qemu/hw/ppc/pnv.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC PowerNV machine model
   3 *
   4 * Copyright (c) 2016, IBM Corporation.
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/units.h"
  22#include "qapi/error.h"
  23#include "sysemu/sysemu.h"
  24#include "sysemu/numa.h"
  25#include "sysemu/cpus.h"
  26#include "hw/hw.h"
  27#include "target/ppc/cpu.h"
  28#include "qemu/log.h"
  29#include "hw/ppc/fdt.h"
  30#include "hw/ppc/ppc.h"
  31#include "hw/ppc/pnv.h"
  32#include "hw/ppc/pnv_core.h"
  33#include "hw/loader.h"
  34#include "exec/address-spaces.h"
  35#include "qapi/visitor.h"
  36#include "monitor/monitor.h"
  37#include "hw/intc/intc.h"
  38#include "hw/ipmi/ipmi.h"
  39#include "target/ppc/mmu-hash64.h"
  40
  41#include "hw/ppc/xics.h"
  42#include "hw/ppc/pnv_xscom.h"
  43
  44#include "hw/isa/isa.h"
  45#include "hw/char/serial.h"
  46#include "hw/timer/mc146818rtc.h"
  47
  48#include <libfdt.h>
  49
  50#define FDT_MAX_SIZE            (1 * MiB)
  51
  52#define FW_FILE_NAME            "skiboot.lid"
  53#define FW_LOAD_ADDR            0x0
  54#define FW_MAX_SIZE             (4 * MiB)
  55
  56#define KERNEL_LOAD_ADDR        0x20000000
  57#define KERNEL_MAX_SIZE         (256 * MiB)
  58#define INITRD_LOAD_ADDR        0x60000000
  59#define INITRD_MAX_SIZE         (256 * MiB)
  60
  61static const char *pnv_chip_core_typename(const PnvChip *o)
  62{
  63    const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
  64    int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
  65    char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
  66    const char *core_type = object_class_get_name(object_class_by_name(s));
  67    g_free(s);
  68    return core_type;
  69}
  70
  71/*
  72 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
  73 *     4 * 4 sockets * 12 cores * 8 threads = 1536
  74 * Let's make it 2^11
  75 */
  76#define MAX_CPUS                2048
  77
  78/*
  79 * Memory nodes are created by hostboot, one for each range of memory
  80 * that has a different "affinity". In practice, it means one range
  81 * per chip.
  82 */
  83static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
  84{
  85    char *mem_name;
  86    uint64_t mem_reg_property[2];
  87    int off;
  88
  89    mem_reg_property[0] = cpu_to_be64(start);
  90    mem_reg_property[1] = cpu_to_be64(size);
  91
  92    mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
  93    off = fdt_add_subnode(fdt, 0, mem_name);
  94    g_free(mem_name);
  95
  96    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
  97    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
  98                       sizeof(mem_reg_property))));
  99    _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
 100}
 101
 102static int get_cpus_node(void *fdt)
 103{
 104    int cpus_offset = fdt_path_offset(fdt, "/cpus");
 105
 106    if (cpus_offset < 0) {
 107        cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 108        if (cpus_offset) {
 109            _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 110            _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 111        }
 112    }
 113    _FDT(cpus_offset);
 114    return cpus_offset;
 115}
 116
 117/*
 118 * The PowerNV cores (and threads) need to use real HW ids and not an
 119 * incremental index like it has been done on other platforms. This HW
 120 * id is stored in the CPU PIR, it is used to create cpu nodes in the
 121 * device tree, used in XSCOM to address cores and in interrupt
 122 * servers.
 123 */
 124static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
 125{
 126    PowerPCCPU *cpu = pc->threads[0];
 127    CPUState *cs = CPU(cpu);
 128    DeviceClass *dc = DEVICE_GET_CLASS(cs);
 129    int smt_threads = CPU_CORE(pc)->nr_threads;
 130    CPUPPCState *env = &cpu->env;
 131    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 132    uint32_t servers_prop[smt_threads];
 133    int i;
 134    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 135                       0xffffffff, 0xffffffff};
 136    uint32_t tbfreq = PNV_TIMEBASE_FREQ;
 137    uint32_t cpufreq = 1000000000;
 138    uint32_t page_sizes_prop[64];
 139    size_t page_sizes_prop_size;
 140    const uint8_t pa_features[] = { 24, 0,
 141                                    0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
 142                                    0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 143                                    0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 144                                    0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
 145    int offset;
 146    char *nodename;
 147    int cpus_offset = get_cpus_node(fdt);
 148
 149    nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
 150    offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 151    _FDT(offset);
 152    g_free(nodename);
 153
 154    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
 155
 156    _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
 157    _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
 158    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 159
 160    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 161    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 162                            env->dcache_line_size)));
 163    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 164                            env->dcache_line_size)));
 165    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 166                            env->icache_line_size)));
 167    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 168                            env->icache_line_size)));
 169
 170    if (pcc->l1_dcache_size) {
 171        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 172                               pcc->l1_dcache_size)));
 173    } else {
 174        warn_report("Unknown L1 dcache size for cpu");
 175    }
 176    if (pcc->l1_icache_size) {
 177        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 178                               pcc->l1_icache_size)));
 179    } else {
 180        warn_report("Unknown L1 icache size for cpu");
 181    }
 182
 183    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 184    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 185    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
 186    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 187    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 188
 189    if (env->spr_cb[SPR_PURR].oea_read) {
 190        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
 191    }
 192
 193    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
 194        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 195                           segs, sizeof(segs))));
 196    }
 197
 198    /* Advertise VMX/VSX (vector extensions) if available
 199     *   0 / no property == no vector extensions
 200     *   1               == VMX / Altivec available
 201     *   2               == VSX available */
 202    if (env->insns_flags & PPC_ALTIVEC) {
 203        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
 204
 205        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
 206    }
 207
 208    /* Advertise DFP (Decimal Floating Point) if available
 209     *   0 / no property == no DFP
 210     *   1               == DFP available */
 211    if (env->insns_flags2 & PPC2_DFP) {
 212        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 213    }
 214
 215    page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
 216                                                      sizeof(page_sizes_prop));
 217    if (page_sizes_prop_size) {
 218        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 219                           page_sizes_prop, page_sizes_prop_size)));
 220    }
 221
 222    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
 223                       pa_features, sizeof(pa_features))));
 224
 225    /* Build interrupt servers properties */
 226    for (i = 0; i < smt_threads; i++) {
 227        servers_prop[i] = cpu_to_be32(pc->pir + i);
 228    }
 229    _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 230                       servers_prop, sizeof(servers_prop))));
 231}
 232
 233static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
 234                       uint32_t nr_threads)
 235{
 236    uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
 237    char *name;
 238    const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
 239    uint32_t irange[2], i, rsize;
 240    uint64_t *reg;
 241    int offset;
 242
 243    irange[0] = cpu_to_be32(pir);
 244    irange[1] = cpu_to_be32(nr_threads);
 245
 246    rsize = sizeof(uint64_t) * 2 * nr_threads;
 247    reg = g_malloc(rsize);
 248    for (i = 0; i < nr_threads; i++) {
 249        reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
 250        reg[i * 2 + 1] = cpu_to_be64(0x1000);
 251    }
 252
 253    name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
 254    offset = fdt_add_subnode(fdt, 0, name);
 255    _FDT(offset);
 256    g_free(name);
 257
 258    _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
 259    _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
 260    _FDT((fdt_setprop_string(fdt, offset, "device_type",
 261                              "PowerPC-External-Interrupt-Presentation")));
 262    _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
 263    _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
 264                       irange, sizeof(irange))));
 265    _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
 266    _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
 267    g_free(reg);
 268}
 269
 270static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
 271{
 272    const char *typename = pnv_chip_core_typename(chip);
 273    size_t typesize = object_type_get_instance_size(typename);
 274    int i;
 275
 276    pnv_dt_xscom(chip, fdt, 0);
 277
 278    for (i = 0; i < chip->nr_cores; i++) {
 279        PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
 280
 281        pnv_dt_core(chip, pnv_core, fdt);
 282
 283        /* Interrupt Control Presenters (ICP). One per core. */
 284        pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
 285    }
 286
 287    if (chip->ram_size) {
 288        pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
 289    }
 290}
 291
 292static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
 293{
 294    const char *typename = pnv_chip_core_typename(chip);
 295    size_t typesize = object_type_get_instance_size(typename);
 296    int i;
 297
 298    pnv_dt_xscom(chip, fdt, 0);
 299
 300    for (i = 0; i < chip->nr_cores; i++) {
 301        PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
 302
 303        pnv_dt_core(chip, pnv_core, fdt);
 304    }
 305
 306    if (chip->ram_size) {
 307        pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
 308    }
 309
 310    pnv_dt_lpc(chip, fdt, 0);
 311}
 312
 313static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
 314{
 315    uint32_t io_base = d->ioport_id;
 316    uint32_t io_regs[] = {
 317        cpu_to_be32(1),
 318        cpu_to_be32(io_base),
 319        cpu_to_be32(2)
 320    };
 321    char *name;
 322    int node;
 323
 324    name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
 325    node = fdt_add_subnode(fdt, lpc_off, name);
 326    _FDT(node);
 327    g_free(name);
 328
 329    _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
 330    _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
 331}
 332
 333static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
 334{
 335    const char compatible[] = "ns16550\0pnpPNP,501";
 336    uint32_t io_base = d->ioport_id;
 337    uint32_t io_regs[] = {
 338        cpu_to_be32(1),
 339        cpu_to_be32(io_base),
 340        cpu_to_be32(8)
 341    };
 342    char *name;
 343    int node;
 344
 345    name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
 346    node = fdt_add_subnode(fdt, lpc_off, name);
 347    _FDT(node);
 348    g_free(name);
 349
 350    _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
 351    _FDT((fdt_setprop(fdt, node, "compatible", compatible,
 352                      sizeof(compatible))));
 353
 354    _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
 355    _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
 356    _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
 357    _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
 358                           fdt_get_phandle(fdt, lpc_off))));
 359
 360    /* This is needed by Linux */
 361    _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
 362}
 363
 364static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
 365{
 366    const char compatible[] = "bt\0ipmi-bt";
 367    uint32_t io_base;
 368    uint32_t io_regs[] = {
 369        cpu_to_be32(1),
 370        0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
 371        cpu_to_be32(3)
 372    };
 373    uint32_t irq;
 374    char *name;
 375    int node;
 376
 377    io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
 378    io_regs[1] = cpu_to_be32(io_base);
 379
 380    irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
 381
 382    name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
 383    node = fdt_add_subnode(fdt, lpc_off, name);
 384    _FDT(node);
 385    g_free(name);
 386
 387    _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
 388    _FDT((fdt_setprop(fdt, node, "compatible", compatible,
 389                      sizeof(compatible))));
 390
 391    /* Mark it as reserved to avoid Linux trying to claim it */
 392    _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
 393    _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
 394    _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
 395                           fdt_get_phandle(fdt, lpc_off))));
 396}
 397
 398typedef struct ForeachPopulateArgs {
 399    void *fdt;
 400    int offset;
 401} ForeachPopulateArgs;
 402
 403static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
 404{
 405    ForeachPopulateArgs *args = opaque;
 406    ISADevice *d = ISA_DEVICE(dev);
 407
 408    if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
 409        pnv_dt_rtc(d, args->fdt, args->offset);
 410    } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
 411        pnv_dt_serial(d, args->fdt, args->offset);
 412    } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
 413        pnv_dt_ipmi_bt(d, args->fdt, args->offset);
 414    } else {
 415        error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
 416                     d->ioport_id);
 417    }
 418
 419    return 0;
 420}
 421
 422/* The default LPC bus of a multichip system is on chip 0. It's
 423 * recognized by the firmware (skiboot) using a "primary" property.
 424 */
 425static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
 426{
 427    int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
 428    ForeachPopulateArgs args = {
 429        .fdt = fdt,
 430        .offset = isa_offset,
 431    };
 432
 433    _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
 434
 435    /* ISA devices are not necessarily parented to the ISA bus so we
 436     * can not use object_child_foreach() */
 437    qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
 438                       &args);
 439}
 440
 441static void pnv_dt_power_mgt(void *fdt)
 442{
 443    int off;
 444
 445    off = fdt_add_subnode(fdt, 0, "ibm,opal");
 446    off = fdt_add_subnode(fdt, off, "power-mgt");
 447
 448    _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
 449}
 450
 451static void *pnv_dt_create(MachineState *machine)
 452{
 453    const char plat_compat[] = "qemu,powernv\0ibm,powernv";
 454    PnvMachineState *pnv = PNV_MACHINE(machine);
 455    void *fdt;
 456    char *buf;
 457    int off;
 458    int i;
 459
 460    fdt = g_malloc0(FDT_MAX_SIZE);
 461    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
 462
 463    /* Root node */
 464    _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
 465    _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
 466    _FDT((fdt_setprop_string(fdt, 0, "model",
 467                             "IBM PowerNV (emulated by qemu)")));
 468    _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat,
 469                      sizeof(plat_compat))));
 470
 471    buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
 472    _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
 473    if (qemu_uuid_set) {
 474        _FDT((fdt_property_string(fdt, "system-id", buf)));
 475    }
 476    g_free(buf);
 477
 478    off = fdt_add_subnode(fdt, 0, "chosen");
 479    if (machine->kernel_cmdline) {
 480        _FDT((fdt_setprop_string(fdt, off, "bootargs",
 481                                 machine->kernel_cmdline)));
 482    }
 483
 484    if (pnv->initrd_size) {
 485        uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
 486        uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
 487
 488        _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
 489                               &start_prop, sizeof(start_prop))));
 490        _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
 491                               &end_prop, sizeof(end_prop))));
 492    }
 493
 494    /* Populate device tree for each chip */
 495    for (i = 0; i < pnv->num_chips; i++) {
 496        PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
 497    }
 498
 499    /* Populate ISA devices on chip 0 */
 500    pnv_dt_isa(pnv, fdt);
 501
 502    if (pnv->bmc) {
 503        pnv_dt_bmc_sensors(pnv->bmc, fdt);
 504    }
 505
 506    /* Create an extra node for power management on Power9 */
 507    if (pnv_is_power9(pnv)) {
 508        pnv_dt_power_mgt(fdt);
 509    }
 510
 511    return fdt;
 512}
 513
 514static void pnv_powerdown_notify(Notifier *n, void *opaque)
 515{
 516    PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
 517
 518    if (pnv->bmc) {
 519        pnv_bmc_powerdown(pnv->bmc);
 520    }
 521}
 522
 523static void pnv_reset(void)
 524{
 525    MachineState *machine = MACHINE(qdev_get_machine());
 526    PnvMachineState *pnv = PNV_MACHINE(machine);
 527    void *fdt;
 528    Object *obj;
 529
 530    qemu_devices_reset();
 531
 532    /* OpenPOWER systems have a BMC, which can be defined on the
 533     * command line with:
 534     *
 535     *   -device ipmi-bmc-sim,id=bmc0
 536     *
 537     * This is the internal simulator but it could also be an external
 538     * BMC.
 539     */
 540    obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
 541    if (obj) {
 542        pnv->bmc = IPMI_BMC(obj);
 543    }
 544
 545    fdt = pnv_dt_create(machine);
 546
 547    /* Pack resulting tree */
 548    _FDT((fdt_pack(fdt)));
 549
 550    cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
 551}
 552
 553static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
 554{
 555    Pnv8Chip *chip8 = PNV8_CHIP(chip);
 556    return pnv_lpc_isa_create(&chip8->lpc, true, errp);
 557}
 558
 559static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
 560{
 561    Pnv8Chip *chip8 = PNV8_CHIP(chip);
 562    return pnv_lpc_isa_create(&chip8->lpc, false, errp);
 563}
 564
 565static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
 566{
 567    Pnv9Chip *chip9 = PNV9_CHIP(chip);
 568    return pnv_lpc_isa_create(&chip9->lpc, false, errp);
 569}
 570
 571static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
 572{
 573    return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
 574}
 575
 576static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
 577{
 578    Pnv8Chip *chip8 = PNV8_CHIP(chip);
 579
 580    ics_pic_print_info(&chip8->psi.ics, mon);
 581}
 582
 583static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
 584{
 585    Pnv9Chip *chip9 = PNV9_CHIP(chip);
 586
 587    pnv_xive_pic_print_info(&chip9->xive, mon);
 588    pnv_psi_pic_print_info(&chip9->psi, mon);
 589}
 590
 591static void pnv_init(MachineState *machine)
 592{
 593    PnvMachineState *pnv = PNV_MACHINE(machine);
 594    MemoryRegion *ram;
 595    char *fw_filename;
 596    long fw_size;
 597    int i;
 598    char *chip_typename;
 599
 600    /* allocate RAM */
 601    if (machine->ram_size < (1 * GiB)) {
 602        warn_report("skiboot may not work with < 1GB of RAM");
 603    }
 604
 605    ram = g_new(MemoryRegion, 1);
 606    memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
 607                                         machine->ram_size);
 608    memory_region_add_subregion(get_system_memory(), 0, ram);
 609
 610    /* load skiboot firmware  */
 611    if (bios_name == NULL) {
 612        bios_name = FW_FILE_NAME;
 613    }
 614
 615    fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
 616    if (!fw_filename) {
 617        error_report("Could not find OPAL firmware '%s'", bios_name);
 618        exit(1);
 619    }
 620
 621    fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
 622    if (fw_size < 0) {
 623        error_report("Could not load OPAL firmware '%s'", fw_filename);
 624        exit(1);
 625    }
 626    g_free(fw_filename);
 627
 628    /* load kernel */
 629    if (machine->kernel_filename) {
 630        long kernel_size;
 631
 632        kernel_size = load_image_targphys(machine->kernel_filename,
 633                                          KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
 634        if (kernel_size < 0) {
 635            error_report("Could not load kernel '%s'",
 636                         machine->kernel_filename);
 637            exit(1);
 638        }
 639    }
 640
 641    /* load initrd */
 642    if (machine->initrd_filename) {
 643        pnv->initrd_base = INITRD_LOAD_ADDR;
 644        pnv->initrd_size = load_image_targphys(machine->initrd_filename,
 645                                  pnv->initrd_base, INITRD_MAX_SIZE);
 646        if (pnv->initrd_size < 0) {
 647            error_report("Could not load initial ram disk '%s'",
 648                         machine->initrd_filename);
 649            exit(1);
 650        }
 651    }
 652
 653    /* Create the processor chips */
 654    i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
 655    chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
 656                                    i, machine->cpu_type);
 657    if (!object_class_by_name(chip_typename)) {
 658        error_report("invalid CPU model '%.*s' for %s machine",
 659                     i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name);
 660        exit(1);
 661    }
 662
 663    pnv->chips = g_new0(PnvChip *, pnv->num_chips);
 664    for (i = 0; i < pnv->num_chips; i++) {
 665        char chip_name[32];
 666        Object *chip = object_new(chip_typename);
 667
 668        pnv->chips[i] = PNV_CHIP(chip);
 669
 670        /* TODO: put all the memory in one node on chip 0 until we find a
 671         * way to specify different ranges for each chip
 672         */
 673        if (i == 0) {
 674            object_property_set_int(chip, machine->ram_size, "ram-size",
 675                                    &error_fatal);
 676        }
 677
 678        snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
 679        object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
 680        object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
 681                                &error_fatal);
 682        object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal);
 683        object_property_set_bool(chip, true, "realized", &error_fatal);
 684    }
 685    g_free(chip_typename);
 686
 687    /* Instantiate ISA bus on chip 0 */
 688    pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
 689
 690    /* Create serial port */
 691    serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
 692
 693    /* Create an RTC ISA device too */
 694    mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
 695
 696    /* OpenPOWER systems use a IPMI SEL Event message to notify the
 697     * host to powerdown */
 698    pnv->powerdown_notifier.notify = pnv_powerdown_notify;
 699    qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
 700}
 701
 702/*
 703 *    0:21  Reserved - Read as zeros
 704 *   22:24  Chip ID
 705 *   25:28  Core number
 706 *   29:31  Thread ID
 707 */
 708static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
 709{
 710    return (chip->chip_id << 7) | (core_id << 3);
 711}
 712
 713static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
 714                                        Error **errp)
 715{
 716    Error *local_err = NULL;
 717    Object *obj;
 718    PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
 719
 720    obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
 721                     &local_err);
 722    if (local_err) {
 723        error_propagate(errp, local_err);
 724        return;
 725    }
 726
 727    pnv_cpu->intc = obj;
 728}
 729
 730/*
 731 *    0:48  Reserved - Read as zeroes
 732 *   49:52  Node ID
 733 *   53:55  Chip ID
 734 *   56     Reserved - Read as zero
 735 *   57:61  Core number
 736 *   62:63  Thread ID
 737 *
 738 * We only care about the lower bits. uint32_t is fine for the moment.
 739 */
 740static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
 741{
 742    return (chip->chip_id << 8) | (core_id << 2);
 743}
 744
 745static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
 746                                        Error **errp)
 747{
 748    Pnv9Chip *chip9 = PNV9_CHIP(chip);
 749    Error *local_err = NULL;
 750    Object *obj;
 751    PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
 752
 753    /*
 754     * The core creates its interrupt presenter but the XIVE interrupt
 755     * controller object is initialized afterwards. Hopefully, it's
 756     * only used at runtime.
 757     */
 758    obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
 759    if (local_err) {
 760        error_propagate(errp, local_err);
 761        return;
 762    }
 763
 764    pnv_cpu->intc = obj;
 765}
 766
 767/* Allowed core identifiers on a POWER8 Processor Chip :
 768 *
 769 * <EX0 reserved>
 770 *  EX1  - Venice only
 771 *  EX2  - Venice only
 772 *  EX3  - Venice only
 773 *  EX4
 774 *  EX5
 775 *  EX6
 776 * <EX7,8 reserved> <reserved>
 777 *  EX9  - Venice only
 778 *  EX10 - Venice only
 779 *  EX11 - Venice only
 780 *  EX12
 781 *  EX13
 782 *  EX14
 783 * <EX15 reserved>
 784 */
 785#define POWER8E_CORE_MASK  (0x7070ull)
 786#define POWER8_CORE_MASK   (0x7e7eull)
 787
 788/*
 789 * POWER9 has 24 cores, ids starting at 0x0
 790 */
 791#define POWER9_CORE_MASK   (0xffffffffffffffull)
 792
 793static void pnv_chip_power8_instance_init(Object *obj)
 794{
 795    Pnv8Chip *chip8 = PNV8_CHIP(obj);
 796
 797    object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
 798                            TYPE_PNV8_PSI, &error_abort, NULL);
 799    object_property_add_const_link(OBJECT(&chip8->psi), "xics",
 800                                   OBJECT(qdev_get_machine()), &error_abort);
 801
 802    object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
 803                            TYPE_PNV8_LPC, &error_abort, NULL);
 804    object_property_add_const_link(OBJECT(&chip8->lpc), "psi",
 805                                   OBJECT(&chip8->psi), &error_abort);
 806
 807    object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
 808                            TYPE_PNV8_OCC, &error_abort, NULL);
 809    object_property_add_const_link(OBJECT(&chip8->occ), "psi",
 810                                   OBJECT(&chip8->psi), &error_abort);
 811}
 812
 813static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
 814 {
 815    PnvChip *chip = PNV_CHIP(chip8);
 816    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
 817    const char *typename = pnv_chip_core_typename(chip);
 818    size_t typesize = object_type_get_instance_size(typename);
 819    int i, j;
 820    char *name;
 821    XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
 822
 823    name = g_strdup_printf("icp-%x", chip->chip_id);
 824    memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
 825    sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
 826    g_free(name);
 827
 828    sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
 829
 830    /* Map the ICP registers for each thread */
 831    for (i = 0; i < chip->nr_cores; i++) {
 832        PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
 833        int core_hwid = CPU_CORE(pnv_core)->core_id;
 834
 835        for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
 836            uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
 837            PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
 838
 839            memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
 840                                        &icp->mmio);
 841        }
 842    }
 843}
 844
 845static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
 846{
 847    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
 848    PnvChip *chip = PNV_CHIP(dev);
 849    Pnv8Chip *chip8 = PNV8_CHIP(dev);
 850    Pnv8Psi *psi8 = &chip8->psi;
 851    Error *local_err = NULL;
 852
 853    pcc->parent_realize(dev, &local_err);
 854    if (local_err) {
 855        error_propagate(errp, local_err);
 856        return;
 857    }
 858
 859    /* Processor Service Interface (PSI) Host Bridge */
 860    object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
 861                            "bar", &error_fatal);
 862    object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
 863    if (local_err) {
 864        error_propagate(errp, local_err);
 865        return;
 866    }
 867    pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
 868                            &PNV_PSI(psi8)->xscom_regs);
 869
 870    /* Create LPC controller */
 871    object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
 872                             &error_fatal);
 873    pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
 874
 875    chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
 876                                            (uint64_t) PNV_XSCOM_BASE(chip),
 877                                            PNV_XSCOM_LPC_BASE);
 878
 879    /* Interrupt Management Area. This is the memory region holding
 880     * all the Interrupt Control Presenter (ICP) registers */
 881    pnv_chip_icp_realize(chip8, &local_err);
 882    if (local_err) {
 883        error_propagate(errp, local_err);
 884        return;
 885    }
 886
 887    /* Create the simplified OCC model */
 888    object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
 889    if (local_err) {
 890        error_propagate(errp, local_err);
 891        return;
 892    }
 893    pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
 894}
 895
 896static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
 897{
 898    DeviceClass *dc = DEVICE_CLASS(klass);
 899    PnvChipClass *k = PNV_CHIP_CLASS(klass);
 900
 901    k->chip_type = PNV_CHIP_POWER8E;
 902    k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
 903    k->cores_mask = POWER8E_CORE_MASK;
 904    k->core_pir = pnv_chip_core_pir_p8;
 905    k->intc_create = pnv_chip_power8_intc_create;
 906    k->isa_create = pnv_chip_power8_isa_create;
 907    k->dt_populate = pnv_chip_power8_dt_populate;
 908    k->pic_print_info = pnv_chip_power8_pic_print_info;
 909    k->xscom_base = 0x003fc0000000000ull;
 910    dc->desc = "PowerNV Chip POWER8E";
 911
 912    device_class_set_parent_realize(dc, pnv_chip_power8_realize,
 913                                    &k->parent_realize);
 914}
 915
 916static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
 917{
 918    DeviceClass *dc = DEVICE_CLASS(klass);
 919    PnvChipClass *k = PNV_CHIP_CLASS(klass);
 920
 921    k->chip_type = PNV_CHIP_POWER8;
 922    k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
 923    k->cores_mask = POWER8_CORE_MASK;
 924    k->core_pir = pnv_chip_core_pir_p8;
 925    k->intc_create = pnv_chip_power8_intc_create;
 926    k->isa_create = pnv_chip_power8_isa_create;
 927    k->dt_populate = pnv_chip_power8_dt_populate;
 928    k->pic_print_info = pnv_chip_power8_pic_print_info;
 929    k->xscom_base = 0x003fc0000000000ull;
 930    dc->desc = "PowerNV Chip POWER8";
 931
 932    device_class_set_parent_realize(dc, pnv_chip_power8_realize,
 933                                    &k->parent_realize);
 934}
 935
 936static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
 937{
 938    DeviceClass *dc = DEVICE_CLASS(klass);
 939    PnvChipClass *k = PNV_CHIP_CLASS(klass);
 940
 941    k->chip_type = PNV_CHIP_POWER8NVL;
 942    k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
 943    k->cores_mask = POWER8_CORE_MASK;
 944    k->core_pir = pnv_chip_core_pir_p8;
 945    k->intc_create = pnv_chip_power8_intc_create;
 946    k->isa_create = pnv_chip_power8nvl_isa_create;
 947    k->dt_populate = pnv_chip_power8_dt_populate;
 948    k->pic_print_info = pnv_chip_power8_pic_print_info;
 949    k->xscom_base = 0x003fc0000000000ull;
 950    dc->desc = "PowerNV Chip POWER8NVL";
 951
 952    device_class_set_parent_realize(dc, pnv_chip_power8_realize,
 953                                    &k->parent_realize);
 954}
 955
 956static void pnv_chip_power9_instance_init(Object *obj)
 957{
 958    Pnv9Chip *chip9 = PNV9_CHIP(obj);
 959
 960    object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
 961                            TYPE_PNV_XIVE, &error_abort, NULL);
 962    object_property_add_const_link(OBJECT(&chip9->xive), "chip", obj,
 963                                   &error_abort);
 964
 965    object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
 966                            TYPE_PNV9_PSI, &error_abort, NULL);
 967    object_property_add_const_link(OBJECT(&chip9->psi), "chip", obj,
 968                                   &error_abort);
 969
 970    object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
 971                            TYPE_PNV9_LPC, &error_abort, NULL);
 972    object_property_add_const_link(OBJECT(&chip9->lpc), "psi",
 973                                   OBJECT(&chip9->psi), &error_abort);
 974
 975    object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
 976                            TYPE_PNV9_OCC, &error_abort, NULL);
 977    object_property_add_const_link(OBJECT(&chip9->occ), "psi",
 978                                   OBJECT(&chip9->psi), &error_abort);
 979}
 980
 981static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
 982{
 983    PnvChip *chip = PNV_CHIP(chip9);
 984    const char *typename = pnv_chip_core_typename(chip);
 985    size_t typesize = object_type_get_instance_size(typename);
 986    int i;
 987
 988    chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
 989    chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
 990
 991    for (i = 0; i < chip9->nr_quads; i++) {
 992        char eq_name[32];
 993        PnvQuad *eq = &chip9->quads[i];
 994        PnvCore *pnv_core = PNV_CORE(chip->cores + (i * 4) * typesize);
 995        int core_id = CPU_CORE(pnv_core)->core_id;
 996
 997        object_initialize(eq, sizeof(*eq), TYPE_PNV_QUAD);
 998        snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
 999
1000        object_property_add_child(OBJECT(chip), eq_name, OBJECT(eq),
1001                                  &error_fatal);
1002        object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1003        object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1004        object_unref(OBJECT(eq));
1005
1006        pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1007                                &eq->xscom_regs);
1008    }
1009}
1010
1011static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1012{
1013    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1014    Pnv9Chip *chip9 = PNV9_CHIP(dev);
1015    PnvChip *chip = PNV_CHIP(dev);
1016    Pnv9Psi *psi9 = &chip9->psi;
1017    Error *local_err = NULL;
1018
1019    pcc->parent_realize(dev, &local_err);
1020    if (local_err) {
1021        error_propagate(errp, local_err);
1022        return;
1023    }
1024
1025    pnv_chip_quad_realize(chip9, &local_err);
1026    if (local_err) {
1027        error_propagate(errp, local_err);
1028        return;
1029    }
1030
1031    /* XIVE interrupt controller (POWER9) */
1032    object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1033                            "ic-bar", &error_fatal);
1034    object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1035                            "vc-bar", &error_fatal);
1036    object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1037                            "pc-bar", &error_fatal);
1038    object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1039                            "tm-bar", &error_fatal);
1040    object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1041                             &local_err);
1042    if (local_err) {
1043        error_propagate(errp, local_err);
1044        return;
1045    }
1046    pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1047                            &chip9->xive.xscom_regs);
1048
1049    /* Processor Service Interface (PSI) Host Bridge */
1050    object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1051                            "bar", &error_fatal);
1052    object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1053    if (local_err) {
1054        error_propagate(errp, local_err);
1055        return;
1056    }
1057    pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1058                            &PNV_PSI(psi9)->xscom_regs);
1059
1060    /* LPC */
1061    object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1062    if (local_err) {
1063        error_propagate(errp, local_err);
1064        return;
1065    }
1066    memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1067                                &chip9->lpc.xscom_regs);
1068
1069    chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1070                                            (uint64_t) PNV9_LPCM_BASE(chip));
1071
1072    /* Create the simplified OCC model */
1073    object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1074    if (local_err) {
1075        error_propagate(errp, local_err);
1076        return;
1077    }
1078    pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1079}
1080
1081static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1082{
1083    DeviceClass *dc = DEVICE_CLASS(klass);
1084    PnvChipClass *k = PNV_CHIP_CLASS(klass);
1085
1086    k->chip_type = PNV_CHIP_POWER9;
1087    k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1088    k->cores_mask = POWER9_CORE_MASK;
1089    k->core_pir = pnv_chip_core_pir_p9;
1090    k->intc_create = pnv_chip_power9_intc_create;
1091    k->isa_create = pnv_chip_power9_isa_create;
1092    k->dt_populate = pnv_chip_power9_dt_populate;
1093    k->pic_print_info = pnv_chip_power9_pic_print_info;
1094    k->xscom_base = 0x00603fc00000000ull;
1095    dc->desc = "PowerNV Chip POWER9";
1096
1097    device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1098                                    &k->parent_realize);
1099}
1100
1101static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1102{
1103    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1104    int cores_max;
1105
1106    /*
1107     * No custom mask for this chip, let's use the default one from *
1108     * the chip class
1109     */
1110    if (!chip->cores_mask) {
1111        chip->cores_mask = pcc->cores_mask;
1112    }
1113
1114    /* filter alien core ids ! some are reserved */
1115    if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1116        error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1117                   chip->cores_mask);
1118        return;
1119    }
1120    chip->cores_mask &= pcc->cores_mask;
1121
1122    /* now that we have a sane layout, let check the number of cores */
1123    cores_max = ctpop64(chip->cores_mask);
1124    if (chip->nr_cores > cores_max) {
1125        error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1126                   cores_max);
1127        return;
1128    }
1129}
1130
1131static void pnv_chip_instance_init(Object *obj)
1132{
1133    PNV_CHIP(obj)->xscom_base = PNV_CHIP_GET_CLASS(obj)->xscom_base;
1134}
1135
1136static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1137{
1138    Error *error = NULL;
1139    PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1140    const char *typename = pnv_chip_core_typename(chip);
1141    size_t typesize = object_type_get_instance_size(typename);
1142    int i, core_hwid;
1143
1144    if (!object_class_by_name(typename)) {
1145        error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1146        return;
1147    }
1148
1149    /* Cores */
1150    pnv_chip_core_sanitize(chip, &error);
1151    if (error) {
1152        error_propagate(errp, error);
1153        return;
1154    }
1155
1156    chip->cores = g_malloc0(typesize * chip->nr_cores);
1157
1158    for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1159             && (i < chip->nr_cores); core_hwid++) {
1160        char core_name[32];
1161        void *pnv_core = chip->cores + i * typesize;
1162        uint64_t xscom_core_base;
1163
1164        if (!(chip->cores_mask & (1ull << core_hwid))) {
1165            continue;
1166        }
1167
1168        object_initialize(pnv_core, typesize, typename);
1169        snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1170        object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1171                                  &error_fatal);
1172        object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads",
1173                                &error_fatal);
1174        object_property_set_int(OBJECT(pnv_core), core_hwid,
1175                                CPU_CORE_PROP_CORE_ID, &error_fatal);
1176        object_property_set_int(OBJECT(pnv_core),
1177                                pcc->core_pir(chip, core_hwid),
1178                                "pir", &error_fatal);
1179        object_property_add_const_link(OBJECT(pnv_core), "chip",
1180                                       OBJECT(chip), &error_fatal);
1181        object_property_set_bool(OBJECT(pnv_core), true, "realized",
1182                                 &error_fatal);
1183        object_unref(OBJECT(pnv_core));
1184
1185        /* Each core has an XSCOM MMIO region */
1186        if (!pnv_chip_is_power9(chip)) {
1187            xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
1188        } else {
1189            xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid);
1190        }
1191
1192        pnv_xscom_add_subregion(chip, xscom_core_base,
1193                                &PNV_CORE(pnv_core)->xscom_regs);
1194        i++;
1195    }
1196}
1197
1198static void pnv_chip_realize(DeviceState *dev, Error **errp)
1199{
1200    PnvChip *chip = PNV_CHIP(dev);
1201    Error *error = NULL;
1202
1203    /* XSCOM bridge */
1204    pnv_xscom_realize(chip, &error);
1205    if (error) {
1206        error_propagate(errp, error);
1207        return;
1208    }
1209    sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1210
1211    /* Cores */
1212    pnv_chip_core_realize(chip, &error);
1213    if (error) {
1214        error_propagate(errp, error);
1215        return;
1216    }
1217}
1218
1219static Property pnv_chip_properties[] = {
1220    DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1221    DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1222    DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1223    DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1224    DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1225    DEFINE_PROP_END_OF_LIST(),
1226};
1227
1228static void pnv_chip_class_init(ObjectClass *klass, void *data)
1229{
1230    DeviceClass *dc = DEVICE_CLASS(klass);
1231
1232    set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1233    dc->realize = pnv_chip_realize;
1234    dc->props = pnv_chip_properties;
1235    dc->desc = "PowerNV Chip";
1236}
1237
1238static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1239{
1240    PnvMachineState *pnv = PNV_MACHINE(xi);
1241    int i;
1242
1243    for (i = 0; i < pnv->num_chips; i++) {
1244        Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1245
1246        if (ics_valid_irq(&chip8->psi.ics, irq)) {
1247            return &chip8->psi.ics;
1248        }
1249    }
1250    return NULL;
1251}
1252
1253static void pnv_ics_resend(XICSFabric *xi)
1254{
1255    PnvMachineState *pnv = PNV_MACHINE(xi);
1256    int i;
1257
1258    for (i = 0; i < pnv->num_chips; i++) {
1259        Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1260        ics_resend(&chip8->psi.ics);
1261    }
1262}
1263
1264static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1265{
1266    PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1267
1268    return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1269}
1270
1271static void pnv_pic_print_info(InterruptStatsProvider *obj,
1272                               Monitor *mon)
1273{
1274    PnvMachineState *pnv = PNV_MACHINE(obj);
1275    int i;
1276    CPUState *cs;
1277
1278    CPU_FOREACH(cs) {
1279        PowerPCCPU *cpu = POWERPC_CPU(cs);
1280
1281        if (pnv_chip_is_power9(pnv->chips[0])) {
1282            xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1283        } else {
1284            icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1285        }
1286    }
1287
1288    for (i = 0; i < pnv->num_chips; i++) {
1289        PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1290    }
1291}
1292
1293static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1294                              void *opaque, Error **errp)
1295{
1296    visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1297}
1298
1299static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1300                              void *opaque, Error **errp)
1301{
1302    PnvMachineState *pnv = PNV_MACHINE(obj);
1303    uint32_t num_chips;
1304    Error *local_err = NULL;
1305
1306    visit_type_uint32(v, name, &num_chips, &local_err);
1307    if (local_err) {
1308        error_propagate(errp, local_err);
1309        return;
1310    }
1311
1312    /*
1313     * TODO: should we decide on how many chips we can create based
1314     * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1315     */
1316    if (!is_power_of_2(num_chips) || num_chips > 4) {
1317        error_setg(errp, "invalid number of chips: '%d'", num_chips);
1318        return;
1319    }
1320
1321    pnv->num_chips = num_chips;
1322}
1323
1324static void pnv_machine_instance_init(Object *obj)
1325{
1326    PnvMachineState *pnv = PNV_MACHINE(obj);
1327    pnv->num_chips = 1;
1328}
1329
1330static void pnv_machine_class_props_init(ObjectClass *oc)
1331{
1332    object_class_property_add(oc, "num-chips", "uint32",
1333                              pnv_get_num_chips, pnv_set_num_chips,
1334                              NULL, NULL, NULL);
1335    object_class_property_set_description(oc, "num-chips",
1336                              "Specifies the number of processor chips",
1337                              NULL);
1338}
1339
1340static void pnv_machine_class_init(ObjectClass *oc, void *data)
1341{
1342    MachineClass *mc = MACHINE_CLASS(oc);
1343    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1344    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1345
1346    mc->desc = "IBM PowerNV (Non-Virtualized)";
1347    mc->init = pnv_init;
1348    mc->reset = pnv_reset;
1349    mc->max_cpus = MAX_CPUS;
1350    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1351    mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for
1352                                      * storage */
1353    mc->no_parallel = 1;
1354    mc->default_boot_order = NULL;
1355    mc->default_ram_size = 1 * GiB;
1356    xic->icp_get = pnv_icp_get;
1357    xic->ics_get = pnv_ics_get;
1358    xic->ics_resend = pnv_ics_resend;
1359    ispc->print_info = pnv_pic_print_info;
1360
1361    pnv_machine_class_props_init(oc);
1362}
1363
1364#define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1365    {                                             \
1366        .name          = type,                    \
1367        .class_init    = class_initfn,            \
1368        .parent        = TYPE_PNV8_CHIP,          \
1369    }
1370
1371#define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1372    {                                             \
1373        .name          = type,                    \
1374        .class_init    = class_initfn,            \
1375        .parent        = TYPE_PNV9_CHIP,          \
1376    }
1377
1378static const TypeInfo types[] = {
1379    {
1380        .name          = TYPE_PNV_MACHINE,
1381        .parent        = TYPE_MACHINE,
1382        .instance_size = sizeof(PnvMachineState),
1383        .instance_init = pnv_machine_instance_init,
1384        .class_init    = pnv_machine_class_init,
1385        .interfaces = (InterfaceInfo[]) {
1386            { TYPE_XICS_FABRIC },
1387            { TYPE_INTERRUPT_STATS_PROVIDER },
1388            { },
1389        },
1390    },
1391    {
1392        .name          = TYPE_PNV_CHIP,
1393        .parent        = TYPE_SYS_BUS_DEVICE,
1394        .class_init    = pnv_chip_class_init,
1395        .instance_init = pnv_chip_instance_init,
1396        .instance_size = sizeof(PnvChip),
1397        .class_size    = sizeof(PnvChipClass),
1398        .abstract      = true,
1399    },
1400
1401    /*
1402     * P9 chip and variants
1403     */
1404    {
1405        .name          = TYPE_PNV9_CHIP,
1406        .parent        = TYPE_PNV_CHIP,
1407        .instance_init = pnv_chip_power9_instance_init,
1408        .instance_size = sizeof(Pnv9Chip),
1409    },
1410    DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1411
1412    /*
1413     * P8 chip and variants
1414     */
1415    {
1416        .name          = TYPE_PNV8_CHIP,
1417        .parent        = TYPE_PNV_CHIP,
1418        .instance_init = pnv_chip_power8_instance_init,
1419        .instance_size = sizeof(Pnv8Chip),
1420    },
1421    DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1422    DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1423    DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1424                          pnv_chip_power8nvl_class_init),
1425};
1426
1427DEFINE_TYPES(types)
1428