qemu/hw/intc/arm_gic.c
<<
>>
Prefs
   1/*
   2 * ARM Generic/Distributed Interrupt Controller
   3 *
   4 * Copyright (c) 2006-2007 CodeSourcery.
   5 * Written by Paul Brook
   6 *
   7 * This code is licensed under the GPL.
   8 */
   9
  10/* This file contains implementation code for the RealView EB interrupt
  11 * controller, MPCore distributed interrupt controller and ARMv7-M
  12 * Nested Vectored Interrupt Controller.
  13 * It is compiled in two ways:
  14 *  (1) as a standalone file to produce a sysbus device which is a GIC
  15 *  that can be used on the realview board and as one of the builtin
  16 *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
  17 *  (2) by being directly #included into armv7m_nvic.c to produce the
  18 *  armv7m_nvic device.
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "hw/sysbus.h"
  23#include "gic_internal.h"
  24#include "qapi/error.h"
  25#include "qom/cpu.h"
  26#include "qemu/log.h"
  27#include "trace.h"
  28#include "sysemu/kvm.h"
  29
  30/* #define DEBUG_GIC */
  31
  32#ifdef DEBUG_GIC
  33#define DEBUG_GIC_GATE 1
  34#else
  35#define DEBUG_GIC_GATE 0
  36#endif
  37
  38#define DPRINTF(fmt, ...) do {                                          \
  39        if (DEBUG_GIC_GATE) {                                           \
  40            fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
  41        }                                                               \
  42    } while (0)
  43
  44static const uint8_t gic_id_11mpcore[] = {
  45    0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
  46};
  47
  48static const uint8_t gic_id_gicv1[] = {
  49    0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
  50};
  51
  52static const uint8_t gic_id_gicv2[] = {
  53    0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
  54};
  55
  56static inline int gic_get_current_cpu(GICState *s)
  57{
  58    if (s->num_cpu > 1) {
  59        return current_cpu->cpu_index;
  60    }
  61    return 0;
  62}
  63
  64static inline int gic_get_current_vcpu(GICState *s)
  65{
  66    return gic_get_current_cpu(s) + GIC_NCPU;
  67}
  68
  69/* Return true if this GIC config has interrupt groups, which is
  70 * true if we're a GICv2, or a GICv1 with the security extensions.
  71 */
  72static inline bool gic_has_groups(GICState *s)
  73{
  74    return s->revision == 2 || s->security_extn;
  75}
  76
  77static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
  78{
  79    return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
  80}
  81
  82static inline void gic_get_best_irq(GICState *s, int cpu,
  83                                    int *best_irq, int *best_prio, int *group)
  84{
  85    int irq;
  86    int cm = 1 << cpu;
  87
  88    *best_irq = 1023;
  89    *best_prio = 0x100;
  90
  91    for (irq = 0; irq < s->num_irq; irq++) {
  92        if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
  93            (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
  94            (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
  95            if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
  96                *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
  97                *best_irq = irq;
  98            }
  99        }
 100    }
 101
 102    if (*best_irq < 1023) {
 103        *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
 104    }
 105}
 106
 107static inline void gic_get_best_virq(GICState *s, int cpu,
 108                                     int *best_irq, int *best_prio, int *group)
 109{
 110    int lr_idx = 0;
 111
 112    *best_irq = 1023;
 113    *best_prio = 0x100;
 114
 115    for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
 116        uint32_t lr_entry = s->h_lr[lr_idx][cpu];
 117        int state = GICH_LR_STATE(lr_entry);
 118
 119        if (state == GICH_LR_STATE_PENDING) {
 120            int prio = GICH_LR_PRIORITY(lr_entry);
 121
 122            if (prio < *best_prio) {
 123                *best_prio = prio;
 124                *best_irq = GICH_LR_VIRT_ID(lr_entry);
 125                *group = GICH_LR_GROUP(lr_entry);
 126            }
 127        }
 128    }
 129}
 130
 131/* Return true if IRQ signaling is enabled for the given cpu and at least one
 132 * of the given groups:
 133 *   - in the non-virt case, the distributor must be enabled for one of the
 134 *   given groups
 135 *   - in the virt case, the virtual interface must be enabled.
 136 *   - in all cases, the (v)CPU interface must be enabled for one of the given
 137 *   groups.
 138 */
 139static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
 140                                    int group_mask)
 141{
 142    if (!virt && !(s->ctlr & group_mask)) {
 143        return false;
 144    }
 145
 146    if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
 147        return false;
 148    }
 149
 150    if (!(s->cpu_ctlr[cpu] & group_mask)) {
 151        return false;
 152    }
 153
 154    return true;
 155}
 156
 157/* TODO: Many places that call this routine could be optimized.  */
 158/* Update interrupt status after enabled or pending bits have been changed.  */
 159static inline void gic_update_internal(GICState *s, bool virt)
 160{
 161    int best_irq;
 162    int best_prio;
 163    int irq_level, fiq_level;
 164    int cpu, cpu_iface;
 165    int group = 0;
 166    qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
 167    qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
 168
 169    for (cpu = 0; cpu < s->num_cpu; cpu++) {
 170        cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
 171
 172        s->current_pending[cpu_iface] = 1023;
 173        if (!gic_irq_signaling_enabled(s, cpu, virt,
 174                                       GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
 175            qemu_irq_lower(irq_lines[cpu]);
 176            qemu_irq_lower(fiq_lines[cpu]);
 177            continue;
 178        }
 179
 180        if (virt) {
 181            gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
 182        } else {
 183            gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
 184        }
 185
 186        if (best_irq != 1023) {
 187            trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
 188                                     best_irq, best_prio,
 189                                     s->priority_mask[cpu_iface],
 190                                     s->running_priority[cpu_iface]);
 191        }
 192
 193        irq_level = fiq_level = 0;
 194
 195        if (best_prio < s->priority_mask[cpu_iface]) {
 196            s->current_pending[cpu_iface] = best_irq;
 197            if (best_prio < s->running_priority[cpu_iface]) {
 198                if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
 199                    if (group == 0 &&
 200                        s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
 201                        DPRINTF("Raised pending FIQ %d (cpu %d)\n",
 202                                best_irq, cpu_iface);
 203                        fiq_level = 1;
 204                        trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
 205                                                 fiq_level);
 206                    } else {
 207                        DPRINTF("Raised pending IRQ %d (cpu %d)\n",
 208                                best_irq, cpu_iface);
 209                        irq_level = 1;
 210                        trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
 211                                                 irq_level);
 212                    }
 213                }
 214            }
 215        }
 216
 217        qemu_set_irq(irq_lines[cpu], irq_level);
 218        qemu_set_irq(fiq_lines[cpu], fiq_level);
 219    }
 220}
 221
 222static void gic_update(GICState *s)
 223{
 224    gic_update_internal(s, false);
 225}
 226
 227/* Return true if this LR is empty, i.e. the corresponding bit
 228 * in ELRSR is set.
 229 */
 230static inline bool gic_lr_entry_is_free(uint32_t entry)
 231{
 232    return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
 233        && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
 234}
 235
 236/* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
 237 * corrsponding bit in EISR is set.
 238 */
 239static inline bool gic_lr_entry_is_eoi(uint32_t entry)
 240{
 241    return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
 242        && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
 243}
 244
 245static inline void gic_extract_lr_info(GICState *s, int cpu,
 246                                int *num_eoi, int *num_valid, int *num_pending)
 247{
 248    int lr_idx;
 249
 250    *num_eoi = 0;
 251    *num_valid = 0;
 252    *num_pending = 0;
 253
 254    for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
 255        uint32_t *entry = &s->h_lr[lr_idx][cpu];
 256
 257        if (gic_lr_entry_is_eoi(*entry)) {
 258            (*num_eoi)++;
 259        }
 260
 261        if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
 262            (*num_valid)++;
 263        }
 264
 265        if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
 266            (*num_pending)++;
 267        }
 268    }
 269}
 270
 271static void gic_compute_misr(GICState *s, int cpu)
 272{
 273    uint32_t value = 0;
 274    int vcpu = cpu + GIC_NCPU;
 275
 276    int num_eoi, num_valid, num_pending;
 277
 278    gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
 279
 280    /* EOI */
 281    if (num_eoi) {
 282        value |= R_GICH_MISR_EOI_MASK;
 283    }
 284
 285    /* U: true if only 0 or 1 LR entry is valid */
 286    if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
 287        value |= R_GICH_MISR_U_MASK;
 288    }
 289
 290    /* LRENP: EOICount is not 0 */
 291    if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
 292        ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
 293        value |= R_GICH_MISR_LRENP_MASK;
 294    }
 295
 296    /* NP: no pending interrupts */
 297    if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
 298        value |= R_GICH_MISR_NP_MASK;
 299    }
 300
 301    /* VGrp0E: group0 virq signaling enabled */
 302    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
 303        (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
 304        value |= R_GICH_MISR_VGrp0E_MASK;
 305    }
 306
 307    /* VGrp0D: group0 virq signaling disabled */
 308    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
 309        !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
 310        value |= R_GICH_MISR_VGrp0D_MASK;
 311    }
 312
 313    /* VGrp1E: group1 virq signaling enabled */
 314    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
 315        (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
 316        value |= R_GICH_MISR_VGrp1E_MASK;
 317    }
 318
 319    /* VGrp1D: group1 virq signaling disabled */
 320    if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
 321        !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
 322        value |= R_GICH_MISR_VGrp1D_MASK;
 323    }
 324
 325    s->h_misr[cpu] = value;
 326}
 327
 328static void gic_update_maintenance(GICState *s)
 329{
 330    int cpu = 0;
 331    int maint_level;
 332
 333    for (cpu = 0; cpu < s->num_cpu; cpu++) {
 334        gic_compute_misr(s, cpu);
 335        maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
 336
 337        trace_gic_update_maintenance_irq(cpu, maint_level);
 338        qemu_set_irq(s->maintenance_irq[cpu], maint_level);
 339    }
 340}
 341
 342static void gic_update_virt(GICState *s)
 343{
 344    gic_update_internal(s, true);
 345    gic_update_maintenance(s);
 346}
 347
 348static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
 349                                 int cm, int target)
 350{
 351    if (level) {
 352        GIC_DIST_SET_LEVEL(irq, cm);
 353        if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
 354            DPRINTF("Set %d pending mask %x\n", irq, target);
 355            GIC_DIST_SET_PENDING(irq, target);
 356        }
 357    } else {
 358        GIC_DIST_CLEAR_LEVEL(irq, cm);
 359    }
 360}
 361
 362static void gic_set_irq_generic(GICState *s, int irq, int level,
 363                                int cm, int target)
 364{
 365    if (level) {
 366        GIC_DIST_SET_LEVEL(irq, cm);
 367        DPRINTF("Set %d pending mask %x\n", irq, target);
 368        if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
 369            GIC_DIST_SET_PENDING(irq, target);
 370        }
 371    } else {
 372        GIC_DIST_CLEAR_LEVEL(irq, cm);
 373    }
 374}
 375
 376/* Process a change in an external IRQ input.  */
 377static void gic_set_irq(void *opaque, int irq, int level)
 378{
 379    /* Meaning of the 'irq' parameter:
 380     *  [0..N-1] : external interrupts
 381     *  [N..N+31] : PPI (internal) interrupts for CPU 0
 382     *  [N+32..N+63] : PPI (internal interrupts for CPU 1
 383     *  ...
 384     */
 385    GICState *s = (GICState *)opaque;
 386    int cm, target;
 387    if (irq < (s->num_irq - GIC_INTERNAL)) {
 388        /* The first external input line is internal interrupt 32.  */
 389        cm = ALL_CPU_MASK;
 390        irq += GIC_INTERNAL;
 391        target = GIC_DIST_TARGET(irq);
 392    } else {
 393        int cpu;
 394        irq -= (s->num_irq - GIC_INTERNAL);
 395        cpu = irq / GIC_INTERNAL;
 396        irq %= GIC_INTERNAL;
 397        cm = 1 << cpu;
 398        target = cm;
 399    }
 400
 401    assert(irq >= GIC_NR_SGIS);
 402
 403    if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
 404        return;
 405    }
 406
 407    if (s->revision == REV_11MPCORE) {
 408        gic_set_irq_11mpcore(s, irq, level, cm, target);
 409    } else {
 410        gic_set_irq_generic(s, irq, level, cm, target);
 411    }
 412    trace_gic_set_irq(irq, level, cm, target);
 413
 414    gic_update(s);
 415}
 416
 417static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
 418                                            MemTxAttrs attrs)
 419{
 420    uint16_t pending_irq = s->current_pending[cpu];
 421
 422    if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
 423        int group = gic_test_group(s, pending_irq, cpu);
 424
 425        /* On a GIC without the security extensions, reading this register
 426         * behaves in the same way as a secure access to a GIC with them.
 427         */
 428        bool secure = !gic_cpu_ns_access(s, cpu, attrs);
 429
 430        if (group == 0 && !secure) {
 431            /* Group0 interrupts hidden from Non-secure access */
 432            return 1023;
 433        }
 434        if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
 435            /* Group1 interrupts only seen by Secure access if
 436             * AckCtl bit set.
 437             */
 438            return 1022;
 439        }
 440    }
 441    return pending_irq;
 442}
 443
 444static int gic_get_group_priority(GICState *s, int cpu, int irq)
 445{
 446    /* Return the group priority of the specified interrupt
 447     * (which is the top bits of its priority, with the number
 448     * of bits masked determined by the applicable binary point register).
 449     */
 450    int bpr;
 451    uint32_t mask;
 452
 453    if (gic_has_groups(s) &&
 454        !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
 455        gic_test_group(s, irq, cpu)) {
 456        bpr = s->abpr[cpu] - 1;
 457        assert(bpr >= 0);
 458    } else {
 459        bpr = s->bpr[cpu];
 460    }
 461
 462    /* a BPR of 0 means the group priority bits are [7:1];
 463     * a BPR of 1 means they are [7:2], and so on down to
 464     * a BPR of 7 meaning no group priority bits at all.
 465     */
 466    mask = ~0U << ((bpr & 7) + 1);
 467
 468    return gic_get_priority(s, irq, cpu) & mask;
 469}
 470
 471static void gic_activate_irq(GICState *s, int cpu, int irq)
 472{
 473    /* Set the appropriate Active Priority Register bit for this IRQ,
 474     * and update the running priority.
 475     */
 476    int prio = gic_get_group_priority(s, cpu, irq);
 477    int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
 478    int preemption_level = prio >> (min_bpr + 1);
 479    int regno = preemption_level / 32;
 480    int bitno = preemption_level % 32;
 481    uint32_t *papr = NULL;
 482
 483    if (gic_is_vcpu(cpu)) {
 484        assert(regno == 0);
 485        papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
 486    } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
 487        papr = &s->nsapr[regno][cpu];
 488    } else {
 489        papr = &s->apr[regno][cpu];
 490    }
 491
 492    *papr |= (1 << bitno);
 493
 494    s->running_priority[cpu] = prio;
 495    gic_set_active(s, irq, cpu);
 496}
 497
 498static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
 499{
 500    /* Recalculate the current running priority for this CPU based
 501     * on the set bits in the Active Priority Registers.
 502     */
 503    int i;
 504
 505    if (gic_is_vcpu(cpu)) {
 506        uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
 507        if (apr) {
 508            return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
 509        } else {
 510            return 0x100;
 511        }
 512    }
 513
 514    for (i = 0; i < GIC_NR_APRS; i++) {
 515        uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
 516        if (!apr) {
 517            continue;
 518        }
 519        return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
 520    }
 521    return 0x100;
 522}
 523
 524static void gic_drop_prio(GICState *s, int cpu, int group)
 525{
 526    /* Drop the priority of the currently active interrupt in the
 527     * specified group.
 528     *
 529     * Note that we can guarantee (because of the requirement to nest
 530     * GICC_IAR reads [which activate an interrupt and raise priority]
 531     * with GICC_EOIR writes [which drop the priority for the interrupt])
 532     * that the interrupt we're being called for is the highest priority
 533     * active interrupt, meaning that it has the lowest set bit in the
 534     * APR registers.
 535     *
 536     * If the guest does not honour the ordering constraints then the
 537     * behaviour of the GIC is UNPREDICTABLE, which for us means that
 538     * the values of the APR registers might become incorrect and the
 539     * running priority will be wrong, so interrupts that should preempt
 540     * might not do so, and interrupts that should not preempt might do so.
 541     */
 542    if (gic_is_vcpu(cpu)) {
 543        int rcpu = gic_get_vcpu_real_id(cpu);
 544
 545        if (s->h_apr[rcpu]) {
 546            /* Clear lowest set bit */
 547            s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
 548        }
 549    } else {
 550        int i;
 551
 552        for (i = 0; i < GIC_NR_APRS; i++) {
 553            uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
 554            if (!*papr) {
 555                continue;
 556            }
 557            /* Clear lowest set bit */
 558            *papr &= *papr - 1;
 559            break;
 560        }
 561    }
 562
 563    s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
 564}
 565
 566static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
 567{
 568    int src;
 569    uint32_t ret;
 570
 571    if (!gic_is_vcpu(cpu)) {
 572        /* Lookup the source CPU for the SGI and clear this in the
 573         * sgi_pending map.  Return the src and clear the overall pending
 574         * state on this CPU if the SGI is not pending from any CPUs.
 575         */
 576        assert(s->sgi_pending[irq][cpu] != 0);
 577        src = ctz32(s->sgi_pending[irq][cpu]);
 578        s->sgi_pending[irq][cpu] &= ~(1 << src);
 579        if (s->sgi_pending[irq][cpu] == 0) {
 580            gic_clear_pending(s, irq, cpu);
 581        }
 582        ret = irq | ((src & 0x7) << 10);
 583    } else {
 584        uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
 585        src = GICH_LR_CPUID(*lr_entry);
 586
 587        gic_clear_pending(s, irq, cpu);
 588        ret = irq | (src << 10);
 589    }
 590
 591    return ret;
 592}
 593
 594uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
 595{
 596    int ret, irq;
 597
 598    /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
 599     * for the case where this GIC supports grouping and the pending interrupt
 600     * is in the wrong group.
 601     */
 602    irq = gic_get_current_pending_irq(s, cpu, attrs);
 603    trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
 604                              gic_get_vcpu_real_id(cpu), irq);
 605
 606    if (irq >= GIC_MAXIRQ) {
 607        DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
 608        return irq;
 609    }
 610
 611    if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
 612        DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
 613        return 1023;
 614    }
 615
 616    gic_activate_irq(s, cpu, irq);
 617
 618    if (s->revision == REV_11MPCORE) {
 619        /* Clear pending flags for both level and edge triggered interrupts.
 620         * Level triggered IRQs will be reasserted once they become inactive.
 621         */
 622        gic_clear_pending(s, irq, cpu);
 623        ret = irq;
 624    } else {
 625        if (irq < GIC_NR_SGIS) {
 626            ret = gic_clear_pending_sgi(s, irq, cpu);
 627        } else {
 628            gic_clear_pending(s, irq, cpu);
 629            ret = irq;
 630        }
 631    }
 632
 633    if (gic_is_vcpu(cpu)) {
 634        gic_update_virt(s);
 635    } else {
 636        gic_update(s);
 637    }
 638    DPRINTF("ACK %d\n", irq);
 639    return ret;
 640}
 641
 642void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
 643                      MemTxAttrs attrs)
 644{
 645    if (s->security_extn && !attrs.secure) {
 646        if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
 647            return; /* Ignore Non-secure access of Group0 IRQ */
 648        }
 649        val = 0x80 | (val >> 1); /* Non-secure view */
 650    }
 651
 652    if (irq < GIC_INTERNAL) {
 653        s->priority1[irq][cpu] = val;
 654    } else {
 655        s->priority2[(irq) - GIC_INTERNAL] = val;
 656    }
 657}
 658
 659static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
 660                                 MemTxAttrs attrs)
 661{
 662    uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
 663
 664    if (s->security_extn && !attrs.secure) {
 665        if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
 666            return 0; /* Non-secure access cannot read priority of Group0 IRQ */
 667        }
 668        prio = (prio << 1) & 0xff; /* Non-secure view */
 669    }
 670    return prio;
 671}
 672
 673static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
 674                                  MemTxAttrs attrs)
 675{
 676    if (gic_cpu_ns_access(s, cpu, attrs)) {
 677        if (s->priority_mask[cpu] & 0x80) {
 678            /* Priority Mask in upper half */
 679            pmask = 0x80 | (pmask >> 1);
 680        } else {
 681            /* Non-secure write ignored if priority mask is in lower half */
 682            return;
 683        }
 684    }
 685    s->priority_mask[cpu] = pmask;
 686}
 687
 688static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
 689{
 690    uint32_t pmask = s->priority_mask[cpu];
 691
 692    if (gic_cpu_ns_access(s, cpu, attrs)) {
 693        if (pmask & 0x80) {
 694            /* Priority Mask in upper half, return Non-secure view */
 695            pmask = (pmask << 1) & 0xff;
 696        } else {
 697            /* Priority Mask in lower half, RAZ */
 698            pmask = 0;
 699        }
 700    }
 701    return pmask;
 702}
 703
 704static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
 705{
 706    uint32_t ret = s->cpu_ctlr[cpu];
 707
 708    if (gic_cpu_ns_access(s, cpu, attrs)) {
 709        /* Construct the NS banked view of GICC_CTLR from the correct
 710         * bits of the S banked view. We don't need to move the bypass
 711         * control bits because we don't implement that (IMPDEF) part
 712         * of the GIC architecture.
 713         */
 714        ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
 715    }
 716    return ret;
 717}
 718
 719static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
 720                                MemTxAttrs attrs)
 721{
 722    uint32_t mask;
 723
 724    if (gic_cpu_ns_access(s, cpu, attrs)) {
 725        /* The NS view can only write certain bits in the register;
 726         * the rest are unchanged
 727         */
 728        mask = GICC_CTLR_EN_GRP1;
 729        if (s->revision == 2) {
 730            mask |= GICC_CTLR_EOIMODE_NS;
 731        }
 732        s->cpu_ctlr[cpu] &= ~mask;
 733        s->cpu_ctlr[cpu] |= (value << 1) & mask;
 734    } else {
 735        if (s->revision == 2) {
 736            mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
 737        } else {
 738            mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
 739        }
 740        s->cpu_ctlr[cpu] = value & mask;
 741    }
 742    DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
 743            "Group1 Interrupts %sabled\n", cpu,
 744            (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
 745            (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
 746}
 747
 748static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
 749{
 750    if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
 751        /* Idle priority */
 752        return 0xff;
 753    }
 754
 755    if (gic_cpu_ns_access(s, cpu, attrs)) {
 756        if (s->running_priority[cpu] & 0x80) {
 757            /* Running priority in upper half of range: return the Non-secure
 758             * view of the priority.
 759             */
 760            return s->running_priority[cpu] << 1;
 761        } else {
 762            /* Running priority in lower half of range: RAZ */
 763            return 0;
 764        }
 765    } else {
 766        return s->running_priority[cpu];
 767    }
 768}
 769
 770/* Return true if we should split priority drop and interrupt deactivation,
 771 * ie whether the relevant EOIMode bit is set.
 772 */
 773static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
 774{
 775    if (s->revision != 2) {
 776        /* Before GICv2 prio-drop and deactivate are not separable */
 777        return false;
 778    }
 779    if (gic_cpu_ns_access(s, cpu, attrs)) {
 780        return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
 781    }
 782    return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
 783}
 784
 785static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
 786{
 787    int group;
 788
 789    if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
 790        /*
 791         * This handles two cases:
 792         * 1. If software writes the ID of a spurious interrupt [ie 1023]
 793         * to the GICC_DIR, the GIC ignores that write.
 794         * 2. If software writes the number of a non-existent interrupt
 795         * this must be a subcase of "value written is not an active interrupt"
 796         * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
 797         * all IRQs potentially exist, so this limit does not apply.
 798         */
 799        return;
 800    }
 801
 802    if (!gic_eoi_split(s, cpu, attrs)) {
 803        /* This is UNPREDICTABLE; we choose to ignore it */
 804        qemu_log_mask(LOG_GUEST_ERROR,
 805                      "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
 806        return;
 807    }
 808
 809    if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
 810        /* This vIRQ does not have an LR entry which is either active or
 811         * pending and active. Increment EOICount and ignore the write.
 812         */
 813        int rcpu = gic_get_vcpu_real_id(cpu);
 814        s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
 815
 816        /* Update the virtual interface in case a maintenance interrupt should
 817         * be raised.
 818         */
 819        gic_update_virt(s);
 820        return;
 821    }
 822
 823    group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
 824
 825    if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
 826        DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
 827        return;
 828    }
 829
 830    gic_clear_active(s, irq, cpu);
 831}
 832
 833static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
 834{
 835    int cm = 1 << cpu;
 836    int group;
 837
 838    DPRINTF("EOI %d\n", irq);
 839    if (gic_is_vcpu(cpu)) {
 840        /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
 841         * running prio is < 0x100.
 842         */
 843        bool prio_drop = s->running_priority[cpu] < 0x100;
 844
 845        if (irq >= GIC_MAXIRQ) {
 846            /* Ignore spurious interrupt */
 847            return;
 848        }
 849
 850        gic_drop_prio(s, cpu, 0);
 851
 852        if (!gic_eoi_split(s, cpu, attrs)) {
 853            bool valid = gic_virq_is_valid(s, irq, cpu);
 854            if (prio_drop && !valid) {
 855                /* We are in a situation where:
 856                 *   - V_CTRL.EOIMode is false (no EOI split),
 857                 *   - The call to gic_drop_prio() cleared a bit in GICH_APR,
 858                 *   - This vIRQ does not have an LR entry which is either
 859                 *     active or pending and active.
 860                 * In that case, we must increment EOICount.
 861                 */
 862                int rcpu = gic_get_vcpu_real_id(cpu);
 863                s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
 864            } else if (valid) {
 865                gic_clear_active(s, irq, cpu);
 866            }
 867        }
 868
 869        gic_update_virt(s);
 870        return;
 871    }
 872
 873    if (irq >= s->num_irq) {
 874        /* This handles two cases:
 875         * 1. If software writes the ID of a spurious interrupt [ie 1023]
 876         * to the GICC_EOIR, the GIC ignores that write.
 877         * 2. If software writes the number of a non-existent interrupt
 878         * this must be a subcase of "value written does not match the last
 879         * valid interrupt value read from the Interrupt Acknowledge
 880         * register" and so this is UNPREDICTABLE. We choose to ignore it.
 881         */
 882        return;
 883    }
 884    if (s->running_priority[cpu] == 0x100) {
 885        return; /* No active IRQ.  */
 886    }
 887
 888    if (s->revision == REV_11MPCORE) {
 889        /* Mark level triggered interrupts as pending if they are still
 890           raised.  */
 891        if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
 892            && GIC_DIST_TEST_LEVEL(irq, cm)
 893            && (GIC_DIST_TARGET(irq) & cm) != 0) {
 894            DPRINTF("Set %d pending mask %x\n", irq, cm);
 895            GIC_DIST_SET_PENDING(irq, cm);
 896        }
 897    }
 898
 899    group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
 900
 901    if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
 902        DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
 903        return;
 904    }
 905
 906    /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
 907     * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
 908     * i.e. go ahead and complete the irq anyway.
 909     */
 910
 911    gic_drop_prio(s, cpu, group);
 912
 913    /* In GICv2 the guest can choose to split priority-drop and deactivate */
 914    if (!gic_eoi_split(s, cpu, attrs)) {
 915        gic_clear_active(s, irq, cpu);
 916    }
 917    gic_update(s);
 918}
 919
 920static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
 921{
 922    GICState *s = (GICState *)opaque;
 923    uint32_t res;
 924    int irq;
 925    int i;
 926    int cpu;
 927    int cm;
 928    int mask;
 929
 930    cpu = gic_get_current_cpu(s);
 931    cm = 1 << cpu;
 932    if (offset < 0x100) {
 933        if (offset == 0) {      /* GICD_CTLR */
 934            if (s->security_extn && !attrs.secure) {
 935                /* The NS bank of this register is just an alias of the
 936                 * EnableGrp1 bit in the S bank version.
 937                 */
 938                return extract32(s->ctlr, 1, 1);
 939            } else {
 940                return s->ctlr;
 941            }
 942        }
 943        if (offset == 4)
 944            /* Interrupt Controller Type Register */
 945            return ((s->num_irq / 32) - 1)
 946                    | ((s->num_cpu - 1) << 5)
 947                    | (s->security_extn << 10);
 948        if (offset < 0x08)
 949            return 0;
 950        if (offset >= 0x80) {
 951            /* Interrupt Group Registers: these RAZ/WI if this is an NS
 952             * access to a GIC with the security extensions, or if the GIC
 953             * doesn't have groups at all.
 954             */
 955            res = 0;
 956            if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
 957                /* Every byte offset holds 8 group status bits */
 958                irq = (offset - 0x080) * 8;
 959                if (irq >= s->num_irq) {
 960                    goto bad_reg;
 961                }
 962                for (i = 0; i < 8; i++) {
 963                    if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
 964                        res |= (1 << i);
 965                    }
 966                }
 967            }
 968            return res;
 969        }
 970        goto bad_reg;
 971    } else if (offset < 0x200) {
 972        /* Interrupt Set/Clear Enable.  */
 973        if (offset < 0x180)
 974            irq = (offset - 0x100) * 8;
 975        else
 976            irq = (offset - 0x180) * 8;
 977        if (irq >= s->num_irq)
 978            goto bad_reg;
 979        res = 0;
 980        for (i = 0; i < 8; i++) {
 981            if (s->security_extn && !attrs.secure &&
 982                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
 983                continue; /* Ignore Non-secure access of Group0 IRQ */
 984            }
 985
 986            if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
 987                res |= (1 << i);
 988            }
 989        }
 990    } else if (offset < 0x300) {
 991        /* Interrupt Set/Clear Pending.  */
 992        if (offset < 0x280)
 993            irq = (offset - 0x200) * 8;
 994        else
 995            irq = (offset - 0x280) * 8;
 996        if (irq >= s->num_irq)
 997            goto bad_reg;
 998        res = 0;
 999        mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1000        for (i = 0; i < 8; i++) {
1001            if (s->security_extn && !attrs.secure &&
1002                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1003                continue; /* Ignore Non-secure access of Group0 IRQ */
1004            }
1005
1006            if (gic_test_pending(s, irq + i, mask)) {
1007                res |= (1 << i);
1008            }
1009        }
1010    } else if (offset < 0x400) {
1011        /* Interrupt Set/Clear Active.  */
1012        if (offset < 0x380) {
1013            irq = (offset - 0x300) * 8;
1014        } else if (s->revision == 2) {
1015            irq = (offset - 0x380) * 8;
1016        } else {
1017            goto bad_reg;
1018        }
1019
1020        if (irq >= s->num_irq)
1021            goto bad_reg;
1022        res = 0;
1023        mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1024        for (i = 0; i < 8; i++) {
1025            if (s->security_extn && !attrs.secure &&
1026                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1027                continue; /* Ignore Non-secure access of Group0 IRQ */
1028            }
1029
1030            if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1031                res |= (1 << i);
1032            }
1033        }
1034    } else if (offset < 0x800) {
1035        /* Interrupt Priority.  */
1036        irq = (offset - 0x400);
1037        if (irq >= s->num_irq)
1038            goto bad_reg;
1039        res = gic_dist_get_priority(s, cpu, irq, attrs);
1040    } else if (offset < 0xc00) {
1041        /* Interrupt CPU Target.  */
1042        if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1043            /* For uniprocessor GICs these RAZ/WI */
1044            res = 0;
1045        } else {
1046            irq = (offset - 0x800);
1047            if (irq >= s->num_irq) {
1048                goto bad_reg;
1049            }
1050            if (irq < 29 && s->revision == REV_11MPCORE) {
1051                res = 0;
1052            } else if (irq < GIC_INTERNAL) {
1053                res = cm;
1054            } else {
1055                res = GIC_DIST_TARGET(irq);
1056            }
1057        }
1058    } else if (offset < 0xf00) {
1059        /* Interrupt Configuration.  */
1060        irq = (offset - 0xc00) * 4;
1061        if (irq >= s->num_irq)
1062            goto bad_reg;
1063        res = 0;
1064        for (i = 0; i < 4; i++) {
1065            if (s->security_extn && !attrs.secure &&
1066                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1067                continue; /* Ignore Non-secure access of Group0 IRQ */
1068            }
1069
1070            if (GIC_DIST_TEST_MODEL(irq + i)) {
1071                res |= (1 << (i * 2));
1072            }
1073            if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1074                res |= (2 << (i * 2));
1075            }
1076        }
1077    } else if (offset < 0xf10) {
1078        goto bad_reg;
1079    } else if (offset < 0xf30) {
1080        if (s->revision == REV_11MPCORE) {
1081            goto bad_reg;
1082        }
1083
1084        if (offset < 0xf20) {
1085            /* GICD_CPENDSGIRn */
1086            irq = (offset - 0xf10);
1087        } else {
1088            irq = (offset - 0xf20);
1089            /* GICD_SPENDSGIRn */
1090        }
1091
1092        if (s->security_extn && !attrs.secure &&
1093            !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1094            res = 0; /* Ignore Non-secure access of Group0 IRQ */
1095        } else {
1096            res = s->sgi_pending[irq][cpu];
1097        }
1098    } else if (offset < 0xfd0) {
1099        goto bad_reg;
1100    } else if (offset < 0x1000) {
1101        if (offset & 3) {
1102            res = 0;
1103        } else {
1104            switch (s->revision) {
1105            case REV_11MPCORE:
1106                res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1107                break;
1108            case 1:
1109                res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1110                break;
1111            case 2:
1112                res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1113                break;
1114            default:
1115                res = 0;
1116            }
1117        }
1118    } else {
1119        g_assert_not_reached();
1120    }
1121    return res;
1122bad_reg:
1123    qemu_log_mask(LOG_GUEST_ERROR,
1124                  "gic_dist_readb: Bad offset %x\n", (int)offset);
1125    return 0;
1126}
1127
1128static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1129                                 unsigned size, MemTxAttrs attrs)
1130{
1131    switch (size) {
1132    case 1:
1133        *data = gic_dist_readb(opaque, offset, attrs);
1134        break;
1135    case 2:
1136        *data = gic_dist_readb(opaque, offset, attrs);
1137        *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1138        break;
1139    case 4:
1140        *data = gic_dist_readb(opaque, offset, attrs);
1141        *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1142        *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1143        *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1144        break;
1145    default:
1146        return MEMTX_ERROR;
1147    }
1148
1149    trace_gic_dist_read(offset, size, *data);
1150    return MEMTX_OK;
1151}
1152
1153static void gic_dist_writeb(void *opaque, hwaddr offset,
1154                            uint32_t value, MemTxAttrs attrs)
1155{
1156    GICState *s = (GICState *)opaque;
1157    int irq;
1158    int i;
1159    int cpu;
1160
1161    cpu = gic_get_current_cpu(s);
1162    if (offset < 0x100) {
1163        if (offset == 0) {
1164            if (s->security_extn && !attrs.secure) {
1165                /* NS version is just an alias of the S version's bit 1 */
1166                s->ctlr = deposit32(s->ctlr, 1, 1, value);
1167            } else if (gic_has_groups(s)) {
1168                s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1169            } else {
1170                s->ctlr = value & GICD_CTLR_EN_GRP0;
1171            }
1172            DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1173                    s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1174                    s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1175        } else if (offset < 4) {
1176            /* ignored.  */
1177        } else if (offset >= 0x80) {
1178            /* Interrupt Group Registers: RAZ/WI for NS access to secure
1179             * GIC, or for GICs without groups.
1180             */
1181            if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1182                /* Every byte offset holds 8 group status bits */
1183                irq = (offset - 0x80) * 8;
1184                if (irq >= s->num_irq) {
1185                    goto bad_reg;
1186                }
1187                for (i = 0; i < 8; i++) {
1188                    /* Group bits are banked for private interrupts */
1189                    int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1190                    if (value & (1 << i)) {
1191                        /* Group1 (Non-secure) */
1192                        GIC_DIST_SET_GROUP(irq + i, cm);
1193                    } else {
1194                        /* Group0 (Secure) */
1195                        GIC_DIST_CLEAR_GROUP(irq + i, cm);
1196                    }
1197                }
1198            }
1199        } else {
1200            goto bad_reg;
1201        }
1202    } else if (offset < 0x180) {
1203        /* Interrupt Set Enable.  */
1204        irq = (offset - 0x100) * 8;
1205        if (irq >= s->num_irq)
1206            goto bad_reg;
1207        if (irq < GIC_NR_SGIS) {
1208            value = 0xff;
1209        }
1210
1211        for (i = 0; i < 8; i++) {
1212            if (value & (1 << i)) {
1213                int mask =
1214                    (irq < GIC_INTERNAL) ? (1 << cpu)
1215                                         : GIC_DIST_TARGET(irq + i);
1216                int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1217
1218                if (s->security_extn && !attrs.secure &&
1219                    !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1220                    continue; /* Ignore Non-secure access of Group0 IRQ */
1221                }
1222
1223                if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1224                    DPRINTF("Enabled IRQ %d\n", irq + i);
1225                    trace_gic_enable_irq(irq + i);
1226                }
1227                GIC_DIST_SET_ENABLED(irq + i, cm);
1228                /* If a raised level triggered IRQ enabled then mark
1229                   is as pending.  */
1230                if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1231                        && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1232                    DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1233                    GIC_DIST_SET_PENDING(irq + i, mask);
1234                }
1235            }
1236        }
1237    } else if (offset < 0x200) {
1238        /* Interrupt Clear Enable.  */
1239        irq = (offset - 0x180) * 8;
1240        if (irq >= s->num_irq)
1241            goto bad_reg;
1242        if (irq < GIC_NR_SGIS) {
1243            value = 0;
1244        }
1245
1246        for (i = 0; i < 8; i++) {
1247            if (value & (1 << i)) {
1248                int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1249
1250                if (s->security_extn && !attrs.secure &&
1251                    !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1252                    continue; /* Ignore Non-secure access of Group0 IRQ */
1253                }
1254
1255                if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1256                    DPRINTF("Disabled IRQ %d\n", irq + i);
1257                    trace_gic_disable_irq(irq + i);
1258                }
1259                GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1260            }
1261        }
1262    } else if (offset < 0x280) {
1263        /* Interrupt Set Pending.  */
1264        irq = (offset - 0x200) * 8;
1265        if (irq >= s->num_irq)
1266            goto bad_reg;
1267        if (irq < GIC_NR_SGIS) {
1268            value = 0;
1269        }
1270
1271        for (i = 0; i < 8; i++) {
1272            if (value & (1 << i)) {
1273                if (s->security_extn && !attrs.secure &&
1274                    !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1275                    continue; /* Ignore Non-secure access of Group0 IRQ */
1276                }
1277
1278                GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
1279            }
1280        }
1281    } else if (offset < 0x300) {
1282        /* Interrupt Clear Pending.  */
1283        irq = (offset - 0x280) * 8;
1284        if (irq >= s->num_irq)
1285            goto bad_reg;
1286        if (irq < GIC_NR_SGIS) {
1287            value = 0;
1288        }
1289
1290        for (i = 0; i < 8; i++) {
1291            if (s->security_extn && !attrs.secure &&
1292                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1293                continue; /* Ignore Non-secure access of Group0 IRQ */
1294            }
1295
1296            /* ??? This currently clears the pending bit for all CPUs, even
1297               for per-CPU interrupts.  It's unclear whether this is the
1298               corect behavior.  */
1299            if (value & (1 << i)) {
1300                GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1301            }
1302        }
1303    } else if (offset < 0x380) {
1304        /* Interrupt Set Active.  */
1305        if (s->revision != 2) {
1306            goto bad_reg;
1307        }
1308
1309        irq = (offset - 0x300) * 8;
1310        if (irq >= s->num_irq) {
1311            goto bad_reg;
1312        }
1313
1314        /* This register is banked per-cpu for PPIs */
1315        int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1316
1317        for (i = 0; i < 8; i++) {
1318            if (s->security_extn && !attrs.secure &&
1319                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1320                continue; /* Ignore Non-secure access of Group0 IRQ */
1321            }
1322
1323            if (value & (1 << i)) {
1324                GIC_DIST_SET_ACTIVE(irq + i, cm);
1325            }
1326        }
1327    } else if (offset < 0x400) {
1328        /* Interrupt Clear Active.  */
1329        if (s->revision != 2) {
1330            goto bad_reg;
1331        }
1332
1333        irq = (offset - 0x380) * 8;
1334        if (irq >= s->num_irq) {
1335            goto bad_reg;
1336        }
1337
1338        /* This register is banked per-cpu for PPIs */
1339        int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1340
1341        for (i = 0; i < 8; i++) {
1342            if (s->security_extn && !attrs.secure &&
1343                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1344                continue; /* Ignore Non-secure access of Group0 IRQ */
1345            }
1346
1347            if (value & (1 << i)) {
1348                GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1349            }
1350        }
1351    } else if (offset < 0x800) {
1352        /* Interrupt Priority.  */
1353        irq = (offset - 0x400);
1354        if (irq >= s->num_irq)
1355            goto bad_reg;
1356        gic_dist_set_priority(s, cpu, irq, value, attrs);
1357    } else if (offset < 0xc00) {
1358        /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1359         * annoying exception of the 11MPCore's GIC.
1360         */
1361        if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1362            irq = (offset - 0x800);
1363            if (irq >= s->num_irq) {
1364                goto bad_reg;
1365            }
1366            if (irq < 29 && s->revision == REV_11MPCORE) {
1367                value = 0;
1368            } else if (irq < GIC_INTERNAL) {
1369                value = ALL_CPU_MASK;
1370            }
1371            s->irq_target[irq] = value & ALL_CPU_MASK;
1372        }
1373    } else if (offset < 0xf00) {
1374        /* Interrupt Configuration.  */
1375        irq = (offset - 0xc00) * 4;
1376        if (irq >= s->num_irq)
1377            goto bad_reg;
1378        if (irq < GIC_NR_SGIS)
1379            value |= 0xaa;
1380        for (i = 0; i < 4; i++) {
1381            if (s->security_extn && !attrs.secure &&
1382                !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1383                continue; /* Ignore Non-secure access of Group0 IRQ */
1384            }
1385
1386            if (s->revision == REV_11MPCORE) {
1387                if (value & (1 << (i * 2))) {
1388                    GIC_DIST_SET_MODEL(irq + i);
1389                } else {
1390                    GIC_DIST_CLEAR_MODEL(irq + i);
1391                }
1392            }
1393            if (value & (2 << (i * 2))) {
1394                GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1395            } else {
1396                GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1397            }
1398        }
1399    } else if (offset < 0xf10) {
1400        /* 0xf00 is only handled for 32-bit writes.  */
1401        goto bad_reg;
1402    } else if (offset < 0xf20) {
1403        /* GICD_CPENDSGIRn */
1404        if (s->revision == REV_11MPCORE) {
1405            goto bad_reg;
1406        }
1407        irq = (offset - 0xf10);
1408
1409        if (!s->security_extn || attrs.secure ||
1410            GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1411            s->sgi_pending[irq][cpu] &= ~value;
1412            if (s->sgi_pending[irq][cpu] == 0) {
1413                GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1414            }
1415        }
1416    } else if (offset < 0xf30) {
1417        /* GICD_SPENDSGIRn */
1418        if (s->revision == REV_11MPCORE) {
1419            goto bad_reg;
1420        }
1421        irq = (offset - 0xf20);
1422
1423        if (!s->security_extn || attrs.secure ||
1424            GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1425            GIC_DIST_SET_PENDING(irq, 1 << cpu);
1426            s->sgi_pending[irq][cpu] |= value;
1427        }
1428    } else {
1429        goto bad_reg;
1430    }
1431    gic_update(s);
1432    return;
1433bad_reg:
1434    qemu_log_mask(LOG_GUEST_ERROR,
1435                  "gic_dist_writeb: Bad offset %x\n", (int)offset);
1436}
1437
1438static void gic_dist_writew(void *opaque, hwaddr offset,
1439                            uint32_t value, MemTxAttrs attrs)
1440{
1441    gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1442    gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1443}
1444
1445static void gic_dist_writel(void *opaque, hwaddr offset,
1446                            uint32_t value, MemTxAttrs attrs)
1447{
1448    GICState *s = (GICState *)opaque;
1449    if (offset == 0xf00) {
1450        int cpu;
1451        int irq;
1452        int mask;
1453        int target_cpu;
1454
1455        cpu = gic_get_current_cpu(s);
1456        irq = value & 0x3ff;
1457        switch ((value >> 24) & 3) {
1458        case 0:
1459            mask = (value >> 16) & ALL_CPU_MASK;
1460            break;
1461        case 1:
1462            mask = ALL_CPU_MASK ^ (1 << cpu);
1463            break;
1464        case 2:
1465            mask = 1 << cpu;
1466            break;
1467        default:
1468            DPRINTF("Bad Soft Int target filter\n");
1469            mask = ALL_CPU_MASK;
1470            break;
1471        }
1472        GIC_DIST_SET_PENDING(irq, mask);
1473        target_cpu = ctz32(mask);
1474        while (target_cpu < GIC_NCPU) {
1475            s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1476            mask &= ~(1 << target_cpu);
1477            target_cpu = ctz32(mask);
1478        }
1479        gic_update(s);
1480        return;
1481    }
1482    gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1483    gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1484}
1485
1486static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1487                                  unsigned size, MemTxAttrs attrs)
1488{
1489    trace_gic_dist_write(offset, size, data);
1490
1491    switch (size) {
1492    case 1:
1493        gic_dist_writeb(opaque, offset, data, attrs);
1494        return MEMTX_OK;
1495    case 2:
1496        gic_dist_writew(opaque, offset, data, attrs);
1497        return MEMTX_OK;
1498    case 4:
1499        gic_dist_writel(opaque, offset, data, attrs);
1500        return MEMTX_OK;
1501    default:
1502        return MEMTX_ERROR;
1503    }
1504}
1505
1506static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1507{
1508    /* Return the Nonsecure view of GICC_APR<regno>. This is the
1509     * second half of GICC_NSAPR.
1510     */
1511    switch (GIC_MIN_BPR) {
1512    case 0:
1513        if (regno < 2) {
1514            return s->nsapr[regno + 2][cpu];
1515        }
1516        break;
1517    case 1:
1518        if (regno == 0) {
1519            return s->nsapr[regno + 1][cpu];
1520        }
1521        break;
1522    case 2:
1523        if (regno == 0) {
1524            return extract32(s->nsapr[0][cpu], 16, 16);
1525        }
1526        break;
1527    case 3:
1528        if (regno == 0) {
1529            return extract32(s->nsapr[0][cpu], 8, 8);
1530        }
1531        break;
1532    default:
1533        g_assert_not_reached();
1534    }
1535    return 0;
1536}
1537
1538static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1539                                         uint32_t value)
1540{
1541    /* Write the Nonsecure view of GICC_APR<regno>. */
1542    switch (GIC_MIN_BPR) {
1543    case 0:
1544        if (regno < 2) {
1545            s->nsapr[regno + 2][cpu] = value;
1546        }
1547        break;
1548    case 1:
1549        if (regno == 0) {
1550            s->nsapr[regno + 1][cpu] = value;
1551        }
1552        break;
1553    case 2:
1554        if (regno == 0) {
1555            s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1556        }
1557        break;
1558    case 3:
1559        if (regno == 0) {
1560            s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1561        }
1562        break;
1563    default:
1564        g_assert_not_reached();
1565    }
1566}
1567
1568static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1569                                uint64_t *data, MemTxAttrs attrs)
1570{
1571    switch (offset) {
1572    case 0x00: /* Control */
1573        *data = gic_get_cpu_control(s, cpu, attrs);
1574        break;
1575    case 0x04: /* Priority mask */
1576        *data = gic_get_priority_mask(s, cpu, attrs);
1577        break;
1578    case 0x08: /* Binary Point */
1579        if (gic_cpu_ns_access(s, cpu, attrs)) {
1580            if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1581                /* NS view of BPR when CBPR is 1 */
1582                *data = MIN(s->bpr[cpu] + 1, 7);
1583            } else {
1584                /* BPR is banked. Non-secure copy stored in ABPR. */
1585                *data = s->abpr[cpu];
1586            }
1587        } else {
1588            *data = s->bpr[cpu];
1589        }
1590        break;
1591    case 0x0c: /* Acknowledge */
1592        *data = gic_acknowledge_irq(s, cpu, attrs);
1593        break;
1594    case 0x14: /* Running Priority */
1595        *data = gic_get_running_priority(s, cpu, attrs);
1596        break;
1597    case 0x18: /* Highest Pending Interrupt */
1598        *data = gic_get_current_pending_irq(s, cpu, attrs);
1599        break;
1600    case 0x1c: /* Aliased Binary Point */
1601        /* GIC v2, no security: ABPR
1602         * GIC v1, no security: not implemented (RAZ/WI)
1603         * With security extensions, secure access: ABPR (alias of NS BPR)
1604         * With security extensions, nonsecure access: RAZ/WI
1605         */
1606        if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1607            *data = 0;
1608        } else {
1609            *data = s->abpr[cpu];
1610        }
1611        break;
1612    case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1613    {
1614        int regno = (offset - 0xd0) / 4;
1615        int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1616
1617        if (regno >= nr_aprs || s->revision != 2) {
1618            *data = 0;
1619        } else if (gic_is_vcpu(cpu)) {
1620            *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1621        } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1622            /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1623            *data = gic_apr_ns_view(s, regno, cpu);
1624        } else {
1625            *data = s->apr[regno][cpu];
1626        }
1627        break;
1628    }
1629    case 0xe0: case 0xe4: case 0xe8: case 0xec:
1630    {
1631        int regno = (offset - 0xe0) / 4;
1632
1633        if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1634            gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1635            *data = 0;
1636        } else {
1637            *data = s->nsapr[regno][cpu];
1638        }
1639        break;
1640    }
1641    default:
1642        qemu_log_mask(LOG_GUEST_ERROR,
1643                      "gic_cpu_read: Bad offset %x\n", (int)offset);
1644        *data = 0;
1645        break;
1646    }
1647
1648    trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1649                       gic_get_vcpu_real_id(cpu), offset, *data);
1650    return MEMTX_OK;
1651}
1652
1653static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1654                                 uint32_t value, MemTxAttrs attrs)
1655{
1656    trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1657                        gic_get_vcpu_real_id(cpu), offset, value);
1658
1659    switch (offset) {
1660    case 0x00: /* Control */
1661        gic_set_cpu_control(s, cpu, value, attrs);
1662        break;
1663    case 0x04: /* Priority mask */
1664        gic_set_priority_mask(s, cpu, value, attrs);
1665        break;
1666    case 0x08: /* Binary Point */
1667        if (gic_cpu_ns_access(s, cpu, attrs)) {
1668            if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1669                /* WI when CBPR is 1 */
1670                return MEMTX_OK;
1671            } else {
1672                s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1673            }
1674        } else {
1675            int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1676            s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1677        }
1678        break;
1679    case 0x10: /* End Of Interrupt */
1680        gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1681        return MEMTX_OK;
1682    case 0x1c: /* Aliased Binary Point */
1683        if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1684            /* unimplemented, or NS access: RAZ/WI */
1685            return MEMTX_OK;
1686        } else {
1687            s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1688        }
1689        break;
1690    case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1691    {
1692        int regno = (offset - 0xd0) / 4;
1693        int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1694
1695        if (regno >= nr_aprs || s->revision != 2) {
1696            return MEMTX_OK;
1697        }
1698        if (gic_is_vcpu(cpu)) {
1699            s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1700        } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1701            /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1702            gic_apr_write_ns_view(s, regno, cpu, value);
1703        } else {
1704            s->apr[regno][cpu] = value;
1705        }
1706        break;
1707    }
1708    case 0xe0: case 0xe4: case 0xe8: case 0xec:
1709    {
1710        int regno = (offset - 0xe0) / 4;
1711
1712        if (regno >= GIC_NR_APRS || s->revision != 2) {
1713            return MEMTX_OK;
1714        }
1715        if (gic_is_vcpu(cpu)) {
1716            return MEMTX_OK;
1717        }
1718        if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1719            return MEMTX_OK;
1720        }
1721        s->nsapr[regno][cpu] = value;
1722        break;
1723    }
1724    case 0x1000:
1725        /* GICC_DIR */
1726        gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1727        break;
1728    default:
1729        qemu_log_mask(LOG_GUEST_ERROR,
1730                      "gic_cpu_write: Bad offset %x\n", (int)offset);
1731        return MEMTX_OK;
1732    }
1733
1734    if (gic_is_vcpu(cpu)) {
1735        gic_update_virt(s);
1736    } else {
1737        gic_update(s);
1738    }
1739
1740    return MEMTX_OK;
1741}
1742
1743/* Wrappers to read/write the GIC CPU interface for the current CPU */
1744static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1745                                    unsigned size, MemTxAttrs attrs)
1746{
1747    GICState *s = (GICState *)opaque;
1748    return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1749}
1750
1751static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1752                                     uint64_t value, unsigned size,
1753                                     MemTxAttrs attrs)
1754{
1755    GICState *s = (GICState *)opaque;
1756    return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1757}
1758
1759/* Wrappers to read/write the GIC CPU interface for a specific CPU.
1760 * These just decode the opaque pointer into GICState* + cpu id.
1761 */
1762static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1763                                   unsigned size, MemTxAttrs attrs)
1764{
1765    GICState **backref = (GICState **)opaque;
1766    GICState *s = *backref;
1767    int id = (backref - s->backref);
1768    return gic_cpu_read(s, id, addr, data, attrs);
1769}
1770
1771static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1772                                    uint64_t value, unsigned size,
1773                                    MemTxAttrs attrs)
1774{
1775    GICState **backref = (GICState **)opaque;
1776    GICState *s = *backref;
1777    int id = (backref - s->backref);
1778    return gic_cpu_write(s, id, addr, value, attrs);
1779}
1780
1781static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1782                                    unsigned size, MemTxAttrs attrs)
1783{
1784    GICState *s = (GICState *)opaque;
1785
1786    return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1787}
1788
1789static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1790                                     uint64_t value, unsigned size,
1791                                     MemTxAttrs attrs)
1792{
1793    GICState *s = (GICState *)opaque;
1794
1795    return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1796}
1797
1798static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1799{
1800    int lr_idx;
1801    uint32_t ret = 0;
1802
1803    for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1804        uint32_t *entry = &s->h_lr[lr_idx][cpu];
1805        ret = deposit32(ret, lr_idx - lr_start, 1,
1806                        gic_lr_entry_is_eoi(*entry));
1807    }
1808
1809    return ret;
1810}
1811
1812static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1813{
1814    int lr_idx;
1815    uint32_t ret = 0;
1816
1817    for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1818        uint32_t *entry = &s->h_lr[lr_idx][cpu];
1819        ret = deposit32(ret, lr_idx - lr_start, 1,
1820                        gic_lr_entry_is_free(*entry));
1821    }
1822
1823    return ret;
1824}
1825
1826static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1827{
1828    int vcpu = gic_get_current_vcpu(s);
1829    uint32_t ctlr;
1830    uint32_t abpr;
1831    uint32_t bpr;
1832    uint32_t prio_mask;
1833
1834    ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1835    abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1836    bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1837    prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1838
1839    gic_set_cpu_control(s, vcpu, ctlr, attrs);
1840    s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1841    s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1842    gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1843}
1844
1845static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1846                                uint64_t *data, MemTxAttrs attrs)
1847{
1848    GICState *s = ARM_GIC(opaque);
1849    int vcpu = cpu + GIC_NCPU;
1850
1851    switch (addr) {
1852    case A_GICH_HCR: /* Hypervisor Control */
1853        *data = s->h_hcr[cpu];
1854        break;
1855
1856    case A_GICH_VTR: /* VGIC Type */
1857        *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1858        *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1859                           GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1860        *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1861                           (7 - GIC_VIRT_MIN_BPR) - 1);
1862        break;
1863
1864    case A_GICH_VMCR: /* Virtual Machine Control */
1865        *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1866                           extract32(s->cpu_ctlr[vcpu], 0, 10));
1867        *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1868        *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1869        *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1870                           extract32(s->priority_mask[vcpu], 3, 5));
1871        break;
1872
1873    case A_GICH_MISR: /* Maintenance Interrupt Status */
1874        *data = s->h_misr[cpu];
1875        break;
1876
1877    case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1878    case A_GICH_EISR1:
1879        *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1880        break;
1881
1882    case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1883    case A_GICH_ELRSR1:
1884        *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1885        break;
1886
1887    case A_GICH_APR: /* Active Priorities */
1888        *data = s->h_apr[cpu];
1889        break;
1890
1891    case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1892    {
1893        int lr_idx = (addr - A_GICH_LR0) / 4;
1894
1895        if (lr_idx > s->num_lrs) {
1896            *data = 0;
1897        } else {
1898            *data = s->h_lr[lr_idx][cpu];
1899        }
1900        break;
1901    }
1902
1903    default:
1904        qemu_log_mask(LOG_GUEST_ERROR,
1905                      "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1906        return MEMTX_OK;
1907    }
1908
1909    trace_gic_hyp_read(addr, *data);
1910    return MEMTX_OK;
1911}
1912
1913static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1914                                 uint64_t value, MemTxAttrs attrs)
1915{
1916    GICState *s = ARM_GIC(opaque);
1917    int vcpu = cpu + GIC_NCPU;
1918
1919    trace_gic_hyp_write(addr, value);
1920
1921    switch (addr) {
1922    case A_GICH_HCR: /* Hypervisor Control */
1923        s->h_hcr[cpu] = value & GICH_HCR_MASK;
1924        break;
1925
1926    case A_GICH_VMCR: /* Virtual Machine Control */
1927        gic_vmcr_write(s, value, attrs);
1928        break;
1929
1930    case A_GICH_APR: /* Active Priorities */
1931        s->h_apr[cpu] = value;
1932        s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1933        break;
1934
1935    case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1936    {
1937        int lr_idx = (addr - A_GICH_LR0) / 4;
1938
1939        if (lr_idx > s->num_lrs) {
1940            return MEMTX_OK;
1941        }
1942
1943        s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
1944        trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
1945        break;
1946    }
1947
1948    default:
1949        qemu_log_mask(LOG_GUEST_ERROR,
1950                      "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
1951        return MEMTX_OK;
1952    }
1953
1954    gic_update_virt(s);
1955    return MEMTX_OK;
1956}
1957
1958static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1959                                    unsigned size, MemTxAttrs attrs)
1960{
1961    GICState *s = (GICState *)opaque;
1962
1963    return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
1964}
1965
1966static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
1967                                     uint64_t value, unsigned size,
1968                                     MemTxAttrs attrs)
1969{
1970    GICState *s = (GICState *)opaque;
1971
1972    return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
1973}
1974
1975static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1976                                    unsigned size, MemTxAttrs attrs)
1977{
1978    GICState **backref = (GICState **)opaque;
1979    GICState *s = *backref;
1980    int id = (backref - s->backref);
1981
1982    return gic_hyp_read(s, id, addr, data, attrs);
1983}
1984
1985static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
1986                                     uint64_t value, unsigned size,
1987                                     MemTxAttrs attrs)
1988{
1989    GICState **backref = (GICState **)opaque;
1990    GICState *s = *backref;
1991    int id = (backref - s->backref);
1992
1993    return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
1994
1995}
1996
1997static const MemoryRegionOps gic_ops[2] = {
1998    {
1999        .read_with_attrs = gic_dist_read,
2000        .write_with_attrs = gic_dist_write,
2001        .endianness = DEVICE_NATIVE_ENDIAN,
2002    },
2003    {
2004        .read_with_attrs = gic_thiscpu_read,
2005        .write_with_attrs = gic_thiscpu_write,
2006        .endianness = DEVICE_NATIVE_ENDIAN,
2007    }
2008};
2009
2010static const MemoryRegionOps gic_cpu_ops = {
2011    .read_with_attrs = gic_do_cpu_read,
2012    .write_with_attrs = gic_do_cpu_write,
2013    .endianness = DEVICE_NATIVE_ENDIAN,
2014};
2015
2016static const MemoryRegionOps gic_virt_ops[2] = {
2017    {
2018        .read_with_attrs = gic_thiscpu_hyp_read,
2019        .write_with_attrs = gic_thiscpu_hyp_write,
2020        .endianness = DEVICE_NATIVE_ENDIAN,
2021    },
2022    {
2023        .read_with_attrs = gic_thisvcpu_read,
2024        .write_with_attrs = gic_thisvcpu_write,
2025        .endianness = DEVICE_NATIVE_ENDIAN,
2026    }
2027};
2028
2029static const MemoryRegionOps gic_viface_ops = {
2030    .read_with_attrs = gic_do_hyp_read,
2031    .write_with_attrs = gic_do_hyp_write,
2032    .endianness = DEVICE_NATIVE_ENDIAN,
2033};
2034
2035static void arm_gic_realize(DeviceState *dev, Error **errp)
2036{
2037    /* Device instance realize function for the GIC sysbus device */
2038    int i;
2039    GICState *s = ARM_GIC(dev);
2040    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2041    ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2042    Error *local_err = NULL;
2043
2044    agc->parent_realize(dev, &local_err);
2045    if (local_err) {
2046        error_propagate(errp, local_err);
2047        return;
2048    }
2049
2050    if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2051        error_setg(errp, "KVM with user space irqchip only works when the "
2052                         "host kernel supports KVM_CAP_ARM_USER_IRQ");
2053        return;
2054    }
2055
2056    /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2057     * enabled, virtualization extensions related interfaces (main virtual
2058     * interface (s->vifaceiomem[0]) and virtual CPU interface).
2059     */
2060    gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2061
2062    /* Extra core-specific regions for the CPU interfaces. This is
2063     * necessary for "franken-GIC" implementations, for example on
2064     * Exynos 4.
2065     * NB that the memory region size of 0x100 applies for the 11MPCore
2066     * and also cores following the GIC v1 spec (ie A9).
2067     * GIC v2 defines a larger memory region (0x1000) so this will need
2068     * to be extended when we implement A15.
2069     */
2070    for (i = 0; i < s->num_cpu; i++) {
2071        s->backref[i] = s;
2072        memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2073                              &s->backref[i], "gic_cpu", 0x100);
2074        sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2075    }
2076
2077    /* Extra core-specific regions for virtual interfaces. This is required by
2078     * the GICv2 specification.
2079     */
2080    if (s->virt_extn) {
2081        for (i = 0; i < s->num_cpu; i++) {
2082            memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2083                                  &gic_viface_ops, &s->backref[i],
2084                                  "gic_viface", 0x200);
2085            sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2086        }
2087    }
2088
2089}
2090
2091static void arm_gic_class_init(ObjectClass *klass, void *data)
2092{
2093    DeviceClass *dc = DEVICE_CLASS(klass);
2094    ARMGICClass *agc = ARM_GIC_CLASS(klass);
2095
2096    device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2097}
2098
2099static const TypeInfo arm_gic_info = {
2100    .name = TYPE_ARM_GIC,
2101    .parent = TYPE_ARM_GIC_COMMON,
2102    .instance_size = sizeof(GICState),
2103    .class_init = arm_gic_class_init,
2104    .class_size = sizeof(ARMGICClass),
2105};
2106
2107static void arm_gic_register_types(void)
2108{
2109    type_register_static(&arm_gic_info);
2110}
2111
2112type_init(arm_gic_register_types)
2113