qemu/hw/net/rtl8139.c
<<
>>
Prefs
   1/**
   2 * QEMU RTL8139 emulation
   3 *
   4 * Copyright (c) 2006 Igor Kovalenko
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23
  24 * Modifications:
  25 *  2006-Jan-28  Mark Malakanov :   TSAD and CSCR implementation (for Windows driver)
  26 *
  27 *  2006-Apr-28  Juergen Lock   :   EEPROM emulation changes for FreeBSD driver
  28 *                                  HW revision ID changes for FreeBSD driver
  29 *
  30 *  2006-Jul-01  Igor Kovalenko :   Implemented loopback mode for FreeBSD driver
  31 *                                  Corrected packet transfer reassembly routine for 8139C+ mode
  32 *                                  Rearranged debugging print statements
  33 *                                  Implemented PCI timer interrupt (disabled by default)
  34 *                                  Implemented Tally Counters, increased VM load/save version
  35 *                                  Implemented IP/TCP/UDP checksum task offloading
  36 *
  37 *  2006-Jul-04  Igor Kovalenko :   Implemented TCP segmentation offloading
  38 *                                  Fixed MTU=1500 for produced ethernet frames
  39 *
  40 *  2006-Jul-09  Igor Kovalenko :   Fixed TCP header length calculation while processing
  41 *                                  segmentation offloading
  42 *                                  Removed slirp.h dependency
  43 *                                  Added rx/tx buffer reset when enabling rx/tx operation
  44 *
  45 *  2010-Feb-04  Frediano Ziglio:   Rewrote timer support using QEMU timer only
  46 *                                  when strictly needed (required for
  47 *                                  Darwin)
  48 *  2011-Mar-22  Benjamin Poirier:  Implemented VLAN offloading
  49 */
  50
  51/* For crc32 */
  52#include "qemu/osdep.h"
  53#include <zlib.h>
  54
  55#include "hw/hw.h"
  56#include "hw/pci/pci.h"
  57#include "sysemu/dma.h"
  58#include "qemu/timer.h"
  59#include "net/net.h"
  60#include "net/eth.h"
  61#include "sysemu/sysemu.h"
  62
  63/* debug RTL8139 card */
  64//#define DEBUG_RTL8139 1
  65
  66#define PCI_PERIOD 30    /* 30 ns period = 33.333333 Mhz frequency */
  67
  68#define SET_MASKED(input, mask, curr) \
  69    ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) )
  70
  71/* arg % size for size which is a power of 2 */
  72#define MOD2(input, size) \
  73    ( ( input ) & ( size - 1 )  )
  74
  75#define ETHER_TYPE_LEN 2
  76#define ETH_MTU     1500
  77
  78#define VLAN_TCI_LEN 2
  79#define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN)
  80
  81#if defined (DEBUG_RTL8139)
  82#  define DPRINTF(fmt, ...) \
  83    do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0)
  84#else
  85static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...)
  86{
  87    return 0;
  88}
  89#endif
  90
  91#define TYPE_RTL8139 "rtl8139"
  92
  93#define RTL8139(obj) \
  94     OBJECT_CHECK(RTL8139State, (obj), TYPE_RTL8139)
  95
  96/* Symbolic offsets to registers. */
  97enum RTL8139_registers {
  98    MAC0 = 0,        /* Ethernet hardware address. */
  99    MAR0 = 8,        /* Multicast filter. */
 100    TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */
 101                     /* Dump Tally Conter control register(64bit). C+ mode only */
 102    TxAddr0 = 0x20,  /* Tx descriptors (also four 32bit). */
 103    RxBuf = 0x30,
 104    ChipCmd = 0x37,
 105    RxBufPtr = 0x38,
 106    RxBufAddr = 0x3A,
 107    IntrMask = 0x3C,
 108    IntrStatus = 0x3E,
 109    TxConfig = 0x40,
 110    RxConfig = 0x44,
 111    Timer = 0x48,        /* A general-purpose counter. */
 112    RxMissed = 0x4C,    /* 24 bits valid, write clears. */
 113    Cfg9346 = 0x50,
 114    Config0 = 0x51,
 115    Config1 = 0x52,
 116    FlashReg = 0x54,
 117    MediaStatus = 0x58,
 118    Config3 = 0x59,
 119    Config4 = 0x5A,        /* absent on RTL-8139A */
 120    HltClk = 0x5B,
 121    MultiIntr = 0x5C,
 122    PCIRevisionID = 0x5E,
 123    TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/
 124    BasicModeCtrl = 0x62,
 125    BasicModeStatus = 0x64,
 126    NWayAdvert = 0x66,
 127    NWayLPAR = 0x68,
 128    NWayExpansion = 0x6A,
 129    /* Undocumented registers, but required for proper operation. */
 130    FIFOTMS = 0x70,        /* FIFO Control and test. */
 131    CSCR = 0x74,        /* Chip Status and Configuration Register. */
 132    PARA78 = 0x78,
 133    PARA7c = 0x7c,        /* Magic transceiver parameter register. */
 134    Config5 = 0xD8,        /* absent on RTL-8139A */
 135    /* C+ mode */
 136    TxPoll        = 0xD9,    /* Tell chip to check Tx descriptors for work */
 137    RxMaxSize    = 0xDA, /* Max size of an Rx packet (8169 only) */
 138    CpCmd        = 0xE0, /* C+ Command register (C+ mode only) */
 139    IntrMitigate    = 0xE2,    /* rx/tx interrupt mitigation control */
 140    RxRingAddrLO    = 0xE4, /* 64-bit start addr of Rx ring */
 141    RxRingAddrHI    = 0xE8, /* 64-bit start addr of Rx ring */
 142    TxThresh    = 0xEC, /* Early Tx threshold */
 143};
 144
 145enum ClearBitMasks {
 146    MultiIntrClear = 0xF000,
 147    ChipCmdClear = 0xE2,
 148    Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1),
 149};
 150
 151enum ChipCmdBits {
 152    CmdReset = 0x10,
 153    CmdRxEnb = 0x08,
 154    CmdTxEnb = 0x04,
 155    RxBufEmpty = 0x01,
 156};
 157
 158/* C+ mode */
 159enum CplusCmdBits {
 160    CPlusRxVLAN   = 0x0040, /* enable receive VLAN detagging */
 161    CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */
 162    CPlusRxEnb    = 0x0002,
 163    CPlusTxEnb    = 0x0001,
 164};
 165
 166/* Interrupt register bits, using my own meaningful names. */
 167enum IntrStatusBits {
 168    PCIErr = 0x8000,
 169    PCSTimeout = 0x4000,
 170    RxFIFOOver = 0x40,
 171    RxUnderrun = 0x20, /* Packet Underrun / Link Change */
 172    RxOverflow = 0x10,
 173    TxErr = 0x08,
 174    TxOK = 0x04,
 175    RxErr = 0x02,
 176    RxOK = 0x01,
 177
 178    RxAckBits = RxFIFOOver | RxOverflow | RxOK,
 179};
 180
 181enum TxStatusBits {
 182    TxHostOwns = 0x2000,
 183    TxUnderrun = 0x4000,
 184    TxStatOK = 0x8000,
 185    TxOutOfWindow = 0x20000000,
 186    TxAborted = 0x40000000,
 187    TxCarrierLost = 0x80000000,
 188};
 189enum RxStatusBits {
 190    RxMulticast = 0x8000,
 191    RxPhysical = 0x4000,
 192    RxBroadcast = 0x2000,
 193    RxBadSymbol = 0x0020,
 194    RxRunt = 0x0010,
 195    RxTooLong = 0x0008,
 196    RxCRCErr = 0x0004,
 197    RxBadAlign = 0x0002,
 198    RxStatusOK = 0x0001,
 199};
 200
 201/* Bits in RxConfig. */
 202enum rx_mode_bits {
 203    AcceptErr = 0x20,
 204    AcceptRunt = 0x10,
 205    AcceptBroadcast = 0x08,
 206    AcceptMulticast = 0x04,
 207    AcceptMyPhys = 0x02,
 208    AcceptAllPhys = 0x01,
 209};
 210
 211/* Bits in TxConfig. */
 212enum tx_config_bits {
 213
 214        /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */
 215        TxIFGShift = 24,
 216        TxIFG84 = (0 << TxIFGShift),    /* 8.4us / 840ns (10 / 100Mbps) */
 217        TxIFG88 = (1 << TxIFGShift),    /* 8.8us / 880ns (10 / 100Mbps) */
 218        TxIFG92 = (2 << TxIFGShift),    /* 9.2us / 920ns (10 / 100Mbps) */
 219        TxIFG96 = (3 << TxIFGShift),    /* 9.6us / 960ns (10 / 100Mbps) */
 220
 221    TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */
 222    TxCRC = (1 << 16),    /* DISABLE appending CRC to end of Tx packets */
 223    TxClearAbt = (1 << 0),    /* Clear abort (WO) */
 224    TxDMAShift = 8,        /* DMA burst value (0-7) is shifted this many bits */
 225    TxRetryShift = 4,    /* TXRR value (0-15) is shifted this many bits */
 226
 227    TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */
 228};
 229
 230
 231/* Transmit Status of All Descriptors (TSAD) Register */
 232enum TSAD_bits {
 233 TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3
 234 TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2
 235 TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1
 236 TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0
 237 TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3
 238 TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2
 239 TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1
 240 TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0
 241 TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3
 242 TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2
 243 TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1
 244 TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0
 245 TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3
 246 TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2
 247 TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1
 248 TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0
 249};
 250
 251
 252/* Bits in Config1 */
 253enum Config1Bits {
 254    Cfg1_PM_Enable = 0x01,
 255    Cfg1_VPD_Enable = 0x02,
 256    Cfg1_PIO = 0x04,
 257    Cfg1_MMIO = 0x08,
 258    LWAKE = 0x10,        /* not on 8139, 8139A */
 259    Cfg1_Driver_Load = 0x20,
 260    Cfg1_LED0 = 0x40,
 261    Cfg1_LED1 = 0x80,
 262    SLEEP = (1 << 1),    /* only on 8139, 8139A */
 263    PWRDN = (1 << 0),    /* only on 8139, 8139A */
 264};
 265
 266/* Bits in Config3 */
 267enum Config3Bits {
 268    Cfg3_FBtBEn    = (1 << 0), /* 1 = Fast Back to Back */
 269    Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */
 270    Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */
 271    Cfg3_CardB_En  = (1 << 3), /* 1 = enable CardBus registers */
 272    Cfg3_LinkUp    = (1 << 4), /* 1 = wake up on link up */
 273    Cfg3_Magic     = (1 << 5), /* 1 = wake up on Magic Packet (tm) */
 274    Cfg3_PARM_En   = (1 << 6), /* 0 = software can set twister parameters */
 275    Cfg3_GNTSel    = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */
 276};
 277
 278/* Bits in Config4 */
 279enum Config4Bits {
 280    LWPTN = (1 << 2),    /* not on 8139, 8139A */
 281};
 282
 283/* Bits in Config5 */
 284enum Config5Bits {
 285    Cfg5_PME_STS     = (1 << 0), /* 1 = PCI reset resets PME_Status */
 286    Cfg5_LANWake     = (1 << 1), /* 1 = enable LANWake signal */
 287    Cfg5_LDPS        = (1 << 2), /* 0 = save power when link is down */
 288    Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */
 289    Cfg5_UWF         = (1 << 4), /* 1 = accept unicast wakeup frame */
 290    Cfg5_MWF         = (1 << 5), /* 1 = accept multicast wakeup frame */
 291    Cfg5_BWF         = (1 << 6), /* 1 = accept broadcast wakeup frame */
 292};
 293
 294enum RxConfigBits {
 295    /* rx fifo threshold */
 296    RxCfgFIFOShift = 13,
 297    RxCfgFIFONone = (7 << RxCfgFIFOShift),
 298
 299    /* Max DMA burst */
 300    RxCfgDMAShift = 8,
 301    RxCfgDMAUnlimited = (7 << RxCfgDMAShift),
 302
 303    /* rx ring buffer length */
 304    RxCfgRcv8K = 0,
 305    RxCfgRcv16K = (1 << 11),
 306    RxCfgRcv32K = (1 << 12),
 307    RxCfgRcv64K = (1 << 11) | (1 << 12),
 308
 309    /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */
 310    RxNoWrap = (1 << 7),
 311};
 312
 313/* Twister tuning parameters from RealTek.
 314   Completely undocumented, but required to tune bad links on some boards. */
 315/*
 316enum CSCRBits {
 317    CSCR_LinkOKBit = 0x0400,
 318    CSCR_LinkChangeBit = 0x0800,
 319    CSCR_LinkStatusBits = 0x0f000,
 320    CSCR_LinkDownOffCmd = 0x003c0,
 321    CSCR_LinkDownCmd = 0x0f3c0,
 322*/
 323enum CSCRBits {
 324    CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */
 325    CSCR_LD  = 1<<9,  /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/
 326    CSCR_HEART_BIT = 1<<8,  /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/
 327    CSCR_JBEN = 1<<7,  /* 1 = enable jabber function. 0 = disable jabber function, def 1*/
 328    CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/
 329    CSCR_F_Connect  = 1<<5,  /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/
 330    CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/
 331    CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/
 332    CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/
 333};
 334
 335enum Cfg9346Bits {
 336    Cfg9346_Normal = 0x00,
 337    Cfg9346_Autoload = 0x40,
 338    Cfg9346_Programming = 0x80,
 339    Cfg9346_ConfigWrite = 0xC0,
 340};
 341
 342typedef enum {
 343    CH_8139 = 0,
 344    CH_8139_K,
 345    CH_8139A,
 346    CH_8139A_G,
 347    CH_8139B,
 348    CH_8130,
 349    CH_8139C,
 350    CH_8100,
 351    CH_8100B_8139D,
 352    CH_8101,
 353} chip_t;
 354
 355enum chip_flags {
 356    HasHltClk = (1 << 0),
 357    HasLWake = (1 << 1),
 358};
 359
 360#define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \
 361    (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22)
 362#define HW_REVID_MASK    HW_REVID(1, 1, 1, 1, 1, 1, 1)
 363
 364#define RTL8139_PCI_REVID_8139      0x10
 365#define RTL8139_PCI_REVID_8139CPLUS 0x20
 366
 367#define RTL8139_PCI_REVID           RTL8139_PCI_REVID_8139CPLUS
 368
 369/* Size is 64 * 16bit words */
 370#define EEPROM_9346_ADDR_BITS 6
 371#define EEPROM_9346_SIZE  (1 << EEPROM_9346_ADDR_BITS)
 372#define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1)
 373
 374enum Chip9346Operation
 375{
 376    Chip9346_op_mask = 0xc0,          /* 10 zzzzzz */
 377    Chip9346_op_read = 0x80,          /* 10 AAAAAA */
 378    Chip9346_op_write = 0x40,         /* 01 AAAAAA D(15)..D(0) */
 379    Chip9346_op_ext_mask = 0xf0,      /* 11 zzzzzz */
 380    Chip9346_op_write_enable = 0x30,  /* 00 11zzzz */
 381    Chip9346_op_write_all = 0x10,     /* 00 01zzzz */
 382    Chip9346_op_write_disable = 0x00, /* 00 00zzzz */
 383};
 384
 385enum Chip9346Mode
 386{
 387    Chip9346_none = 0,
 388    Chip9346_enter_command_mode,
 389    Chip9346_read_command,
 390    Chip9346_data_read,      /* from output register */
 391    Chip9346_data_write,     /* to input register, then to contents at specified address */
 392    Chip9346_data_write_all, /* to input register, then filling contents */
 393};
 394
 395typedef struct EEprom9346
 396{
 397    uint16_t contents[EEPROM_9346_SIZE];
 398    int      mode;
 399    uint32_t tick;
 400    uint8_t  address;
 401    uint16_t input;
 402    uint16_t output;
 403
 404    uint8_t eecs;
 405    uint8_t eesk;
 406    uint8_t eedi;
 407    uint8_t eedo;
 408} EEprom9346;
 409
 410typedef struct RTL8139TallyCounters
 411{
 412    /* Tally counters */
 413    uint64_t   TxOk;
 414    uint64_t   RxOk;
 415    uint64_t   TxERR;
 416    uint32_t   RxERR;
 417    uint16_t   MissPkt;
 418    uint16_t   FAE;
 419    uint32_t   Tx1Col;
 420    uint32_t   TxMCol;
 421    uint64_t   RxOkPhy;
 422    uint64_t   RxOkBrd;
 423    uint32_t   RxOkMul;
 424    uint16_t   TxAbt;
 425    uint16_t   TxUndrn;
 426} RTL8139TallyCounters;
 427
 428/* Clears all tally counters */
 429static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters);
 430
 431typedef struct RTL8139State {
 432    /*< private >*/
 433    PCIDevice parent_obj;
 434    /*< public >*/
 435
 436    uint8_t phys[8]; /* mac address */
 437    uint8_t mult[8]; /* multicast mask array */
 438
 439    uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */
 440    uint32_t TxAddr[4];   /* TxAddr0 */
 441    uint32_t RxBuf;       /* Receive buffer */
 442    uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */
 443    uint32_t RxBufPtr;
 444    uint32_t RxBufAddr;
 445
 446    uint16_t IntrStatus;
 447    uint16_t IntrMask;
 448
 449    uint32_t TxConfig;
 450    uint32_t RxConfig;
 451    uint32_t RxMissed;
 452
 453    uint16_t CSCR;
 454
 455    uint8_t  Cfg9346;
 456    uint8_t  Config0;
 457    uint8_t  Config1;
 458    uint8_t  Config3;
 459    uint8_t  Config4;
 460    uint8_t  Config5;
 461
 462    uint8_t  clock_enabled;
 463    uint8_t  bChipCmdState;
 464
 465    uint16_t MultiIntr;
 466
 467    uint16_t BasicModeCtrl;
 468    uint16_t BasicModeStatus;
 469    uint16_t NWayAdvert;
 470    uint16_t NWayLPAR;
 471    uint16_t NWayExpansion;
 472
 473    uint16_t CpCmd;
 474    uint8_t  TxThresh;
 475
 476    NICState *nic;
 477    NICConf conf;
 478
 479    /* C ring mode */
 480    uint32_t   currTxDesc;
 481
 482    /* C+ mode */
 483    uint32_t   cplus_enabled;
 484
 485    uint32_t   currCPlusRxDesc;
 486    uint32_t   currCPlusTxDesc;
 487
 488    uint32_t   RxRingAddrLO;
 489    uint32_t   RxRingAddrHI;
 490
 491    EEprom9346 eeprom;
 492
 493    uint32_t   TCTR;
 494    uint32_t   TimerInt;
 495    int64_t    TCTR_base;
 496
 497    /* Tally counters */
 498    RTL8139TallyCounters tally_counters;
 499
 500    /* Non-persistent data */
 501    uint8_t   *cplus_txbuffer;
 502    int        cplus_txbuffer_len;
 503    int        cplus_txbuffer_offset;
 504
 505    /* PCI interrupt timer */
 506    QEMUTimer *timer;
 507
 508    MemoryRegion bar_io;
 509    MemoryRegion bar_mem;
 510
 511    /* Support migration to/from old versions */
 512    int rtl8139_mmio_io_addr_dummy;
 513} RTL8139State;
 514
 515/* Writes tally counters to memory via DMA */
 516static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr);
 517
 518static void rtl8139_set_next_tctr_time(RTL8139State *s);
 519
 520static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command)
 521{
 522    DPRINTF("eeprom command 0x%02x\n", command);
 523
 524    switch (command & Chip9346_op_mask)
 525    {
 526        case Chip9346_op_read:
 527        {
 528            eeprom->address = command & EEPROM_9346_ADDR_MASK;
 529            eeprom->output = eeprom->contents[eeprom->address];
 530            eeprom->eedo = 0;
 531            eeprom->tick = 0;
 532            eeprom->mode = Chip9346_data_read;
 533            DPRINTF("eeprom read from address 0x%02x data=0x%04x\n",
 534                eeprom->address, eeprom->output);
 535        }
 536        break;
 537
 538        case Chip9346_op_write:
 539        {
 540            eeprom->address = command & EEPROM_9346_ADDR_MASK;
 541            eeprom->input = 0;
 542            eeprom->tick = 0;
 543            eeprom->mode = Chip9346_none; /* Chip9346_data_write */
 544            DPRINTF("eeprom begin write to address 0x%02x\n",
 545                eeprom->address);
 546        }
 547        break;
 548        default:
 549            eeprom->mode = Chip9346_none;
 550            switch (command & Chip9346_op_ext_mask)
 551            {
 552                case Chip9346_op_write_enable:
 553                    DPRINTF("eeprom write enabled\n");
 554                    break;
 555                case Chip9346_op_write_all:
 556                    DPRINTF("eeprom begin write all\n");
 557                    break;
 558                case Chip9346_op_write_disable:
 559                    DPRINTF("eeprom write disabled\n");
 560                    break;
 561            }
 562            break;
 563    }
 564}
 565
 566static void prom9346_shift_clock(EEprom9346 *eeprom)
 567{
 568    int bit = eeprom->eedi?1:0;
 569
 570    ++ eeprom->tick;
 571
 572    DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi,
 573        eeprom->eedo);
 574
 575    switch (eeprom->mode)
 576    {
 577        case Chip9346_enter_command_mode:
 578            if (bit)
 579            {
 580                eeprom->mode = Chip9346_read_command;
 581                eeprom->tick = 0;
 582                eeprom->input = 0;
 583                DPRINTF("eeprom: +++ synchronized, begin command read\n");
 584            }
 585            break;
 586
 587        case Chip9346_read_command:
 588            eeprom->input = (eeprom->input << 1) | (bit & 1);
 589            if (eeprom->tick == 8)
 590            {
 591                prom9346_decode_command(eeprom, eeprom->input & 0xff);
 592            }
 593            break;
 594
 595        case Chip9346_data_read:
 596            eeprom->eedo = (eeprom->output & 0x8000)?1:0;
 597            eeprom->output <<= 1;
 598            if (eeprom->tick == 16)
 599            {
 600#if 1
 601        // the FreeBSD drivers (rl and re) don't explicitly toggle
 602        // CS between reads (or does setting Cfg9346 to 0 count too?),
 603        // so we need to enter wait-for-command state here
 604                eeprom->mode = Chip9346_enter_command_mode;
 605                eeprom->input = 0;
 606                eeprom->tick = 0;
 607
 608                DPRINTF("eeprom: +++ end of read, awaiting next command\n");
 609#else
 610        // original behaviour
 611                ++eeprom->address;
 612                eeprom->address &= EEPROM_9346_ADDR_MASK;
 613                eeprom->output = eeprom->contents[eeprom->address];
 614                eeprom->tick = 0;
 615
 616                DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n",
 617                    eeprom->address, eeprom->output);
 618#endif
 619            }
 620            break;
 621
 622        case Chip9346_data_write:
 623            eeprom->input = (eeprom->input << 1) | (bit & 1);
 624            if (eeprom->tick == 16)
 625            {
 626                DPRINTF("eeprom write to address 0x%02x data=0x%04x\n",
 627                    eeprom->address, eeprom->input);
 628
 629                eeprom->contents[eeprom->address] = eeprom->input;
 630                eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */
 631                eeprom->tick = 0;
 632                eeprom->input = 0;
 633            }
 634            break;
 635
 636        case Chip9346_data_write_all:
 637            eeprom->input = (eeprom->input << 1) | (bit & 1);
 638            if (eeprom->tick == 16)
 639            {
 640                int i;
 641                for (i = 0; i < EEPROM_9346_SIZE; i++)
 642                {
 643                    eeprom->contents[i] = eeprom->input;
 644                }
 645                DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input);
 646
 647                eeprom->mode = Chip9346_enter_command_mode;
 648                eeprom->tick = 0;
 649                eeprom->input = 0;
 650            }
 651            break;
 652
 653        default:
 654            break;
 655    }
 656}
 657
 658static int prom9346_get_wire(RTL8139State *s)
 659{
 660    EEprom9346 *eeprom = &s->eeprom;
 661    if (!eeprom->eecs)
 662        return 0;
 663
 664    return eeprom->eedo;
 665}
 666
 667/* FIXME: This should be merged into/replaced by eeprom93xx.c.  */
 668static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi)
 669{
 670    EEprom9346 *eeprom = &s->eeprom;
 671    uint8_t old_eecs = eeprom->eecs;
 672    uint8_t old_eesk = eeprom->eesk;
 673
 674    eeprom->eecs = eecs;
 675    eeprom->eesk = eesk;
 676    eeprom->eedi = eedi;
 677
 678    DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs,
 679        eeprom->eesk, eeprom->eedi, eeprom->eedo);
 680
 681    if (!old_eecs && eecs)
 682    {
 683        /* Synchronize start */
 684        eeprom->tick = 0;
 685        eeprom->input = 0;
 686        eeprom->output = 0;
 687        eeprom->mode = Chip9346_enter_command_mode;
 688
 689        DPRINTF("=== eeprom: begin access, enter command mode\n");
 690    }
 691
 692    if (!eecs)
 693    {
 694        DPRINTF("=== eeprom: end access\n");
 695        return;
 696    }
 697
 698    if (!old_eesk && eesk)
 699    {
 700        /* SK front rules */
 701        prom9346_shift_clock(eeprom);
 702    }
 703}
 704
 705static void rtl8139_update_irq(RTL8139State *s)
 706{
 707    PCIDevice *d = PCI_DEVICE(s);
 708    int isr;
 709    isr = (s->IntrStatus & s->IntrMask) & 0xffff;
 710
 711    DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus,
 712        s->IntrMask);
 713
 714    pci_set_irq(d, (isr != 0));
 715}
 716
 717static int rtl8139_RxWrap(RTL8139State *s)
 718{
 719    /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */
 720    return (s->RxConfig & (1 << 7));
 721}
 722
 723static int rtl8139_receiver_enabled(RTL8139State *s)
 724{
 725    return s->bChipCmdState & CmdRxEnb;
 726}
 727
 728static int rtl8139_transmitter_enabled(RTL8139State *s)
 729{
 730    return s->bChipCmdState & CmdTxEnb;
 731}
 732
 733static int rtl8139_cp_receiver_enabled(RTL8139State *s)
 734{
 735    return s->CpCmd & CPlusRxEnb;
 736}
 737
 738static int rtl8139_cp_transmitter_enabled(RTL8139State *s)
 739{
 740    return s->CpCmd & CPlusTxEnb;
 741}
 742
 743static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size)
 744{
 745    PCIDevice *d = PCI_DEVICE(s);
 746
 747    if (s->RxBufAddr + size > s->RxBufferSize)
 748    {
 749        int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize);
 750
 751        /* write packet data */
 752        if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s)))
 753        {
 754            DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped);
 755
 756            if (size > wrapped)
 757            {
 758                pci_dma_write(d, s->RxBuf + s->RxBufAddr,
 759                              buf, size-wrapped);
 760            }
 761
 762            /* reset buffer pointer */
 763            s->RxBufAddr = 0;
 764
 765            pci_dma_write(d, s->RxBuf + s->RxBufAddr,
 766                          buf + (size-wrapped), wrapped);
 767
 768            s->RxBufAddr = wrapped;
 769
 770            return;
 771        }
 772    }
 773
 774    /* non-wrapping path or overwrapping enabled */
 775    pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size);
 776
 777    s->RxBufAddr += size;
 778}
 779
 780#define MIN_BUF_SIZE 60
 781static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high)
 782{
 783    return low | ((uint64_t)high << 32);
 784}
 785
 786/* Workaround for buggy guest driver such as linux who allocates rx
 787 * rings after the receiver were enabled. */
 788static bool rtl8139_cp_rx_valid(RTL8139State *s)
 789{
 790    return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0);
 791}
 792
 793static int rtl8139_can_receive(NetClientState *nc)
 794{
 795    RTL8139State *s = qemu_get_nic_opaque(nc);
 796    int avail;
 797
 798    /* Receive (drop) packets if card is disabled.  */
 799    if (!s->clock_enabled)
 800      return 1;
 801    if (!rtl8139_receiver_enabled(s))
 802      return 1;
 803
 804    if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) {
 805        /* ??? Flow control not implemented in c+ mode.
 806           This is a hack to work around slirp deficiencies anyway.  */
 807        return 1;
 808    } else {
 809        avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr,
 810                     s->RxBufferSize);
 811        return (avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow));
 812    }
 813}
 814
 815static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt)
 816{
 817    RTL8139State *s = qemu_get_nic_opaque(nc);
 818    PCIDevice *d = PCI_DEVICE(s);
 819    /* size is the length of the buffer passed to the driver */
 820    size_t size = size_;
 821    const uint8_t *dot1q_buf = NULL;
 822
 823    uint32_t packet_header = 0;
 824
 825    uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN];
 826    static const uint8_t broadcast_macaddr[6] =
 827        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
 828
 829    DPRINTF(">>> received len=%zu\n", size);
 830
 831    /* test if board clock is stopped */
 832    if (!s->clock_enabled)
 833    {
 834        DPRINTF("stopped ==========================\n");
 835        return -1;
 836    }
 837
 838    /* first check if receiver is enabled */
 839
 840    if (!rtl8139_receiver_enabled(s))
 841    {
 842        DPRINTF("receiver disabled ================\n");
 843        return -1;
 844    }
 845
 846    /* XXX: check this */
 847    if (s->RxConfig & AcceptAllPhys) {
 848        /* promiscuous: receive all */
 849        DPRINTF(">>> packet received in promiscuous mode\n");
 850
 851    } else {
 852        if (!memcmp(buf,  broadcast_macaddr, 6)) {
 853            /* broadcast address */
 854            if (!(s->RxConfig & AcceptBroadcast))
 855            {
 856                DPRINTF(">>> broadcast packet rejected\n");
 857
 858                /* update tally counter */
 859                ++s->tally_counters.RxERR;
 860
 861                return size;
 862            }
 863
 864            packet_header |= RxBroadcast;
 865
 866            DPRINTF(">>> broadcast packet received\n");
 867
 868            /* update tally counter */
 869            ++s->tally_counters.RxOkBrd;
 870
 871        } else if (buf[0] & 0x01) {
 872            /* multicast */
 873            if (!(s->RxConfig & AcceptMulticast))
 874            {
 875                DPRINTF(">>> multicast packet rejected\n");
 876
 877                /* update tally counter */
 878                ++s->tally_counters.RxERR;
 879
 880                return size;
 881            }
 882
 883            int mcast_idx = net_crc32(buf, ETH_ALEN) >> 26;
 884
 885            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
 886            {
 887                DPRINTF(">>> multicast address mismatch\n");
 888
 889                /* update tally counter */
 890                ++s->tally_counters.RxERR;
 891
 892                return size;
 893            }
 894
 895            packet_header |= RxMulticast;
 896
 897            DPRINTF(">>> multicast packet received\n");
 898
 899            /* update tally counter */
 900            ++s->tally_counters.RxOkMul;
 901
 902        } else if (s->phys[0] == buf[0] &&
 903                   s->phys[1] == buf[1] &&
 904                   s->phys[2] == buf[2] &&
 905                   s->phys[3] == buf[3] &&
 906                   s->phys[4] == buf[4] &&
 907                   s->phys[5] == buf[5]) {
 908            /* match */
 909            if (!(s->RxConfig & AcceptMyPhys))
 910            {
 911                DPRINTF(">>> rejecting physical address matching packet\n");
 912
 913                /* update tally counter */
 914                ++s->tally_counters.RxERR;
 915
 916                return size;
 917            }
 918
 919            packet_header |= RxPhysical;
 920
 921            DPRINTF(">>> physical address matching packet received\n");
 922
 923            /* update tally counter */
 924            ++s->tally_counters.RxOkPhy;
 925
 926        } else {
 927
 928            DPRINTF(">>> unknown packet\n");
 929
 930            /* update tally counter */
 931            ++s->tally_counters.RxERR;
 932
 933            return size;
 934        }
 935    }
 936
 937    /* if too small buffer, then expand it
 938     * Include some tailroom in case a vlan tag is later removed. */
 939    if (size < MIN_BUF_SIZE + VLAN_HLEN) {
 940        memcpy(buf1, buf, size);
 941        memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size);
 942        buf = buf1;
 943        if (size < MIN_BUF_SIZE) {
 944            size = MIN_BUF_SIZE;
 945        }
 946    }
 947
 948    if (rtl8139_cp_receiver_enabled(s))
 949    {
 950        if (!rtl8139_cp_rx_valid(s)) {
 951            return size;
 952        }
 953
 954        DPRINTF("in C+ Rx mode ================\n");
 955
 956        /* begin C+ receiver mode */
 957
 958/* w0 ownership flag */
 959#define CP_RX_OWN (1<<31)
 960/* w0 end of ring flag */
 961#define CP_RX_EOR (1<<30)
 962/* w0 bits 0...12 : buffer size */
 963#define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1)
 964/* w1 tag available flag */
 965#define CP_RX_TAVA (1<<16)
 966/* w1 bits 0...15 : VLAN tag */
 967#define CP_RX_VLAN_TAG_MASK ((1<<16) - 1)
 968/* w2 low  32bit of Rx buffer ptr */
 969/* w3 high 32bit of Rx buffer ptr */
 970
 971        int descriptor = s->currCPlusRxDesc;
 972        dma_addr_t cplus_rx_ring_desc;
 973
 974        cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI);
 975        cplus_rx_ring_desc += 16 * descriptor;
 976
 977        DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at "
 978            "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI,
 979            s->RxRingAddrLO, cplus_rx_ring_desc);
 980
 981        uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI;
 982
 983        pci_dma_read(d, cplus_rx_ring_desc, &val, 4);
 984        rxdw0 = le32_to_cpu(val);
 985        pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4);
 986        rxdw1 = le32_to_cpu(val);
 987        pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4);
 988        rxbufLO = le32_to_cpu(val);
 989        pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4);
 990        rxbufHI = le32_to_cpu(val);
 991
 992        DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n",
 993            descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI);
 994
 995        if (!(rxdw0 & CP_RX_OWN))
 996        {
 997            DPRINTF("C+ Rx mode : descriptor %d is owned by host\n",
 998                descriptor);
 999
1000            s->IntrStatus |= RxOverflow;
1001            ++s->RxMissed;
1002
1003            /* update tally counter */
1004            ++s->tally_counters.RxERR;
1005            ++s->tally_counters.MissPkt;
1006
1007            rtl8139_update_irq(s);
1008            return size_;
1009        }
1010
1011        uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK;
1012
1013        /* write VLAN info to descriptor variables. */
1014        if (s->CpCmd & CPlusRxVLAN &&
1015            lduw_be_p(&buf[ETH_ALEN * 2]) == ETH_P_VLAN) {
1016            dot1q_buf = &buf[ETH_ALEN * 2];
1017            size -= VLAN_HLEN;
1018            /* if too small buffer, use the tailroom added duing expansion */
1019            if (size < MIN_BUF_SIZE) {
1020                size = MIN_BUF_SIZE;
1021            }
1022
1023            rxdw1 &= ~CP_RX_VLAN_TAG_MASK;
1024            /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */
1025            rxdw1 |= CP_RX_TAVA | lduw_le_p(&dot1q_buf[ETHER_TYPE_LEN]);
1026
1027            DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n",
1028                lduw_be_p(&dot1q_buf[ETHER_TYPE_LEN]));
1029        } else {
1030            /* reset VLAN tag flag */
1031            rxdw1 &= ~CP_RX_TAVA;
1032        }
1033
1034        /* TODO: scatter the packet over available receive ring descriptors space */
1035
1036        if (size+4 > rx_space)
1037        {
1038            DPRINTF("C+ Rx mode : descriptor %d size %d received %zu + 4\n",
1039                descriptor, rx_space, size);
1040
1041            s->IntrStatus |= RxOverflow;
1042            ++s->RxMissed;
1043
1044            /* update tally counter */
1045            ++s->tally_counters.RxERR;
1046            ++s->tally_counters.MissPkt;
1047
1048            rtl8139_update_irq(s);
1049            return size_;
1050        }
1051
1052        dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI);
1053
1054        /* receive/copy to target memory */
1055        if (dot1q_buf) {
1056            pci_dma_write(d, rx_addr, buf, 2 * ETH_ALEN);
1057            pci_dma_write(d, rx_addr + 2 * ETH_ALEN,
1058                          buf + 2 * ETH_ALEN + VLAN_HLEN,
1059                          size - 2 * ETH_ALEN);
1060        } else {
1061            pci_dma_write(d, rx_addr, buf, size);
1062        }
1063
1064        if (s->CpCmd & CPlusRxChkSum)
1065        {
1066            /* do some packet checksumming */
1067        }
1068
1069        /* write checksum */
1070        val = cpu_to_le32(crc32(0, buf, size_));
1071        pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4);
1072
1073/* first segment of received packet flag */
1074#define CP_RX_STATUS_FS (1<<29)
1075/* last segment of received packet flag */
1076#define CP_RX_STATUS_LS (1<<28)
1077/* multicast packet flag */
1078#define CP_RX_STATUS_MAR (1<<26)
1079/* physical-matching packet flag */
1080#define CP_RX_STATUS_PAM (1<<25)
1081/* broadcast packet flag */
1082#define CP_RX_STATUS_BAR (1<<24)
1083/* runt packet flag */
1084#define CP_RX_STATUS_RUNT (1<<19)
1085/* crc error flag */
1086#define CP_RX_STATUS_CRC (1<<18)
1087/* IP checksum error flag */
1088#define CP_RX_STATUS_IPF (1<<15)
1089/* UDP checksum error flag */
1090#define CP_RX_STATUS_UDPF (1<<14)
1091/* TCP checksum error flag */
1092#define CP_RX_STATUS_TCPF (1<<13)
1093
1094        /* transfer ownership to target */
1095        rxdw0 &= ~CP_RX_OWN;
1096
1097        /* set first segment bit */
1098        rxdw0 |= CP_RX_STATUS_FS;
1099
1100        /* set last segment bit */
1101        rxdw0 |= CP_RX_STATUS_LS;
1102
1103        /* set received packet type flags */
1104        if (packet_header & RxBroadcast)
1105            rxdw0 |= CP_RX_STATUS_BAR;
1106        if (packet_header & RxMulticast)
1107            rxdw0 |= CP_RX_STATUS_MAR;
1108        if (packet_header & RxPhysical)
1109            rxdw0 |= CP_RX_STATUS_PAM;
1110
1111        /* set received size */
1112        rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK;
1113        rxdw0 |= (size+4);
1114
1115        /* update ring data */
1116        val = cpu_to_le32(rxdw0);
1117        pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4);
1118        val = cpu_to_le32(rxdw1);
1119        pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4);
1120
1121        /* update tally counter */
1122        ++s->tally_counters.RxOk;
1123
1124        /* seek to next Rx descriptor */
1125        if (rxdw0 & CP_RX_EOR)
1126        {
1127            s->currCPlusRxDesc = 0;
1128        }
1129        else
1130        {
1131            ++s->currCPlusRxDesc;
1132        }
1133
1134        DPRINTF("done C+ Rx mode ----------------\n");
1135
1136    }
1137    else
1138    {
1139        DPRINTF("in ring Rx mode ================\n");
1140
1141        /* begin ring receiver mode */
1142        int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize);
1143
1144        /* if receiver buffer is empty then avail == 0 */
1145
1146#define RX_ALIGN(x) (((x) + 3) & ~0x3)
1147
1148        if (avail != 0 && RX_ALIGN(size + 8) >= avail)
1149        {
1150            DPRINTF("rx overflow: rx buffer length %d head 0x%04x "
1151                "read 0x%04x === available 0x%04x need 0x%04zx\n",
1152                s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8);
1153
1154            s->IntrStatus |= RxOverflow;
1155            ++s->RxMissed;
1156            rtl8139_update_irq(s);
1157            return 0;
1158        }
1159
1160        packet_header |= RxStatusOK;
1161
1162        packet_header |= (((size+4) << 16) & 0xffff0000);
1163
1164        /* write header */
1165        uint32_t val = cpu_to_le32(packet_header);
1166
1167        rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1168
1169        rtl8139_write_buffer(s, buf, size);
1170
1171        /* write checksum */
1172        val = cpu_to_le32(crc32(0, buf, size));
1173        rtl8139_write_buffer(s, (uint8_t *)&val, 4);
1174
1175        /* correct buffer write pointer */
1176        s->RxBufAddr = MOD2(RX_ALIGN(s->RxBufAddr), s->RxBufferSize);
1177
1178        /* now we can signal we have received something */
1179
1180        DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n",
1181            s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
1182    }
1183
1184    s->IntrStatus |= RxOK;
1185
1186    if (do_interrupt)
1187    {
1188        rtl8139_update_irq(s);
1189    }
1190
1191    return size_;
1192}
1193
1194static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size)
1195{
1196    return rtl8139_do_receive(nc, buf, size, 1);
1197}
1198
1199static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize)
1200{
1201    s->RxBufferSize = bufferSize;
1202    s->RxBufPtr  = 0;
1203    s->RxBufAddr = 0;
1204}
1205
1206static void rtl8139_reset_phy(RTL8139State *s)
1207{
1208    s->BasicModeStatus  = 0x7809;
1209    s->BasicModeStatus |= 0x0020; /* autonegotiation completed */
1210    /* preserve link state */
1211    s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04;
1212
1213    s->NWayAdvert    = 0x05e1; /* all modes, full duplex */
1214    s->NWayLPAR      = 0x05e1; /* all modes, full duplex */
1215    s->NWayExpansion = 0x0001; /* autonegotiation supported */
1216
1217    s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD;
1218}
1219
1220static void rtl8139_reset(DeviceState *d)
1221{
1222    RTL8139State *s = RTL8139(d);
1223    int i;
1224
1225    /* restore MAC address */
1226    memcpy(s->phys, s->conf.macaddr.a, 6);
1227    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
1228
1229    /* reset interrupt mask */
1230    s->IntrStatus = 0;
1231    s->IntrMask = 0;
1232
1233    rtl8139_update_irq(s);
1234
1235    /* mark all status registers as owned by host */
1236    for (i = 0; i < 4; ++i)
1237    {
1238        s->TxStatus[i] = TxHostOwns;
1239    }
1240
1241    s->currTxDesc = 0;
1242    s->currCPlusRxDesc = 0;
1243    s->currCPlusTxDesc = 0;
1244
1245    s->RxRingAddrLO = 0;
1246    s->RxRingAddrHI = 0;
1247
1248    s->RxBuf = 0;
1249
1250    rtl8139_reset_rxring(s, 8192);
1251
1252    /* ACK the reset */
1253    s->TxConfig = 0;
1254
1255#if 0
1256//    s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139  HasHltClk
1257    s->clock_enabled = 0;
1258#else
1259    s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake
1260    s->clock_enabled = 1;
1261#endif
1262
1263    s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */;
1264
1265    /* set initial state data */
1266    s->Config0 = 0x0; /* No boot ROM */
1267    s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */
1268    s->Config3 = 0x1; /* fast back-to-back compatible */
1269    s->Config5 = 0x0;
1270
1271    s->CpCmd   = 0x0; /* reset C+ mode */
1272    s->cplus_enabled = 0;
1273
1274//    s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation
1275//    s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex
1276    s->BasicModeCtrl = 0x1000; // autonegotiation
1277
1278    rtl8139_reset_phy(s);
1279
1280    /* also reset timer and disable timer interrupt */
1281    s->TCTR = 0;
1282    s->TimerInt = 0;
1283    s->TCTR_base = 0;
1284    rtl8139_set_next_tctr_time(s);
1285
1286    /* reset tally counters */
1287    RTL8139TallyCounters_clear(&s->tally_counters);
1288}
1289
1290static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters)
1291{
1292    counters->TxOk = 0;
1293    counters->RxOk = 0;
1294    counters->TxERR = 0;
1295    counters->RxERR = 0;
1296    counters->MissPkt = 0;
1297    counters->FAE = 0;
1298    counters->Tx1Col = 0;
1299    counters->TxMCol = 0;
1300    counters->RxOkPhy = 0;
1301    counters->RxOkBrd = 0;
1302    counters->RxOkMul = 0;
1303    counters->TxAbt = 0;
1304    counters->TxUndrn = 0;
1305}
1306
1307static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr)
1308{
1309    PCIDevice *d = PCI_DEVICE(s);
1310    RTL8139TallyCounters *tally_counters = &s->tally_counters;
1311    uint16_t val16;
1312    uint32_t val32;
1313    uint64_t val64;
1314
1315    val64 = cpu_to_le64(tally_counters->TxOk);
1316    pci_dma_write(d, tc_addr + 0,     (uint8_t *)&val64, 8);
1317
1318    val64 = cpu_to_le64(tally_counters->RxOk);
1319    pci_dma_write(d, tc_addr + 8,     (uint8_t *)&val64, 8);
1320
1321    val64 = cpu_to_le64(tally_counters->TxERR);
1322    pci_dma_write(d, tc_addr + 16,    (uint8_t *)&val64, 8);
1323
1324    val32 = cpu_to_le32(tally_counters->RxERR);
1325    pci_dma_write(d, tc_addr + 24,    (uint8_t *)&val32, 4);
1326
1327    val16 = cpu_to_le16(tally_counters->MissPkt);
1328    pci_dma_write(d, tc_addr + 28,    (uint8_t *)&val16, 2);
1329
1330    val16 = cpu_to_le16(tally_counters->FAE);
1331    pci_dma_write(d, tc_addr + 30,    (uint8_t *)&val16, 2);
1332
1333    val32 = cpu_to_le32(tally_counters->Tx1Col);
1334    pci_dma_write(d, tc_addr + 32,    (uint8_t *)&val32, 4);
1335
1336    val32 = cpu_to_le32(tally_counters->TxMCol);
1337    pci_dma_write(d, tc_addr + 36,    (uint8_t *)&val32, 4);
1338
1339    val64 = cpu_to_le64(tally_counters->RxOkPhy);
1340    pci_dma_write(d, tc_addr + 40,    (uint8_t *)&val64, 8);
1341
1342    val64 = cpu_to_le64(tally_counters->RxOkBrd);
1343    pci_dma_write(d, tc_addr + 48,    (uint8_t *)&val64, 8);
1344
1345    val32 = cpu_to_le32(tally_counters->RxOkMul);
1346    pci_dma_write(d, tc_addr + 56,    (uint8_t *)&val32, 4);
1347
1348    val16 = cpu_to_le16(tally_counters->TxAbt);
1349    pci_dma_write(d, tc_addr + 60,    (uint8_t *)&val16, 2);
1350
1351    val16 = cpu_to_le16(tally_counters->TxUndrn);
1352    pci_dma_write(d, tc_addr + 62,    (uint8_t *)&val16, 2);
1353}
1354
1355static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val)
1356{
1357    DeviceState *d = DEVICE(s);
1358
1359    val &= 0xff;
1360
1361    DPRINTF("ChipCmd write val=0x%08x\n", val);
1362
1363    if (val & CmdReset)
1364    {
1365        DPRINTF("ChipCmd reset\n");
1366        rtl8139_reset(d);
1367    }
1368    if (val & CmdRxEnb)
1369    {
1370        DPRINTF("ChipCmd enable receiver\n");
1371
1372        s->currCPlusRxDesc = 0;
1373    }
1374    if (val & CmdTxEnb)
1375    {
1376        DPRINTF("ChipCmd enable transmitter\n");
1377
1378        s->currCPlusTxDesc = 0;
1379    }
1380
1381    /* mask unwritable bits */
1382    val = SET_MASKED(val, 0xe3, s->bChipCmdState);
1383
1384    /* Deassert reset pin before next read */
1385    val &= ~CmdReset;
1386
1387    s->bChipCmdState = val;
1388}
1389
1390static int rtl8139_RxBufferEmpty(RTL8139State *s)
1391{
1392    int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize);
1393
1394    if (unread != 0)
1395    {
1396        DPRINTF("receiver buffer data available 0x%04x\n", unread);
1397        return 0;
1398    }
1399
1400    DPRINTF("receiver buffer is empty\n");
1401
1402    return 1;
1403}
1404
1405static uint32_t rtl8139_ChipCmd_read(RTL8139State *s)
1406{
1407    uint32_t ret = s->bChipCmdState;
1408
1409    if (rtl8139_RxBufferEmpty(s))
1410        ret |= RxBufEmpty;
1411
1412    DPRINTF("ChipCmd read val=0x%04x\n", ret);
1413
1414    return ret;
1415}
1416
1417static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val)
1418{
1419    val &= 0xffff;
1420
1421    DPRINTF("C+ command register write(w) val=0x%04x\n", val);
1422
1423    s->cplus_enabled = 1;
1424
1425    /* mask unwritable bits */
1426    val = SET_MASKED(val, 0xff84, s->CpCmd);
1427
1428    s->CpCmd = val;
1429}
1430
1431static uint32_t rtl8139_CpCmd_read(RTL8139State *s)
1432{
1433    uint32_t ret = s->CpCmd;
1434
1435    DPRINTF("C+ command register read(w) val=0x%04x\n", ret);
1436
1437    return ret;
1438}
1439
1440static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val)
1441{
1442    DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val);
1443}
1444
1445static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s)
1446{
1447    uint32_t ret = 0;
1448
1449    DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret);
1450
1451    return ret;
1452}
1453
1454static int rtl8139_config_writable(RTL8139State *s)
1455{
1456    if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite)
1457    {
1458        return 1;
1459    }
1460
1461    DPRINTF("Configuration registers are write-protected\n");
1462
1463    return 0;
1464}
1465
1466static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val)
1467{
1468    val &= 0xffff;
1469
1470    DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val);
1471
1472    /* mask unwritable bits */
1473    uint32_t mask = 0xccff;
1474
1475    if (1 || !rtl8139_config_writable(s))
1476    {
1477        /* Speed setting and autonegotiation enable bits are read-only */
1478        mask |= 0x3000;
1479        /* Duplex mode setting is read-only */
1480        mask |= 0x0100;
1481    }
1482
1483    if (val & 0x8000) {
1484        /* Reset PHY */
1485        rtl8139_reset_phy(s);
1486    }
1487
1488    val = SET_MASKED(val, mask, s->BasicModeCtrl);
1489
1490    s->BasicModeCtrl = val;
1491}
1492
1493static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s)
1494{
1495    uint32_t ret = s->BasicModeCtrl;
1496
1497    DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret);
1498
1499    return ret;
1500}
1501
1502static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val)
1503{
1504    val &= 0xffff;
1505
1506    DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val);
1507
1508    /* mask unwritable bits */
1509    val = SET_MASKED(val, 0xff3f, s->BasicModeStatus);
1510
1511    s->BasicModeStatus = val;
1512}
1513
1514static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s)
1515{
1516    uint32_t ret = s->BasicModeStatus;
1517
1518    DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret);
1519
1520    return ret;
1521}
1522
1523static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val)
1524{
1525    DeviceState *d = DEVICE(s);
1526
1527    val &= 0xff;
1528
1529    DPRINTF("Cfg9346 write val=0x%02x\n", val);
1530
1531    /* mask unwritable bits */
1532    val = SET_MASKED(val, 0x31, s->Cfg9346);
1533
1534    uint32_t opmode = val & 0xc0;
1535    uint32_t eeprom_val = val & 0xf;
1536
1537    if (opmode == 0x80) {
1538        /* eeprom access */
1539        int eecs = (eeprom_val & 0x08)?1:0;
1540        int eesk = (eeprom_val & 0x04)?1:0;
1541        int eedi = (eeprom_val & 0x02)?1:0;
1542        prom9346_set_wire(s, eecs, eesk, eedi);
1543    } else if (opmode == 0x40) {
1544        /* Reset.  */
1545        val = 0;
1546        rtl8139_reset(d);
1547    }
1548
1549    s->Cfg9346 = val;
1550}
1551
1552static uint32_t rtl8139_Cfg9346_read(RTL8139State *s)
1553{
1554    uint32_t ret = s->Cfg9346;
1555
1556    uint32_t opmode = ret & 0xc0;
1557
1558    if (opmode == 0x80)
1559    {
1560        /* eeprom access */
1561        int eedo = prom9346_get_wire(s);
1562        if (eedo)
1563        {
1564            ret |=  0x01;
1565        }
1566        else
1567        {
1568            ret &= ~0x01;
1569        }
1570    }
1571
1572    DPRINTF("Cfg9346 read val=0x%02x\n", ret);
1573
1574    return ret;
1575}
1576
1577static void rtl8139_Config0_write(RTL8139State *s, uint32_t val)
1578{
1579    val &= 0xff;
1580
1581    DPRINTF("Config0 write val=0x%02x\n", val);
1582
1583    if (!rtl8139_config_writable(s)) {
1584        return;
1585    }
1586
1587    /* mask unwritable bits */
1588    val = SET_MASKED(val, 0xf8, s->Config0);
1589
1590    s->Config0 = val;
1591}
1592
1593static uint32_t rtl8139_Config0_read(RTL8139State *s)
1594{
1595    uint32_t ret = s->Config0;
1596
1597    DPRINTF("Config0 read val=0x%02x\n", ret);
1598
1599    return ret;
1600}
1601
1602static void rtl8139_Config1_write(RTL8139State *s, uint32_t val)
1603{
1604    val &= 0xff;
1605
1606    DPRINTF("Config1 write val=0x%02x\n", val);
1607
1608    if (!rtl8139_config_writable(s)) {
1609        return;
1610    }
1611
1612    /* mask unwritable bits */
1613    val = SET_MASKED(val, 0xC, s->Config1);
1614
1615    s->Config1 = val;
1616}
1617
1618static uint32_t rtl8139_Config1_read(RTL8139State *s)
1619{
1620    uint32_t ret = s->Config1;
1621
1622    DPRINTF("Config1 read val=0x%02x\n", ret);
1623
1624    return ret;
1625}
1626
1627static void rtl8139_Config3_write(RTL8139State *s, uint32_t val)
1628{
1629    val &= 0xff;
1630
1631    DPRINTF("Config3 write val=0x%02x\n", val);
1632
1633    if (!rtl8139_config_writable(s)) {
1634        return;
1635    }
1636
1637    /* mask unwritable bits */
1638    val = SET_MASKED(val, 0x8F, s->Config3);
1639
1640    s->Config3 = val;
1641}
1642
1643static uint32_t rtl8139_Config3_read(RTL8139State *s)
1644{
1645    uint32_t ret = s->Config3;
1646
1647    DPRINTF("Config3 read val=0x%02x\n", ret);
1648
1649    return ret;
1650}
1651
1652static void rtl8139_Config4_write(RTL8139State *s, uint32_t val)
1653{
1654    val &= 0xff;
1655
1656    DPRINTF("Config4 write val=0x%02x\n", val);
1657
1658    if (!rtl8139_config_writable(s)) {
1659        return;
1660    }
1661
1662    /* mask unwritable bits */
1663    val = SET_MASKED(val, 0x0a, s->Config4);
1664
1665    s->Config4 = val;
1666}
1667
1668static uint32_t rtl8139_Config4_read(RTL8139State *s)
1669{
1670    uint32_t ret = s->Config4;
1671
1672    DPRINTF("Config4 read val=0x%02x\n", ret);
1673
1674    return ret;
1675}
1676
1677static void rtl8139_Config5_write(RTL8139State *s, uint32_t val)
1678{
1679    val &= 0xff;
1680
1681    DPRINTF("Config5 write val=0x%02x\n", val);
1682
1683    /* mask unwritable bits */
1684    val = SET_MASKED(val, 0x80, s->Config5);
1685
1686    s->Config5 = val;
1687}
1688
1689static uint32_t rtl8139_Config5_read(RTL8139State *s)
1690{
1691    uint32_t ret = s->Config5;
1692
1693    DPRINTF("Config5 read val=0x%02x\n", ret);
1694
1695    return ret;
1696}
1697
1698static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val)
1699{
1700    if (!rtl8139_transmitter_enabled(s))
1701    {
1702        DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val);
1703        return;
1704    }
1705
1706    DPRINTF("TxConfig write val=0x%08x\n", val);
1707
1708    val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig);
1709
1710    s->TxConfig = val;
1711}
1712
1713static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val)
1714{
1715    DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val);
1716
1717    uint32_t tc = s->TxConfig;
1718    tc &= 0xFFFFFF00;
1719    tc |= (val & 0x000000FF);
1720    rtl8139_TxConfig_write(s, tc);
1721}
1722
1723static uint32_t rtl8139_TxConfig_read(RTL8139State *s)
1724{
1725    uint32_t ret = s->TxConfig;
1726
1727    DPRINTF("TxConfig read val=0x%04x\n", ret);
1728
1729    return ret;
1730}
1731
1732static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val)
1733{
1734    DPRINTF("RxConfig write val=0x%08x\n", val);
1735
1736    /* mask unwritable bits */
1737    val = SET_MASKED(val, 0xf0fc0040, s->RxConfig);
1738
1739    s->RxConfig = val;
1740
1741    /* reset buffer size and read/write pointers */
1742    rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3));
1743
1744    DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize);
1745}
1746
1747static uint32_t rtl8139_RxConfig_read(RTL8139State *s)
1748{
1749    uint32_t ret = s->RxConfig;
1750
1751    DPRINTF("RxConfig read val=0x%08x\n", ret);
1752
1753    return ret;
1754}
1755
1756static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size,
1757    int do_interrupt, const uint8_t *dot1q_buf)
1758{
1759    struct iovec *iov = NULL;
1760    struct iovec vlan_iov[3];
1761
1762    if (!size)
1763    {
1764        DPRINTF("+++ empty ethernet frame\n");
1765        return;
1766    }
1767
1768    if (dot1q_buf && size >= ETH_ALEN * 2) {
1769        iov = (struct iovec[3]) {
1770            { .iov_base = buf, .iov_len = ETH_ALEN * 2 },
1771            { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN },
1772            { .iov_base = buf + ETH_ALEN * 2,
1773                .iov_len = size - ETH_ALEN * 2 },
1774        };
1775
1776        memcpy(vlan_iov, iov, sizeof(vlan_iov));
1777        iov = vlan_iov;
1778    }
1779
1780    if (TxLoopBack == (s->TxConfig & TxLoopBack))
1781    {
1782        size_t buf2_size;
1783        uint8_t *buf2;
1784
1785        if (iov) {
1786            buf2_size = iov_size(iov, 3);
1787            buf2 = g_malloc(buf2_size);
1788            iov_to_buf(iov, 3, 0, buf2, buf2_size);
1789            buf = buf2;
1790        }
1791
1792        DPRINTF("+++ transmit loopback mode\n");
1793        rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt);
1794
1795        if (iov) {
1796            g_free(buf2);
1797        }
1798    }
1799    else
1800    {
1801        if (iov) {
1802            qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3);
1803        } else {
1804            qemu_send_packet(qemu_get_queue(s->nic), buf, size);
1805        }
1806    }
1807}
1808
1809static int rtl8139_transmit_one(RTL8139State *s, int descriptor)
1810{
1811    if (!rtl8139_transmitter_enabled(s))
1812    {
1813        DPRINTF("+++ cannot transmit from descriptor %d: transmitter "
1814            "disabled\n", descriptor);
1815        return 0;
1816    }
1817
1818    if (s->TxStatus[descriptor] & TxHostOwns)
1819    {
1820        DPRINTF("+++ cannot transmit from descriptor %d: owned by host "
1821            "(%08x)\n", descriptor, s->TxStatus[descriptor]);
1822        return 0;
1823    }
1824
1825    DPRINTF("+++ transmitting from descriptor %d\n", descriptor);
1826
1827    PCIDevice *d = PCI_DEVICE(s);
1828    int txsize = s->TxStatus[descriptor] & 0x1fff;
1829    uint8_t txbuffer[0x2000];
1830
1831    DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n",
1832        txsize, s->TxAddr[descriptor]);
1833
1834    pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize);
1835
1836    /* Mark descriptor as transferred */
1837    s->TxStatus[descriptor] |= TxHostOwns;
1838    s->TxStatus[descriptor] |= TxStatOK;
1839
1840    rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL);
1841
1842    DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize,
1843        descriptor);
1844
1845    /* update interrupt */
1846    s->IntrStatus |= TxOK;
1847    rtl8139_update_irq(s);
1848
1849    return 1;
1850}
1851
1852#define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off)))
1853
1854/* produces ones' complement sum of data */
1855static uint16_t ones_complement_sum(uint8_t *data, size_t len)
1856{
1857    uint32_t result = 0;
1858
1859    for (; len > 1; data+=2, len-=2)
1860    {
1861        result += *(uint16_t*)data;
1862    }
1863
1864    /* add the remainder byte */
1865    if (len)
1866    {
1867        uint8_t odd[2] = {*data, 0};
1868        result += *(uint16_t*)odd;
1869    }
1870
1871    while (result>>16)
1872        result = (result & 0xffff) + (result >> 16);
1873
1874    return result;
1875}
1876
1877static uint16_t ip_checksum(void *data, size_t len)
1878{
1879    return ~ones_complement_sum((uint8_t*)data, len);
1880}
1881
1882static int rtl8139_cplus_transmit_one(RTL8139State *s)
1883{
1884    if (!rtl8139_transmitter_enabled(s))
1885    {
1886        DPRINTF("+++ C+ mode: transmitter disabled\n");
1887        return 0;
1888    }
1889
1890    if (!rtl8139_cp_transmitter_enabled(s))
1891    {
1892        DPRINTF("+++ C+ mode: C+ transmitter disabled\n");
1893        return 0 ;
1894    }
1895
1896    PCIDevice *d = PCI_DEVICE(s);
1897    int descriptor = s->currCPlusTxDesc;
1898
1899    dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]);
1900
1901    /* Normal priority ring */
1902    cplus_tx_ring_desc += 16 * descriptor;
1903
1904    DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at "
1905        "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1],
1906        s->TxAddr[0], cplus_tx_ring_desc);
1907
1908    uint32_t val, txdw0,txdw1,txbufLO,txbufHI;
1909
1910    pci_dma_read(d, cplus_tx_ring_desc,    (uint8_t *)&val, 4);
1911    txdw0 = le32_to_cpu(val);
1912    pci_dma_read(d, cplus_tx_ring_desc+4,  (uint8_t *)&val, 4);
1913    txdw1 = le32_to_cpu(val);
1914    pci_dma_read(d, cplus_tx_ring_desc+8,  (uint8_t *)&val, 4);
1915    txbufLO = le32_to_cpu(val);
1916    pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4);
1917    txbufHI = le32_to_cpu(val);
1918
1919    DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor,
1920        txdw0, txdw1, txbufLO, txbufHI);
1921
1922/* w0 ownership flag */
1923#define CP_TX_OWN (1<<31)
1924/* w0 end of ring flag */
1925#define CP_TX_EOR (1<<30)
1926/* first segment of received packet flag */
1927#define CP_TX_FS (1<<29)
1928/* last segment of received packet flag */
1929#define CP_TX_LS (1<<28)
1930/* large send packet flag */
1931#define CP_TX_LGSEN (1<<27)
1932/* large send MSS mask, bits 16...25 */
1933#define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1)
1934
1935/* IP checksum offload flag */
1936#define CP_TX_IPCS (1<<18)
1937/* UDP checksum offload flag */
1938#define CP_TX_UDPCS (1<<17)
1939/* TCP checksum offload flag */
1940#define CP_TX_TCPCS (1<<16)
1941
1942/* w0 bits 0...15 : buffer size */
1943#define CP_TX_BUFFER_SIZE (1<<16)
1944#define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1)
1945/* w1 add tag flag */
1946#define CP_TX_TAGC (1<<17)
1947/* w1 bits 0...15 : VLAN tag (big endian) */
1948#define CP_TX_VLAN_TAG_MASK ((1<<16) - 1)
1949/* w2 low  32bit of Rx buffer ptr */
1950/* w3 high 32bit of Rx buffer ptr */
1951
1952/* set after transmission */
1953/* FIFO underrun flag */
1954#define CP_TX_STATUS_UNF (1<<25)
1955/* transmit error summary flag, valid if set any of three below */
1956#define CP_TX_STATUS_TES (1<<23)
1957/* out-of-window collision flag */
1958#define CP_TX_STATUS_OWC (1<<22)
1959/* link failure flag */
1960#define CP_TX_STATUS_LNKF (1<<21)
1961/* excessive collisions flag */
1962#define CP_TX_STATUS_EXC (1<<20)
1963
1964    if (!(txdw0 & CP_TX_OWN))
1965    {
1966        DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor);
1967        return 0 ;
1968    }
1969
1970    DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor);
1971
1972    if (txdw0 & CP_TX_FS)
1973    {
1974        DPRINTF("+++ C+ Tx mode : descriptor %d is first segment "
1975            "descriptor\n", descriptor);
1976
1977        /* reset internal buffer offset */
1978        s->cplus_txbuffer_offset = 0;
1979    }
1980
1981    int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK;
1982    dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI);
1983
1984    /* make sure we have enough space to assemble the packet */
1985    if (!s->cplus_txbuffer)
1986    {
1987        s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE;
1988        s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len);
1989        s->cplus_txbuffer_offset = 0;
1990
1991        DPRINTF("+++ C+ mode transmission buffer allocated space %d\n",
1992            s->cplus_txbuffer_len);
1993    }
1994
1995    if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len)
1996    {
1997        /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */
1998        txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset;
1999        DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor"
2000                "length to %d\n", txsize);
2001    }
2002
2003    /* append more data to the packet */
2004
2005    DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at "
2006            DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr,
2007            s->cplus_txbuffer_offset);
2008
2009    pci_dma_read(d, tx_addr,
2010                 s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize);
2011    s->cplus_txbuffer_offset += txsize;
2012
2013    /* seek to next Rx descriptor */
2014    if (txdw0 & CP_TX_EOR)
2015    {
2016        s->currCPlusTxDesc = 0;
2017    }
2018    else
2019    {
2020        ++s->currCPlusTxDesc;
2021        if (s->currCPlusTxDesc >= 64)
2022            s->currCPlusTxDesc = 0;
2023    }
2024
2025    /* transfer ownership to target */
2026    txdw0 &= ~CP_TX_OWN;
2027
2028    /* reset error indicator bits */
2029    txdw0 &= ~CP_TX_STATUS_UNF;
2030    txdw0 &= ~CP_TX_STATUS_TES;
2031    txdw0 &= ~CP_TX_STATUS_OWC;
2032    txdw0 &= ~CP_TX_STATUS_LNKF;
2033    txdw0 &= ~CP_TX_STATUS_EXC;
2034
2035    /* update ring data */
2036    val = cpu_to_le32(txdw0);
2037    pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4);
2038
2039    /* Now decide if descriptor being processed is holding the last segment of packet */
2040    if (txdw0 & CP_TX_LS)
2041    {
2042        uint8_t dot1q_buffer_space[VLAN_HLEN];
2043        uint16_t *dot1q_buffer;
2044
2045        DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n",
2046            descriptor);
2047
2048        /* can transfer fully assembled packet */
2049
2050        uint8_t *saved_buffer  = s->cplus_txbuffer;
2051        int      saved_size    = s->cplus_txbuffer_offset;
2052        int      saved_buffer_len = s->cplus_txbuffer_len;
2053
2054        /* create vlan tag */
2055        if (txdw1 & CP_TX_TAGC) {
2056            /* the vlan tag is in BE byte order in the descriptor
2057             * BE + le_to_cpu() + ~swap()~ = cpu */
2058            DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n",
2059                bswap16(txdw1 & CP_TX_VLAN_TAG_MASK));
2060
2061            dot1q_buffer = (uint16_t *) dot1q_buffer_space;
2062            dot1q_buffer[0] = cpu_to_be16(ETH_P_VLAN);
2063            /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */
2064            dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK);
2065        } else {
2066            dot1q_buffer = NULL;
2067        }
2068
2069        /* reset the card space to protect from recursive call */
2070        s->cplus_txbuffer = NULL;
2071        s->cplus_txbuffer_offset = 0;
2072        s->cplus_txbuffer_len = 0;
2073
2074        if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN))
2075        {
2076            DPRINTF("+++ C+ mode offloaded task checksum\n");
2077
2078            /* Large enough for Ethernet and IP headers? */
2079            if (saved_size < ETH_HLEN + sizeof(struct ip_header)) {
2080                goto skip_offload;
2081            }
2082
2083            /* ip packet header */
2084            struct ip_header *ip = NULL;
2085            int hlen = 0;
2086            uint8_t  ip_protocol = 0;
2087            uint16_t ip_data_len = 0;
2088
2089            uint8_t *eth_payload_data = NULL;
2090            size_t   eth_payload_len  = 0;
2091
2092            int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12));
2093            if (proto != ETH_P_IP)
2094            {
2095                goto skip_offload;
2096            }
2097
2098            DPRINTF("+++ C+ mode has IP packet\n");
2099
2100            /* Note on memory alignment: eth_payload_data is 16-bit aligned
2101             * since saved_buffer is allocated with g_malloc() and ETH_HLEN is
2102             * even.  32-bit accesses must use ldl/stl wrappers to avoid
2103             * unaligned accesses.
2104             */
2105            eth_payload_data = saved_buffer + ETH_HLEN;
2106            eth_payload_len  = saved_size   - ETH_HLEN;
2107
2108            ip = (struct ip_header*)eth_payload_data;
2109
2110            if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) {
2111                DPRINTF("+++ C+ mode packet has bad IP version %d "
2112                    "expected %d\n", IP_HEADER_VERSION(ip),
2113                    IP_HEADER_VERSION_4);
2114                goto skip_offload;
2115            }
2116
2117            hlen = IP_HDR_GET_LEN(ip);
2118            if (hlen < sizeof(struct ip_header) || hlen > eth_payload_len) {
2119                goto skip_offload;
2120            }
2121
2122            ip_protocol = ip->ip_p;
2123
2124            ip_data_len = be16_to_cpu(ip->ip_len);
2125            if (ip_data_len < hlen || ip_data_len > eth_payload_len) {
2126                goto skip_offload;
2127            }
2128            ip_data_len -= hlen;
2129
2130            if (txdw0 & CP_TX_IPCS)
2131            {
2132                DPRINTF("+++ C+ mode need IP checksum\n");
2133
2134                ip->ip_sum = 0;
2135                ip->ip_sum = ip_checksum(ip, hlen);
2136                DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n",
2137                    hlen, ip->ip_sum);
2138            }
2139
2140            if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP)
2141            {
2142                /* Large enough for the TCP header? */
2143                if (ip_data_len < sizeof(tcp_header)) {
2144                    goto skip_offload;
2145                }
2146
2147                int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK;
2148
2149                DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d "
2150                    "frame data %d specified MSS=%d\n", ETH_MTU,
2151                    ip_data_len, saved_size - ETH_HLEN, large_send_mss);
2152
2153                int tcp_send_offset = 0;
2154                int send_count = 0;
2155
2156                /* maximum IP header length is 60 bytes */
2157                uint8_t saved_ip_header[60];
2158
2159                /* save IP header template; data area is used in tcp checksum calculation */
2160                memcpy(saved_ip_header, eth_payload_data, hlen);
2161
2162                /* a placeholder for checksum calculation routine in tcp case */
2163                uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2164                //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2165
2166                /* pointer to TCP header */
2167                tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen);
2168
2169                int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr);
2170
2171                /* Invalid TCP data offset? */
2172                if (tcp_hlen < sizeof(tcp_header) || tcp_hlen > ip_data_len) {
2173                    goto skip_offload;
2174                }
2175
2176                /* ETH_MTU = ip header len + tcp header len + payload */
2177                int tcp_data_len = ip_data_len - tcp_hlen;
2178                int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen;
2179
2180                DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP "
2181                    "data len %d TCP chunk size %d\n", ip_data_len,
2182                    tcp_hlen, tcp_data_len, tcp_chunk_size);
2183
2184                /* note the cycle below overwrites IP header data,
2185                   but restores it from saved_ip_header before sending packet */
2186
2187                int is_last_frame = 0;
2188
2189                for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size)
2190                {
2191                    uint16_t chunk_size = tcp_chunk_size;
2192
2193                    /* check if this is the last frame */
2194                    if (tcp_send_offset + tcp_chunk_size >= tcp_data_len)
2195                    {
2196                        is_last_frame = 1;
2197                        chunk_size = tcp_data_len - tcp_send_offset;
2198                    }
2199
2200                    DPRINTF("+++ C+ mode TSO TCP seqno %08x\n",
2201                            ldl_be_p(&p_tcp_hdr->th_seq));
2202
2203                    /* add 4 TCP pseudoheader fields */
2204                    /* copy IP source and destination fields */
2205                    memcpy(data_to_checksum, saved_ip_header + 12, 8);
2206
2207                    DPRINTF("+++ C+ mode TSO calculating TCP checksum for "
2208                        "packet with %d bytes data\n", tcp_hlen +
2209                        chunk_size);
2210
2211                    if (tcp_send_offset)
2212                    {
2213                        memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size);
2214                    }
2215
2216                    /* keep PUSH and FIN flags only for the last frame */
2217                    if (!is_last_frame)
2218                    {
2219                        TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TH_PUSH | TH_FIN);
2220                    }
2221
2222                    /* recalculate TCP checksum */
2223                    ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2224                    p_tcpip_hdr->zeros      = 0;
2225                    p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2226                    p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size);
2227
2228                    p_tcp_hdr->th_sum = 0;
2229
2230                    int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12);
2231                    DPRINTF("+++ C+ mode TSO TCP checksum %04x\n",
2232                        tcp_checksum);
2233
2234                    p_tcp_hdr->th_sum = tcp_checksum;
2235
2236                    /* restore IP header */
2237                    memcpy(eth_payload_data, saved_ip_header, hlen);
2238
2239                    /* set IP data length and recalculate IP checksum */
2240                    ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size);
2241
2242                    /* increment IP id for subsequent frames */
2243                    ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id));
2244
2245                    ip->ip_sum = 0;
2246                    ip->ip_sum = ip_checksum(eth_payload_data, hlen);
2247                    DPRINTF("+++ C+ mode TSO IP header len=%d "
2248                        "checksum=%04x\n", hlen, ip->ip_sum);
2249
2250                    int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size;
2251                    DPRINTF("+++ C+ mode TSO transferring packet size "
2252                        "%d\n", tso_send_size);
2253                    rtl8139_transfer_frame(s, saved_buffer, tso_send_size,
2254                        0, (uint8_t *) dot1q_buffer);
2255
2256                    /* add transferred count to TCP sequence number */
2257                    stl_be_p(&p_tcp_hdr->th_seq,
2258                             chunk_size + ldl_be_p(&p_tcp_hdr->th_seq));
2259                    ++send_count;
2260                }
2261
2262                /* Stop sending this frame */
2263                saved_size = 0;
2264            }
2265            else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS))
2266            {
2267                DPRINTF("+++ C+ mode need TCP or UDP checksum\n");
2268
2269                /* maximum IP header length is 60 bytes */
2270                uint8_t saved_ip_header[60];
2271                memcpy(saved_ip_header, eth_payload_data, hlen);
2272
2273                uint8_t *data_to_checksum     = eth_payload_data + hlen - 12;
2274                //                    size_t   data_to_checksum_len = eth_payload_len  - hlen + 12;
2275
2276                /* add 4 TCP pseudoheader fields */
2277                /* copy IP source and destination fields */
2278                memcpy(data_to_checksum, saved_ip_header + 12, 8);
2279
2280                if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP)
2281                {
2282                    DPRINTF("+++ C+ mode calculating TCP checksum for "
2283                        "packet with %d bytes data\n", ip_data_len);
2284
2285                    ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum;
2286                    p_tcpip_hdr->zeros      = 0;
2287                    p_tcpip_hdr->ip_proto   = IP_PROTO_TCP;
2288                    p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2289
2290                    tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12);
2291
2292                    p_tcp_hdr->th_sum = 0;
2293
2294                    int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2295                    DPRINTF("+++ C+ mode TCP checksum %04x\n",
2296                        tcp_checksum);
2297
2298                    p_tcp_hdr->th_sum = tcp_checksum;
2299                }
2300                else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP)
2301                {
2302                    DPRINTF("+++ C+ mode calculating UDP checksum for "
2303                        "packet with %d bytes data\n", ip_data_len);
2304
2305                    ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum;
2306                    p_udpip_hdr->zeros      = 0;
2307                    p_udpip_hdr->ip_proto   = IP_PROTO_UDP;
2308                    p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len);
2309
2310                    udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12);
2311
2312                    p_udp_hdr->uh_sum = 0;
2313
2314                    int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12);
2315                    DPRINTF("+++ C+ mode UDP checksum %04x\n",
2316                        udp_checksum);
2317
2318                    p_udp_hdr->uh_sum = udp_checksum;
2319                }
2320
2321                /* restore IP header */
2322                memcpy(eth_payload_data, saved_ip_header, hlen);
2323            }
2324        }
2325
2326skip_offload:
2327        /* update tally counter */
2328        ++s->tally_counters.TxOk;
2329
2330        DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size);
2331
2332        rtl8139_transfer_frame(s, saved_buffer, saved_size, 1,
2333            (uint8_t *) dot1q_buffer);
2334
2335        /* restore card space if there was no recursion and reset offset */
2336        if (!s->cplus_txbuffer)
2337        {
2338            s->cplus_txbuffer        = saved_buffer;
2339            s->cplus_txbuffer_len    = saved_buffer_len;
2340            s->cplus_txbuffer_offset = 0;
2341        }
2342        else
2343        {
2344            g_free(saved_buffer);
2345        }
2346    }
2347    else
2348    {
2349        DPRINTF("+++ C+ mode transmission continue to next descriptor\n");
2350    }
2351
2352    return 1;
2353}
2354
2355static void rtl8139_cplus_transmit(RTL8139State *s)
2356{
2357    int txcount = 0;
2358
2359    while (txcount < 64 && rtl8139_cplus_transmit_one(s))
2360    {
2361        ++txcount;
2362    }
2363
2364    /* Mark transfer completed */
2365    if (!txcount)
2366    {
2367        DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n",
2368            s->currCPlusTxDesc);
2369    }
2370    else
2371    {
2372        /* update interrupt status */
2373        s->IntrStatus |= TxOK;
2374        rtl8139_update_irq(s);
2375    }
2376}
2377
2378static void rtl8139_transmit(RTL8139State *s)
2379{
2380    int descriptor = s->currTxDesc, txcount = 0;
2381
2382    /*while*/
2383    if (rtl8139_transmit_one(s, descriptor))
2384    {
2385        ++s->currTxDesc;
2386        s->currTxDesc %= 4;
2387        ++txcount;
2388    }
2389
2390    /* Mark transfer completed */
2391    if (!txcount)
2392    {
2393        DPRINTF("transmitter queue stalled, current TxDesc = %d\n",
2394            s->currTxDesc);
2395    }
2396}
2397
2398static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val)
2399{
2400
2401    int descriptor = txRegOffset/4;
2402
2403    /* handle C+ transmit mode register configuration */
2404
2405    if (s->cplus_enabled)
2406    {
2407        DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x "
2408            "descriptor=%d\n", txRegOffset, val, descriptor);
2409
2410        /* handle Dump Tally Counters command */
2411        s->TxStatus[descriptor] = val;
2412
2413        if (descriptor == 0 && (val & 0x8))
2414        {
2415            hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]);
2416
2417            /* dump tally counters to specified memory location */
2418            RTL8139TallyCounters_dma_write(s, tc_addr);
2419
2420            /* mark dump completed */
2421            s->TxStatus[0] &= ~0x8;
2422        }
2423
2424        return;
2425    }
2426
2427    DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n",
2428        txRegOffset, val, descriptor);
2429
2430    /* mask only reserved bits */
2431    val &= ~0xff00c000; /* these bits are reset on write */
2432    val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]);
2433
2434    s->TxStatus[descriptor] = val;
2435
2436    /* attempt to start transmission */
2437    rtl8139_transmit(s);
2438}
2439
2440static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[],
2441                                             uint32_t base, uint8_t addr,
2442                                             int size)
2443{
2444    uint32_t reg = (addr - base) / 4;
2445    uint32_t offset = addr & 0x3;
2446    uint32_t ret = 0;
2447
2448    if (addr & (size - 1)) {
2449        DPRINTF("not implemented read for TxStatus/TxAddr "
2450                "addr=0x%x size=0x%x\n", addr, size);
2451        return ret;
2452    }
2453
2454    switch (size) {
2455    case 1: /* fall through */
2456    case 2: /* fall through */
2457    case 4:
2458        ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1);
2459        DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n",
2460                reg, addr, size, ret);
2461        break;
2462    default:
2463        DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size);
2464        break;
2465    }
2466
2467    return ret;
2468}
2469
2470static uint16_t rtl8139_TSAD_read(RTL8139State *s)
2471{
2472    uint16_t ret = 0;
2473
2474    /* Simulate TSAD, it is read only anyway */
2475
2476    ret = ((s->TxStatus[3] & TxStatOK  )?TSAD_TOK3:0)
2477         |((s->TxStatus[2] & TxStatOK  )?TSAD_TOK2:0)
2478         |((s->TxStatus[1] & TxStatOK  )?TSAD_TOK1:0)
2479         |((s->TxStatus[0] & TxStatOK  )?TSAD_TOK0:0)
2480
2481         |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0)
2482         |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0)
2483         |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0)
2484         |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0)
2485
2486         |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0)
2487         |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0)
2488         |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0)
2489         |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0)
2490
2491         |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0)
2492         |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0)
2493         |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0)
2494         |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ;
2495
2496
2497    DPRINTF("TSAD read val=0x%04x\n", ret);
2498
2499    return ret;
2500}
2501
2502static uint16_t rtl8139_CSCR_read(RTL8139State *s)
2503{
2504    uint16_t ret = s->CSCR;
2505
2506    DPRINTF("CSCR read val=0x%04x\n", ret);
2507
2508    return ret;
2509}
2510
2511static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val)
2512{
2513    DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val);
2514
2515    s->TxAddr[txAddrOffset/4] = val;
2516}
2517
2518static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset)
2519{
2520    uint32_t ret = s->TxAddr[txAddrOffset/4];
2521
2522    DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret);
2523
2524    return ret;
2525}
2526
2527static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val)
2528{
2529    DPRINTF("RxBufPtr write val=0x%04x\n", val);
2530
2531    /* this value is off by 16 */
2532    s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize);
2533
2534    /* more buffer space may be available so try to receive */
2535    qemu_flush_queued_packets(qemu_get_queue(s->nic));
2536
2537    DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n",
2538        s->RxBufferSize, s->RxBufAddr, s->RxBufPtr);
2539}
2540
2541static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s)
2542{
2543    /* this value is off by 16 */
2544    uint32_t ret = s->RxBufPtr - 0x10;
2545
2546    DPRINTF("RxBufPtr read val=0x%04x\n", ret);
2547
2548    return ret;
2549}
2550
2551static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s)
2552{
2553    /* this value is NOT off by 16 */
2554    uint32_t ret = s->RxBufAddr;
2555
2556    DPRINTF("RxBufAddr read val=0x%04x\n", ret);
2557
2558    return ret;
2559}
2560
2561static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val)
2562{
2563    DPRINTF("RxBuf write val=0x%08x\n", val);
2564
2565    s->RxBuf = val;
2566
2567    /* may need to reset rxring here */
2568}
2569
2570static uint32_t rtl8139_RxBuf_read(RTL8139State *s)
2571{
2572    uint32_t ret = s->RxBuf;
2573
2574    DPRINTF("RxBuf read val=0x%08x\n", ret);
2575
2576    return ret;
2577}
2578
2579static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val)
2580{
2581    DPRINTF("IntrMask write(w) val=0x%04x\n", val);
2582
2583    /* mask unwritable bits */
2584    val = SET_MASKED(val, 0x1e00, s->IntrMask);
2585
2586    s->IntrMask = val;
2587
2588    rtl8139_update_irq(s);
2589
2590}
2591
2592static uint32_t rtl8139_IntrMask_read(RTL8139State *s)
2593{
2594    uint32_t ret = s->IntrMask;
2595
2596    DPRINTF("IntrMask read(w) val=0x%04x\n", ret);
2597
2598    return ret;
2599}
2600
2601static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val)
2602{
2603    DPRINTF("IntrStatus write(w) val=0x%04x\n", val);
2604
2605#if 0
2606
2607    /* writing to ISR has no effect */
2608
2609    return;
2610
2611#else
2612    uint16_t newStatus = s->IntrStatus & ~val;
2613
2614    /* mask unwritable bits */
2615    newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus);
2616
2617    /* writing 1 to interrupt status register bit clears it */
2618    s->IntrStatus = 0;
2619    rtl8139_update_irq(s);
2620
2621    s->IntrStatus = newStatus;
2622    rtl8139_set_next_tctr_time(s);
2623    rtl8139_update_irq(s);
2624
2625#endif
2626}
2627
2628static uint32_t rtl8139_IntrStatus_read(RTL8139State *s)
2629{
2630    uint32_t ret = s->IntrStatus;
2631
2632    DPRINTF("IntrStatus read(w) val=0x%04x\n", ret);
2633
2634#if 0
2635
2636    /* reading ISR clears all interrupts */
2637    s->IntrStatus = 0;
2638
2639    rtl8139_update_irq(s);
2640
2641#endif
2642
2643    return ret;
2644}
2645
2646static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val)
2647{
2648    DPRINTF("MultiIntr write(w) val=0x%04x\n", val);
2649
2650    /* mask unwritable bits */
2651    val = SET_MASKED(val, 0xf000, s->MultiIntr);
2652
2653    s->MultiIntr = val;
2654}
2655
2656static uint32_t rtl8139_MultiIntr_read(RTL8139State *s)
2657{
2658    uint32_t ret = s->MultiIntr;
2659
2660    DPRINTF("MultiIntr read(w) val=0x%04x\n", ret);
2661
2662    return ret;
2663}
2664
2665static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val)
2666{
2667    RTL8139State *s = opaque;
2668
2669    switch (addr)
2670    {
2671        case MAC0 ... MAC0+4:
2672            s->phys[addr - MAC0] = val;
2673            break;
2674        case MAC0+5:
2675            s->phys[addr - MAC0] = val;
2676            qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys);
2677            break;
2678        case MAC0+6 ... MAC0+7:
2679            /* reserved */
2680            break;
2681        case MAR0 ... MAR0+7:
2682            s->mult[addr - MAR0] = val;
2683            break;
2684        case ChipCmd:
2685            rtl8139_ChipCmd_write(s, val);
2686            break;
2687        case Cfg9346:
2688            rtl8139_Cfg9346_write(s, val);
2689            break;
2690        case TxConfig: /* windows driver sometimes writes using byte-lenth call */
2691            rtl8139_TxConfig_writeb(s, val);
2692            break;
2693        case Config0:
2694            rtl8139_Config0_write(s, val);
2695            break;
2696        case Config1:
2697            rtl8139_Config1_write(s, val);
2698            break;
2699        case Config3:
2700            rtl8139_Config3_write(s, val);
2701            break;
2702        case Config4:
2703            rtl8139_Config4_write(s, val);
2704            break;
2705        case Config5:
2706            rtl8139_Config5_write(s, val);
2707            break;
2708        case MediaStatus:
2709            /* ignore */
2710            DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n",
2711                val);
2712            break;
2713
2714        case HltClk:
2715            DPRINTF("HltClk write val=0x%08x\n", val);
2716            if (val == 'R')
2717            {
2718                s->clock_enabled = 1;
2719            }
2720            else if (val == 'H')
2721            {
2722                s->clock_enabled = 0;
2723            }
2724            break;
2725
2726        case TxThresh:
2727            DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val);
2728            s->TxThresh = val;
2729            break;
2730
2731        case TxPoll:
2732            DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val);
2733            if (val & (1 << 7))
2734            {
2735                DPRINTF("C+ TxPoll high priority transmission (not "
2736                    "implemented)\n");
2737                //rtl8139_cplus_transmit(s);
2738            }
2739            if (val & (1 << 6))
2740            {
2741                DPRINTF("C+ TxPoll normal priority transmission\n");
2742                rtl8139_cplus_transmit(s);
2743            }
2744
2745            break;
2746
2747        default:
2748            DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr,
2749                val);
2750            break;
2751    }
2752}
2753
2754static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val)
2755{
2756    RTL8139State *s = opaque;
2757
2758    switch (addr)
2759    {
2760        case IntrMask:
2761            rtl8139_IntrMask_write(s, val);
2762            break;
2763
2764        case IntrStatus:
2765            rtl8139_IntrStatus_write(s, val);
2766            break;
2767
2768        case MultiIntr:
2769            rtl8139_MultiIntr_write(s, val);
2770            break;
2771
2772        case RxBufPtr:
2773            rtl8139_RxBufPtr_write(s, val);
2774            break;
2775
2776        case BasicModeCtrl:
2777            rtl8139_BasicModeCtrl_write(s, val);
2778            break;
2779        case BasicModeStatus:
2780            rtl8139_BasicModeStatus_write(s, val);
2781            break;
2782        case NWayAdvert:
2783            DPRINTF("NWayAdvert write(w) val=0x%04x\n", val);
2784            s->NWayAdvert = val;
2785            break;
2786        case NWayLPAR:
2787            DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val);
2788            break;
2789        case NWayExpansion:
2790            DPRINTF("NWayExpansion write(w) val=0x%04x\n", val);
2791            s->NWayExpansion = val;
2792            break;
2793
2794        case CpCmd:
2795            rtl8139_CpCmd_write(s, val);
2796            break;
2797
2798        case IntrMitigate:
2799            rtl8139_IntrMitigate_write(s, val);
2800            break;
2801
2802        default:
2803            DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n",
2804                addr, val);
2805
2806            rtl8139_io_writeb(opaque, addr, val & 0xff);
2807            rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2808            break;
2809    }
2810}
2811
2812static void rtl8139_set_next_tctr_time(RTL8139State *s)
2813{
2814    const uint64_t ns_per_period = (uint64_t)PCI_PERIOD << 32;
2815
2816    DPRINTF("entered rtl8139_set_next_tctr_time\n");
2817
2818    /* This function is called at least once per period, so it is a good
2819     * place to update the timer base.
2820     *
2821     * After one iteration of this loop the value in the Timer register does
2822     * not change, but the device model is counting up by 2^32 ticks (approx.
2823     * 130 seconds).
2824     */
2825    while (s->TCTR_base + ns_per_period <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2826        s->TCTR_base += ns_per_period;
2827    }
2828
2829    if (!s->TimerInt) {
2830        timer_del(s->timer);
2831    } else {
2832        uint64_t delta = (uint64_t)s->TimerInt * PCI_PERIOD;
2833        if (s->TCTR_base + delta <= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)) {
2834            delta += ns_per_period;
2835        }
2836        timer_mod(s->timer, s->TCTR_base + delta);
2837    }
2838}
2839
2840static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val)
2841{
2842    RTL8139State *s = opaque;
2843
2844    switch (addr)
2845    {
2846        case RxMissed:
2847            DPRINTF("RxMissed clearing on write\n");
2848            s->RxMissed = 0;
2849            break;
2850
2851        case TxConfig:
2852            rtl8139_TxConfig_write(s, val);
2853            break;
2854
2855        case RxConfig:
2856            rtl8139_RxConfig_write(s, val);
2857            break;
2858
2859        case TxStatus0 ... TxStatus0+4*4-1:
2860            rtl8139_TxStatus_write(s, addr-TxStatus0, val);
2861            break;
2862
2863        case TxAddr0 ... TxAddr0+4*4-1:
2864            rtl8139_TxAddr_write(s, addr-TxAddr0, val);
2865            break;
2866
2867        case RxBuf:
2868            rtl8139_RxBuf_write(s, val);
2869            break;
2870
2871        case RxRingAddrLO:
2872            DPRINTF("C+ RxRing low bits write val=0x%08x\n", val);
2873            s->RxRingAddrLO = val;
2874            break;
2875
2876        case RxRingAddrHI:
2877            DPRINTF("C+ RxRing high bits write val=0x%08x\n", val);
2878            s->RxRingAddrHI = val;
2879            break;
2880
2881        case Timer:
2882            DPRINTF("TCTR Timer reset on write\n");
2883            s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
2884            rtl8139_set_next_tctr_time(s);
2885            break;
2886
2887        case FlashReg:
2888            DPRINTF("FlashReg TimerInt write val=0x%08x\n", val);
2889            if (s->TimerInt != val) {
2890                s->TimerInt = val;
2891                rtl8139_set_next_tctr_time(s);
2892            }
2893            break;
2894
2895        default:
2896            DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n",
2897                addr, val);
2898            rtl8139_io_writeb(opaque, addr, val & 0xff);
2899            rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff);
2900            rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff);
2901            rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff);
2902            break;
2903    }
2904}
2905
2906static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr)
2907{
2908    RTL8139State *s = opaque;
2909    int ret;
2910
2911    switch (addr)
2912    {
2913        case MAC0 ... MAC0+5:
2914            ret = s->phys[addr - MAC0];
2915            break;
2916        case MAC0+6 ... MAC0+7:
2917            ret = 0;
2918            break;
2919        case MAR0 ... MAR0+7:
2920            ret = s->mult[addr - MAR0];
2921            break;
2922        case TxStatus0 ... TxStatus0+4*4-1:
2923            ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
2924                                               addr, 1);
2925            break;
2926        case ChipCmd:
2927            ret = rtl8139_ChipCmd_read(s);
2928            break;
2929        case Cfg9346:
2930            ret = rtl8139_Cfg9346_read(s);
2931            break;
2932        case Config0:
2933            ret = rtl8139_Config0_read(s);
2934            break;
2935        case Config1:
2936            ret = rtl8139_Config1_read(s);
2937            break;
2938        case Config3:
2939            ret = rtl8139_Config3_read(s);
2940            break;
2941        case Config4:
2942            ret = rtl8139_Config4_read(s);
2943            break;
2944        case Config5:
2945            ret = rtl8139_Config5_read(s);
2946            break;
2947
2948        case MediaStatus:
2949            /* The LinkDown bit of MediaStatus is inverse with link status */
2950            ret = 0xd0 | (~s->BasicModeStatus & 0x04);
2951            DPRINTF("MediaStatus read 0x%x\n", ret);
2952            break;
2953
2954        case HltClk:
2955            ret = s->clock_enabled;
2956            DPRINTF("HltClk read 0x%x\n", ret);
2957            break;
2958
2959        case PCIRevisionID:
2960            ret = RTL8139_PCI_REVID;
2961            DPRINTF("PCI Revision ID read 0x%x\n", ret);
2962            break;
2963
2964        case TxThresh:
2965            ret = s->TxThresh;
2966            DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret);
2967            break;
2968
2969        case 0x43: /* Part of TxConfig register. Windows driver tries to read it */
2970            ret = s->TxConfig >> 24;
2971            DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret);
2972            break;
2973
2974        default:
2975            DPRINTF("not implemented read(b) addr=0x%x\n", addr);
2976            ret = 0;
2977            break;
2978    }
2979
2980    return ret;
2981}
2982
2983static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr)
2984{
2985    RTL8139State *s = opaque;
2986    uint32_t ret;
2987
2988    switch (addr)
2989    {
2990        case TxAddr0 ... TxAddr0+4*4-1:
2991            ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2);
2992            break;
2993        case IntrMask:
2994            ret = rtl8139_IntrMask_read(s);
2995            break;
2996
2997        case IntrStatus:
2998            ret = rtl8139_IntrStatus_read(s);
2999            break;
3000
3001        case MultiIntr:
3002            ret = rtl8139_MultiIntr_read(s);
3003            break;
3004
3005        case RxBufPtr:
3006            ret = rtl8139_RxBufPtr_read(s);
3007            break;
3008
3009        case RxBufAddr:
3010            ret = rtl8139_RxBufAddr_read(s);
3011            break;
3012
3013        case BasicModeCtrl:
3014            ret = rtl8139_BasicModeCtrl_read(s);
3015            break;
3016        case BasicModeStatus:
3017            ret = rtl8139_BasicModeStatus_read(s);
3018            break;
3019        case NWayAdvert:
3020            ret = s->NWayAdvert;
3021            DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret);
3022            break;
3023        case NWayLPAR:
3024            ret = s->NWayLPAR;
3025            DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret);
3026            break;
3027        case NWayExpansion:
3028            ret = s->NWayExpansion;
3029            DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret);
3030            break;
3031
3032        case CpCmd:
3033            ret = rtl8139_CpCmd_read(s);
3034            break;
3035
3036        case IntrMitigate:
3037            ret = rtl8139_IntrMitigate_read(s);
3038            break;
3039
3040        case TxSummary:
3041            ret = rtl8139_TSAD_read(s);
3042            break;
3043
3044        case CSCR:
3045            ret = rtl8139_CSCR_read(s);
3046            break;
3047
3048        default:
3049            DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr);
3050
3051            ret  = rtl8139_io_readb(opaque, addr);
3052            ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3053
3054            DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret);
3055            break;
3056    }
3057
3058    return ret;
3059}
3060
3061static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr)
3062{
3063    RTL8139State *s = opaque;
3064    uint32_t ret;
3065
3066    switch (addr)
3067    {
3068        case RxMissed:
3069            ret = s->RxMissed;
3070
3071            DPRINTF("RxMissed read val=0x%08x\n", ret);
3072            break;
3073
3074        case TxConfig:
3075            ret = rtl8139_TxConfig_read(s);
3076            break;
3077
3078        case RxConfig:
3079            ret = rtl8139_RxConfig_read(s);
3080            break;
3081
3082        case TxStatus0 ... TxStatus0+4*4-1:
3083            ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0,
3084                                               addr, 4);
3085            break;
3086
3087        case TxAddr0 ... TxAddr0+4*4-1:
3088            ret = rtl8139_TxAddr_read(s, addr-TxAddr0);
3089            break;
3090
3091        case RxBuf:
3092            ret = rtl8139_RxBuf_read(s);
3093            break;
3094
3095        case RxRingAddrLO:
3096            ret = s->RxRingAddrLO;
3097            DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret);
3098            break;
3099
3100        case RxRingAddrHI:
3101            ret = s->RxRingAddrHI;
3102            DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret);
3103            break;
3104
3105        case Timer:
3106            ret = (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base) /
3107                  PCI_PERIOD;
3108            DPRINTF("TCTR Timer read val=0x%08x\n", ret);
3109            break;
3110
3111        case FlashReg:
3112            ret = s->TimerInt;
3113            DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret);
3114            break;
3115
3116        default:
3117            DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr);
3118
3119            ret  = rtl8139_io_readb(opaque, addr);
3120            ret |= rtl8139_io_readb(opaque, addr + 1) << 8;
3121            ret |= rtl8139_io_readb(opaque, addr + 2) << 16;
3122            ret |= rtl8139_io_readb(opaque, addr + 3) << 24;
3123
3124            DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret);
3125            break;
3126    }
3127
3128    return ret;
3129}
3130
3131/* */
3132
3133static int rtl8139_post_load(void *opaque, int version_id)
3134{
3135    RTL8139State* s = opaque;
3136    rtl8139_set_next_tctr_time(s);
3137    if (version_id < 4) {
3138        s->cplus_enabled = s->CpCmd != 0;
3139    }
3140
3141    /* nc.link_down can't be migrated, so infer link_down according
3142     * to link status bit in BasicModeStatus */
3143    qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0;
3144
3145    return 0;
3146}
3147
3148static bool rtl8139_hotplug_ready_needed(void *opaque)
3149{
3150    return qdev_machine_modified();
3151}
3152
3153static const VMStateDescription vmstate_rtl8139_hotplug_ready ={
3154    .name = "rtl8139/hotplug_ready",
3155    .version_id = 1,
3156    .minimum_version_id = 1,
3157    .needed = rtl8139_hotplug_ready_needed,
3158    .fields = (VMStateField[]) {
3159        VMSTATE_END_OF_LIST()
3160    }
3161};
3162
3163static int rtl8139_pre_save(void *opaque)
3164{
3165    RTL8139State* s = opaque;
3166    int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
3167
3168    /* for migration to older versions */
3169    s->TCTR = (current_time - s->TCTR_base) / PCI_PERIOD;
3170    s->rtl8139_mmio_io_addr_dummy = 0;
3171
3172    return 0;
3173}
3174
3175static const VMStateDescription vmstate_rtl8139 = {
3176    .name = "rtl8139",
3177    .version_id = 5,
3178    .minimum_version_id = 3,
3179    .post_load = rtl8139_post_load,
3180    .pre_save  = rtl8139_pre_save,
3181    .fields = (VMStateField[]) {
3182        VMSTATE_PCI_DEVICE(parent_obj, RTL8139State),
3183        VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6),
3184        VMSTATE_BUFFER(mult, RTL8139State),
3185        VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4),
3186        VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4),
3187
3188        VMSTATE_UINT32(RxBuf, RTL8139State),
3189        VMSTATE_UINT32(RxBufferSize, RTL8139State),
3190        VMSTATE_UINT32(RxBufPtr, RTL8139State),
3191        VMSTATE_UINT32(RxBufAddr, RTL8139State),
3192
3193        VMSTATE_UINT16(IntrStatus, RTL8139State),
3194        VMSTATE_UINT16(IntrMask, RTL8139State),
3195
3196        VMSTATE_UINT32(TxConfig, RTL8139State),
3197        VMSTATE_UINT32(RxConfig, RTL8139State),
3198        VMSTATE_UINT32(RxMissed, RTL8139State),
3199        VMSTATE_UINT16(CSCR, RTL8139State),
3200
3201        VMSTATE_UINT8(Cfg9346, RTL8139State),
3202        VMSTATE_UINT8(Config0, RTL8139State),
3203        VMSTATE_UINT8(Config1, RTL8139State),
3204        VMSTATE_UINT8(Config3, RTL8139State),
3205        VMSTATE_UINT8(Config4, RTL8139State),
3206        VMSTATE_UINT8(Config5, RTL8139State),
3207
3208        VMSTATE_UINT8(clock_enabled, RTL8139State),
3209        VMSTATE_UINT8(bChipCmdState, RTL8139State),
3210
3211        VMSTATE_UINT16(MultiIntr, RTL8139State),
3212
3213        VMSTATE_UINT16(BasicModeCtrl, RTL8139State),
3214        VMSTATE_UINT16(BasicModeStatus, RTL8139State),
3215        VMSTATE_UINT16(NWayAdvert, RTL8139State),
3216        VMSTATE_UINT16(NWayLPAR, RTL8139State),
3217        VMSTATE_UINT16(NWayExpansion, RTL8139State),
3218
3219        VMSTATE_UINT16(CpCmd, RTL8139State),
3220        VMSTATE_UINT8(TxThresh, RTL8139State),
3221
3222        VMSTATE_UNUSED(4),
3223        VMSTATE_MACADDR(conf.macaddr, RTL8139State),
3224        VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State),
3225
3226        VMSTATE_UINT32(currTxDesc, RTL8139State),
3227        VMSTATE_UINT32(currCPlusRxDesc, RTL8139State),
3228        VMSTATE_UINT32(currCPlusTxDesc, RTL8139State),
3229        VMSTATE_UINT32(RxRingAddrLO, RTL8139State),
3230        VMSTATE_UINT32(RxRingAddrHI, RTL8139State),
3231
3232        VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE),
3233        VMSTATE_INT32(eeprom.mode, RTL8139State),
3234        VMSTATE_UINT32(eeprom.tick, RTL8139State),
3235        VMSTATE_UINT8(eeprom.address, RTL8139State),
3236        VMSTATE_UINT16(eeprom.input, RTL8139State),
3237        VMSTATE_UINT16(eeprom.output, RTL8139State),
3238
3239        VMSTATE_UINT8(eeprom.eecs, RTL8139State),
3240        VMSTATE_UINT8(eeprom.eesk, RTL8139State),
3241        VMSTATE_UINT8(eeprom.eedi, RTL8139State),
3242        VMSTATE_UINT8(eeprom.eedo, RTL8139State),
3243
3244        VMSTATE_UINT32(TCTR, RTL8139State),
3245        VMSTATE_UINT32(TimerInt, RTL8139State),
3246        VMSTATE_INT64(TCTR_base, RTL8139State),
3247
3248        VMSTATE_UINT64(tally_counters.TxOk, RTL8139State),
3249        VMSTATE_UINT64(tally_counters.RxOk, RTL8139State),
3250        VMSTATE_UINT64(tally_counters.TxERR, RTL8139State),
3251        VMSTATE_UINT32(tally_counters.RxERR, RTL8139State),
3252        VMSTATE_UINT16(tally_counters.MissPkt, RTL8139State),
3253        VMSTATE_UINT16(tally_counters.FAE, RTL8139State),
3254        VMSTATE_UINT32(tally_counters.Tx1Col, RTL8139State),
3255        VMSTATE_UINT32(tally_counters.TxMCol, RTL8139State),
3256        VMSTATE_UINT64(tally_counters.RxOkPhy, RTL8139State),
3257        VMSTATE_UINT64(tally_counters.RxOkBrd, RTL8139State),
3258        VMSTATE_UINT32_V(tally_counters.RxOkMul, RTL8139State, 5),
3259        VMSTATE_UINT16(tally_counters.TxAbt, RTL8139State),
3260        VMSTATE_UINT16(tally_counters.TxUndrn, RTL8139State),
3261
3262        VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4),
3263        VMSTATE_END_OF_LIST()
3264    },
3265    .subsections = (const VMStateDescription*[]) {
3266        &vmstate_rtl8139_hotplug_ready,
3267        NULL
3268    }
3269};
3270
3271/***********************************************************/
3272/* PCI RTL8139 definitions */
3273
3274static void rtl8139_ioport_write(void *opaque, hwaddr addr,
3275                                 uint64_t val, unsigned size)
3276{
3277    switch (size) {
3278    case 1:
3279        rtl8139_io_writeb(opaque, addr, val);
3280        break;
3281    case 2:
3282        rtl8139_io_writew(opaque, addr, val);
3283        break;
3284    case 4:
3285        rtl8139_io_writel(opaque, addr, val);
3286        break;
3287    }
3288}
3289
3290static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr,
3291                                    unsigned size)
3292{
3293    switch (size) {
3294    case 1:
3295        return rtl8139_io_readb(opaque, addr);
3296    case 2:
3297        return rtl8139_io_readw(opaque, addr);
3298    case 4:
3299        return rtl8139_io_readl(opaque, addr);
3300    }
3301
3302    return -1;
3303}
3304
3305static const MemoryRegionOps rtl8139_io_ops = {
3306    .read = rtl8139_ioport_read,
3307    .write = rtl8139_ioport_write,
3308    .impl = {
3309        .min_access_size = 1,
3310        .max_access_size = 4,
3311    },
3312    .endianness = DEVICE_LITTLE_ENDIAN,
3313};
3314
3315static void rtl8139_timer(void *opaque)
3316{
3317    RTL8139State *s = opaque;
3318
3319    if (!s->clock_enabled)
3320    {
3321        DPRINTF(">>> timer: clock is not running\n");
3322        return;
3323    }
3324
3325    s->IntrStatus |= PCSTimeout;
3326    rtl8139_update_irq(s);
3327    rtl8139_set_next_tctr_time(s);
3328}
3329
3330static void pci_rtl8139_uninit(PCIDevice *dev)
3331{
3332    RTL8139State *s = RTL8139(dev);
3333
3334    g_free(s->cplus_txbuffer);
3335    s->cplus_txbuffer = NULL;
3336    timer_del(s->timer);
3337    timer_free(s->timer);
3338    qemu_del_nic(s->nic);
3339}
3340
3341static void rtl8139_set_link_status(NetClientState *nc)
3342{
3343    RTL8139State *s = qemu_get_nic_opaque(nc);
3344
3345    if (nc->link_down) {
3346        s->BasicModeStatus &= ~0x04;
3347    } else {
3348        s->BasicModeStatus |= 0x04;
3349    }
3350
3351    s->IntrStatus |= RxUnderrun;
3352    rtl8139_update_irq(s);
3353}
3354
3355static NetClientInfo net_rtl8139_info = {
3356    .type = NET_CLIENT_DRIVER_NIC,
3357    .size = sizeof(NICState),
3358    .can_receive = rtl8139_can_receive,
3359    .receive = rtl8139_receive,
3360    .link_status_changed = rtl8139_set_link_status,
3361};
3362
3363static void pci_rtl8139_realize(PCIDevice *dev, Error **errp)
3364{
3365    RTL8139State *s = RTL8139(dev);
3366    DeviceState *d = DEVICE(dev);
3367    uint8_t *pci_conf;
3368
3369    pci_conf = dev->config;
3370    pci_conf[PCI_INTERRUPT_PIN] = 1;    /* interrupt pin A */
3371    /* TODO: start of capability list, but no capability
3372     * list bit in status register, and offset 0xdc seems unused. */
3373    pci_conf[PCI_CAPABILITY_LIST] = 0xdc;
3374
3375    memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s,
3376                          "rtl8139", 0x100);
3377    memory_region_init_alias(&s->bar_mem, OBJECT(s), "rtl8139-mem", &s->bar_io,
3378                             0, 0x100);
3379
3380    pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io);
3381    pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem);
3382
3383    qemu_macaddr_default_if_unset(&s->conf.macaddr);
3384
3385    /* prepare eeprom */
3386    s->eeprom.contents[0] = 0x8129;
3387#if 1
3388    /* PCI vendor and device ID should be mirrored here */
3389    s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK;
3390    s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139;
3391#endif
3392    s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8;
3393    s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8;
3394    s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8;
3395
3396    s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf,
3397                          object_get_typename(OBJECT(dev)), d->id, s);
3398    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
3399
3400    s->cplus_txbuffer = NULL;
3401    s->cplus_txbuffer_len = 0;
3402    s->cplus_txbuffer_offset = 0;
3403
3404    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s);
3405}
3406
3407static void rtl8139_instance_init(Object *obj)
3408{
3409    RTL8139State *s = RTL8139(obj);
3410
3411    device_add_bootindex_property(obj, &s->conf.bootindex,
3412                                  "bootindex", "/ethernet-phy@0",
3413                                  DEVICE(obj), NULL);
3414}
3415
3416static Property rtl8139_properties[] = {
3417    DEFINE_NIC_PROPERTIES(RTL8139State, conf),
3418    DEFINE_PROP_END_OF_LIST(),
3419};
3420
3421static void rtl8139_class_init(ObjectClass *klass, void *data)
3422{
3423    DeviceClass *dc = DEVICE_CLASS(klass);
3424    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
3425
3426    k->realize = pci_rtl8139_realize;
3427    k->exit = pci_rtl8139_uninit;
3428    k->romfile = "efi-rtl8139.rom";
3429    k->vendor_id = PCI_VENDOR_ID_REALTEK;
3430    k->device_id = PCI_DEVICE_ID_REALTEK_8139;
3431    k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */
3432    k->class_id = PCI_CLASS_NETWORK_ETHERNET;
3433    dc->reset = rtl8139_reset;
3434    dc->vmsd = &vmstate_rtl8139;
3435    dc->props = rtl8139_properties;
3436    set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
3437}
3438
3439static const TypeInfo rtl8139_info = {
3440    .name          = TYPE_RTL8139,
3441    .parent        = TYPE_PCI_DEVICE,
3442    .instance_size = sizeof(RTL8139State),
3443    .class_init    = rtl8139_class_init,
3444    .instance_init = rtl8139_instance_init,
3445    .interfaces = (InterfaceInfo[]) {
3446        { INTERFACE_CONVENTIONAL_PCI_DEVICE },
3447        { },
3448    },
3449};
3450
3451static void rtl8139_register_types(void)
3452{
3453    type_register_static(&rtl8139_info);
3454}
3455
3456type_init(rtl8139_register_types)
3457