qemu/hw/intc/xive.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC XIVE interrupt controller model
   3 *
   4 * Copyright (c) 2017-2018, IBM Corporation.
   5 *
   6 * This code is licensed under the GPL version 2 or later. See the
   7 * COPYING file in the top-level directory.
   8 */
   9
  10#include "qemu/osdep.h"
  11#include "qemu/log.h"
  12#include "qapi/error.h"
  13#include "target/ppc/cpu.h"
  14#include "sysemu/cpus.h"
  15#include "sysemu/dma.h"
  16#include "hw/qdev-properties.h"
  17#include "monitor/monitor.h"
  18#include "hw/ppc/xive.h"
  19#include "hw/ppc/xive_regs.h"
  20
  21/*
  22 * XIVE Thread Interrupt Management context
  23 */
  24
  25/*
  26 * Convert a priority number to an Interrupt Pending Buffer (IPB)
  27 * register, which indicates a pending interrupt at the priority
  28 * corresponding to the bit number
  29 */
  30static uint8_t priority_to_ipb(uint8_t priority)
  31{
  32    return priority > XIVE_PRIORITY_MAX ?
  33        0 : 1 << (XIVE_PRIORITY_MAX - priority);
  34}
  35
  36/*
  37 * Convert an Interrupt Pending Buffer (IPB) register to a Pending
  38 * Interrupt Priority Register (PIPR), which contains the priority of
  39 * the most favored pending notification.
  40 */
  41static uint8_t ipb_to_pipr(uint8_t ibp)
  42{
  43    return ibp ? clz32((uint32_t)ibp << 24) : 0xff;
  44}
  45
  46static void ipb_update(uint8_t *regs, uint8_t priority)
  47{
  48    regs[TM_IPB] |= priority_to_ipb(priority);
  49    regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
  50}
  51
  52static uint8_t exception_mask(uint8_t ring)
  53{
  54    switch (ring) {
  55    case TM_QW1_OS:
  56        return TM_QW1_NSR_EO;
  57    case TM_QW3_HV_PHYS:
  58        return TM_QW3_NSR_HE;
  59    default:
  60        g_assert_not_reached();
  61    }
  62}
  63
  64static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring)
  65{
  66    uint8_t *regs = &tctx->regs[ring];
  67    uint8_t nsr = regs[TM_NSR];
  68    uint8_t mask = exception_mask(ring);
  69
  70    qemu_irq_lower(tctx->output);
  71
  72    if (regs[TM_NSR] & mask) {
  73        uint8_t cppr = regs[TM_PIPR];
  74
  75        regs[TM_CPPR] = cppr;
  76
  77        /* Reset the pending buffer bit */
  78        regs[TM_IPB] &= ~priority_to_ipb(cppr);
  79        regs[TM_PIPR] = ipb_to_pipr(regs[TM_IPB]);
  80
  81        /* Drop Exception bit */
  82        regs[TM_NSR] &= ~mask;
  83    }
  84
  85    return (nsr << 8) | regs[TM_CPPR];
  86}
  87
  88static void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring)
  89{
  90    uint8_t *regs = &tctx->regs[ring];
  91
  92    if (regs[TM_PIPR] < regs[TM_CPPR]) {
  93        switch (ring) {
  94        case TM_QW1_OS:
  95            regs[TM_NSR] |= TM_QW1_NSR_EO;
  96            break;
  97        case TM_QW3_HV_PHYS:
  98            regs[TM_NSR] |= (TM_QW3_NSR_HE_PHYS << 6);
  99            break;
 100        default:
 101            g_assert_not_reached();
 102        }
 103        qemu_irq_raise(tctx->output);
 104    }
 105}
 106
 107static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr)
 108{
 109    if (cppr > XIVE_PRIORITY_MAX) {
 110        cppr = 0xff;
 111    }
 112
 113    tctx->regs[ring + TM_CPPR] = cppr;
 114
 115    /* CPPR has changed, check if we need to raise a pending exception */
 116    xive_tctx_notify(tctx, ring);
 117}
 118
 119/*
 120 * XIVE Thread Interrupt Management Area (TIMA)
 121 */
 122
 123static void xive_tm_set_hv_cppr(XiveTCTX *tctx, hwaddr offset,
 124                                uint64_t value, unsigned size)
 125{
 126    xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff);
 127}
 128
 129static uint64_t xive_tm_ack_hv_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
 130{
 131    return xive_tctx_accept(tctx, TM_QW3_HV_PHYS);
 132}
 133
 134static uint64_t xive_tm_pull_pool_ctx(XiveTCTX *tctx, hwaddr offset,
 135                                      unsigned size)
 136{
 137    uint64_t ret;
 138
 139    ret = tctx->regs[TM_QW2_HV_POOL + TM_WORD2] & TM_QW2W2_POOL_CAM;
 140    tctx->regs[TM_QW2_HV_POOL + TM_WORD2] &= ~TM_QW2W2_POOL_CAM;
 141    return ret;
 142}
 143
 144static void xive_tm_vt_push(XiveTCTX *tctx, hwaddr offset,
 145                            uint64_t value, unsigned size)
 146{
 147    tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff;
 148}
 149
 150static uint64_t xive_tm_vt_poll(XiveTCTX *tctx, hwaddr offset, unsigned size)
 151{
 152    return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff;
 153}
 154
 155/*
 156 * Define an access map for each page of the TIMA that we will use in
 157 * the memory region ops to filter values when doing loads and stores
 158 * of raw registers values
 159 *
 160 * Registers accessibility bits :
 161 *
 162 *    0x0 - no access
 163 *    0x1 - write only
 164 *    0x2 - read only
 165 *    0x3 - read/write
 166 */
 167
 168static const uint8_t xive_tm_hw_view[] = {
 169    /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
 170    /* QW-1 OS   */   3, 3, 3, 3,   3, 3, 0, 3,   3, 3, 3, 3,   0, 0, 0, 0,
 171    /* QW-2 POOL */   0, 0, 3, 3,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
 172    /* QW-3 PHYS */   3, 3, 3, 3,   0, 3, 0, 3,   3, 0, 0, 3,   3, 3, 3, 0,
 173};
 174
 175static const uint8_t xive_tm_hv_view[] = {
 176    /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
 177    /* QW-1 OS   */   3, 3, 3, 3,   3, 3, 0, 3,   3, 3, 3, 3,   0, 0, 0, 0,
 178    /* QW-2 POOL */   0, 0, 3, 3,   0, 0, 0, 0,   0, 3, 3, 3,   0, 0, 0, 0,
 179    /* QW-3 PHYS */   3, 3, 3, 3,   0, 3, 0, 3,   3, 0, 0, 3,   0, 0, 0, 0,
 180};
 181
 182static const uint8_t xive_tm_os_view[] = {
 183    /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   3, 3, 3, 3,   0, 0, 0, 0,
 184    /* QW-1 OS   */   2, 3, 2, 2,   2, 2, 0, 2,   0, 0, 0, 0,   0, 0, 0, 0,
 185    /* QW-2 POOL */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
 186    /* QW-3 PHYS */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
 187};
 188
 189static const uint8_t xive_tm_user_view[] = {
 190    /* QW-0 User */   3, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
 191    /* QW-1 OS   */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
 192    /* QW-2 POOL */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
 193    /* QW-3 PHYS */   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,   0, 0, 0, 0,
 194};
 195
 196/*
 197 * Overall TIMA access map for the thread interrupt management context
 198 * registers
 199 */
 200static const uint8_t *xive_tm_views[] = {
 201    [XIVE_TM_HW_PAGE]   = xive_tm_hw_view,
 202    [XIVE_TM_HV_PAGE]   = xive_tm_hv_view,
 203    [XIVE_TM_OS_PAGE]   = xive_tm_os_view,
 204    [XIVE_TM_USER_PAGE] = xive_tm_user_view,
 205};
 206
 207/*
 208 * Computes a register access mask for a given offset in the TIMA
 209 */
 210static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write)
 211{
 212    uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
 213    uint8_t reg_offset = offset & 0x3F;
 214    uint8_t reg_mask = write ? 0x1 : 0x2;
 215    uint64_t mask = 0x0;
 216    int i;
 217
 218    for (i = 0; i < size; i++) {
 219        if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) {
 220            mask |= (uint64_t) 0xff << (8 * (size - i - 1));
 221        }
 222    }
 223
 224    return mask;
 225}
 226
 227static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
 228                              unsigned size)
 229{
 230    uint8_t ring_offset = offset & 0x30;
 231    uint8_t reg_offset = offset & 0x3F;
 232    uint64_t mask = xive_tm_mask(offset, size, true);
 233    int i;
 234
 235    /*
 236     * Only 4 or 8 bytes stores are allowed and the User ring is
 237     * excluded
 238     */
 239    if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
 240        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%"
 241                      HWADDR_PRIx"\n", offset);
 242        return;
 243    }
 244
 245    /*
 246     * Use the register offset for the raw values and filter out
 247     * reserved values
 248     */
 249    for (i = 0; i < size; i++) {
 250        uint8_t byte_mask = (mask >> (8 * (size - i - 1)));
 251        if (byte_mask) {
 252            tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) &
 253                byte_mask;
 254        }
 255    }
 256}
 257
 258static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
 259{
 260    uint8_t ring_offset = offset & 0x30;
 261    uint8_t reg_offset = offset & 0x3F;
 262    uint64_t mask = xive_tm_mask(offset, size, false);
 263    uint64_t ret;
 264    int i;
 265
 266    /*
 267     * Only 4 or 8 bytes loads are allowed and the User ring is
 268     * excluded
 269     */
 270    if (size < 4 || !mask || ring_offset == TM_QW0_USER) {
 271        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%"
 272                      HWADDR_PRIx"\n", offset);
 273        return -1;
 274    }
 275
 276    /* Use the register offset for the raw values */
 277    ret = 0;
 278    for (i = 0; i < size; i++) {
 279        ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1));
 280    }
 281
 282    /* filter out reserved values */
 283    return ret & mask;
 284}
 285
 286/*
 287 * The TM context is mapped twice within each page. Stores and loads
 288 * to the first mapping below 2K write and read the specified values
 289 * without modification. The second mapping above 2K performs specific
 290 * state changes (side effects) in addition to setting/returning the
 291 * interrupt management area context of the processor thread.
 292 */
 293static uint64_t xive_tm_ack_os_reg(XiveTCTX *tctx, hwaddr offset, unsigned size)
 294{
 295    return xive_tctx_accept(tctx, TM_QW1_OS);
 296}
 297
 298static void xive_tm_set_os_cppr(XiveTCTX *tctx, hwaddr offset,
 299                                uint64_t value, unsigned size)
 300{
 301    xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff);
 302}
 303
 304/*
 305 * Adjust the IPB to allow a CPU to process event queues of other
 306 * priorities during one physical interrupt cycle.
 307 */
 308static void xive_tm_set_os_pending(XiveTCTX *tctx, hwaddr offset,
 309                                   uint64_t value, unsigned size)
 310{
 311    ipb_update(&tctx->regs[TM_QW1_OS], value & 0xff);
 312    xive_tctx_notify(tctx, TM_QW1_OS);
 313}
 314
 315/*
 316 * Define a mapping of "special" operations depending on the TIMA page
 317 * offset and the size of the operation.
 318 */
 319typedef struct XiveTmOp {
 320    uint8_t  page_offset;
 321    uint32_t op_offset;
 322    unsigned size;
 323    void     (*write_handler)(XiveTCTX *tctx, hwaddr offset, uint64_t value,
 324                              unsigned size);
 325    uint64_t (*read_handler)(XiveTCTX *tctx, hwaddr offset, unsigned size);
 326} XiveTmOp;
 327
 328static const XiveTmOp xive_tm_operations[] = {
 329    /*
 330     * MMIOs below 2K : raw values and special operations without side
 331     * effects
 332     */
 333    { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR,   1, xive_tm_set_os_cppr, NULL },
 334    { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, NULL },
 335    { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, NULL },
 336    { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, xive_tm_vt_poll },
 337
 338    /* MMIOs above 2K : special operations with side effects */
 339    { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG,     2, NULL, xive_tm_ack_os_reg },
 340    { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, NULL },
 341    { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG,     2, NULL, xive_tm_ack_hv_reg },
 342    { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  4, NULL, xive_tm_pull_pool_ctx },
 343    { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX,  8, NULL, xive_tm_pull_pool_ctx },
 344};
 345
 346static const XiveTmOp *xive_tm_find_op(hwaddr offset, unsigned size, bool write)
 347{
 348    uint8_t page_offset = (offset >> TM_SHIFT) & 0x3;
 349    uint32_t op_offset = offset & 0xFFF;
 350    int i;
 351
 352    for (i = 0; i < ARRAY_SIZE(xive_tm_operations); i++) {
 353        const XiveTmOp *xto = &xive_tm_operations[i];
 354
 355        /* Accesses done from a more privileged TIMA page is allowed */
 356        if (xto->page_offset >= page_offset &&
 357            xto->op_offset == op_offset &&
 358            xto->size == size &&
 359            ((write && xto->write_handler) || (!write && xto->read_handler))) {
 360            return xto;
 361        }
 362    }
 363    return NULL;
 364}
 365
 366/*
 367 * TIMA MMIO handlers
 368 */
 369void xive_tctx_tm_write(XiveTCTX *tctx, hwaddr offset, uint64_t value,
 370                        unsigned size)
 371{
 372    const XiveTmOp *xto;
 373
 374    /*
 375     * TODO: check V bit in Q[0-3]W2
 376     */
 377
 378    /*
 379     * First, check for special operations in the 2K region
 380     */
 381    if (offset & 0x800) {
 382        xto = xive_tm_find_op(offset, size, true);
 383        if (!xto) {
 384            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA"
 385                          "@%"HWADDR_PRIx"\n", offset);
 386        } else {
 387            xto->write_handler(tctx, offset, value, size);
 388        }
 389        return;
 390    }
 391
 392    /*
 393     * Then, for special operations in the region below 2K.
 394     */
 395    xto = xive_tm_find_op(offset, size, true);
 396    if (xto) {
 397        xto->write_handler(tctx, offset, value, size);
 398        return;
 399    }
 400
 401    /*
 402     * Finish with raw access to the register values
 403     */
 404    xive_tm_raw_write(tctx, offset, value, size);
 405}
 406
 407uint64_t xive_tctx_tm_read(XiveTCTX *tctx, hwaddr offset, unsigned size)
 408{
 409    const XiveTmOp *xto;
 410
 411    /*
 412     * TODO: check V bit in Q[0-3]W2
 413     */
 414
 415    /*
 416     * First, check for special operations in the 2K region
 417     */
 418    if (offset & 0x800) {
 419        xto = xive_tm_find_op(offset, size, false);
 420        if (!xto) {
 421            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA"
 422                          "@%"HWADDR_PRIx"\n", offset);
 423            return -1;
 424        }
 425        return xto->read_handler(tctx, offset, size);
 426    }
 427
 428    /*
 429     * Then, for special operations in the region below 2K.
 430     */
 431    xto = xive_tm_find_op(offset, size, false);
 432    if (xto) {
 433        return xto->read_handler(tctx, offset, size);
 434    }
 435
 436    /*
 437     * Finish with raw access to the register values
 438     */
 439    return xive_tm_raw_read(tctx, offset, size);
 440}
 441
 442static void xive_tm_write(void *opaque, hwaddr offset,
 443                          uint64_t value, unsigned size)
 444{
 445    XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
 446
 447    xive_tctx_tm_write(tctx, offset, value, size);
 448}
 449
 450static uint64_t xive_tm_read(void *opaque, hwaddr offset, unsigned size)
 451{
 452    XiveTCTX *tctx = xive_router_get_tctx(XIVE_ROUTER(opaque), current_cpu);
 453
 454    return xive_tctx_tm_read(tctx, offset, size);
 455}
 456
 457const MemoryRegionOps xive_tm_ops = {
 458    .read = xive_tm_read,
 459    .write = xive_tm_write,
 460    .endianness = DEVICE_BIG_ENDIAN,
 461    .valid = {
 462        .min_access_size = 1,
 463        .max_access_size = 8,
 464    },
 465    .impl = {
 466        .min_access_size = 1,
 467        .max_access_size = 8,
 468    },
 469};
 470
 471static inline uint32_t xive_tctx_word2(uint8_t *ring)
 472{
 473    return *((uint32_t *) &ring[TM_WORD2]);
 474}
 475
 476static char *xive_tctx_ring_print(uint8_t *ring)
 477{
 478    uint32_t w2 = xive_tctx_word2(ring);
 479
 480    return g_strdup_printf("%02x   %02x  %02x    %02x   %02x  "
 481                   "%02x  %02x   %02x  %08x",
 482                   ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB],
 483                   ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR],
 484                   be32_to_cpu(w2));
 485}
 486
 487static const char * const xive_tctx_ring_names[] = {
 488    "USER", "OS", "POOL", "PHYS",
 489};
 490
 491void xive_tctx_pic_print_info(XiveTCTX *tctx, Monitor *mon)
 492{
 493    int cpu_index = tctx->cs ? tctx->cs->cpu_index : -1;
 494    int i;
 495
 496    monitor_printf(mon, "CPU[%04x]:   QW   NSR CPPR IPB LSMFB ACK# INC AGE PIPR"
 497                   "  W2\n", cpu_index);
 498
 499    for (i = 0; i < XIVE_TM_RING_COUNT; i++) {
 500        char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]);
 501        monitor_printf(mon, "CPU[%04x]: %4s    %s\n", cpu_index,
 502                       xive_tctx_ring_names[i], s);
 503        g_free(s);
 504    }
 505}
 506
 507static void xive_tctx_reset(void *dev)
 508{
 509    XiveTCTX *tctx = XIVE_TCTX(dev);
 510
 511    memset(tctx->regs, 0, sizeof(tctx->regs));
 512
 513    /* Set some defaults */
 514    tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF;
 515    tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF;
 516    tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF;
 517
 518    /*
 519     * Initialize PIPR to 0xFF to avoid phantom interrupts when the
 520     * CPPR is first set.
 521     */
 522    tctx->regs[TM_QW1_OS + TM_PIPR] =
 523        ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]);
 524    tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] =
 525        ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]);
 526}
 527
 528static void xive_tctx_realize(DeviceState *dev, Error **errp)
 529{
 530    XiveTCTX *tctx = XIVE_TCTX(dev);
 531    PowerPCCPU *cpu;
 532    CPUPPCState *env;
 533    Object *obj;
 534    Error *local_err = NULL;
 535
 536    obj = object_property_get_link(OBJECT(dev), "cpu", &local_err);
 537    if (!obj) {
 538        error_propagate(errp, local_err);
 539        error_prepend(errp, "required link 'cpu' not found: ");
 540        return;
 541    }
 542
 543    cpu = POWERPC_CPU(obj);
 544    tctx->cs = CPU(obj);
 545
 546    env = &cpu->env;
 547    switch (PPC_INPUT(env)) {
 548    case PPC_FLAGS_INPUT_POWER9:
 549        tctx->output = env->irq_inputs[POWER9_INPUT_INT];
 550        break;
 551
 552    default:
 553        error_setg(errp, "XIVE interrupt controller does not support "
 554                   "this CPU bus model");
 555        return;
 556    }
 557
 558    qemu_register_reset(xive_tctx_reset, dev);
 559}
 560
 561static void xive_tctx_unrealize(DeviceState *dev, Error **errp)
 562{
 563    qemu_unregister_reset(xive_tctx_reset, dev);
 564}
 565
 566static const VMStateDescription vmstate_xive_tctx = {
 567    .name = TYPE_XIVE_TCTX,
 568    .version_id = 1,
 569    .minimum_version_id = 1,
 570    .fields = (VMStateField[]) {
 571        VMSTATE_BUFFER(regs, XiveTCTX),
 572        VMSTATE_END_OF_LIST()
 573    },
 574};
 575
 576static void xive_tctx_class_init(ObjectClass *klass, void *data)
 577{
 578    DeviceClass *dc = DEVICE_CLASS(klass);
 579
 580    dc->desc = "XIVE Interrupt Thread Context";
 581    dc->realize = xive_tctx_realize;
 582    dc->unrealize = xive_tctx_unrealize;
 583    dc->vmsd = &vmstate_xive_tctx;
 584}
 585
 586static const TypeInfo xive_tctx_info = {
 587    .name          = TYPE_XIVE_TCTX,
 588    .parent        = TYPE_DEVICE,
 589    .instance_size = sizeof(XiveTCTX),
 590    .class_init    = xive_tctx_class_init,
 591};
 592
 593Object *xive_tctx_create(Object *cpu, XiveRouter *xrtr, Error **errp)
 594{
 595    Error *local_err = NULL;
 596    Object *obj;
 597
 598    obj = object_new(TYPE_XIVE_TCTX);
 599    object_property_add_child(cpu, TYPE_XIVE_TCTX, obj, &error_abort);
 600    object_unref(obj);
 601    object_property_add_const_link(obj, "cpu", cpu, &error_abort);
 602    object_property_set_bool(obj, true, "realized", &local_err);
 603    if (local_err) {
 604        goto error;
 605    }
 606
 607    return obj;
 608
 609error:
 610    object_unparent(obj);
 611    error_propagate(errp, local_err);
 612    return NULL;
 613}
 614
 615/*
 616 * XIVE ESB helpers
 617 */
 618
 619static uint8_t xive_esb_set(uint8_t *pq, uint8_t value)
 620{
 621    uint8_t old_pq = *pq & 0x3;
 622
 623    *pq &= ~0x3;
 624    *pq |= value & 0x3;
 625
 626    return old_pq;
 627}
 628
 629static bool xive_esb_trigger(uint8_t *pq)
 630{
 631    uint8_t old_pq = *pq & 0x3;
 632
 633    switch (old_pq) {
 634    case XIVE_ESB_RESET:
 635        xive_esb_set(pq, XIVE_ESB_PENDING);
 636        return true;
 637    case XIVE_ESB_PENDING:
 638    case XIVE_ESB_QUEUED:
 639        xive_esb_set(pq, XIVE_ESB_QUEUED);
 640        return false;
 641    case XIVE_ESB_OFF:
 642        xive_esb_set(pq, XIVE_ESB_OFF);
 643        return false;
 644    default:
 645         g_assert_not_reached();
 646    }
 647}
 648
 649static bool xive_esb_eoi(uint8_t *pq)
 650{
 651    uint8_t old_pq = *pq & 0x3;
 652
 653    switch (old_pq) {
 654    case XIVE_ESB_RESET:
 655    case XIVE_ESB_PENDING:
 656        xive_esb_set(pq, XIVE_ESB_RESET);
 657        return false;
 658    case XIVE_ESB_QUEUED:
 659        xive_esb_set(pq, XIVE_ESB_PENDING);
 660        return true;
 661    case XIVE_ESB_OFF:
 662        xive_esb_set(pq, XIVE_ESB_OFF);
 663        return false;
 664    default:
 665         g_assert_not_reached();
 666    }
 667}
 668
 669/*
 670 * XIVE Interrupt Source (or IVSE)
 671 */
 672
 673uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno)
 674{
 675    assert(srcno < xsrc->nr_irqs);
 676
 677    return xsrc->status[srcno] & 0x3;
 678}
 679
 680uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq)
 681{
 682    assert(srcno < xsrc->nr_irqs);
 683
 684    return xive_esb_set(&xsrc->status[srcno], pq);
 685}
 686
 687/*
 688 * Returns whether the event notification should be forwarded.
 689 */
 690static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno)
 691{
 692    uint8_t old_pq = xive_source_esb_get(xsrc, srcno);
 693
 694    xsrc->status[srcno] |= XIVE_STATUS_ASSERTED;
 695
 696    switch (old_pq) {
 697    case XIVE_ESB_RESET:
 698        xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING);
 699        return true;
 700    default:
 701        return false;
 702    }
 703}
 704
 705/*
 706 * Returns whether the event notification should be forwarded.
 707 */
 708static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno)
 709{
 710    bool ret;
 711
 712    assert(srcno < xsrc->nr_irqs);
 713
 714    ret = xive_esb_trigger(&xsrc->status[srcno]);
 715
 716    if (xive_source_irq_is_lsi(xsrc, srcno) &&
 717        xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) {
 718        qemu_log_mask(LOG_GUEST_ERROR,
 719                      "XIVE: queued an event on LSI IRQ %d\n", srcno);
 720    }
 721
 722    return ret;
 723}
 724
 725/*
 726 * Returns whether the event notification should be forwarded.
 727 */
 728static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno)
 729{
 730    bool ret;
 731
 732    assert(srcno < xsrc->nr_irqs);
 733
 734    ret = xive_esb_eoi(&xsrc->status[srcno]);
 735
 736    /*
 737     * LSI sources do not set the Q bit but they can still be
 738     * asserted, in which case we should forward a new event
 739     * notification
 740     */
 741    if (xive_source_irq_is_lsi(xsrc, srcno) &&
 742        xsrc->status[srcno] & XIVE_STATUS_ASSERTED) {
 743        ret = xive_source_lsi_trigger(xsrc, srcno);
 744    }
 745
 746    return ret;
 747}
 748
 749/*
 750 * Forward the source event notification to the Router
 751 */
 752static void xive_source_notify(XiveSource *xsrc, int srcno)
 753{
 754    XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive);
 755
 756    if (xnc->notify) {
 757        xnc->notify(xsrc->xive, srcno);
 758    }
 759}
 760
 761/*
 762 * In a two pages ESB MMIO setting, even page is the trigger page, odd
 763 * page is for management
 764 */
 765static inline bool addr_is_even(hwaddr addr, uint32_t shift)
 766{
 767    return !((addr >> shift) & 1);
 768}
 769
 770static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr)
 771{
 772    return xive_source_esb_has_2page(xsrc) &&
 773        addr_is_even(addr, xsrc->esb_shift - 1);
 774}
 775
 776/*
 777 * ESB MMIO loads
 778 *                      Trigger page    Management/EOI page
 779 *
 780 * ESB MMIO setting     2 pages         1 or 2 pages
 781 *
 782 * 0x000 .. 0x3FF       -1              EOI and return 0|1
 783 * 0x400 .. 0x7FF       -1              EOI and return 0|1
 784 * 0x800 .. 0xBFF       -1              return PQ
 785 * 0xC00 .. 0xCFF       -1              return PQ and atomically PQ=00
 786 * 0xD00 .. 0xDFF       -1              return PQ and atomically PQ=01
 787 * 0xE00 .. 0xDFF       -1              return PQ and atomically PQ=10
 788 * 0xF00 .. 0xDFF       -1              return PQ and atomically PQ=11
 789 */
 790static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size)
 791{
 792    XiveSource *xsrc = XIVE_SOURCE(opaque);
 793    uint32_t offset = addr & 0xFFF;
 794    uint32_t srcno = addr >> xsrc->esb_shift;
 795    uint64_t ret = -1;
 796
 797    /* In a two pages ESB MMIO setting, trigger page should not be read */
 798    if (xive_source_is_trigger_page(xsrc, addr)) {
 799        qemu_log_mask(LOG_GUEST_ERROR,
 800                      "XIVE: invalid load on IRQ %d trigger page at "
 801                      "0x%"HWADDR_PRIx"\n", srcno, addr);
 802        return -1;
 803    }
 804
 805    switch (offset) {
 806    case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
 807        ret = xive_source_esb_eoi(xsrc, srcno);
 808
 809        /* Forward the source event notification for routing */
 810        if (ret) {
 811            xive_source_notify(xsrc, srcno);
 812        }
 813        break;
 814
 815    case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
 816        ret = xive_source_esb_get(xsrc, srcno);
 817        break;
 818
 819    case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
 820    case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
 821    case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
 822    case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
 823        ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
 824        break;
 825    default:
 826        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n",
 827                      offset);
 828    }
 829
 830    return ret;
 831}
 832
 833/*
 834 * ESB MMIO stores
 835 *                      Trigger page    Management/EOI page
 836 *
 837 * ESB MMIO setting     2 pages         1 or 2 pages
 838 *
 839 * 0x000 .. 0x3FF       Trigger         Trigger
 840 * 0x400 .. 0x7FF       Trigger         EOI
 841 * 0x800 .. 0xBFF       Trigger         undefined
 842 * 0xC00 .. 0xCFF       Trigger         PQ=00
 843 * 0xD00 .. 0xDFF       Trigger         PQ=01
 844 * 0xE00 .. 0xDFF       Trigger         PQ=10
 845 * 0xF00 .. 0xDFF       Trigger         PQ=11
 846 */
 847static void xive_source_esb_write(void *opaque, hwaddr addr,
 848                                  uint64_t value, unsigned size)
 849{
 850    XiveSource *xsrc = XIVE_SOURCE(opaque);
 851    uint32_t offset = addr & 0xFFF;
 852    uint32_t srcno = addr >> xsrc->esb_shift;
 853    bool notify = false;
 854
 855    /* In a two pages ESB MMIO setting, trigger page only triggers */
 856    if (xive_source_is_trigger_page(xsrc, addr)) {
 857        notify = xive_source_esb_trigger(xsrc, srcno);
 858        goto out;
 859    }
 860
 861    switch (offset) {
 862    case 0 ... 0x3FF:
 863        notify = xive_source_esb_trigger(xsrc, srcno);
 864        break;
 865
 866    case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF:
 867        if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) {
 868            qemu_log_mask(LOG_GUEST_ERROR,
 869                          "XIVE: invalid Store EOI for IRQ %d\n", srcno);
 870            return;
 871        }
 872
 873        notify = xive_source_esb_eoi(xsrc, srcno);
 874        break;
 875
 876    case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
 877    case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
 878    case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
 879    case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
 880        xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3);
 881        break;
 882
 883    default:
 884        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n",
 885                      offset);
 886        return;
 887    }
 888
 889out:
 890    /* Forward the source event notification for routing */
 891    if (notify) {
 892        xive_source_notify(xsrc, srcno);
 893    }
 894}
 895
 896static const MemoryRegionOps xive_source_esb_ops = {
 897    .read = xive_source_esb_read,
 898    .write = xive_source_esb_write,
 899    .endianness = DEVICE_BIG_ENDIAN,
 900    .valid = {
 901        .min_access_size = 8,
 902        .max_access_size = 8,
 903    },
 904    .impl = {
 905        .min_access_size = 8,
 906        .max_access_size = 8,
 907    },
 908};
 909
 910void xive_source_set_irq(void *opaque, int srcno, int val)
 911{
 912    XiveSource *xsrc = XIVE_SOURCE(opaque);
 913    bool notify = false;
 914
 915    if (xive_source_irq_is_lsi(xsrc, srcno)) {
 916        if (val) {
 917            notify = xive_source_lsi_trigger(xsrc, srcno);
 918        } else {
 919            xsrc->status[srcno] &= ~XIVE_STATUS_ASSERTED;
 920        }
 921    } else {
 922        if (val) {
 923            notify = xive_source_esb_trigger(xsrc, srcno);
 924        }
 925    }
 926
 927    /* Forward the source event notification for routing */
 928    if (notify) {
 929        xive_source_notify(xsrc, srcno);
 930    }
 931}
 932
 933void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, Monitor *mon)
 934{
 935    int i;
 936
 937    for (i = 0; i < xsrc->nr_irqs; i++) {
 938        uint8_t pq = xive_source_esb_get(xsrc, i);
 939
 940        if (pq == XIVE_ESB_OFF) {
 941            continue;
 942        }
 943
 944        monitor_printf(mon, "  %08x %s %c%c%c\n", i + offset,
 945                       xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
 946                       pq & XIVE_ESB_VAL_P ? 'P' : '-',
 947                       pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
 948                       xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ');
 949    }
 950}
 951
 952static void xive_source_reset(void *dev)
 953{
 954    XiveSource *xsrc = XIVE_SOURCE(dev);
 955
 956    /* Do not clear the LSI bitmap */
 957
 958    /* PQs are initialized to 0b01 (Q=1) which corresponds to "ints off" */
 959    memset(xsrc->status, XIVE_ESB_OFF, xsrc->nr_irqs);
 960}
 961
 962static void xive_source_realize(DeviceState *dev, Error **errp)
 963{
 964    XiveSource *xsrc = XIVE_SOURCE(dev);
 965    Object *obj;
 966    Error *local_err = NULL;
 967
 968    obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
 969    if (!obj) {
 970        error_propagate(errp, local_err);
 971        error_prepend(errp, "required link 'xive' not found: ");
 972        return;
 973    }
 974
 975    xsrc->xive = XIVE_NOTIFIER(obj);
 976
 977    if (!xsrc->nr_irqs) {
 978        error_setg(errp, "Number of interrupt needs to be greater than 0");
 979        return;
 980    }
 981
 982    if (xsrc->esb_shift != XIVE_ESB_4K &&
 983        xsrc->esb_shift != XIVE_ESB_4K_2PAGE &&
 984        xsrc->esb_shift != XIVE_ESB_64K &&
 985        xsrc->esb_shift != XIVE_ESB_64K_2PAGE) {
 986        error_setg(errp, "Invalid ESB shift setting");
 987        return;
 988    }
 989
 990    xsrc->status = g_malloc0(xsrc->nr_irqs);
 991    xsrc->lsi_map = bitmap_new(xsrc->nr_irqs);
 992
 993    memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
 994                          &xive_source_esb_ops, xsrc, "xive.esb",
 995                          (1ull << xsrc->esb_shift) * xsrc->nr_irqs);
 996
 997    qemu_register_reset(xive_source_reset, dev);
 998}
 999
1000static const VMStateDescription vmstate_xive_source = {
1001    .name = TYPE_XIVE_SOURCE,
1002    .version_id = 1,
1003    .minimum_version_id = 1,
1004    .fields = (VMStateField[]) {
1005        VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL),
1006        VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs),
1007        VMSTATE_END_OF_LIST()
1008    },
1009};
1010
1011/*
1012 * The default XIVE interrupt source setting for the ESB MMIOs is two
1013 * 64k pages without Store EOI, to be in sync with KVM.
1014 */
1015static Property xive_source_properties[] = {
1016    DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0),
1017    DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0),
1018    DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE),
1019    DEFINE_PROP_END_OF_LIST(),
1020};
1021
1022static void xive_source_class_init(ObjectClass *klass, void *data)
1023{
1024    DeviceClass *dc = DEVICE_CLASS(klass);
1025
1026    dc->desc    = "XIVE Interrupt Source";
1027    dc->props   = xive_source_properties;
1028    dc->realize = xive_source_realize;
1029    dc->vmsd    = &vmstate_xive_source;
1030}
1031
1032static const TypeInfo xive_source_info = {
1033    .name          = TYPE_XIVE_SOURCE,
1034    .parent        = TYPE_DEVICE,
1035    .instance_size = sizeof(XiveSource),
1036    .class_init    = xive_source_class_init,
1037};
1038
1039/*
1040 * XiveEND helpers
1041 */
1042
1043void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, Monitor *mon)
1044{
1045    uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1046        | be32_to_cpu(end->w3);
1047    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1048    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1049    uint32_t qentries = 1 << (qsize + 10);
1050    int i;
1051
1052    /*
1053     * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window
1054     */
1055    monitor_printf(mon, " [ ");
1056    qindex = (qindex - (width - 1)) & (qentries - 1);
1057    for (i = 0; i < width; i++) {
1058        uint64_t qaddr = qaddr_base + (qindex << 2);
1059        uint32_t qdata = -1;
1060
1061        if (dma_memory_read(&address_space_memory, qaddr, &qdata,
1062                            sizeof(qdata))) {
1063            qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%"
1064                          HWADDR_PRIx "\n", qaddr);
1065            return;
1066        }
1067        monitor_printf(mon, "%s%08x ", i == width - 1 ? "^" : "",
1068                       be32_to_cpu(qdata));
1069        qindex = (qindex + 1) & (qentries - 1);
1070    }
1071}
1072
1073void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, Monitor *mon)
1074{
1075    uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1076        | be32_to_cpu(end->w3);
1077    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1078    uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1079    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1080    uint32_t qentries = 1 << (qsize + 10);
1081
1082    uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1083    uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1084
1085    if (!xive_end_is_valid(end)) {
1086        return;
1087    }
1088
1089    monitor_printf(mon, "  %08x %c%c%c%c%c prio:%d nvt:%04x eq:@%08"PRIx64
1090                   "% 6d/%5d ^%d", end_idx,
1091                   xive_end_is_valid(end)    ? 'v' : '-',
1092                   xive_end_is_enqueue(end)  ? 'q' : '-',
1093                   xive_end_is_notify(end)   ? 'n' : '-',
1094                   xive_end_is_backlog(end)  ? 'b' : '-',
1095                   xive_end_is_escalate(end) ? 'e' : '-',
1096                   priority, nvt, qaddr_base, qindex, qentries, qgen);
1097
1098    xive_end_queue_pic_print_info(end, 6, mon);
1099    monitor_printf(mon, "]\n");
1100}
1101
1102static void xive_end_enqueue(XiveEND *end, uint32_t data)
1103{
1104    uint64_t qaddr_base = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
1105        | be32_to_cpu(end->w3);
1106    uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
1107    uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1108    uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
1109
1110    uint64_t qaddr = qaddr_base + (qindex << 2);
1111    uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff));
1112    uint32_t qentries = 1 << (qsize + 10);
1113
1114    if (dma_memory_write(&address_space_memory, qaddr, &qdata, sizeof(qdata))) {
1115        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%"
1116                      HWADDR_PRIx "\n", qaddr);
1117        return;
1118    }
1119
1120    qindex = (qindex + 1) & (qentries - 1);
1121    if (qindex == 0) {
1122        qgen ^= 1;
1123        end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen);
1124    }
1125    end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex);
1126}
1127
1128/*
1129 * XIVE Router (aka. Virtualization Controller or IVRE)
1130 */
1131
1132int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx,
1133                        XiveEAS *eas)
1134{
1135    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1136
1137    return xrc->get_eas(xrtr, eas_blk, eas_idx, eas);
1138}
1139
1140int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1141                        XiveEND *end)
1142{
1143   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1144
1145   return xrc->get_end(xrtr, end_blk, end_idx, end);
1146}
1147
1148int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx,
1149                          XiveEND *end, uint8_t word_number)
1150{
1151   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1152
1153   return xrc->write_end(xrtr, end_blk, end_idx, end, word_number);
1154}
1155
1156int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1157                        XiveNVT *nvt)
1158{
1159   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1160
1161   return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt);
1162}
1163
1164int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx,
1165                        XiveNVT *nvt, uint8_t word_number)
1166{
1167   XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1168
1169   return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number);
1170}
1171
1172XiveTCTX *xive_router_get_tctx(XiveRouter *xrtr, CPUState *cs)
1173{
1174    XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr);
1175
1176    return xrc->get_tctx(xrtr, cs);
1177}
1178
1179/*
1180 * By default on P9, the HW CAM line (23bits) is hardwired to :
1181 *
1182 *   0x000||0b1||4Bit chip number||7Bit Thread number.
1183 *
1184 * When the block grouping is enabled, the CAM line is changed to :
1185 *
1186 *   4Bit chip number||0x001||7Bit Thread number.
1187 */
1188static uint32_t hw_cam_line(uint8_t chip_id, uint8_t tid)
1189{
1190    return 1 << 11 | (chip_id & 0xf) << 7 | (tid & 0x7f);
1191}
1192
1193static bool xive_presenter_tctx_match_hw(XiveTCTX *tctx,
1194                                         uint8_t nvt_blk, uint32_t nvt_idx)
1195{
1196    CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env;
1197    uint32_t pir = env->spr_cb[SPR_PIR].default_value;
1198
1199    return hw_cam_line((pir >> 8) & 0xf, pir & 0x7f) ==
1200        hw_cam_line(nvt_blk, nvt_idx);
1201}
1202
1203/*
1204 * The thread context register words are in big-endian format.
1205 */
1206static int xive_presenter_tctx_match(XiveTCTX *tctx, uint8_t format,
1207                                     uint8_t nvt_blk, uint32_t nvt_idx,
1208                                     bool cam_ignore, uint32_t logic_serv)
1209{
1210    uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx);
1211    uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]);
1212    uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]);
1213    uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]);
1214    uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]);
1215
1216    /*
1217     * TODO (PowerNV): ignore mode. The low order bits of the NVT
1218     * identifier are ignored in the "CAM" match.
1219     */
1220
1221    if (format == 0) {
1222        if (cam_ignore == true) {
1223            /*
1224             * F=0 & i=1: Logical server notification (bits ignored at
1225             * the end of the NVT identifier)
1226             */
1227            qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n",
1228                          nvt_blk, nvt_idx);
1229             return -1;
1230        }
1231
1232        /* F=0 & i=0: Specific NVT notification */
1233
1234        /* PHYS ring */
1235        if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) &&
1236            xive_presenter_tctx_match_hw(tctx, nvt_blk, nvt_idx)) {
1237            return TM_QW3_HV_PHYS;
1238        }
1239
1240        /* HV POOL ring */
1241        if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) &&
1242            cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) {
1243            return TM_QW2_HV_POOL;
1244        }
1245
1246        /* OS ring */
1247        if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1248            cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) {
1249            return TM_QW1_OS;
1250        }
1251    } else {
1252        /* F=1 : User level Event-Based Branch (EBB) notification */
1253
1254        /* USER ring */
1255        if  ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) &&
1256             (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) &&
1257             (be32_to_cpu(qw0w2) & TM_QW0W2_VU) &&
1258             (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) {
1259            return TM_QW0_USER;
1260        }
1261    }
1262    return -1;
1263}
1264
1265typedef struct XiveTCTXMatch {
1266    XiveTCTX *tctx;
1267    uint8_t ring;
1268} XiveTCTXMatch;
1269
1270static bool xive_presenter_match(XiveRouter *xrtr, uint8_t format,
1271                                 uint8_t nvt_blk, uint32_t nvt_idx,
1272                                 bool cam_ignore, uint8_t priority,
1273                                 uint32_t logic_serv, XiveTCTXMatch *match)
1274{
1275    CPUState *cs;
1276
1277    /*
1278     * TODO (PowerNV): handle chip_id overwrite of block field for
1279     * hardwired CAM compares
1280     */
1281
1282    CPU_FOREACH(cs) {
1283        XiveTCTX *tctx = xive_router_get_tctx(xrtr, cs);
1284        int ring;
1285
1286        /*
1287         * HW checks that the CPU is enabled in the Physical Thread
1288         * Enable Register (PTER).
1289         */
1290
1291        /*
1292         * Check the thread context CAM lines and record matches. We
1293         * will handle CPU exception delivery later
1294         */
1295        ring = xive_presenter_tctx_match(tctx, format, nvt_blk, nvt_idx,
1296                                         cam_ignore, logic_serv);
1297        /*
1298         * Save the context and follow on to catch duplicates, that we
1299         * don't support yet.
1300         */
1301        if (ring != -1) {
1302            if (match->tctx) {
1303                qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
1304                              "context NVT %x/%x\n", nvt_blk, nvt_idx);
1305                return false;
1306            }
1307
1308            match->ring = ring;
1309            match->tctx = tctx;
1310        }
1311    }
1312
1313    if (!match->tctx) {
1314        qemu_log_mask(LOG_UNIMP, "XIVE: NVT %x/%x is not dispatched\n",
1315                      nvt_blk, nvt_idx);
1316        return false;
1317    }
1318
1319    return true;
1320}
1321
1322/*
1323 * This is our simple Xive Presenter Engine model. It is merged in the
1324 * Router as it does not require an extra object.
1325 *
1326 * It receives notification requests sent by the IVRE to find one
1327 * matching NVT (or more) dispatched on the processor threads. In case
1328 * of a single NVT notification, the process is abreviated and the
1329 * thread is signaled if a match is found. In case of a logical server
1330 * notification (bits ignored at the end of the NVT identifier), the
1331 * IVPE and IVRE select a winning thread using different filters. This
1332 * involves 2 or 3 exchanges on the PowerBus that the model does not
1333 * support.
1334 *
1335 * The parameters represent what is sent on the PowerBus
1336 */
1337static void xive_presenter_notify(XiveRouter *xrtr, uint8_t format,
1338                                  uint8_t nvt_blk, uint32_t nvt_idx,
1339                                  bool cam_ignore, uint8_t priority,
1340                                  uint32_t logic_serv)
1341{
1342    XiveNVT nvt;
1343    XiveTCTXMatch match = { .tctx = NULL, .ring = 0 };
1344    bool found;
1345
1346    /* NVT cache lookup */
1347    if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) {
1348        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n",
1349                      nvt_blk, nvt_idx);
1350        return;
1351    }
1352
1353    if (!xive_nvt_is_valid(&nvt)) {
1354        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n",
1355                      nvt_blk, nvt_idx);
1356        return;
1357    }
1358
1359    found = xive_presenter_match(xrtr, format, nvt_blk, nvt_idx, cam_ignore,
1360                                 priority, logic_serv, &match);
1361    if (found) {
1362        ipb_update(&match.tctx->regs[match.ring], priority);
1363        xive_tctx_notify(match.tctx, match.ring);
1364        return;
1365    }
1366
1367    /* Record the IPB in the associated NVT structure */
1368    ipb_update((uint8_t *) &nvt.w4, priority);
1369    xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4);
1370
1371    /*
1372     * If no matching NVT is dispatched on a HW thread :
1373     * - update the NVT structure if backlog is activated
1374     * - escalate (ESe PQ bits and EAS in w4-5) if escalation is
1375     *   activated
1376     */
1377}
1378
1379/*
1380 * An END trigger can come from an event trigger (IPI or HW) or from
1381 * another chip. We don't model the PowerBus but the END trigger
1382 * message has the same parameters than in the function below.
1383 */
1384static void xive_router_end_notify(XiveRouter *xrtr, uint8_t end_blk,
1385                                   uint32_t end_idx, uint32_t end_data)
1386{
1387    XiveEND end;
1388    uint8_t priority;
1389    uint8_t format;
1390
1391    /* END cache lookup */
1392    if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) {
1393        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1394                      end_idx);
1395        return;
1396    }
1397
1398    if (!xive_end_is_valid(&end)) {
1399        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1400                      end_blk, end_idx);
1401        return;
1402    }
1403
1404    if (xive_end_is_enqueue(&end)) {
1405        xive_end_enqueue(&end, end_data);
1406        /* Enqueuing event data modifies the EQ toggle and index */
1407        xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1408    }
1409
1410    /*
1411     * The W7 format depends on the F bit in W6. It defines the type
1412     * of the notification :
1413     *
1414     *   F=0 : single or multiple NVT notification
1415     *   F=1 : User level Event-Based Branch (EBB) notification, no
1416     *         priority
1417     */
1418    format = xive_get_field32(END_W6_FORMAT_BIT, end.w6);
1419    priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7);
1420
1421    /* The END is masked */
1422    if (format == 0 && priority == 0xff) {
1423        return;
1424    }
1425
1426    /*
1427     * Check the END ESn (Event State Buffer for notification) for
1428     * even futher coalescing in the Router
1429     */
1430    if (!xive_end_is_notify(&end)) {
1431        uint8_t pq = xive_get_field32(END_W1_ESn, end.w1);
1432        bool notify = xive_esb_trigger(&pq);
1433
1434        if (pq != xive_get_field32(END_W1_ESn, end.w1)) {
1435            end.w1 = xive_set_field32(END_W1_ESn, end.w1, pq);
1436            xive_router_write_end(xrtr, end_blk, end_idx, &end, 1);
1437        }
1438
1439        /* ESn[Q]=1 : end of notification */
1440        if (!notify) {
1441            return;
1442        }
1443    }
1444
1445    /*
1446     * Follows IVPE notification
1447     */
1448    xive_presenter_notify(xrtr, format,
1449                          xive_get_field32(END_W6_NVT_BLOCK, end.w6),
1450                          xive_get_field32(END_W6_NVT_INDEX, end.w6),
1451                          xive_get_field32(END_W7_F0_IGNORE, end.w7),
1452                          priority,
1453                          xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7));
1454
1455    /* TODO: Auto EOI. */
1456}
1457
1458void xive_router_notify(XiveNotifier *xn, uint32_t lisn)
1459{
1460    XiveRouter *xrtr = XIVE_ROUTER(xn);
1461    uint8_t eas_blk = XIVE_SRCNO_BLOCK(lisn);
1462    uint32_t eas_idx = XIVE_SRCNO_INDEX(lisn);
1463    XiveEAS eas;
1464
1465    /* EAS cache lookup */
1466    if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) {
1467        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn);
1468        return;
1469    }
1470
1471    /*
1472     * The IVRE checks the State Bit Cache at this point. We skip the
1473     * SBC lookup because the state bits of the sources are modeled
1474     * internally in QEMU.
1475     */
1476
1477    if (!xive_eas_is_valid(&eas)) {
1478        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn);
1479        return;
1480    }
1481
1482    if (xive_eas_is_masked(&eas)) {
1483        /* Notification completed */
1484        return;
1485    }
1486
1487    /*
1488     * The event trigger becomes an END trigger
1489     */
1490    xive_router_end_notify(xrtr,
1491                           xive_get_field64(EAS_END_BLOCK, eas.w),
1492                           xive_get_field64(EAS_END_INDEX, eas.w),
1493                           xive_get_field64(EAS_END_DATA,  eas.w));
1494}
1495
1496static void xive_router_class_init(ObjectClass *klass, void *data)
1497{
1498    DeviceClass *dc = DEVICE_CLASS(klass);
1499    XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass);
1500
1501    dc->desc    = "XIVE Router Engine";
1502    xnc->notify = xive_router_notify;
1503}
1504
1505static const TypeInfo xive_router_info = {
1506    .name          = TYPE_XIVE_ROUTER,
1507    .parent        = TYPE_SYS_BUS_DEVICE,
1508    .abstract      = true,
1509    .class_size    = sizeof(XiveRouterClass),
1510    .class_init    = xive_router_class_init,
1511    .interfaces    = (InterfaceInfo[]) {
1512        { TYPE_XIVE_NOTIFIER },
1513        { }
1514    }
1515};
1516
1517void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, Monitor *mon)
1518{
1519    if (!xive_eas_is_valid(eas)) {
1520        return;
1521    }
1522
1523    monitor_printf(mon, "  %08x %s end:%02x/%04x data:%08x\n",
1524                   lisn, xive_eas_is_masked(eas) ? "M" : " ",
1525                   (uint8_t)  xive_get_field64(EAS_END_BLOCK, eas->w),
1526                   (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w),
1527                   (uint32_t) xive_get_field64(EAS_END_DATA, eas->w));
1528}
1529
1530/*
1531 * END ESB MMIO loads
1532 */
1533static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size)
1534{
1535    XiveENDSource *xsrc = XIVE_END_SOURCE(opaque);
1536    uint32_t offset = addr & 0xFFF;
1537    uint8_t end_blk;
1538    uint32_t end_idx;
1539    XiveEND end;
1540    uint32_t end_esmask;
1541    uint8_t pq;
1542    uint64_t ret = -1;
1543
1544    end_blk = xsrc->block_id;
1545    end_idx = addr >> (xsrc->esb_shift + 1);
1546
1547    if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) {
1548        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk,
1549                      end_idx);
1550        return -1;
1551    }
1552
1553    if (!xive_end_is_valid(&end)) {
1554        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n",
1555                      end_blk, end_idx);
1556        return -1;
1557    }
1558
1559    end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe;
1560    pq = xive_get_field32(end_esmask, end.w1);
1561
1562    switch (offset) {
1563    case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF:
1564        ret = xive_esb_eoi(&pq);
1565
1566        /* Forward the source event notification for routing ?? */
1567        break;
1568
1569    case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF:
1570        ret = pq;
1571        break;
1572
1573    case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF:
1574    case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF:
1575    case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF:
1576    case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF:
1577        ret = xive_esb_set(&pq, (offset >> 8) & 0x3);
1578        break;
1579    default:
1580        qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n",
1581                      offset);
1582        return -1;
1583    }
1584
1585    if (pq != xive_get_field32(end_esmask, end.w1)) {
1586        end.w1 = xive_set_field32(end_esmask, end.w1, pq);
1587        xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1);
1588    }
1589
1590    return ret;
1591}
1592
1593/*
1594 * END ESB MMIO stores are invalid
1595 */
1596static void xive_end_source_write(void *opaque, hwaddr addr,
1597                                  uint64_t value, unsigned size)
1598{
1599    qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%"
1600                  HWADDR_PRIx"\n", addr);
1601}
1602
1603static const MemoryRegionOps xive_end_source_ops = {
1604    .read = xive_end_source_read,
1605    .write = xive_end_source_write,
1606    .endianness = DEVICE_BIG_ENDIAN,
1607    .valid = {
1608        .min_access_size = 8,
1609        .max_access_size = 8,
1610    },
1611    .impl = {
1612        .min_access_size = 8,
1613        .max_access_size = 8,
1614    },
1615};
1616
1617static void xive_end_source_realize(DeviceState *dev, Error **errp)
1618{
1619    XiveENDSource *xsrc = XIVE_END_SOURCE(dev);
1620    Object *obj;
1621    Error *local_err = NULL;
1622
1623    obj = object_property_get_link(OBJECT(dev), "xive", &local_err);
1624    if (!obj) {
1625        error_propagate(errp, local_err);
1626        error_prepend(errp, "required link 'xive' not found: ");
1627        return;
1628    }
1629
1630    xsrc->xrtr = XIVE_ROUTER(obj);
1631
1632    if (!xsrc->nr_ends) {
1633        error_setg(errp, "Number of interrupt needs to be greater than 0");
1634        return;
1635    }
1636
1637    if (xsrc->esb_shift != XIVE_ESB_4K &&
1638        xsrc->esb_shift != XIVE_ESB_64K) {
1639        error_setg(errp, "Invalid ESB shift setting");
1640        return;
1641    }
1642
1643    /*
1644     * Each END is assigned an even/odd pair of MMIO pages, the even page
1645     * manages the ESn field while the odd page manages the ESe field.
1646     */
1647    memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc),
1648                          &xive_end_source_ops, xsrc, "xive.end",
1649                          (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends);
1650}
1651
1652static Property xive_end_source_properties[] = {
1653    DEFINE_PROP_UINT8("block-id", XiveENDSource, block_id, 0),
1654    DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0),
1655    DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K),
1656    DEFINE_PROP_END_OF_LIST(),
1657};
1658
1659static void xive_end_source_class_init(ObjectClass *klass, void *data)
1660{
1661    DeviceClass *dc = DEVICE_CLASS(klass);
1662
1663    dc->desc    = "XIVE END Source";
1664    dc->props   = xive_end_source_properties;
1665    dc->realize = xive_end_source_realize;
1666}
1667
1668static const TypeInfo xive_end_source_info = {
1669    .name          = TYPE_XIVE_END_SOURCE,
1670    .parent        = TYPE_DEVICE,
1671    .instance_size = sizeof(XiveENDSource),
1672    .class_init    = xive_end_source_class_init,
1673};
1674
1675/*
1676 * XIVE Notifier
1677 */
1678static const TypeInfo xive_notifier_info = {
1679    .name = TYPE_XIVE_NOTIFIER,
1680    .parent = TYPE_INTERFACE,
1681    .class_size = sizeof(XiveNotifierClass),
1682};
1683
1684static void xive_register_types(void)
1685{
1686    type_register_static(&xive_source_info);
1687    type_register_static(&xive_notifier_info);
1688    type_register_static(&xive_router_info);
1689    type_register_static(&xive_end_source_info);
1690    type_register_static(&xive_tctx_info);
1691}
1692
1693type_init(xive_register_types)
1694