;
1062}
1063
1064struct setup_data {
1065    uint64_t next;
1066    uint32_t type;
1067    uint32_t len;
1068    uint8_t data[0];
1069} __attribute__((packed));
1070
1071
1072/*
1073 * The entry point into the kernel for PVH boot is different from
1074 * the native entry point.  The PVH entry is defined by the x86/HVM
1075 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1076 *
1077 * This function is passed to load_elf() when it is called from
1078 * load_elfboot() which then additionally checks for an ELF Note of
1079 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1080 * parse the PVH entry address from the ELF Note.
1081 *
1082 * Due to trickery in elf_opts.h, load_elf() is actually available as
1083 * load_elf32() or load_elf64() and this routine needs to be able
1084 * to deal with being called as 32 or 64 bit.
1085 *
1086 * The address of the PVH entry point is saved to the 'pvh_start_addr'
1087 * global variable.  (although the entry point is 32-bit, the kernel
1088 * binary can be either 32-bit or 64-bit).
1089 */
1090static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1091{
1092    size_t *elf_note_data_addr;
1093
1094    /* Check if ELF Note header passed in is valid */
1095    if (arg1 == NULL) {
1096        return 0;
1097    }
1098
1099    if (is64) {
1100        struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1101        uint64_t nhdr_size64 = sizeof(struct elf64_note);
1102        uint64_t phdr_align = *(uint64_t *)arg2;
1103        uint64_t nhdr_namesz = nhdr64->n_namesz;
1104
1105        elf_note_data_addr =
1106            ((void *)nhdr64) + nhdr_size64 +
1107            QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1108    } else {
1109        struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1110        uint32_t nhdr_size32 = sizeof(struct elf32_note);
1111        uint32_t phdr_align = *(uint32_t *)arg2;
1112        uint32_t nhdr_namesz = nhdr32->n_namesz;
1113
1114        elf_note_data_addr =
1115            ((void *)nhdr32) + nhdr_size32 +
1116            QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1117    }
1118
1119    pvh_start_addr = *elf_note_data_addr;
1120
1121    return pvh_start_addr;
1122}
1123
1124static bool load_elfboot(const char *kernel_filename,
1125                   int kernel_file_size,
1126                   uint8_t *header,
1127                   size_t pvh_xen_start_addr,
1128                   FWCfgState *fw_cfg)
1129{
1130    uint32_t flags = 0;
1131    uint32_t mh_load_addr = 0;
1132    uint32_t elf_kernel_size = 0;
1133    uint64_t elf_entry;
1134    uint64_t elf_low, elf_high;
1135    int kernel_size;
1136
1137    if (ldl_p(header) != 0x464c457f) {
1138        return false; /* no elfboot */
1139    }
1140
1141    bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1142    flags = elf_is64 ?
1143        ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1144
1145    if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1146        error_report("elfboot unsupported flags = %x", flags);
1147        exit(1);
1148    }
1149
1150    uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1151    kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1152                           NULL, &elf_note_type, &elf_entry,
1153                           &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1154                           0, 0);
1155
1156    if (kernel_size < 0) {
1157        error_report("Error while loading elf kernel");
1158        exit(1);
1159    }
1160    mh_load_addr = elf_low;
1161    elf_kernel_size = elf_high - elf_low;
1162
1163    if (pvh_start_addr == 0) {
1164        error_report("Error loading uncompressed kernel without PVH ELF Note");
1165        exit(1);
1166    }
1167    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1168    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1169    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1170
1171    return true;
1172}
1173
1174static void load_linux(PCMachineState *pcms,
1175                       FWCfgState *fw_cfg)
1176{
1177    uint16_t protocol;
1178    int setup_size, kernel_size, cmdline_size;
1179    int dtb_size, setup_data_offset;
1180    uint32_t initrd_max;
1181    uint8_t header[8192], *setup, *kernel;
1182    hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1183    FILE *f;
1184    char *vmode;
1185    MachineState *machine = MACHINE(pcms);
1186    PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1187    struct setup_data *setup_data;
1188    const char *kernel_filename = machine->kernel_filename;
1189    const char *initrd_filename = machine->initrd_filename;
1190    const char *dtb_filename = machine->dtb;
1191    const char *kernel_cmdline = machine->kernel_cmdline;
1192
1193    /* Align to 16 bytes as a paranoia measure */
1194    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1195
1196    /* load the kernel header */
1197    f = fopen(kernel_filename, "rb");
1198    if (!f || !(kernel_size = get_file_size(f)) ||
1199        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1200        MIN(ARRAY_SIZE(header), kernel_size)) {
1201        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1202                kernel_filename, strerror(errno));
1203        exit(1);
1204    }
1205
1206    /* kernel protocol version */
1207#if 0
1208    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1209#endif
1210    if (ldl_p(header+0x202) == 0x53726448) {
1211        protocol = lduw_p(header+0x206);
1212    } else {
1213        /*
1214         * This could be a multiboot kernel. If it is, let's stop treating it
1215         * like a Linux kernel.
1216         * Note: some multiboot images could be in the ELF format (the same of
1217         * PVH), so we try multiboot first since we check the multiboot magic
1218         * header before to load it.
1219         */
1220        if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1221                           kernel_cmdline, kernel_size, header)) {
1222            return;
1223        }
1224        /*
1225         * Check if the file is an uncompressed kernel file (ELF) and load it,
1226         * saving the PVH entry point used by the x86/HVM direct boot ABI.
1227         * If load_elfboot() is successful, populate the fw_cfg info.
1228         */
1229        if (pcmc->pvh_enabled &&
1230            load_elfboot(kernel_filename, kernel_size,
1231                         header, pvh_start_addr, fw_cfg)) {
1232            fclose(f);
1233
1234            fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1235                strlen(kernel_cmdline) + 1);
1236            fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1237
1238            fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1239            fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1240                             header, sizeof(header));
1241
1242            /* load initrd */
1243            if (initrd_filename) {
1244                gsize initrd_size;
1245                gchar *initrd_data;
1246                GError *gerr = NULL;
1247
1248                if (!g_file_get_contents(initrd_filename, &initrd_data,
1249                            &initrd_size, &gerr)) {
1250                    fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1251                            initrd_filename, gerr->message);
1252                    exit(1);
1253                }
1254
1255                initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1256                if (initrd_size >= initrd_max) {
1257                    fprintf(stderr, "qemu: initrd is too large, cannot support."
1258                            "(max: %"PRIu32", need %"PRId64")\n",
1259                            initrd_max, (uint64_t)initrd_size);
1260                    exit(1);
1261                }
1262
1263                initrd_addr = (initrd_max - initrd_size) & ~4095;
1264
1265                fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1266                fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1267                fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1268                                 initrd_size);
1269            }
1270
1271            option_rom[nb_option_roms].bootindex = 0;
1272            option_rom[nb_option_roms].name = "pvh.bin";
1273            nb_option_roms++;
1274
1275            return;
1276        }
1277        protocol = 0;
1278    }
1279
1280    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1281        /* Low kernel */
1282        real_addr    = 0x90000;
1283        cmdline_addr = 0x9a000 - cmdline_size;
1284        prot_addr    = 0x10000;
1285    } else if (protocol < 0x202) {
1286        /* High but ancient kernel */
1287        real_addr    = 0x90000;
1288        cmdline_addr = 0x9a000 - cmdline_size;
1289        prot_addr    = 0x100000;
1290    } else {
1291        /* High and recent kernel */
1292        real_addr    = 0x10000;
1293        cmdline_addr = 0x20000;
1294        prot_addr    = 0x100000;
1295    }
1296
1297#if 0
1298    fprintf(stderr,
1299            "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
1300            "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
1301            "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
1302            real_addr,
1303            cmdline_addr,
1304            prot_addr);
1305#endif
1306
1307    /* highest address for loading the initrd */
1308    if (protocol >= 0x20c &&
1309        lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1310        /*
1311         * Linux has supported initrd up to 4 GB for a very long time (2007,
1312         * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1313         * though it only sets initrd_max to 2 GB to "work around bootloader
1314         * bugs". Luckily, QEMU firmware(which does something like bootloader)
1315         * has supported this.
1316         *
1317         * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1318         * be loaded into any address.
1319         *
1320         * In addition, initrd_max is uint32_t simply because QEMU doesn't
1321         * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1322         * field).
1323         *
1324         * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1325         */
1326        initrd_max = UINT32_MAX;
1327    } else if (protocol >= 0x203) {
1328        initrd_max = ldl_p(header+0x22c);
1329    } else {
1330        initrd_max = 0x37ffffff;
1331    }
1332
1333    if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1334        initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1335    }
1336
1337    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1338    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1339    fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1340
1341    if (protocol >= 0x202) {
1342        stl_p(header+0x228, cmdline_addr);
1343    } else {
1344        stw_p(header+0x20, 0xA33F);
1345        stw_p(header+0x22, cmdline_addr-real_addr);
1346    }
1347
1348    /* handle vga= parameter */
1349    vmode = strstr(kernel_cmdline, "vga=");
1350    if (vmode) {
1351        unsigned int video_mode;
1352        /* skip "vga=" */
1353        vmode += 4;
1354        if (!strncmp(vmode, "normal", 6)) {
1355            video_mode = 0xffff;
1356        } else if (!strncmp(vmode, "ext", 3)) {
1357            video_mode = 0xfffe;
1358        } else if (!strncmp(vmode, "ask", 3)) {
1359            video_mode = 0xfffd;
1360        } else {
1361            video_mode = strtol(vmode, NULL, 0);
1362        }
1363        stw_p(header+0x1fa, video_mode);
1364    }
1365
1366    /* loader type */
1367    /* High nybble = B reserved for QEMU; low nybble is revision number.
1368       If this code is substantially changed, you may want to consider
1369       incrementing the revision. */
1370    if (protocol >= 0x200) {
1371        header[0x210] = 0xB0;
1372    }
1373    /* heap */
1374    if (protocol >= 0x201) {
1375        header[0x211] |= 0x80;  /* CAN_USE_HEAP */
1376        stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1377    }
1378
1379    /* load initrd */
1380    if (initrd_filename) {
1381        gsize initrd_size;
1382        gchar *initrd_data;
1383        GError *gerr = NULL;
1384
1385        if (protocol < 0x200) {
1386            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1387            exit(1);
1388        }
1389
1390        if (!g_file_get_contents(initrd_filename, &initrd_data,
1391                                 &initrd_size, &gerr)) {
1392            fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1393                    initrd_filename, gerr->message);
1394            exit(1);
1395        }
1396        if (initrd_size >= initrd_max) {
1397            fprintf(stderr, "qemu: initrd is too large, cannot support."
1398                    "(max: %"PRIu32", need %"PRId64")\n",
1399                    initrd_max, (uint64_t)initrd_size);
1400            exit(1);
1401        }
1402
1403        initrd_addr = (initrd_max-initrd_size) & ~4095;
1404
1405        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1406        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1407        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1408
1409        stl_p(header+0x218, initrd_addr);
1410        stl_p(header+0x21c, initrd_size);
1411    }
1412
1413    /* load kernel and setup */
1414    setup_size = header[0x1f1];
1415    if (setup_size == 0) {
1416        setup_size = 4;
1417    }
1418    setup_size = (setup_size+1)*512;
1419    if (setup_size > kernel_size) {
1420        fprintf(stderr, "qemu: invalid kernel header\n");
1421        exit(1);
1422    }
1423    kernel_size -= setup_size;
1424
1425    setup  = g_malloc(setup_size);
1426    kernel = g_malloc(kernel_size);
1427    fseek(f, 0, SEEK_SET);
1428    if (fread(setup, 1, setup_size, f) != setup_size) {
1429        fprintf(stderr, "fread() failed\n");
1430        exit(1);
1431    }
1432    if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1433        fprintf(stderr, "fread() failed\n");
1434        exit(1);
1435    }
1436    fclose(f);
1437
1438    /* append dtb to kernel */
1439    if (dtb_filename) {
1440        if (protocol < 0x209) {
1441            fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1442            exit(1);
1443        }
1444
1445        dtb_size = get_image_size(dtb_filename);
1446        if (dtb_size <= 0) {
1447            fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1448                    dtb_filename, strerror(errno));
1449            exit(1);
1450        }
1451
1452        setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1453        kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1454        kernel = g_realloc(kernel, kernel_size);
1455
1456        stq_p(header+0x250, prot_addr + setup_data_offset);
1457
1458        setup_data = (struct setup_data *)(kernel + setup_data_offset);
1459        setup_data->next = 0;
1460        setup_data->type = cpu_to_le32(SETUP_DTB);
1461        setup_data->len = cpu_to_le32(dtb_size);
1462
1463        load_image_size(dtb_filename, setup_data->data, dtb_size);
1464    }
1465
1466    memcpy(setup, header, MIN(sizeof(header), setup_size));
1467
1468    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1469    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1470    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1471
1472    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1473    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1474    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1475
1476    option_rom[nb_option_roms].bootindex = 0;
1477    option_rom[nb_option_roms].name = "linuxboot.bin";
1478    if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1479        option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1480    }
1481    nb_option_roms++;
1482}
1483
1484#define NE2000_NB_MAX 6
1485
1486static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1487                                              0x280, 0x380 };
1488static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1489
1490void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1491{
1492    static int nb_ne2k = 0;
1493
1494    if (nb_ne2k == NE2000_NB_MAX)
1495        return;
1496    isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1497                    ne2000_irq[nb_ne2k], nd);
1498    nb_ne2k++;
1499}
1500
1501DeviceState *cpu_get_current_apic(void)
1502{
1503    if (current_cpu) {
1504        X86CPU *cpu = X86_CPU(current_cpu);
1505        return cpu->apic_state;
1506    } else {
1507        return NULL;
1508    }
1509}
1510
1511void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1512{
1513    X86CPU *cpu = opaque;
1514
1515    if (level) {
1516        cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1517    }
1518}
1519
1520static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1521{
1522    Object *cpu = NULL;
1523    Error *local_err = NULL;
1524
1525    cpu = object_new(typename);
1526
1527    object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1528    object_property_set_bool(cpu, true, "realized", &local_err);
1529
1530    object_unref(cpu);
1531    error_propagate(errp, local_err);
1532}
1533
1534void pc_hot_add_cpu(const int64_t id, Error **errp)
1535{
1536    MachineState *ms = MACHINE(qdev_get_machine());
1537    int64_t apic_id = x86_cpu_apic_id_from_index(id);
1538    Error *local_err = NULL;
1539
1540    if (id < 0) {
1541        error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1542        return;
1543    }
1544
1545    if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1546        error_setg(errp, "Unable to add CPU: %" PRIi64
1547                   ", resulting APIC ID (%" PRIi64 ") is too large",
1548                   id, apic_id);
1549        return;
1550    }
1551
1552    pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1553    if (local_err) {
1554        error_propagate(errp, local_err);
1555        return;
1556    }
1557}
1558
1559void pc_cpus_init(PCMachineState *pcms)
1560{
1561    int i;
1562    const CPUArchIdList *possible_cpus;
1563    MachineState *ms = MACHINE(pcms);
1564    MachineClass *mc = MACHINE_GET_CLASS(pcms);
1565
1566    /* Calculates the limit to CPU APIC ID values
1567     *
1568     * Limit for the APIC ID value, so that all
1569     * CPU APIC IDs are < pcms->apic_id_limit.
1570     *
1571     * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1572     */
1573    pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1574    possible_cpus = mc->possible_cpu_arch_ids(ms);
1575    for (i = 0; i < smp_cpus; i++) {
1576        pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1577                   &error_fatal);
1578    }
1579}
1580
1581static void pc_build_feature_control_file(PCMachineState *pcms)
1582{
1583    MachineState *ms = MACHINE(pcms);
1584    X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1585    CPUX86State *env = &cpu->env;
1586    uint32_t unused, ecx, edx;
1587    uint64_t feature_control_bits = 0;
1588    uint64_t *val;
1589
1590    cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1591    if (ecx & CPUID_EXT_VMX) {
1592        feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1593    }
1594
1595    if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1596        (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1597        (env->mcg_cap & MCG_LMCE_P)) {
1598        feature_control_bits |= FEATURE_CONTROL_LMCE;
1599    }
1600
1601    if (!feature_control_bits) {
1602        return;
1603    }
1604
1605    val = g_malloc(sizeof(*val));
1606    *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1607    fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1608}
1609
1610static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1611{
1612    if (cpus_count > 0xff) {
1613        /* If the number of CPUs can't be represented in 8 bits, the
1614         * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1615         * to make old BIOSes fail more predictably.
1616         */
1617        rtc_set_memory(rtc, 0x5f, 0);
1618    } else {
1619        rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1620    }
1621}
1622
1623static
1624void pc_machine_done(Notifier *notifier, void *data)
1625{
1626    PCMachineState *pcms = container_of(notifier,
1627                                        PCMachineState, machine_done);
1628    PCIBus *bus = pcms->bus;
1629
1630    /* set the number of CPUs */
1631    rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1632
1633    if (bus) {
1634        int extra_hosts = 0;
1635
1636        QLIST_FOREACH(bus, &bus->child, sibling) {
1637            /* look for expander root buses */
1638            if (pci_bus_is_root(bus)) {
1639                extra_hosts++;
1640            }
1641        }
1642        if (extra_hosts && pcms->fw_cfg) {
1643            uint64_t *val = g_malloc(sizeof(*val));
1644            *val = cpu_to_le64(extra_hosts);
1645            fw_cfg_add_file(pcms->fw_cfg,
1646                    "etc/extra-pci-roots", val, sizeof(*val));
1647        }
1648    }
1649
1650    acpi_setup();
1651    if (pcms->fw_cfg) {
1652        pc_build_smbios(pcms);
1653        pc_build_feature_control_file(pcms);
1654        /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1655        fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1656    }
1657
1658    if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1659        IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1660
1661        if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1662            iommu->intr_eim != ON_OFF_AUTO_ON) {
1663            error_report("current -smp configuration requires "
1664                         "Extended Interrupt Mode enabled. "
1665                         "You can add an IOMMU using: "
1666                         "-device intel-iommu,intremap=on,eim=on");
1667            exit(EXIT_FAILURE);
1668        }
1669    }
1670}
1671
1672void pc_guest_info_init(PCMachineState *pcms)
1673{
1674    int i;
1675
1676    pcms->apic_xrupt_override = kvm_allows_irq0_override();
1677    pcms->numa_nodes = nb_numa_nodes;
1678    pcms->node_mem = g_malloc0(pcms->numa_nodes *
1679                                    sizeof *pcms->node_mem);
1680    for (i = 0; i < nb_numa_nodes; i++) {
1681        pcms->node_mem[i] = numa_info[i].node_mem;
1682    }
1683
1684    pcms->machine_done.notify = pc_machine_done;
1685    qemu_add_machine_init_done_notifier(&pcms->machine_done);
1686}
1687
1688/* setup pci memory address space mapping into system address space */
1689void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1690                            MemoryRegion *pci_address_space)
1691{
1692    /* Set to lower priority than RAM */
1693    memory_region_add_subregion_overlap(system_memory, 0x0,
1694                                        pci_address_space, -1);
1695}
1696
1697void xen_load_linux(PCMachineState *pcms)
1698{
1699    int i;
1700    FWCfgState *fw_cfg;
1701
1702    assert(MACHINE(pcms)->kernel_filename != NULL);
1703
1704    fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1705    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1706    rom_set_fw(fw_cfg);
1707
1708    load_linux(pcms, fw_cfg);
1709    for (i = 0; i < nb_option_roms; i++) {
1710        assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1711               !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1712               !strcmp(option_rom[i].name, "pvh.bin") ||
1713               !strcmp(option_rom[i].name, "multiboot.bin"));
1714        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1715    }
1716    pcms->fw_cfg = fw_cfg;
1717}
1718
1719void pc_memory_init(PCMachineState *pcms,
1720                    MemoryRegion *system_memory,
1721                    MemoryRegion *rom_memory,
1722                    MemoryRegion **ram_memory)
1723{
1724    int linux_boot, i;
1725    MemoryRegion *ram, *option_rom_mr;
1726    MemoryRegion *ram_below_4g, *ram_above_4g;
1727    FWCfgState *fw_cfg;
1728    MachineState *machine = MACHINE(pcms);
1729    PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1730
1731    assert(machine->ram_size == pcms->below_4g_mem_size +
1732                                pcms->above_4g_mem_size);
1733
1734    linux_boot = (machine->kernel_filename != NULL);
1735
1736    /* Allocate RAM.  We allocate it as a single memory region and use
1737     * aliases to address portions of it, mostly for backwards compatibility
1738     * with older qemus that used qemu_ram_alloc().
1739     */
1740    ram = g_malloc(sizeof(*ram));
1741    memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1742                                         machine->ram_size);
1743    *ram_memory = ram;
1744    ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1745    memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1746                             0, pcms->below_4g_mem_size);
1747    memory_region_add_subregion(system_memory, 0, ram_below_4g);
1748    e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1749    if (pcms->above_4g_mem_size > 0) {
1750        ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1751        memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1752                                 pcms->below_4g_mem_size,
1753                                 pcms->above_4g_mem_size);
1754        memory_region_add_subregion(system_memory, 0x100000000ULL,
1755                                    ram_above_4g);
1756        e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1757    }
1758
1759    if (!pcmc->has_reserved_memory &&
1760        (machine->ram_slots ||
1761         (machine->maxram_size > machine->ram_size))) {
1762        MachineClass *mc = MACHINE_GET_CLASS(machine);
1763
1764        error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1765                     mc->name);
1766        exit(EXIT_FAILURE);
1767    }
1768
1769    /* always allocate the device memory information */
1770    machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1771
1772    /* initialize device memory address space */
1773    if (pcmc->has_reserved_memory &&
1774        (machine->ram_size < machine->maxram_size)) {
1775        ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1776
1777        if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1778            error_report("unsupported amount of memory slots: %"PRIu64,
1779                         machine->ram_slots);
1780            exit(EXIT_FAILURE);
1781        }
1782
1783        if (QEMU_ALIGN_UP(machine->maxram_size,
1784                          TARGET_PAGE_SIZE) != machine->maxram_size) {
1785            error_report("maximum memory size must by aligned to multiple of "
1786                         "%d bytes", TARGET_PAGE_SIZE);
1787            exit(EXIT_FAILURE);
1788        }
1789
1790        machine->device_memory->base =
1791            ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1792
1793        if (pcmc->enforce_aligned_dimm) {
1794            /* size device region assuming 1G page max alignment per slot */
1795            device_mem_size += (1 * GiB) * machine->ram_slots;
1796        }
1797
1798        if ((machine->device_memory->base + device_mem_size) <
1799            device_mem_size) {
1800            error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1801                         machine->maxram_size);
1802            exit(EXIT_FAILURE);
1803        }
1804
1805        memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1806                           "device-memory", device_mem_size);
1807        memory_region_add_subregion(system_memory, machine->device_memory->base,
1808                                    &machine->device_memory->mr);
1809    }
1810
1811    /* Initialize PC system firmware */
1812    pc_system_firmware_init(pcms, rom_memory);
1813
1814    option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1815    memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1816                           &error_fatal);
1817    if (pcmc->pci_enabled) {
1818        memory_region_set_readonly(option_rom_mr, true);
1819    }
1820    memory_region_add_subregion_overlap(rom_memory,
1821                                        PC_ROM_MIN_VGA,
1822                                        option_rom_mr,
1823                                        1);
1824
1825    fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1826
1827    rom_set_fw(fw_cfg);
1828
1829    if (pcmc->has_reserved_memory && machine->device_memory->base) {
1830        uint64_t *val = g_malloc(sizeof(*val));
1831        PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1832        uint64_t res_mem_end = machine->device_memory->base;
1833
1834        if (!pcmc->broken_reserved_end) {
1835            res_mem_end += memory_region_size(&machine->device_memory->mr);
1836        }
1837        *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1838        fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1839    }
1840
1841    if (linux_boot) {
1842        load_linux(pcms, fw_cfg);
1843    }
1844
1845    for (i = 0; i < nb_option_roms; i++) {
1846        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1847    }
1848    pcms->fw_cfg = fw_cfg;
1849
1850    /* Init default IOAPIC address space */
1851    pcms->ioapic_as = &address_space_memory;
1852}
1853
1854/*
1855 * The 64bit pci hole starts after "above 4G RAM" and
1856 * potentially the space reserved for memory hotplug.
1857 */
1858uint64_t pc_pci_hole64_start(void)
1859{
1860    PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1861    PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1862    MachineState *ms = MACHINE(pcms);
1863    uint64_t hole64_start = 0;
1864
1865    if (pcmc->has_reserved_memory && ms->device_memory->base) {
1866        hole64_start = ms->device_memory->base;
1867        if (!pcmc->broken_reserved_end) {
1868            hole64_start += memory_region_size(&ms->device_memory->mr);
1869        }
1870    } else {
1871        hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1872    }
1873
1874    return ROUND_UP(hole64_start, 1 * GiB);
1875}
1876
1877qemu_irq pc_allocate_cpu_irq(void)
1878{
1879    return qemu_allocate_irq(pic_irq_request, NULL, 0);
1880}
1881
1882DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1883{
1884    DeviceState *dev = NULL;
1885
1886    rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1887    if (pci_bus) {
1888        PCIDevice *pcidev = pci_vga_init(pci_bus);
1889        dev = pcidev ? &pcidev->qdev : NULL;
1890    } else if (isa_bus) {
1891        ISADevice *isadev = isa_vga_init(isa_bus);
1892        dev = isadev ? DEVICE(isadev) : NULL;
1893    }
1894    rom_reset_order_override();
1895    return dev;
1896}
1897
1898static const MemoryRegionOps ioport80_io_ops = {
1899    .write = ioport80_write,
1900    .read = ioport80_read,
1901    .endianness = DEVICE_NATIVE_ENDIAN,
1902    .impl = {
1903        .min_access_size = 1,
1904        .max_access_size = 1,
1905    },
1906};
1907
1908static const MemoryRegionOps ioportF0_io_ops = {
1909    .write = ioportF0_write,
1910    .read = ioportF0_read,
1911    .endianness = DEVICE_NATIVE_ENDIAN,
1912    .impl = {
1913        .min_access_size = 1,
1914        .max_access_size = 1,
1915    },
1916};
1917
1918static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1919{
1920    int i;
1921    DriveInfo *fd[MAX_FD];
1922    qemu_irq *a20_line;
1923    ISADevice *i8042, *port92, *vmmouse;
1924
1925    serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1926    parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1927
1928    for (i = 0; i < MAX_FD; i++) {
1929        fd[i] = drive_get(IF_FLOPPY, 0, i);
1930        create_fdctrl |= !!fd[i];
1931    }
1932    if (create_fdctrl) {
1933        fdctrl_init_isa(isa_bus, fd);
1934    }
1935
1936    i8042 = isa_create_simple(isa_bus, "i8042");
1937    if (!no_vmport) {
1938        vmport_init(isa_bus);
1939        vmmouse = isa_try_create(isa_bus, "vmmouse");
1940    } else {
1941        vmmouse = NULL;
1942    }
1943    if (vmmouse) {
1944        DeviceState *dev = DEVICE(vmmouse);
1945        qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1946        qdev_init_nofail(dev);
1947    }
1948    port92 = isa_create_simple(isa_bus, "port92");
1949
1950    a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1951    i8042_setup_a20_line(i8042, a20_line[0]);
1952    port92_init(port92, a20_line[1]);
1953    g_free(a20_line);
1954}
1955
1956void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1957                          ISADevice **rtc_state,
1958                          bool create_fdctrl,
1959                          bool no_vmport,
1960                          bool has_pit,
1961                          uint32_t hpet_irqs)
1962{
1963    int i;
1964    DeviceState *hpet = NULL;
1965    int pit_isa_irq = 0;
1966    qemu_irq pit_alt_irq = NULL;
1967    qemu_irq rtc_irq = NULL;
1968    ISADevice *pit = NULL;
1969    MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1970    MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1971
1972    memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1973    memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1974
1975    memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1976    memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1977
1978    /*
1979     * Check if an HPET shall be created.
1980     *
1981     * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1982     * when the HPET wants to take over. Thus we have to disable the latter.
1983     */
1984    if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1985        /* In order to set property, here not using sysbus_try_create_simple */
1986        hpet = qdev_try_create(NULL, TYPE_HPET);
1987        if (hpet) {
1988            /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1989             * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1990             * IRQ8 and IRQ2.
1991             */
1992            uint8_t compat = object_property_get_uint(OBJECT(hpet),
1993                    HPET_INTCAP, NULL);
1994            if (!compat) {
1995                qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1996            }
1997            qdev_init_nofail(hpet);
1998            sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1999
2000            for (i = 0; i < GSI_NUM_PINS; i++) {
2001                sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
2002            }
2003            pit_isa_irq = -1;
2004            pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2005            rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2006        }
2007    }
2008    *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2009
2010    qemu_register_boot_set(pc_boot_set, *rtc_state);
2011
2012    if (!xen_enabled() && has_pit) {
2013        if (kvm_pit_in_kernel()) {
2014            pit = kvm_pit_init(isa_bus, 0x40);
2015        } else {
2016            pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2017        }
2018        if (hpet) {
2019            /* connect PIT to output control line of the HPET */
2020            qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2021        }
2022        pcspk_init(isa_bus, pit);
2023    }
2024
2025    i8257_dma_init(isa_bus, 0);
2026
2027    /* Super I/O */
2028    pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2029}
2030
2031void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2032{
2033    int i;
2034
2035    rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2036    for (i = 0; i < nb_nics; i++) {
2037        NICInfo *nd = &nd_table[i];
2038        const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2039
2040        if (g_str_equal(model, "ne2k_isa")) {
2041            pc_init_ne2k_isa(isa_bus, nd);
2042        } else {
2043            pci_nic_init_nofail(nd, pci_bus, model, NULL);
2044        }
2045    }
2046    rom_reset_order_override();
2047}
2048
2049void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2050{
2051    DeviceState *dev;
2052    SysBusDevice *d;
2053    unsigned int i;
2054
2055    if (kvm_ioapic_in_kernel()) {
2056        dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2057    } else {
2058        dev = qdev_create(NULL, TYPE_IOAPIC);
2059    }
2060    if (parent_name) {
2061        object_property_add_child(object_resolve_path(parent_name, NULL),
2062                                  "ioapic", OBJECT(dev), NULL);
2063    }
2064    qdev_init_nofail(dev);
2065    d = SYS_BUS_DEVICE(dev);
2066    sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2067
2068    for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2069        gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2070    }
2071}
2072
2073static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2074                               Error **errp)
2075{
2076    const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2077    const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2078    const MachineState *ms = MACHINE(hotplug_dev);
2079    const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2080    const uint64_t legacy_align = TARGET_PAGE_SIZE;
2081    Error *local_err = NULL;
2082
2083    /*
2084     * When -no-acpi is used with Q35 machine type, no ACPI is built,
2085     * but pcms->acpi_dev is still created. Check !acpi_enabled in
2086     * addition to cover this case.
2087     */
2088    if (!pcms->acpi_dev || !acpi_enabled) {
2089        error_setg(errp,
2090                   "memory hotplug is not enabled: missing acpi device or acpi disabled");
2091        return;
2092    }
2093
2094    if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2095        error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2096        return;
2097    }
2098
2099    hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
2100    if (local_err) {
2101        error_propagate(errp, local_err);
2102        return;
2103    }
2104
2105    pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2106                     pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2107}
2108
2109static void pc_memory_plug(HotplugHandler *hotplug_dev,
2110                           DeviceState *dev, Error **errp)
2111{
2112    Error *local_err = NULL;
2113    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2114    MachineState *ms = MACHINE(hotplug_dev);
2115    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2116
2117    pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2118    if (local_err) {
2119        goto out;
2120    }
2121
2122    if (is_nvdimm) {
2123        nvdimm_plug(ms->nvdimms_state);
2124    }
2125
2126    hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2127out:
2128    error_propagate(errp, local_err);
2129}
2130
2131static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2132                                     DeviceState *dev, Error **errp)
2133{
2134    Error *local_err = NULL;
2135    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2136
2137    /*
2138     * When -no-acpi is used with Q35 machine type, no ACPI is built,
2139     * but pcms->acpi_dev is still created. Check !acpi_enabled in
2140     * addition to cover this case.
2141     */
2142    if (!pcms->acpi_dev || !acpi_enabled) {
2143        error_setg(&local_err,
2144                   "memory hotplug is not enabled: missing acpi device or acpi disabled");
2145        goto out;
2146    }
2147
2148    if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2149        error_setg(&local_err,
2150                   "nvdimm device hot unplug is not supported yet.");
2151        goto out;
2152    }
2153
2154    hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2155                                   &local_err);
2156out:
2157    error_propagate(errp, local_err);
2158}
2159
2160static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2161                             DeviceState *dev, Error **errp)
2162{
2163    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2164    Error *local_err = NULL;
2165
2166    hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2167    if (local_err) {
2168        goto out;
2169    }
2170
2171    pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2172    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2173 out:
2174    error_propagate(errp, local_err);
2175}
2176
2177static int pc_apic_cmp(const void *a, const void *b)
2178{
2179   CPUArchId *apic_a = (CPUArchId *)a;
2180   CPUArchId *apic_b = (CPUArchId *)b;
2181
2182   return apic_a->arch_id - apic_b->arch_id;
2183}
2184
2185/* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2186 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2187 * entry corresponding to CPU's apic_id returns NULL.
2188 */
2189static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2190{
2191    CPUArchId apic_id, *found_cpu;
2192
2193    apic_id.arch_id = id;
2194    found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2195        ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2196        pc_apic_cmp);
2197    if (found_cpu && idx) {
2198        *idx = found_cpu - ms->possible_cpus->cpus;
2199    }
2200    return found_cpu;
2201}
2202
2203static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2204                        DeviceState *dev, Error **errp)
2205{
2206    CPUArchId *found_cpu;
2207    Error *local_err = NULL;
2208    X86CPU *cpu = X86_CPU(dev);
2209    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2210
2211    if (pcms->acpi_dev) {
2212        hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2213        if (local_err) {
2214            goto out;
2215        }
2216    }
2217
2218    /* increment the number of CPUs */
2219    pcms->boot_cpus++;
2220    if (pcms->rtc) {
2221        rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2222    }
2223    if (pcms->fw_cfg) {
2224        fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2225    }
2226
2227    found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2228    found_cpu->cpu = OBJECT(dev);
2229out:
2230    error_propagate(errp, local_err);
2231}
2232static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2233                                     DeviceState *dev, Error **errp)
2234{
2235    int idx = -1;
2236    Error *local_err = NULL;
2237    X86CPU *cpu = X86_CPU(dev);
2238    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2239
2240    if (!pcms->acpi_dev) {
2241        error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2242        goto out;
2243    }
2244
2245    pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2246    assert(idx != -1);
2247    if (idx == 0) {
2248        error_setg(&local_err, "Boot CPU is unpluggable");
2249        goto out;
2250    }
2251
2252    hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2253                                   &local_err);
2254    if (local_err) {
2255        goto out;
2256    }
2257
2258 out:
2259    error_propagate(errp, local_err);
2260
2261}
2262
2263static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2264                             DeviceState *dev, Error **errp)
2265{
2266    CPUArchId *found_cpu;
2267    Error *local_err = NULL;
2268    X86CPU *cpu = X86_CPU(dev);
2269    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2270
2271    hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2272    if (local_err) {
2273        goto out;
2274    }
2275
2276    found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2277    found_cpu->cpu = NULL;
2278    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2279
2280    /* decrement the number of CPUs */
2281    pcms->boot_cpus--;
2282    /* Update the number of CPUs in CMOS */
2283    rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2284    fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2285 out:
2286    error_propagate(errp, local_err);
2287}
2288
2289static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2290                            DeviceState *dev, Error **errp)
2291{
2292    int idx;
2293    CPUState *cs;
2294    CPUArchId *cpu_slot;
2295    X86CPUTopoInfo topo;
2296    X86CPU *cpu = X86_CPU(dev);
2297    MachineState *ms = MACHINE(hotplug_dev);
2298    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2299
2300    if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2301        error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2302                   ms->cpu_type);
2303        return;
2304    }
2305
2306    /* if APIC ID is not set, set it based on socket/core/thread properties */
2307    if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2308        int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2309
2310        if (cpu->socket_id < 0) {
2311            error_setg(errp, "CPU socket-id is not set");
2312            return;
2313        } else if (cpu->socket_id > max_socket) {
2314            error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2315                       cpu->socket_id, max_socket);
2316            return;
2317        }
2318        if (cpu->core_id < 0) {
2319            error_setg(errp, "CPU core-id is not set");
2320            return;
2321        } else if (cpu->core_id > (smp_cores - 1)) {
2322            error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2323                       cpu->core_id, smp_cores - 1);
2324            return;
2325        }
2326        if (cpu->thread_id < 0) {
2327            error_setg(errp, "CPU thread-id is not set");
2328            return;
2329        } else if (cpu->thread_id > (smp_threads - 1)) {
2330            error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2331                       cpu->thread_id, smp_threads - 1);
2332            return;
2333        }
2334
2335        topo.pkg_id = cpu->socket_id;
2336        topo.core_id = cpu->core_id;
2337        topo.smt_id = cpu->thread_id;
2338        cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2339    }
2340
2341    cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2342    if (!cpu_slot) {
2343        MachineState *ms = MACHINE(pcms);
2344
2345        x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2346        error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2347                  " APIC ID %" PRIu32 ", valid index range 0:%d",
2348                   topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2349                   ms->possible_cpus->len - 1);
2350        return;
2351    }
2352
2353    if (cpu_slot->cpu) {
2354        error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2355                   idx, cpu->apic_id);
2356        return;
2357    }
2358
2359    /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2360     * so that machine_query_hotpluggable_cpus would show correct values
2361     */
2362    /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2363     * once -smp refactoring is complete and there will be CPU private
2364     * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2365    x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2366    if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2367        error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2368            " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2369        return;
2370    }
2371    cpu->socket_id = topo.pkg_id;
2372
2373    if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2374        error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2375            " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2376        return;
2377    }
2378    cpu->core_id = topo.core_id;
2379
2380    if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2381        error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2382            " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2383        return;
2384    }
2385    cpu->thread_id = topo.smt_id;
2386
2387    if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2388        error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2389        return;
2390    }
2391
2392    cs = CPU(cpu);
2393    cs->cpu_index = idx;
2394
2395    numa_cpu_pre_plug(cpu_slot, dev, errp);
2396}
2397
2398static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2399                                          DeviceState *dev, Error **errp)
2400{
2401    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2402        pc_memory_pre_plug(hotplug_dev, dev, errp);
2403    } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2404        pc_cpu_pre_plug(hotplug_dev, dev, errp);
2405    }
2406}
2407
2408static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2409                                      DeviceState *dev, Error **errp)
2410{
2411    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2412        pc_memory_plug(hotplug_dev, dev, errp);
2413    } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2414        pc_cpu_plug(hotplug_dev, dev, errp);
2415    }
2416}
2417
2418static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2419                                                DeviceState *dev, Error **errp)
2420{
2421    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2422        pc_memory_unplug_request(hotplug_dev, dev, errp);
2423    } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2424        pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2425    } else {
2426        error_setg(errp, "acpi: device unplug request for not supported device"
2427                   " type: %s", object_get_typename(OBJECT(dev)));
2428    }
2429}
2430
2431static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2432                                        DeviceState *dev, Error **errp)
2433{
2434    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2435        pc_memory_unplug(hotplug_dev, dev, errp);
2436    } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2437        pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2438    } else {
2439        error_setg(errp, "acpi: device unplug for not supported device"
2440                   " type: %s", object_get_typename(OBJECT(dev)));
2441    }
2442}
2443
2444static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2445                                             DeviceState *dev)
2446{
2447    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2448        object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2449        return HOTPLUG_HANDLER(machine);
2450    }
2451
2452    return NULL;
2453}
2454
2455static void
2456pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2457                                         const char *name, void *opaque,
2458                                         Error **errp)
2459{
2460    MachineState *ms = MACHINE(obj);
2461    int64_t value = memory_region_size(&ms->device_memory->mr);
2462
2463    visit_type_int(v, name, &value, errp);
2464}
2465
2466static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2467                                            const char *name, void *opaque,
2468                                            Error **errp)
2469{
2470    PCMachineState *pcms = PC_MACHINE(obj);
2471    uint64_t value = pcms->max_ram_below_4g;
2472
2473    visit_type_size(v, name, &value, errp);
2474}
2475
2476static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2477                                            const char *name, void *opaque,
2478                                            Error **errp)
2479{
2480    PCMachineState *pcms = PC_MACHINE(obj);
2481    Error *error = NULL;
2482    uint64_t value;
2483
2484    visit_type_size(v, name, &value, &error);
2485    if (error) {
2486        error_propagate(errp, error);
2487        return;
2488    }
2489    if (value > 4 * GiB) {
2490        error_setg(&error,
2491                   "Machine option 'max-ram-below-4g=%"PRIu64
2492                   "' expects size less than or equal to 4G", value);
2493        error_propagate(errp, error);
2494        return;
2495    }
2496
2497    if (value < 1 * MiB) {
2498        warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2499                    "BIOS may not work with less than 1MiB", value);
2500    }
2501
2502    pcms->max_ram_below_4g = value;
2503}
2504
2505static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2506                                  void *opaque, Error **errp)
2507{
2508    PCMachineState *pcms = PC_MACHINE(obj);
2509    OnOffAuto vmport = pcms->vmport;
2510
2511    visit_type_OnOffAuto(v, name, &vmport, errp);
2512}
2513
2514static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2515                                  void *opaque, Error **errp)
2516{
2517    PCMachineState *pcms = PC_MACHINE(obj);
2518
2519    visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2520}
2521
2522bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2523{
2524    bool smm_available = false;
2525
2526    if (pcms->smm == ON_OFF_AUTO_OFF) {
2527        return false;
2528    }
2529
2530    if (tcg_enabled() || qtest_enabled()) {
2531        smm_available = true;
2532    } else if (kvm_enabled()) {
2533        smm_available = kvm_has_smm();
2534    }
2535
2536    if (smm_available) {
2537        return true;
2538    }
2539
2540    if (pcms->smm == ON_OFF_AUTO_ON) {
2541        error_report("System Management Mode not supported by this hypervisor.");
2542        exit(1);
2543    }
2544    return false;
2545}
2546
2547static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2548                               void *opaque, Error **errp)
2549{
2550    PCMachineState *pcms = PC_MACHINE(obj);
2551    OnOffAuto smm = pcms->smm;
2552
2553    visit_type_OnOffAuto(v, name, &smm, errp);
2554}
2555
2556static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2557                               void *opaque, Error **errp)
2558{
2559    PCMachineState *pcms = PC_MACHINE(obj);
2560
2561    visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2562}
2563
2564static bool pc_machine_get_smbus(Object *obj, Error **errp)
2565{
2566    PCMachineState *pcms = PC_MACHINE(obj);
2567
2568    return pcms->smbus_enabled;
2569}
2570
2571static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2572{
2573    PCMachineState *pcms = PC_MACHINE(obj);
2574
2575    pcms->smbus_enabled = value;
2576}
2577
2578static bool pc_machine_get_sata(Object *obj, Error **errp)
2579{
2580    PCMachineState *pcms = PC_MACHINE(obj);
2581
2582    return pcms->sata_enabled;
2583}
2584
2585static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2586{
2587    PCMachineState *pcms = PC_MACHINE(obj);
2588
2589    pcms->sata_enabled = value;
2590}
2591
2592static bool pc_machine_get_pit(Object *obj, Error **errp)
2593{
2594    PCMachineState *pcms = PC_MACHINE(obj);
2595
2596    return pcms->pit_enabled;
2597}
2598
2599static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2600{
2601    PCMachineState *pcms = PC_MACHINE(obj);
2602
2603    pcms->pit_enabled = value;
2604}
2605
2606static void pc_machine_initfn(Object *obj)
2607{
2608    PCMachineState *pcms = PC_MACHINE(obj);
2609
2610    pcms->max_ram_below_4g = 0; /* use default */
2611    pcms->smm = ON_OFF_AUTO_AUTO;
2612    pcms->vmport = ON_OFF_AUTO_AUTO;
2613    /* acpi build is enabled by default if machine supports it */
2614    pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2615    pcms->smbus_enabled = true;
2616    pcms->sata_enabled = true;
2617    pcms->pit_enabled = true;
2618
2619    pc_system_flash_create(pcms);
2620}
2621
2622static void pc_machine_reset(void)
2623{
2624    CPUState *cs;
2625    X86CPU *cpu;
2626
2627    qemu_devices_reset();
2628
2629    /* Reset APIC after devices have been reset to cancel
2630     * any changes that qemu_devices_reset() might have done.
2631     */
2632    CPU_FOREACH(cs) {
2633        cpu = X86_CPU(cs);
2634
2635        if (cpu->apic_state) {
2636            device_reset(cpu->apic_state);
2637        }
2638    }
2639}
2640
2641static CpuInstanceProperties
2642pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2643{
2644    MachineClass *mc = MACHINE_GET_CLASS(ms);
2645    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2646
2647    assert(cpu_index < possible_cpus->len);
2648    return possible_cpus->cpus[cpu_index].props;
2649}
2650
2651static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2652{
2653   X86CPUTopoInfo topo;
2654
2655   assert(idx < ms->possible_cpus->len);
2656   x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2657                            smp_cores, smp_threads, &topo);
2658   return topo.pkg_id % nb_numa_nodes;
2659}
2660
2661static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2662{
2663    int i;
2664
2665    if (ms->possible_cpus) {
2666        /*
2667         * make sure that max_cpus hasn't changed since the first use, i.e.
2668         * -smp hasn't been parsed after it
2669        */
2670        assert(ms->possible_cpus->len == max_cpus);
2671        return ms->possible_cpus;
2672    }
2673
2674    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2675                                  sizeof(CPUArchId) * max_cpus);
2676    ms->possible_cpus->len = max_cpus;
2677    for (i = 0; i < ms->possible_cpus->len; i++) {
2678        X86CPUTopoInfo topo;
2679
2680        ms->possible_cpus->cpus[i].type = ms->cpu_type;
2681        ms->possible_cpus->cpus[i].vcpus_count = 1;
2682        ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2683        x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2684                                 smp_cores, smp_threads, &topo);
2685        ms->possible_cpus->cpus[i].props.has_socket_id = true;
2686        ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2687        ms->possible_cpus->cpus[i].props.has_core_id = true;
2688        ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2689        ms->possible_cpus->cpus[i].props.has_thread_id = true;
2690        ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2691    }
2692    return ms->possible_cpus;
2693}
2694
2695static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2696{
2697    /* cpu index isn't used */
2698    CPUState *cs;
2699
2700    CPU_FOREACH(cs) {
2701        X86CPU *cpu = X86_CPU(cs);
2702
2703        if (!cpu->apic_state) {
2704            cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2705        } else {
2706            apic_deliver_nmi(cpu->apic_state);
2707        }
2708    }
2709}
2710
2711static void pc_machine_class_init(ObjectClass *oc, void *data)
2712{
2713    MachineClass *mc = MACHINE_CLASS(oc);
2714    PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2715    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2716    NMIClass *nc = NMI_CLASS(oc);
2717
2718    pcmc->pci_enabled = true;
2719    pcmc->has_acpi_build = true;
2720    pcmc->rsdp_in_ram = true;
2721    pcmc->smbios_defaults = true;
2722    pcmc->smbios_uuid_encoded = true;
2723    pcmc->gigabyte_align = true;
2724    pcmc->has_reserved_memory = true;
2725    pcmc->kvmclock_enabled = true;
2726    pcmc->enforce_aligned_dimm = true;
2727    /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2728     * to be used at the moment, 32K should be enough for a while.  */
2729    pcmc->acpi_data_size = 0x20000 + 0x8000;
2730    pcmc->save_tsc_khz = true;
2731    pcmc->linuxboot_dma_enabled = true;
2732    pcmc->pvh_enabled = true;
2733    assert(!mc->get_hotplug_handler);
2734    mc->get_hotplug_handler = pc_get_hotplug_handler;
2735    mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2736    mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2737    mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2738    mc->auto_enable_numa_with_memhp = true;
2739    mc->has_hotpluggable_cpus = true;
2740    mc->default_boot_order = "cad";
2741    mc->hot_add_cpu = pc_hot_add_cpu;
2742    mc->block_default_type = IF_IDE;
2743    mc->max_cpus = 255;
2744    mc->reset = pc_machine_reset;
2745    hc->pre_plug = pc_machine_device_pre_plug_cb;
2746    hc->plug = pc_machine_device_plug_cb;
2747    hc->unplug_request = pc_machine_device_unplug_request_cb;
2748    hc->unplug = pc_machine_device_unplug_cb;
2749    nc->nmi_monitor_handler = x86_nmi;
2750    mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2751    mc->nvdimm_supported = true;
2752
2753    object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2754        pc_machine_get_device_memory_region_size, NULL,
2755        NULL, NULL, &error_abort);
2756
2757    object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2758        pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2759        NULL, NULL, &error_abort);
2760
2761    object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2762        "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2763
2764    object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2765        pc_machine_get_smm, pc_machine_set_smm,
2766        NULL, NULL, &error_abort);
2767    object_class_property_set_description(oc, PC_MACHINE_SMM,
2768        "Enable SMM (pc & q35)", &error_abort);
2769
2770    object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2771        pc_machine_get_vmport, pc_machine_set_vmport,
2772        NULL, NULL, &error_abort);
2773    object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2774        "Enable vmport (pc & q35)", &error_abort);
2775
2776    object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2777        pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2778
2779    object_class_property_add_bool(oc, PC_MACHINE_SATA,
2780        pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2781
2782    object_class_property_add_bool(oc, PC_MACHINE_PIT,
2783        pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2784}
2785
2786static const TypeInfo pc_machine_info = {
2787    .name = TYPE_PC_MACHINE,
2788    .parent = TYPE_MACHINE,
2789    .abstract = true,
2790    .instance_size = sizeof(PCMachineState),
2791    .instance_init = pc_machine_initfn,
2792    .class_size = sizeof(PCMachineClass),
2793    .class_init = pc_machine_class_init,
2794    .interfaces = (InterfaceInfo[]) {
2795         { TYPE_HOTPLUG_HANDLER },
2796         { TYPE_NMI },
2797         { }
2798    },
2799};
2800
2801static void pc_machine_register_types(void)
2802{
2803    type_register_static(&pc_machine_info);
2804}
2805
2806type_init(pc_machine_register_types)
2807