qemu/hw/vfio/pci-quirks.c
<<
>>
Prefs
   1/*
   2 * device quirks for PCI devices
   3 *
   4 * Copyright Red Hat, Inc. 2012-2015
   5 *
   6 * Authors:
   7 *  Alex Williamson <alex.williamson@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2.  See
  10 * the COPYING file in the top-level directory.
  11 */
  12
  13#include "qemu/osdep.h"
  14#include "qemu/units.h"
  15#include "qemu/error-report.h"
  16#include "qemu/main-loop.h"
  17#include "qemu/range.h"
  18#include "qapi/error.h"
  19#include "qapi/visitor.h"
  20#include <sys/ioctl.h>
  21#include "hw/nvram/fw_cfg.h"
  22#include "pci.h"
  23#include "trace.h"
  24
  25/* Use uin32_t for vendor & device so PCI_ANY_ID expands and cannot match hw */
  26static bool vfio_pci_is(VFIOPCIDevice *vdev, uint32_t vendor, uint32_t device)
  27{
  28    return (vendor == PCI_ANY_ID || vendor == vdev->vendor_id) &&
  29           (device == PCI_ANY_ID || device == vdev->device_id);
  30}
  31
  32static bool vfio_is_vga(VFIOPCIDevice *vdev)
  33{
  34    PCIDevice *pdev = &vdev->pdev;
  35    uint16_t class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
  36
  37    return class == PCI_CLASS_DISPLAY_VGA;
  38}
  39
  40/*
  41 * List of device ids/vendor ids for which to disable
  42 * option rom loading. This avoids the guest hangs during rom
  43 * execution as noticed with the BCM 57810 card for lack of a
  44 * more better way to handle such issues.
  45 * The  user can still override by specifying a romfile or
  46 * rombar=1.
  47 * Please see https://bugs.launchpad.net/qemu/+bug/1284874
  48 * for an analysis of the 57810 card hang. When adding
  49 * a new vendor id/device id combination below, please also add
  50 * your card/environment details and information that could
  51 * help in debugging to the bug tracking this issue
  52 */
  53static const struct {
  54    uint32_t vendor;
  55    uint32_t device;
  56} romblacklist[] = {
  57    { 0x14e4, 0x168e }, /* Broadcom BCM 57810 */
  58};
  59
  60bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
  61{
  62    int i;
  63
  64    for (i = 0 ; i < ARRAY_SIZE(romblacklist); i++) {
  65        if (vfio_pci_is(vdev, romblacklist[i].vendor, romblacklist[i].device)) {
  66            trace_vfio_quirk_rom_blacklisted(vdev->vbasedev.name,
  67                                             romblacklist[i].vendor,
  68                                             romblacklist[i].device);
  69            return true;
  70        }
  71    }
  72    return false;
  73}
  74
  75/*
  76 * Device specific region quirks (mostly backdoors to PCI config space)
  77 */
  78
  79/*
  80 * The generic window quirks operate on an address and data register,
  81 * vfio_generic_window_address_quirk handles the address register and
  82 * vfio_generic_window_data_quirk handles the data register.  These ops
  83 * pass reads and writes through to hardware until a value matching the
  84 * stored address match/mask is written.  When this occurs, the data
  85 * register access emulated PCI config space for the device rather than
  86 * passing through accesses.  This enables devices where PCI config space
  87 * is accessible behind a window register to maintain the virtualization
  88 * provided through vfio.
  89 */
  90typedef struct VFIOConfigWindowMatch {
  91    uint32_t match;
  92    uint32_t mask;
  93} VFIOConfigWindowMatch;
  94
  95typedef struct VFIOConfigWindowQuirk {
  96    struct VFIOPCIDevice *vdev;
  97
  98    uint32_t address_val;
  99
 100    uint32_t address_offset;
 101    uint32_t data_offset;
 102
 103    bool window_enabled;
 104    uint8_t bar;
 105
 106    MemoryRegion *addr_mem;
 107    MemoryRegion *data_mem;
 108
 109    uint32_t nr_matches;
 110    VFIOConfigWindowMatch matches[];
 111} VFIOConfigWindowQuirk;
 112
 113static uint64_t vfio_generic_window_quirk_address_read(void *opaque,
 114                                                       hwaddr addr,
 115                                                       unsigned size)
 116{
 117    VFIOConfigWindowQuirk *window = opaque;
 118    VFIOPCIDevice *vdev = window->vdev;
 119
 120    return vfio_region_read(&vdev->bars[window->bar].region,
 121                            addr + window->address_offset, size);
 122}
 123
 124static void vfio_generic_window_quirk_address_write(void *opaque, hwaddr addr,
 125                                                    uint64_t data,
 126                                                    unsigned size)
 127{
 128    VFIOConfigWindowQuirk *window = opaque;
 129    VFIOPCIDevice *vdev = window->vdev;
 130    int i;
 131
 132    window->window_enabled = false;
 133
 134    vfio_region_write(&vdev->bars[window->bar].region,
 135                      addr + window->address_offset, data, size);
 136
 137    for (i = 0; i < window->nr_matches; i++) {
 138        if ((data & ~window->matches[i].mask) == window->matches[i].match) {
 139            window->window_enabled = true;
 140            window->address_val = data & window->matches[i].mask;
 141            trace_vfio_quirk_generic_window_address_write(vdev->vbasedev.name,
 142                                    memory_region_name(window->addr_mem), data);
 143            break;
 144        }
 145    }
 146}
 147
 148static const MemoryRegionOps vfio_generic_window_address_quirk = {
 149    .read = vfio_generic_window_quirk_address_read,
 150    .write = vfio_generic_window_quirk_address_write,
 151    .endianness = DEVICE_LITTLE_ENDIAN,
 152};
 153
 154static uint64_t vfio_generic_window_quirk_data_read(void *opaque,
 155                                                    hwaddr addr, unsigned size)
 156{
 157    VFIOConfigWindowQuirk *window = opaque;
 158    VFIOPCIDevice *vdev = window->vdev;
 159    uint64_t data;
 160
 161    /* Always read data reg, discard if window enabled */
 162    data = vfio_region_read(&vdev->bars[window->bar].region,
 163                            addr + window->data_offset, size);
 164
 165    if (window->window_enabled) {
 166        data = vfio_pci_read_config(&vdev->pdev, window->address_val, size);
 167        trace_vfio_quirk_generic_window_data_read(vdev->vbasedev.name,
 168                                    memory_region_name(window->data_mem), data);
 169    }
 170
 171    return data;
 172}
 173
 174static void vfio_generic_window_quirk_data_write(void *opaque, hwaddr addr,
 175                                                 uint64_t data, unsigned size)
 176{
 177    VFIOConfigWindowQuirk *window = opaque;
 178    VFIOPCIDevice *vdev = window->vdev;
 179
 180    if (window->window_enabled) {
 181        vfio_pci_write_config(&vdev->pdev, window->address_val, data, size);
 182        trace_vfio_quirk_generic_window_data_write(vdev->vbasedev.name,
 183                                    memory_region_name(window->data_mem), data);
 184        return;
 185    }
 186
 187    vfio_region_write(&vdev->bars[window->bar].region,
 188                      addr + window->data_offset, data, size);
 189}
 190
 191static const MemoryRegionOps vfio_generic_window_data_quirk = {
 192    .read = vfio_generic_window_quirk_data_read,
 193    .write = vfio_generic_window_quirk_data_write,
 194    .endianness = DEVICE_LITTLE_ENDIAN,
 195};
 196
 197/*
 198 * The generic mirror quirk handles devices which expose PCI config space
 199 * through a region within a BAR.  When enabled, reads and writes are
 200 * redirected through to emulated PCI config space.  XXX if PCI config space
 201 * used memory regions, this could just be an alias.
 202 */
 203typedef struct VFIOConfigMirrorQuirk {
 204    struct VFIOPCIDevice *vdev;
 205    uint32_t offset;
 206    uint8_t bar;
 207    MemoryRegion *mem;
 208    uint8_t data[];
 209} VFIOConfigMirrorQuirk;
 210
 211static uint64_t vfio_generic_quirk_mirror_read(void *opaque,
 212                                               hwaddr addr, unsigned size)
 213{
 214    VFIOConfigMirrorQuirk *mirror = opaque;
 215    VFIOPCIDevice *vdev = mirror->vdev;
 216    uint64_t data;
 217
 218    /* Read and discard in case the hardware cares */
 219    (void)vfio_region_read(&vdev->bars[mirror->bar].region,
 220                           addr + mirror->offset, size);
 221
 222    data = vfio_pci_read_config(&vdev->pdev, addr, size);
 223    trace_vfio_quirk_generic_mirror_read(vdev->vbasedev.name,
 224                                         memory_region_name(mirror->mem),
 225                                         addr, data);
 226    return data;
 227}
 228
 229static void vfio_generic_quirk_mirror_write(void *opaque, hwaddr addr,
 230                                            uint64_t data, unsigned size)
 231{
 232    VFIOConfigMirrorQuirk *mirror = opaque;
 233    VFIOPCIDevice *vdev = mirror->vdev;
 234
 235    vfio_pci_write_config(&vdev->pdev, addr, data, size);
 236    trace_vfio_quirk_generic_mirror_write(vdev->vbasedev.name,
 237                                          memory_region_name(mirror->mem),
 238                                          addr, data);
 239}
 240
 241static const MemoryRegionOps vfio_generic_mirror_quirk = {
 242    .read = vfio_generic_quirk_mirror_read,
 243    .write = vfio_generic_quirk_mirror_write,
 244    .endianness = DEVICE_LITTLE_ENDIAN,
 245};
 246
 247/* Is range1 fully contained within range2?  */
 248static bool vfio_range_contained(uint64_t first1, uint64_t len1,
 249                                 uint64_t first2, uint64_t len2) {
 250    return (first1 >= first2 && first1 + len1 <= first2 + len2);
 251}
 252
 253#define PCI_VENDOR_ID_ATI               0x1002
 254
 255/*
 256 * Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
 257 * through VGA register 0x3c3.  On newer cards, the I/O port BAR is always
 258 * BAR4 (older cards like the X550 used BAR1, but we don't care to support
 259 * those).  Note that on bare metal, a read of 0x3c3 doesn't always return the
 260 * I/O port BAR address.  Originally this was coded to return the virtual BAR
 261 * address only if the physical register read returns the actual BAR address,
 262 * but users have reported greater success if we return the virtual address
 263 * unconditionally.
 264 */
 265static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
 266                                        hwaddr addr, unsigned size)
 267{
 268    VFIOPCIDevice *vdev = opaque;
 269    uint64_t data = vfio_pci_read_config(&vdev->pdev,
 270                                         PCI_BASE_ADDRESS_4 + 1, size);
 271
 272    trace_vfio_quirk_ati_3c3_read(vdev->vbasedev.name, data);
 273
 274    return data;
 275}
 276
 277static const MemoryRegionOps vfio_ati_3c3_quirk = {
 278    .read = vfio_ati_3c3_quirk_read,
 279    .endianness = DEVICE_LITTLE_ENDIAN,
 280};
 281
 282static VFIOQuirk *vfio_quirk_alloc(int nr_mem)
 283{
 284    VFIOQuirk *quirk = g_new0(VFIOQuirk, 1);
 285    QLIST_INIT(&quirk->ioeventfds);
 286    quirk->mem = g_new0(MemoryRegion, nr_mem);
 287    quirk->nr_mem = nr_mem;
 288
 289    return quirk;
 290}
 291
 292static void vfio_ioeventfd_exit(VFIOPCIDevice *vdev, VFIOIOEventFD *ioeventfd)
 293{
 294    QLIST_REMOVE(ioeventfd, next);
 295    memory_region_del_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
 296                              true, ioeventfd->data, &ioeventfd->e);
 297
 298    if (ioeventfd->vfio) {
 299        struct vfio_device_ioeventfd vfio_ioeventfd;
 300
 301        vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
 302        vfio_ioeventfd.flags = ioeventfd->size;
 303        vfio_ioeventfd.data = ioeventfd->data;
 304        vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
 305                                ioeventfd->region_addr;
 306        vfio_ioeventfd.fd = -1;
 307
 308        if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd)) {
 309            error_report("Failed to remove vfio ioeventfd for %s+0x%"
 310                         HWADDR_PRIx"[%d]:0x%"PRIx64" (%m)",
 311                         memory_region_name(ioeventfd->mr), ioeventfd->addr,
 312                         ioeventfd->size, ioeventfd->data);
 313        }
 314    } else {
 315        qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
 316                            NULL, NULL, NULL);
 317    }
 318
 319    event_notifier_cleanup(&ioeventfd->e);
 320    trace_vfio_ioeventfd_exit(memory_region_name(ioeventfd->mr),
 321                              (uint64_t)ioeventfd->addr, ioeventfd->size,
 322                              ioeventfd->data);
 323    g_free(ioeventfd);
 324}
 325
 326static void vfio_drop_dynamic_eventfds(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
 327{
 328    VFIOIOEventFD *ioeventfd, *tmp;
 329
 330    QLIST_FOREACH_SAFE(ioeventfd, &quirk->ioeventfds, next, tmp) {
 331        if (ioeventfd->dynamic) {
 332            vfio_ioeventfd_exit(vdev, ioeventfd);
 333        }
 334    }
 335}
 336
 337static void vfio_ioeventfd_handler(void *opaque)
 338{
 339    VFIOIOEventFD *ioeventfd = opaque;
 340
 341    if (event_notifier_test_and_clear(&ioeventfd->e)) {
 342        vfio_region_write(ioeventfd->region, ioeventfd->region_addr,
 343                          ioeventfd->data, ioeventfd->size);
 344        trace_vfio_ioeventfd_handler(memory_region_name(ioeventfd->mr),
 345                                     (uint64_t)ioeventfd->addr, ioeventfd->size,
 346                                     ioeventfd->data);
 347    }
 348}
 349
 350static VFIOIOEventFD *vfio_ioeventfd_init(VFIOPCIDevice *vdev,
 351                                          MemoryRegion *mr, hwaddr addr,
 352                                          unsigned size, uint64_t data,
 353                                          VFIORegion *region,
 354                                          hwaddr region_addr, bool dynamic)
 355{
 356    VFIOIOEventFD *ioeventfd;
 357
 358    if (vdev->no_kvm_ioeventfd) {
 359        return NULL;
 360    }
 361
 362    ioeventfd = g_malloc0(sizeof(*ioeventfd));
 363
 364    if (event_notifier_init(&ioeventfd->e, 0)) {
 365        g_free(ioeventfd);
 366        return NULL;
 367    }
 368
 369    /*
 370     * MemoryRegion and relative offset, plus additional ioeventfd setup
 371     * parameters for configuring and later tearing down KVM ioeventfd.
 372     */
 373    ioeventfd->mr = mr;
 374    ioeventfd->addr = addr;
 375    ioeventfd->size = size;
 376    ioeventfd->data = data;
 377    ioeventfd->dynamic = dynamic;
 378    /*
 379     * VFIORegion and relative offset for implementing the userspace
 380     * handler.  data & size fields shared for both uses.
 381     */
 382    ioeventfd->region = region;
 383    ioeventfd->region_addr = region_addr;
 384
 385    if (!vdev->no_vfio_ioeventfd) {
 386        struct vfio_device_ioeventfd vfio_ioeventfd;
 387
 388        vfio_ioeventfd.argsz = sizeof(vfio_ioeventfd);
 389        vfio_ioeventfd.flags = ioeventfd->size;
 390        vfio_ioeventfd.data = ioeventfd->data;
 391        vfio_ioeventfd.offset = ioeventfd->region->fd_offset +
 392                                ioeventfd->region_addr;
 393        vfio_ioeventfd.fd = event_notifier_get_fd(&ioeventfd->e);
 394
 395        ioeventfd->vfio = !ioctl(vdev->vbasedev.fd,
 396                                 VFIO_DEVICE_IOEVENTFD, &vfio_ioeventfd);
 397    }
 398
 399    if (!ioeventfd->vfio) {
 400        qemu_set_fd_handler(event_notifier_get_fd(&ioeventfd->e),
 401                            vfio_ioeventfd_handler, NULL, ioeventfd);
 402    }
 403
 404    memory_region_add_eventfd(ioeventfd->mr, ioeventfd->addr, ioeventfd->size,
 405                              true, ioeventfd->data, &ioeventfd->e);
 406    trace_vfio_ioeventfd_init(memory_region_name(mr), (uint64_t)addr,
 407                              size, data, ioeventfd->vfio);
 408
 409    return ioeventfd;
 410}
 411
 412static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
 413{
 414    VFIOQuirk *quirk;
 415
 416    /*
 417     * As long as the BAR is >= 256 bytes it will be aligned such that the
 418     * lower byte is always zero.  Filter out anything else, if it exists.
 419     */
 420    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
 421        !vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
 422        return;
 423    }
 424
 425    quirk = vfio_quirk_alloc(1);
 426
 427    memory_region_init_io(quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, vdev,
 428                          "vfio-ati-3c3-quirk", 1);
 429    memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
 430                                3 /* offset 3 bytes from 0x3c0 */, quirk->mem);
 431
 432    QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
 433                      quirk, next);
 434
 435    trace_vfio_quirk_ati_3c3_probe(vdev->vbasedev.name);
 436}
 437
 438/*
 439 * Newer ATI/AMD devices, including HD5450 and HD7850, have a mirror to PCI
 440 * config space through MMIO BAR2 at offset 0x4000.  Nothing seems to access
 441 * the MMIO space directly, but a window to this space is provided through
 442 * I/O port BAR4.  Offset 0x0 is the address register and offset 0x4 is the
 443 * data register.  When the address is programmed to a range of 0x4000-0x4fff
 444 * PCI configuration space is available.  Experimentation seems to indicate
 445 * that read-only may be provided by hardware.
 446 */
 447static void vfio_probe_ati_bar4_quirk(VFIOPCIDevice *vdev, int nr)
 448{
 449    VFIOQuirk *quirk;
 450    VFIOConfigWindowQuirk *window;
 451
 452    /* This windows doesn't seem to be used except by legacy VGA code */
 453    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
 454        !vdev->vga || nr != 4) {
 455        return;
 456    }
 457
 458    quirk = vfio_quirk_alloc(2);
 459    window = quirk->data = g_malloc0(sizeof(*window) +
 460                                     sizeof(VFIOConfigWindowMatch));
 461    window->vdev = vdev;
 462    window->address_offset = 0;
 463    window->data_offset = 4;
 464    window->nr_matches = 1;
 465    window->matches[0].match = 0x4000;
 466    window->matches[0].mask = vdev->config_size - 1;
 467    window->bar = nr;
 468    window->addr_mem = &quirk->mem[0];
 469    window->data_mem = &quirk->mem[1];
 470
 471    memory_region_init_io(window->addr_mem, OBJECT(vdev),
 472                          &vfio_generic_window_address_quirk, window,
 473                          "vfio-ati-bar4-window-address-quirk", 4);
 474    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 475                                        window->address_offset,
 476                                        window->addr_mem, 1);
 477
 478    memory_region_init_io(window->data_mem, OBJECT(vdev),
 479                          &vfio_generic_window_data_quirk, window,
 480                          "vfio-ati-bar4-window-data-quirk", 4);
 481    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 482                                        window->data_offset,
 483                                        window->data_mem, 1);
 484
 485    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 486
 487    trace_vfio_quirk_ati_bar4_probe(vdev->vbasedev.name);
 488}
 489
 490/*
 491 * Trap the BAR2 MMIO mirror to config space as well.
 492 */
 493static void vfio_probe_ati_bar2_quirk(VFIOPCIDevice *vdev, int nr)
 494{
 495    VFIOQuirk *quirk;
 496    VFIOConfigMirrorQuirk *mirror;
 497
 498    /* Only enable on newer devices where BAR2 is 64bit */
 499    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_ATI, PCI_ANY_ID) ||
 500        !vdev->vga || nr != 2 || !vdev->bars[2].mem64) {
 501        return;
 502    }
 503
 504    quirk = vfio_quirk_alloc(1);
 505    mirror = quirk->data = g_malloc0(sizeof(*mirror));
 506    mirror->mem = quirk->mem;
 507    mirror->vdev = vdev;
 508    mirror->offset = 0x4000;
 509    mirror->bar = nr;
 510
 511    memory_region_init_io(mirror->mem, OBJECT(vdev),
 512                          &vfio_generic_mirror_quirk, mirror,
 513                          "vfio-ati-bar2-4000-quirk", PCI_CONFIG_SPACE_SIZE);
 514    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 515                                        mirror->offset, mirror->mem, 1);
 516
 517    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 518
 519    trace_vfio_quirk_ati_bar2_probe(vdev->vbasedev.name);
 520}
 521
 522/*
 523 * Older ATI/AMD cards like the X550 have a similar window to that above.
 524 * I/O port BAR1 provides a window to a mirror of PCI config space located
 525 * in BAR2 at offset 0xf00.  We don't care to support such older cards, but
 526 * note it for future reference.
 527 */
 528
 529/*
 530 * Nvidia has several different methods to get to config space, the
 531 * nouveu project has several of these documented here:
 532 * https://github.com/pathscale/envytools/tree/master/hwdocs
 533 *
 534 * The first quirk is actually not documented in envytools and is found
 535 * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]).  This is an
 536 * NV46 chipset.  The backdoor uses the legacy VGA I/O ports to access
 537 * the mirror of PCI config space found at BAR0 offset 0x1800.  The access
 538 * sequence first writes 0x338 to I/O port 0x3d4.  The target offset is
 539 * then written to 0x3d0.  Finally 0x538 is written for a read and 0x738
 540 * is written for a write to 0x3d4.  The BAR0 offset is then accessible
 541 * through 0x3d0.  This quirk doesn't seem to be necessary on newer cards
 542 * that use the I/O port BAR5 window but it doesn't hurt to leave it.
 543 */
 544typedef enum {NONE = 0, SELECT, WINDOW, READ, WRITE} VFIONvidia3d0State;
 545static const char *nv3d0_states[] = { "NONE", "SELECT",
 546                                      "WINDOW", "READ", "WRITE" };
 547
 548typedef struct VFIONvidia3d0Quirk {
 549    VFIOPCIDevice *vdev;
 550    VFIONvidia3d0State state;
 551    uint32_t offset;
 552} VFIONvidia3d0Quirk;
 553
 554static uint64_t vfio_nvidia_3d4_quirk_read(void *opaque,
 555                                           hwaddr addr, unsigned size)
 556{
 557    VFIONvidia3d0Quirk *quirk = opaque;
 558    VFIOPCIDevice *vdev = quirk->vdev;
 559
 560    quirk->state = NONE;
 561
 562    return vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 563                         addr + 0x14, size);
 564}
 565
 566static void vfio_nvidia_3d4_quirk_write(void *opaque, hwaddr addr,
 567                                        uint64_t data, unsigned size)
 568{
 569    VFIONvidia3d0Quirk *quirk = opaque;
 570    VFIOPCIDevice *vdev = quirk->vdev;
 571    VFIONvidia3d0State old_state = quirk->state;
 572
 573    quirk->state = NONE;
 574
 575    switch (data) {
 576    case 0x338:
 577        if (old_state == NONE) {
 578            quirk->state = SELECT;
 579            trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 580                                              nv3d0_states[quirk->state]);
 581        }
 582        break;
 583    case 0x538:
 584        if (old_state == WINDOW) {
 585            quirk->state = READ;
 586            trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 587                                              nv3d0_states[quirk->state]);
 588        }
 589        break;
 590    case 0x738:
 591        if (old_state == WINDOW) {
 592            quirk->state = WRITE;
 593            trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 594                                              nv3d0_states[quirk->state]);
 595        }
 596        break;
 597    }
 598
 599    vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 600                   addr + 0x14, data, size);
 601}
 602
 603static const MemoryRegionOps vfio_nvidia_3d4_quirk = {
 604    .read = vfio_nvidia_3d4_quirk_read,
 605    .write = vfio_nvidia_3d4_quirk_write,
 606    .endianness = DEVICE_LITTLE_ENDIAN,
 607};
 608
 609static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
 610                                           hwaddr addr, unsigned size)
 611{
 612    VFIONvidia3d0Quirk *quirk = opaque;
 613    VFIOPCIDevice *vdev = quirk->vdev;
 614    VFIONvidia3d0State old_state = quirk->state;
 615    uint64_t data = vfio_vga_read(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 616                                  addr + 0x10, size);
 617
 618    quirk->state = NONE;
 619
 620    if (old_state == READ &&
 621        (quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
 622        uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
 623
 624        data = vfio_pci_read_config(&vdev->pdev, offset, size);
 625        trace_vfio_quirk_nvidia_3d0_read(vdev->vbasedev.name,
 626                                         offset, size, data);
 627    }
 628
 629    return data;
 630}
 631
 632static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
 633                                        uint64_t data, unsigned size)
 634{
 635    VFIONvidia3d0Quirk *quirk = opaque;
 636    VFIOPCIDevice *vdev = quirk->vdev;
 637    VFIONvidia3d0State old_state = quirk->state;
 638
 639    quirk->state = NONE;
 640
 641    if (old_state == SELECT) {
 642        quirk->offset = (uint32_t)data;
 643        quirk->state = WINDOW;
 644        trace_vfio_quirk_nvidia_3d0_state(vdev->vbasedev.name,
 645                                          nv3d0_states[quirk->state]);
 646    } else if (old_state == WRITE) {
 647        if ((quirk->offset & ~(PCI_CONFIG_SPACE_SIZE - 1)) == 0x1800) {
 648            uint8_t offset = quirk->offset & (PCI_CONFIG_SPACE_SIZE - 1);
 649
 650            vfio_pci_write_config(&vdev->pdev, offset, data, size);
 651            trace_vfio_quirk_nvidia_3d0_write(vdev->vbasedev.name,
 652                                              offset, data, size);
 653            return;
 654        }
 655    }
 656
 657    vfio_vga_write(&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
 658                   addr + 0x10, data, size);
 659}
 660
 661static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
 662    .read = vfio_nvidia_3d0_quirk_read,
 663    .write = vfio_nvidia_3d0_quirk_write,
 664    .endianness = DEVICE_LITTLE_ENDIAN,
 665};
 666
 667static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
 668{
 669    VFIOQuirk *quirk;
 670    VFIONvidia3d0Quirk *data;
 671
 672    if (vdev->no_geforce_quirks ||
 673        !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
 674        !vdev->bars[1].region.size) {
 675        return;
 676    }
 677
 678    quirk = vfio_quirk_alloc(2);
 679    quirk->data = data = g_malloc0(sizeof(*data));
 680    data->vdev = vdev;
 681
 682    memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_nvidia_3d4_quirk,
 683                          data, "vfio-nvidia-3d4-quirk", 2);
 684    memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
 685                                0x14 /* 0x3c0 + 0x14 */, &quirk->mem[0]);
 686
 687    memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_nvidia_3d0_quirk,
 688                          data, "vfio-nvidia-3d0-quirk", 2);
 689    memory_region_add_subregion(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
 690                                0x10 /* 0x3c0 + 0x10 */, &quirk->mem[1]);
 691
 692    QLIST_INSERT_HEAD(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks,
 693                      quirk, next);
 694
 695    trace_vfio_quirk_nvidia_3d0_probe(vdev->vbasedev.name);
 696}
 697
 698/*
 699 * The second quirk is documented in envytools.  The I/O port BAR5 is just
 700 * a set of address/data ports to the MMIO BARs.  The BAR we care about is
 701 * again BAR0.  This backdoor is apparently a bit newer than the one above
 702 * so we need to not only trap 256 bytes @0x1800, but all of PCI config
 703 * space, including extended space is available at the 4k @0x88000.
 704 */
 705typedef struct VFIONvidiaBAR5Quirk {
 706    uint32_t master;
 707    uint32_t enable;
 708    MemoryRegion *addr_mem;
 709    MemoryRegion *data_mem;
 710    bool enabled;
 711    VFIOConfigWindowQuirk window; /* last for match data */
 712} VFIONvidiaBAR5Quirk;
 713
 714static void vfio_nvidia_bar5_enable(VFIONvidiaBAR5Quirk *bar5)
 715{
 716    VFIOPCIDevice *vdev = bar5->window.vdev;
 717
 718    if (((bar5->master & bar5->enable) & 0x1) == bar5->enabled) {
 719        return;
 720    }
 721
 722    bar5->enabled = !bar5->enabled;
 723    trace_vfio_quirk_nvidia_bar5_state(vdev->vbasedev.name,
 724                                       bar5->enabled ?  "Enable" : "Disable");
 725    memory_region_set_enabled(bar5->addr_mem, bar5->enabled);
 726    memory_region_set_enabled(bar5->data_mem, bar5->enabled);
 727}
 728
 729static uint64_t vfio_nvidia_bar5_quirk_master_read(void *opaque,
 730                                                   hwaddr addr, unsigned size)
 731{
 732    VFIONvidiaBAR5Quirk *bar5 = opaque;
 733    VFIOPCIDevice *vdev = bar5->window.vdev;
 734
 735    return vfio_region_read(&vdev->bars[5].region, addr, size);
 736}
 737
 738static void vfio_nvidia_bar5_quirk_master_write(void *opaque, hwaddr addr,
 739                                                uint64_t data, unsigned size)
 740{
 741    VFIONvidiaBAR5Quirk *bar5 = opaque;
 742    VFIOPCIDevice *vdev = bar5->window.vdev;
 743
 744    vfio_region_write(&vdev->bars[5].region, addr, data, size);
 745
 746    bar5->master = data;
 747    vfio_nvidia_bar5_enable(bar5);
 748}
 749
 750static const MemoryRegionOps vfio_nvidia_bar5_quirk_master = {
 751    .read = vfio_nvidia_bar5_quirk_master_read,
 752    .write = vfio_nvidia_bar5_quirk_master_write,
 753    .endianness = DEVICE_LITTLE_ENDIAN,
 754};
 755
 756static uint64_t vfio_nvidia_bar5_quirk_enable_read(void *opaque,
 757                                                   hwaddr addr, unsigned size)
 758{
 759    VFIONvidiaBAR5Quirk *bar5 = opaque;
 760    VFIOPCIDevice *vdev = bar5->window.vdev;
 761
 762    return vfio_region_read(&vdev->bars[5].region, addr + 4, size);
 763}
 764
 765static void vfio_nvidia_bar5_quirk_enable_write(void *opaque, hwaddr addr,
 766                                                uint64_t data, unsigned size)
 767{
 768    VFIONvidiaBAR5Quirk *bar5 = opaque;
 769    VFIOPCIDevice *vdev = bar5->window.vdev;
 770
 771    vfio_region_write(&vdev->bars[5].region, addr + 4, data, size);
 772
 773    bar5->enable = data;
 774    vfio_nvidia_bar5_enable(bar5);
 775}
 776
 777static const MemoryRegionOps vfio_nvidia_bar5_quirk_enable = {
 778    .read = vfio_nvidia_bar5_quirk_enable_read,
 779    .write = vfio_nvidia_bar5_quirk_enable_write,
 780    .endianness = DEVICE_LITTLE_ENDIAN,
 781};
 782
 783static void vfio_probe_nvidia_bar5_quirk(VFIOPCIDevice *vdev, int nr)
 784{
 785    VFIOQuirk *quirk;
 786    VFIONvidiaBAR5Quirk *bar5;
 787    VFIOConfigWindowQuirk *window;
 788
 789    if (vdev->no_geforce_quirks ||
 790        !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
 791        !vdev->vga || nr != 5 || !vdev->bars[5].ioport) {
 792        return;
 793    }
 794
 795    quirk = vfio_quirk_alloc(4);
 796    bar5 = quirk->data = g_malloc0(sizeof(*bar5) +
 797                                   (sizeof(VFIOConfigWindowMatch) * 2));
 798    window = &bar5->window;
 799
 800    window->vdev = vdev;
 801    window->address_offset = 0x8;
 802    window->data_offset = 0xc;
 803    window->nr_matches = 2;
 804    window->matches[0].match = 0x1800;
 805    window->matches[0].mask = PCI_CONFIG_SPACE_SIZE - 1;
 806    window->matches[1].match = 0x88000;
 807    window->matches[1].mask = vdev->config_size - 1;
 808    window->bar = nr;
 809    window->addr_mem = bar5->addr_mem = &quirk->mem[0];
 810    window->data_mem = bar5->data_mem = &quirk->mem[1];
 811
 812    memory_region_init_io(window->addr_mem, OBJECT(vdev),
 813                          &vfio_generic_window_address_quirk, window,
 814                          "vfio-nvidia-bar5-window-address-quirk", 4);
 815    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 816                                        window->address_offset,
 817                                        window->addr_mem, 1);
 818    memory_region_set_enabled(window->addr_mem, false);
 819
 820    memory_region_init_io(window->data_mem, OBJECT(vdev),
 821                          &vfio_generic_window_data_quirk, window,
 822                          "vfio-nvidia-bar5-window-data-quirk", 4);
 823    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 824                                        window->data_offset,
 825                                        window->data_mem, 1);
 826    memory_region_set_enabled(window->data_mem, false);
 827
 828    memory_region_init_io(&quirk->mem[2], OBJECT(vdev),
 829                          &vfio_nvidia_bar5_quirk_master, bar5,
 830                          "vfio-nvidia-bar5-master-quirk", 4);
 831    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 832                                        0, &quirk->mem[2], 1);
 833
 834    memory_region_init_io(&quirk->mem[3], OBJECT(vdev),
 835                          &vfio_nvidia_bar5_quirk_enable, bar5,
 836                          "vfio-nvidia-bar5-enable-quirk", 4);
 837    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 838                                        4, &quirk->mem[3], 1);
 839
 840    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 841
 842    trace_vfio_quirk_nvidia_bar5_probe(vdev->vbasedev.name);
 843}
 844
 845typedef struct LastDataSet {
 846    VFIOQuirk *quirk;
 847    hwaddr addr;
 848    uint64_t data;
 849    unsigned size;
 850    int hits;
 851    int added;
 852} LastDataSet;
 853
 854#define MAX_DYN_IOEVENTFD 10
 855#define HITS_FOR_IOEVENTFD 10
 856
 857/*
 858 * Finally, BAR0 itself.  We want to redirect any accesses to either
 859 * 0x1800 or 0x88000 through the PCI config space access functions.
 860 */
 861static void vfio_nvidia_quirk_mirror_write(void *opaque, hwaddr addr,
 862                                           uint64_t data, unsigned size)
 863{
 864    VFIOConfigMirrorQuirk *mirror = opaque;
 865    VFIOPCIDevice *vdev = mirror->vdev;
 866    PCIDevice *pdev = &vdev->pdev;
 867    LastDataSet *last = (LastDataSet *)&mirror->data;
 868
 869    vfio_generic_quirk_mirror_write(opaque, addr, data, size);
 870
 871    /*
 872     * Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
 873     * MSI capability ID register.  Both the ID and next register are
 874     * read-only, so we allow writes covering either of those to real hw.
 875     */
 876    if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
 877        vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
 878        vfio_region_write(&vdev->bars[mirror->bar].region,
 879                          addr + mirror->offset, data, size);
 880        trace_vfio_quirk_nvidia_bar0_msi_ack(vdev->vbasedev.name);
 881    }
 882
 883    /*
 884     * Automatically add an ioeventfd to handle any repeated write with the
 885     * same data and size above the standard PCI config space header.  This is
 886     * primarily expected to accelerate the MSI-ACK behavior, such as noted
 887     * above.  Current hardware/drivers should trigger an ioeventfd at config
 888     * offset 0x704 (region offset 0x88704), with data 0x0, size 4.
 889     *
 890     * The criteria of 10 successive hits is arbitrary but reliably adds the
 891     * MSI-ACK region.  Note that as some writes are bypassed via the ioeventfd,
 892     * the remaining ones have a greater chance of being seen successively.
 893     * To avoid the pathological case of burning up all of QEMU's open file
 894     * handles, arbitrarily limit this algorithm from adding no more than 10
 895     * ioeventfds, print an error if we would have added an 11th, and then
 896     * stop counting.
 897     */
 898    if (!vdev->no_kvm_ioeventfd &&
 899        addr >= PCI_STD_HEADER_SIZEOF && last->added <= MAX_DYN_IOEVENTFD) {
 900        if (addr != last->addr || data != last->data || size != last->size) {
 901            last->addr = addr;
 902            last->data = data;
 903            last->size = size;
 904            last->hits = 1;
 905        } else if (++last->hits >= HITS_FOR_IOEVENTFD) {
 906            if (last->added < MAX_DYN_IOEVENTFD) {
 907                VFIOIOEventFD *ioeventfd;
 908                ioeventfd = vfio_ioeventfd_init(vdev, mirror->mem, addr, size,
 909                                        data, &vdev->bars[mirror->bar].region,
 910                                        mirror->offset + addr, true);
 911                if (ioeventfd) {
 912                    VFIOQuirk *quirk = last->quirk;
 913
 914                    QLIST_INSERT_HEAD(&quirk->ioeventfds, ioeventfd, next);
 915                    last->added++;
 916                }
 917            } else {
 918                last->added++;
 919                warn_report("NVIDIA ioeventfd queue full for %s, unable to "
 920                            "accelerate 0x%"HWADDR_PRIx", data 0x%"PRIx64", "
 921                            "size %u", vdev->vbasedev.name, addr, data, size);
 922            }
 923        }
 924    }
 925}
 926
 927static const MemoryRegionOps vfio_nvidia_mirror_quirk = {
 928    .read = vfio_generic_quirk_mirror_read,
 929    .write = vfio_nvidia_quirk_mirror_write,
 930    .endianness = DEVICE_LITTLE_ENDIAN,
 931};
 932
 933static void vfio_nvidia_bar0_quirk_reset(VFIOPCIDevice *vdev, VFIOQuirk *quirk)
 934{
 935    VFIOConfigMirrorQuirk *mirror = quirk->data;
 936    LastDataSet *last = (LastDataSet *)&mirror->data;
 937
 938    last->addr = last->data = last->size = last->hits = last->added = 0;
 939
 940    vfio_drop_dynamic_eventfds(vdev, quirk);
 941}
 942
 943static void vfio_probe_nvidia_bar0_quirk(VFIOPCIDevice *vdev, int nr)
 944{
 945    VFIOQuirk *quirk;
 946    VFIOConfigMirrorQuirk *mirror;
 947    LastDataSet *last;
 948
 949    if (vdev->no_geforce_quirks ||
 950        !vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID) ||
 951        !vfio_is_vga(vdev) || nr != 0) {
 952        return;
 953    }
 954
 955    quirk = vfio_quirk_alloc(1);
 956    quirk->reset = vfio_nvidia_bar0_quirk_reset;
 957    mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
 958    mirror->mem = quirk->mem;
 959    mirror->vdev = vdev;
 960    mirror->offset = 0x88000;
 961    mirror->bar = nr;
 962    last = (LastDataSet *)&mirror->data;
 963    last->quirk = quirk;
 964
 965    memory_region_init_io(mirror->mem, OBJECT(vdev),
 966                          &vfio_nvidia_mirror_quirk, mirror,
 967                          "vfio-nvidia-bar0-88000-mirror-quirk",
 968                          vdev->config_size);
 969    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 970                                        mirror->offset, mirror->mem, 1);
 971
 972    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 973
 974    /* The 0x1800 offset mirror only seems to get used by legacy VGA */
 975    if (vdev->vga) {
 976        quirk = vfio_quirk_alloc(1);
 977        quirk->reset = vfio_nvidia_bar0_quirk_reset;
 978        mirror = quirk->data = g_malloc0(sizeof(*mirror) + sizeof(LastDataSet));
 979        mirror->mem = quirk->mem;
 980        mirror->vdev = vdev;
 981        mirror->offset = 0x1800;
 982        mirror->bar = nr;
 983        last = (LastDataSet *)&mirror->data;
 984        last->quirk = quirk;
 985
 986        memory_region_init_io(mirror->mem, OBJECT(vdev),
 987                              &vfio_nvidia_mirror_quirk, mirror,
 988                              "vfio-nvidia-bar0-1800-mirror-quirk",
 989                              PCI_CONFIG_SPACE_SIZE);
 990        memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
 991                                            mirror->offset, mirror->mem, 1);
 992
 993        QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
 994    }
 995
 996    trace_vfio_quirk_nvidia_bar0_probe(vdev->vbasedev.name);
 997}
 998
 999/*
1000 * TODO - Some Nvidia devices provide config access to their companion HDA
1001 * device and even to their parent bridge via these config space mirrors.
1002 * Add quirks for those regions.
1003 */
1004
1005#define PCI_VENDOR_ID_REALTEK 0x10ec
1006
1007/*
1008 * RTL8168 devices have a backdoor that can access the MSI-X table.  At BAR2
1009 * offset 0x70 there is a dword data register, offset 0x74 is a dword address
1010 * register.  According to the Linux r8169 driver, the MSI-X table is addressed
1011 * when the "type" portion of the address register is set to 0x1.  This appears
1012 * to be bits 16:30.  Bit 31 is both a write indicator and some sort of
1013 * "address latched" indicator.  Bits 12:15 are a mask field, which we can
1014 * ignore because the MSI-X table should always be accessed as a dword (full
1015 * mask).  Bits 0:11 is offset within the type.
1016 *
1017 * Example trace:
1018 *
1019 * Read from MSI-X table offset 0
1020 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
1021 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
1022 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
1023 *
1024 * Write 0xfee00000 to MSI-X table offset 0
1025 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
1026 * vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
1027 * vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
1028 */
1029typedef struct VFIOrtl8168Quirk {
1030    VFIOPCIDevice *vdev;
1031    uint32_t addr;
1032    uint32_t data;
1033    bool enabled;
1034} VFIOrtl8168Quirk;
1035
1036static uint64_t vfio_rtl8168_quirk_address_read(void *opaque,
1037                                                hwaddr addr, unsigned size)
1038{
1039    VFIOrtl8168Quirk *rtl = opaque;
1040    VFIOPCIDevice *vdev = rtl->vdev;
1041    uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x74, size);
1042
1043    if (rtl->enabled) {
1044        data = rtl->addr ^ 0x80000000U; /* latch/complete */
1045        trace_vfio_quirk_rtl8168_fake_latch(vdev->vbasedev.name, data);
1046    }
1047
1048    return data;
1049}
1050
1051static void vfio_rtl8168_quirk_address_write(void *opaque, hwaddr addr,
1052                                             uint64_t data, unsigned size)
1053{
1054    VFIOrtl8168Quirk *rtl = opaque;
1055    VFIOPCIDevice *vdev = rtl->vdev;
1056
1057    rtl->enabled = false;
1058
1059    if ((data & 0x7fff0000) == 0x10000) { /* MSI-X table */
1060        rtl->enabled = true;
1061        rtl->addr = (uint32_t)data;
1062
1063        if (data & 0x80000000U) { /* Do write */
1064            if (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
1065                hwaddr offset = data & 0xfff;
1066                uint64_t val = rtl->data;
1067
1068                trace_vfio_quirk_rtl8168_msix_write(vdev->vbasedev.name,
1069                                                    (uint16_t)offset, val);
1070
1071                /* Write to the proper guest MSI-X table instead */
1072                memory_region_dispatch_write(&vdev->pdev.msix_table_mmio,
1073                                             offset, val, size,
1074                                             MEMTXATTRS_UNSPECIFIED);
1075            }
1076            return; /* Do not write guest MSI-X data to hardware */
1077        }
1078    }
1079
1080    vfio_region_write(&vdev->bars[2].region, addr + 0x74, data, size);
1081}
1082
1083static const MemoryRegionOps vfio_rtl_address_quirk = {
1084    .read = vfio_rtl8168_quirk_address_read,
1085    .write = vfio_rtl8168_quirk_address_write,
1086    .valid = {
1087        .min_access_size = 4,
1088        .max_access_size = 4,
1089        .unaligned = false,
1090    },
1091    .endianness = DEVICE_LITTLE_ENDIAN,
1092};
1093
1094static uint64_t vfio_rtl8168_quirk_data_read(void *opaque,
1095                                             hwaddr addr, unsigned size)
1096{
1097    VFIOrtl8168Quirk *rtl = opaque;
1098    VFIOPCIDevice *vdev = rtl->vdev;
1099    uint64_t data = vfio_region_read(&vdev->bars[2].region, addr + 0x70, size);
1100
1101    if (rtl->enabled && (vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
1102        hwaddr offset = rtl->addr & 0xfff;
1103        memory_region_dispatch_read(&vdev->pdev.msix_table_mmio, offset,
1104                                    &data, size, MEMTXATTRS_UNSPECIFIED);
1105        trace_vfio_quirk_rtl8168_msix_read(vdev->vbasedev.name, offset, data);
1106    }
1107
1108    return data;
1109}
1110
1111static void vfio_rtl8168_quirk_data_write(void *opaque, hwaddr addr,
1112                                          uint64_t data, unsigned size)
1113{
1114    VFIOrtl8168Quirk *rtl = opaque;
1115    VFIOPCIDevice *vdev = rtl->vdev;
1116
1117    rtl->data = (uint32_t)data;
1118
1119    vfio_region_write(&vdev->bars[2].region, addr + 0x70, data, size);
1120}
1121
1122static const MemoryRegionOps vfio_rtl_data_quirk = {
1123    .read = vfio_rtl8168_quirk_data_read,
1124    .write = vfio_rtl8168_quirk_data_write,
1125    .valid = {
1126        .min_access_size = 4,
1127        .max_access_size = 4,
1128        .unaligned = false,
1129    },
1130    .endianness = DEVICE_LITTLE_ENDIAN,
1131};
1132
1133static void vfio_probe_rtl8168_bar2_quirk(VFIOPCIDevice *vdev, int nr)
1134{
1135    VFIOQuirk *quirk;
1136    VFIOrtl8168Quirk *rtl;
1137
1138    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_REALTEK, 0x8168) || nr != 2) {
1139        return;
1140    }
1141
1142    quirk = vfio_quirk_alloc(2);
1143    quirk->data = rtl = g_malloc0(sizeof(*rtl));
1144    rtl->vdev = vdev;
1145
1146    memory_region_init_io(&quirk->mem[0], OBJECT(vdev),
1147                          &vfio_rtl_address_quirk, rtl,
1148                          "vfio-rtl8168-window-address-quirk", 4);
1149    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1150                                        0x74, &quirk->mem[0], 1);
1151
1152    memory_region_init_io(&quirk->mem[1], OBJECT(vdev),
1153                          &vfio_rtl_data_quirk, rtl,
1154                          "vfio-rtl8168-window-data-quirk", 4);
1155    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1156                                        0x70, &quirk->mem[1], 1);
1157
1158    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1159
1160    trace_vfio_quirk_rtl8168_probe(vdev->vbasedev.name);
1161}
1162
1163/*
1164 * Intel IGD support
1165 *
1166 * Obviously IGD is not a discrete device, this is evidenced not only by it
1167 * being integrated into the CPU, but by the various chipset and BIOS
1168 * dependencies that it brings along with it.  Intel is trying to move away
1169 * from this and Broadwell and newer devices can run in what Intel calls
1170 * "Universal Pass-Through" mode, or UPT.  Theoretically in UPT mode, nothing
1171 * more is required beyond assigning the IGD device to a VM.  There are
1172 * however support limitations to this mode.  It only supports IGD as a
1173 * secondary graphics device in the VM and it doesn't officially support any
1174 * physical outputs.
1175 *
1176 * The code here attempts to enable what we'll call legacy mode assignment,
1177 * IGD retains most of the capabilities we expect for it to have on bare
1178 * metal.  To enable this mode, the IGD device must be assigned to the VM
1179 * at PCI address 00:02.0, it must have a ROM, it very likely needs VGA
1180 * support, we must have VM BIOS support for reserving and populating some
1181 * of the required tables, and we need to tweak the chipset with revisions
1182 * and IDs and an LPC/ISA bridge device.  The intention is to make all of
1183 * this happen automatically by installing the device at the correct VM PCI
1184 * bus address.  If any of the conditions are not met, we cross our fingers
1185 * and hope the user knows better.
1186 *
1187 * NB - It is possible to enable physical outputs in UPT mode by supplying
1188 * an OpRegion table.  We don't do this by default because the guest driver
1189 * behaves differently if an OpRegion is provided and no monitor is attached
1190 * vs no OpRegion and a monitor being attached or not.  Effectively, if a
1191 * headless setup is desired, the OpRegion gets in the way of that.
1192 */
1193
1194/*
1195 * This presumes the device is already known to be an Intel VGA device, so we
1196 * take liberties in which device ID bits match which generation.  This should
1197 * not be taken as an indication that all the devices are supported, or even
1198 * supportable, some of them don't even support VT-d.
1199 * See linux:include/drm/i915_pciids.h for IDs.
1200 */
1201static int igd_gen(VFIOPCIDevice *vdev)
1202{
1203    if ((vdev->device_id & 0xfff) == 0xa84) {
1204        return 8; /* Broxton */
1205    }
1206
1207    switch (vdev->device_id & 0xff00) {
1208    /* Old, untested, unavailable, unknown */
1209    case 0x0000:
1210    case 0x2500:
1211    case 0x2700:
1212    case 0x2900:
1213    case 0x2a00:
1214    case 0x2e00:
1215    case 0x3500:
1216    case 0xa000:
1217        return -1;
1218    /* SandyBridge, IvyBridge, ValleyView, Haswell */
1219    case 0x0100:
1220    case 0x0400:
1221    case 0x0a00:
1222    case 0x0c00:
1223    case 0x0d00:
1224    case 0x0f00:
1225        return 6;
1226    /* BroadWell, CherryView, SkyLake, KabyLake */
1227    case 0x1600:
1228    case 0x1900:
1229    case 0x2200:
1230    case 0x5900:
1231        return 8;
1232    }
1233
1234    return 8; /* Assume newer is compatible */
1235}
1236
1237typedef struct VFIOIGDQuirk {
1238    struct VFIOPCIDevice *vdev;
1239    uint32_t index;
1240    uint32_t bdsm;
1241} VFIOIGDQuirk;
1242
1243#define IGD_GMCH 0x50 /* Graphics Control Register */
1244#define IGD_BDSM 0x5c /* Base Data of Stolen Memory */
1245#define IGD_ASLS 0xfc /* ASL Storage Register */
1246
1247/*
1248 * The OpRegion includes the Video BIOS Table, which seems important for
1249 * telling the driver what sort of outputs it has.  Without this, the device
1250 * may work in the guest, but we may not get output.  This also requires BIOS
1251 * support to reserve and populate a section of guest memory sufficient for
1252 * the table and to write the base address of that memory to the ASLS register
1253 * of the IGD device.
1254 */
1255int vfio_pci_igd_opregion_init(VFIOPCIDevice *vdev,
1256                               struct vfio_region_info *info, Error **errp)
1257{
1258    int ret;
1259
1260    vdev->igd_opregion = g_malloc0(info->size);
1261    ret = pread(vdev->vbasedev.fd, vdev->igd_opregion,
1262                info->size, info->offset);
1263    if (ret != info->size) {
1264        error_setg(errp, "failed to read IGD OpRegion");
1265        g_free(vdev->igd_opregion);
1266        vdev->igd_opregion = NULL;
1267        return -EINVAL;
1268    }
1269
1270    /*
1271     * Provide fw_cfg with a copy of the OpRegion which the VM firmware is to
1272     * allocate 32bit reserved memory for, copy these contents into, and write
1273     * the reserved memory base address to the device ASLS register at 0xFC.
1274     * Alignment of this reserved region seems flexible, but using a 4k page
1275     * alignment seems to work well.  This interface assumes a single IGD
1276     * device, which may be at VM address 00:02.0 in legacy mode or another
1277     * address in UPT mode.
1278     *
1279     * NB, there may be future use cases discovered where the VM should have
1280     * direct interaction with the host OpRegion, in which case the write to
1281     * the ASLS register would trigger MemoryRegion setup to enable that.
1282     */
1283    fw_cfg_add_file(fw_cfg_find(), "etc/igd-opregion",
1284                    vdev->igd_opregion, info->size);
1285
1286    trace_vfio_pci_igd_opregion_enabled(vdev->vbasedev.name);
1287
1288    pci_set_long(vdev->pdev.config + IGD_ASLS, 0);
1289    pci_set_long(vdev->pdev.wmask + IGD_ASLS, ~0);
1290    pci_set_long(vdev->emulated_config_bits + IGD_ASLS, ~0);
1291
1292    return 0;
1293}
1294
1295/*
1296 * The rather short list of registers that we copy from the host devices.
1297 * The LPC/ISA bridge values are definitely needed to support the vBIOS, the
1298 * host bridge values may or may not be needed depending on the guest OS.
1299 * Since we're only munging revision and subsystem values on the host bridge,
1300 * we don't require our own device.  The LPC/ISA bridge needs to be our very
1301 * own though.
1302 */
1303typedef struct {
1304    uint8_t offset;
1305    uint8_t len;
1306} IGDHostInfo;
1307
1308static const IGDHostInfo igd_host_bridge_infos[] = {
1309    {PCI_REVISION_ID,         2},
1310    {PCI_SUBSYSTEM_VENDOR_ID, 2},
1311    {PCI_SUBSYSTEM_ID,        2},
1312};
1313
1314static const IGDHostInfo igd_lpc_bridge_infos[] = {
1315    {PCI_VENDOR_ID,           2},
1316    {PCI_DEVICE_ID,           2},
1317    {PCI_REVISION_ID,         2},
1318    {PCI_SUBSYSTEM_VENDOR_ID, 2},
1319    {PCI_SUBSYSTEM_ID,        2},
1320};
1321
1322static int vfio_pci_igd_copy(VFIOPCIDevice *vdev, PCIDevice *pdev,
1323                             struct vfio_region_info *info,
1324                             const IGDHostInfo *list, int len)
1325{
1326    int i, ret;
1327
1328    for (i = 0; i < len; i++) {
1329        ret = pread(vdev->vbasedev.fd, pdev->config + list[i].offset,
1330                    list[i].len, info->offset + list[i].offset);
1331        if (ret != list[i].len) {
1332            error_report("IGD copy failed: %m");
1333            return -errno;
1334        }
1335    }
1336
1337    return 0;
1338}
1339
1340/*
1341 * Stuff a few values into the host bridge.
1342 */
1343static int vfio_pci_igd_host_init(VFIOPCIDevice *vdev,
1344                                  struct vfio_region_info *info)
1345{
1346    PCIBus *bus;
1347    PCIDevice *host_bridge;
1348    int ret;
1349
1350    bus = pci_device_root_bus(&vdev->pdev);
1351    host_bridge = pci_find_device(bus, 0, PCI_DEVFN(0, 0));
1352
1353    if (!host_bridge) {
1354        error_report("Can't find host bridge");
1355        return -ENODEV;
1356    }
1357
1358    ret = vfio_pci_igd_copy(vdev, host_bridge, info, igd_host_bridge_infos,
1359                            ARRAY_SIZE(igd_host_bridge_infos));
1360    if (!ret) {
1361        trace_vfio_pci_igd_host_bridge_enabled(vdev->vbasedev.name);
1362    }
1363
1364    return ret;
1365}
1366
1367/*
1368 * IGD LPC/ISA bridge support code.  The vBIOS needs this, but we can't write
1369 * arbitrary values into just any bridge, so we must create our own.  We try
1370 * to handle if the user has created it for us, which they might want to do
1371 * to enable multifunction so we don't occupy the whole PCI slot.
1372 */
1373static void vfio_pci_igd_lpc_bridge_realize(PCIDevice *pdev, Error **errp)
1374{
1375    if (pdev->devfn != PCI_DEVFN(0x1f, 0)) {
1376        error_setg(errp, "VFIO dummy ISA/LPC bridge must have address 1f.0");
1377    }
1378}
1379
1380static void vfio_pci_igd_lpc_bridge_class_init(ObjectClass *klass, void *data)
1381{
1382    DeviceClass *dc = DEVICE_CLASS(klass);
1383    PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1384
1385    set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1386    dc->desc = "VFIO dummy ISA/LPC bridge for IGD assignment";
1387    dc->hotpluggable = false;
1388    k->realize = vfio_pci_igd_lpc_bridge_realize;
1389    k->class_id = PCI_CLASS_BRIDGE_ISA;
1390}
1391
1392static TypeInfo vfio_pci_igd_lpc_bridge_info = {
1393    .name = "vfio-pci-igd-lpc-bridge",
1394    .parent = TYPE_PCI_DEVICE,
1395    .class_init = vfio_pci_igd_lpc_bridge_class_init,
1396    .interfaces = (InterfaceInfo[]) {
1397        { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1398        { },
1399    },
1400};
1401
1402static void vfio_pci_igd_register_types(void)
1403{
1404    type_register_static(&vfio_pci_igd_lpc_bridge_info);
1405}
1406
1407type_init(vfio_pci_igd_register_types)
1408
1409static int vfio_pci_igd_lpc_init(VFIOPCIDevice *vdev,
1410                                 struct vfio_region_info *info)
1411{
1412    PCIDevice *lpc_bridge;
1413    int ret;
1414
1415    lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1416                                 0, PCI_DEVFN(0x1f, 0));
1417    if (!lpc_bridge) {
1418        lpc_bridge = pci_create_simple(pci_device_root_bus(&vdev->pdev),
1419                                 PCI_DEVFN(0x1f, 0), "vfio-pci-igd-lpc-bridge");
1420    }
1421
1422    ret = vfio_pci_igd_copy(vdev, lpc_bridge, info, igd_lpc_bridge_infos,
1423                            ARRAY_SIZE(igd_lpc_bridge_infos));
1424    if (!ret) {
1425        trace_vfio_pci_igd_lpc_bridge_enabled(vdev->vbasedev.name);
1426    }
1427
1428    return ret;
1429}
1430
1431/*
1432 * IGD Gen8 and newer support up to 8MB for the GTT and use a 64bit PTE
1433 * entry, older IGDs use 2MB and 32bit.  Each PTE maps a 4k page.  Therefore
1434 * we either have 2M/4k * 4 = 2k or 8M/4k * 8 = 16k as the maximum iobar index
1435 * for programming the GTT.
1436 *
1437 * See linux:include/drm/i915_drm.h for shift and mask values.
1438 */
1439static int vfio_igd_gtt_max(VFIOPCIDevice *vdev)
1440{
1441    uint32_t gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1442    int ggms, gen = igd_gen(vdev);
1443
1444    gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, sizeof(gmch));
1445    ggms = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1446    if (gen > 6) {
1447        ggms = 1 << ggms;
1448    }
1449
1450    ggms *= MiB;
1451
1452    return (ggms / (4 * KiB)) * (gen < 8 ? 4 : 8);
1453}
1454
1455/*
1456 * The IGD ROM will make use of stolen memory (GGMS) for support of VESA modes.
1457 * Somehow the host stolen memory range is used for this, but how the ROM gets
1458 * it is a mystery, perhaps it's hardcoded into the ROM.  Thankfully though, it
1459 * reprograms the GTT through the IOBAR where we can trap it and transpose the
1460 * programming to the VM allocated buffer.  That buffer gets reserved by the VM
1461 * firmware via the fw_cfg entry added below.  Here we're just monitoring the
1462 * IOBAR address and data registers to detect a write sequence targeting the
1463 * GTTADR.  This code is developed by observed behavior and doesn't have a
1464 * direct spec reference, unfortunately.
1465 */
1466static uint64_t vfio_igd_quirk_data_read(void *opaque,
1467                                         hwaddr addr, unsigned size)
1468{
1469    VFIOIGDQuirk *igd = opaque;
1470    VFIOPCIDevice *vdev = igd->vdev;
1471
1472    igd->index = ~0;
1473
1474    return vfio_region_read(&vdev->bars[4].region, addr + 4, size);
1475}
1476
1477static void vfio_igd_quirk_data_write(void *opaque, hwaddr addr,
1478                                      uint64_t data, unsigned size)
1479{
1480    VFIOIGDQuirk *igd = opaque;
1481    VFIOPCIDevice *vdev = igd->vdev;
1482    uint64_t val = data;
1483    int gen = igd_gen(vdev);
1484
1485    /*
1486     * Programming the GGMS starts at index 0x1 and uses every 4th index (ie.
1487     * 0x1, 0x5, 0x9, 0xd,...).  For pre-Gen8 each 4-byte write is a whole PTE
1488     * entry, with 0th bit enable set.  For Gen8 and up, PTEs are 64bit, so
1489     * entries 0x5 & 0xd are the high dword, in our case zero.  Each PTE points
1490     * to a 4k page, which we translate to a page from the VM allocated region,
1491     * pointed to by the BDSM register.  If this is not set, we fail.
1492     *
1493     * We trap writes to the full configured GTT size, but we typically only
1494     * see the vBIOS writing up to (nearly) the 1MB barrier.  In fact it often
1495     * seems to miss the last entry for an even 1MB GTT.  Doing a gratuitous
1496     * write of that last entry does work, but is hopefully unnecessary since
1497     * we clear the previous GTT on initialization.
1498     */
1499    if ((igd->index % 4 == 1) && igd->index < vfio_igd_gtt_max(vdev)) {
1500        if (gen < 8 || (igd->index % 8 == 1)) {
1501            uint32_t base;
1502
1503            base = pci_get_long(vdev->pdev.config + IGD_BDSM);
1504            if (!base) {
1505                hw_error("vfio-igd: Guest attempted to program IGD GTT before "
1506                         "BIOS reserved stolen memory.  Unsupported BIOS?");
1507            }
1508
1509            val = data - igd->bdsm + base;
1510        } else {
1511            val = 0; /* upper 32bits of pte, we only enable below 4G PTEs */
1512        }
1513
1514        trace_vfio_pci_igd_bar4_write(vdev->vbasedev.name,
1515                                      igd->index, data, val);
1516    }
1517
1518    vfio_region_write(&vdev->bars[4].region, addr + 4, val, size);
1519
1520    igd->index = ~0;
1521}
1522
1523static const MemoryRegionOps vfio_igd_data_quirk = {
1524    .read = vfio_igd_quirk_data_read,
1525    .write = vfio_igd_quirk_data_write,
1526    .endianness = DEVICE_LITTLE_ENDIAN,
1527};
1528
1529static uint64_t vfio_igd_quirk_index_read(void *opaque,
1530                                          hwaddr addr, unsigned size)
1531{
1532    VFIOIGDQuirk *igd = opaque;
1533    VFIOPCIDevice *vdev = igd->vdev;
1534
1535    igd->index = ~0;
1536
1537    return vfio_region_read(&vdev->bars[4].region, addr, size);
1538}
1539
1540static void vfio_igd_quirk_index_write(void *opaque, hwaddr addr,
1541                                       uint64_t data, unsigned size)
1542{
1543    VFIOIGDQuirk *igd = opaque;
1544    VFIOPCIDevice *vdev = igd->vdev;
1545
1546    igd->index = data;
1547
1548    vfio_region_write(&vdev->bars[4].region, addr, data, size);
1549}
1550
1551static const MemoryRegionOps vfio_igd_index_quirk = {
1552    .read = vfio_igd_quirk_index_read,
1553    .write = vfio_igd_quirk_index_write,
1554    .endianness = DEVICE_LITTLE_ENDIAN,
1555};
1556
1557static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr)
1558{
1559    struct vfio_region_info *rom = NULL, *opregion = NULL,
1560                            *host = NULL, *lpc = NULL;
1561    VFIOQuirk *quirk;
1562    VFIOIGDQuirk *igd;
1563    PCIDevice *lpc_bridge;
1564    int i, ret, ggms_mb, gms_mb = 0, gen;
1565    uint64_t *bdsm_size;
1566    uint32_t gmch;
1567    uint16_t cmd_orig, cmd;
1568    Error *err = NULL;
1569
1570    /*
1571     * This must be an Intel VGA device at address 00:02.0 for us to even
1572     * consider enabling legacy mode.  The vBIOS has dependencies on the
1573     * PCI bus address.
1574     */
1575    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) ||
1576        !vfio_is_vga(vdev) || nr != 4 ||
1577        &vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev),
1578                                       0, PCI_DEVFN(0x2, 0))) {
1579        return;
1580    }
1581
1582    /*
1583     * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we
1584     * can stuff host values into, so if there's already one there and it's not
1585     * one we can hack on, legacy mode is no-go.  Sorry Q35.
1586     */
1587    lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev),
1588                                 0, PCI_DEVFN(0x1f, 0));
1589    if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge),
1590                                           "vfio-pci-igd-lpc-bridge")) {
1591        error_report("IGD device %s cannot support legacy mode due to existing "
1592                     "devices at address 1f.0", vdev->vbasedev.name);
1593        return;
1594    }
1595
1596    /*
1597     * IGD is not a standard, they like to change their specs often.  We
1598     * only attempt to support back to SandBridge and we hope that newer
1599     * devices maintain compatibility with generation 8.
1600     */
1601    gen = igd_gen(vdev);
1602    if (gen != 6 && gen != 8) {
1603        error_report("IGD device %s is unsupported in legacy mode, "
1604                     "try SandyBridge or newer", vdev->vbasedev.name);
1605        return;
1606    }
1607
1608    /*
1609     * Most of what we're doing here is to enable the ROM to run, so if
1610     * there's no ROM, there's no point in setting up this quirk.
1611     * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support.
1612     */
1613    ret = vfio_get_region_info(&vdev->vbasedev,
1614                               VFIO_PCI_ROM_REGION_INDEX, &rom);
1615    if ((ret || !rom->size) && !vdev->pdev.romfile) {
1616        error_report("IGD device %s has no ROM, legacy mode disabled",
1617                     vdev->vbasedev.name);
1618        goto out;
1619    }
1620
1621    /*
1622     * Ignore the hotplug corner case, mark the ROM failed, we can't
1623     * create the devices we need for legacy mode in the hotplug scenario.
1624     */
1625    if (vdev->pdev.qdev.hotplugged) {
1626        error_report("IGD device %s hotplugged, ROM disabled, "
1627                     "legacy mode disabled", vdev->vbasedev.name);
1628        vdev->rom_read_failed = true;
1629        goto out;
1630    }
1631
1632    /*
1633     * Check whether we have all the vfio device specific regions to
1634     * support legacy mode (added in Linux v4.6).  If not, bail.
1635     */
1636    ret = vfio_get_dev_region_info(&vdev->vbasedev,
1637                        VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1638                        VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
1639    if (ret) {
1640        error_report("IGD device %s does not support OpRegion access,"
1641                     "legacy mode disabled", vdev->vbasedev.name);
1642        goto out;
1643    }
1644
1645    ret = vfio_get_dev_region_info(&vdev->vbasedev,
1646                        VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1647                        VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host);
1648    if (ret) {
1649        error_report("IGD device %s does not support host bridge access,"
1650                     "legacy mode disabled", vdev->vbasedev.name);
1651        goto out;
1652    }
1653
1654    ret = vfio_get_dev_region_info(&vdev->vbasedev,
1655                        VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
1656                        VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc);
1657    if (ret) {
1658        error_report("IGD device %s does not support LPC bridge access,"
1659                     "legacy mode disabled", vdev->vbasedev.name);
1660        goto out;
1661    }
1662
1663    gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4);
1664
1665    /*
1666     * If IGD VGA Disable is clear (expected) and VGA is not already enabled,
1667     * try to enable it.  Probably shouldn't be using legacy mode without VGA,
1668     * but also no point in us enabling VGA if disabled in hardware.
1669     */
1670    if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) {
1671        error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name);
1672        error_report("IGD device %s failed to enable VGA access, "
1673                     "legacy mode disabled", vdev->vbasedev.name);
1674        goto out;
1675    }
1676
1677    /* Create our LPC/ISA bridge */
1678    ret = vfio_pci_igd_lpc_init(vdev, lpc);
1679    if (ret) {
1680        error_report("IGD device %s failed to create LPC bridge, "
1681                     "legacy mode disabled", vdev->vbasedev.name);
1682        goto out;
1683    }
1684
1685    /* Stuff some host values into the VM PCI host bridge */
1686    ret = vfio_pci_igd_host_init(vdev, host);
1687    if (ret) {
1688        error_report("IGD device %s failed to modify host bridge, "
1689                     "legacy mode disabled", vdev->vbasedev.name);
1690        goto out;
1691    }
1692
1693    /* Setup OpRegion access */
1694    ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
1695    if (ret) {
1696        error_append_hint(&err, "IGD legacy mode disabled\n");
1697        error_reportf_err(err, VFIO_MSG_PREFIX, vdev->vbasedev.name);
1698        goto out;
1699    }
1700
1701    /* Setup our quirk to munge GTT addresses to the VM allocated buffer */
1702    quirk = vfio_quirk_alloc(2);
1703    igd = quirk->data = g_malloc0(sizeof(*igd));
1704    igd->vdev = vdev;
1705    igd->index = ~0;
1706    igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4);
1707    igd->bdsm &= ~((1 * MiB) - 1); /* 1MB aligned */
1708
1709    memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk,
1710                          igd, "vfio-igd-index-quirk", 4);
1711    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1712                                        0, &quirk->mem[0], 1);
1713
1714    memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk,
1715                          igd, "vfio-igd-data-quirk", 4);
1716    memory_region_add_subregion_overlap(vdev->bars[nr].region.mem,
1717                                        4, &quirk->mem[1], 1);
1718
1719    QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
1720
1721    /* Determine the size of stolen memory needed for GTT */
1722    ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3;
1723    if (gen > 6) {
1724        ggms_mb = 1 << ggms_mb;
1725    }
1726
1727    /*
1728     * Assume we have no GMS memory, but allow it to be overrided by device
1729     * option (experimental).  The spec doesn't actually allow zero GMS when
1730     * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused,
1731     * so let's not waste VM memory for it.
1732     */
1733    gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8));
1734
1735    if (vdev->igd_gms) {
1736        if (vdev->igd_gms <= 0x10) {
1737            gms_mb = vdev->igd_gms * 32;
1738            gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8);
1739        } else {
1740            error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms);
1741            vdev->igd_gms = 0;
1742        }
1743    }
1744
1745    /*
1746     * Request reserved memory for stolen memory via fw_cfg.  VM firmware
1747     * must allocate a 1MB aligned reserved memory region below 4GB with
1748     * the requested size (in bytes) for use by the Intel PCI class VGA
1749     * device at VM address 00:02.0.  The base address of this reserved
1750     * memory region must be written to the device BDSM regsiter at PCI
1751     * config offset 0x5C.
1752     */
1753    bdsm_size = g_malloc(sizeof(*bdsm_size));
1754    *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * MiB);
1755    fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size",
1756                    bdsm_size, sizeof(*bdsm_size));
1757
1758    /* GMCH is read-only, emulated */
1759    pci_set_long(vdev->pdev.config + IGD_GMCH, gmch);
1760    pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0);
1761    pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0);
1762
1763    /* BDSM is read-write, emulated.  The BIOS needs to be able to write it */
1764    pci_set_long(vdev->pdev.config + IGD_BDSM, 0);
1765    pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0);
1766    pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0);
1767
1768    /*
1769     * This IOBAR gives us access to GTTADR, which allows us to write to
1770     * the GTT itself.  So let's go ahead and write zero to all the GTT
1771     * entries to avoid spurious DMA faults.  Be sure I/O access is enabled
1772     * before talking to the device.
1773     */
1774    if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1775              vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1776        error_report("IGD device %s - failed to read PCI command register",
1777                     vdev->vbasedev.name);
1778    }
1779
1780    cmd = cmd_orig | PCI_COMMAND_IO;
1781
1782    if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd),
1783               vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) {
1784        error_report("IGD device %s - failed to write PCI command register",
1785                     vdev->vbasedev.name);
1786    }
1787
1788    for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) {
1789        vfio_region_write(&vdev->bars[4].region, 0, i, 4);
1790        vfio_region_write(&vdev->bars[4].region, 4, 0, 4);
1791    }
1792
1793    if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig),
1794               vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) {
1795        error_report("IGD device %s - failed to restore PCI command register",
1796                     vdev->vbasedev.name);
1797    }
1798
1799    trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb);
1800
1801out:
1802    g_free(rom);
1803    g_free(opregion);
1804    g_free(host);
1805    g_free(lpc);
1806}
1807
1808/*
1809 * Common quirk probe entry points.
1810 */
1811void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
1812{
1813    vfio_vga_probe_ati_3c3_quirk(vdev);
1814    vfio_vga_probe_nvidia_3d0_quirk(vdev);
1815}
1816
1817void vfio_vga_quirk_exit(VFIOPCIDevice *vdev)
1818{
1819    VFIOQuirk *quirk;
1820    int i, j;
1821
1822    for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1823        QLIST_FOREACH(quirk, &vdev->vga->region[i].quirks, next) {
1824            for (j = 0; j < quirk->nr_mem; j++) {
1825                memory_region_del_subregion(&vdev->vga->region[i].mem,
1826                                            &quirk->mem[j]);
1827            }
1828        }
1829    }
1830}
1831
1832void vfio_vga_quirk_finalize(VFIOPCIDevice *vdev)
1833{
1834    int i, j;
1835
1836    for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
1837        while (!QLIST_EMPTY(&vdev->vga->region[i].quirks)) {
1838            VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga->region[i].quirks);
1839            QLIST_REMOVE(quirk, next);
1840            for (j = 0; j < quirk->nr_mem; j++) {
1841                object_unparent(OBJECT(&quirk->mem[j]));
1842            }
1843            g_free(quirk->mem);
1844            g_free(quirk->data);
1845            g_free(quirk);
1846        }
1847    }
1848}
1849
1850void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
1851{
1852    vfio_probe_ati_bar4_quirk(vdev, nr);
1853    vfio_probe_ati_bar2_quirk(vdev, nr);
1854    vfio_probe_nvidia_bar5_quirk(vdev, nr);
1855    vfio_probe_nvidia_bar0_quirk(vdev, nr);
1856    vfio_probe_rtl8168_bar2_quirk(vdev, nr);
1857    vfio_probe_igd_bar4_quirk(vdev, nr);
1858}
1859
1860void vfio_bar_quirk_exit(VFIOPCIDevice *vdev, int nr)
1861{
1862    VFIOBAR *bar = &vdev->bars[nr];
1863    VFIOQuirk *quirk;
1864    int i;
1865
1866    QLIST_FOREACH(quirk, &bar->quirks, next) {
1867        while (!QLIST_EMPTY(&quirk->ioeventfds)) {
1868            vfio_ioeventfd_exit(vdev, QLIST_FIRST(&quirk->ioeventfds));
1869        }
1870
1871        for (i = 0; i < quirk->nr_mem; i++) {
1872            memory_region_del_subregion(bar->region.mem, &quirk->mem[i]);
1873        }
1874    }
1875}
1876
1877void vfio_bar_quirk_finalize(VFIOPCIDevice *vdev, int nr)
1878{
1879    VFIOBAR *bar = &vdev->bars[nr];
1880    int i;
1881
1882    while (!QLIST_EMPTY(&bar->quirks)) {
1883        VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
1884        QLIST_REMOVE(quirk, next);
1885        for (i = 0; i < quirk->nr_mem; i++) {
1886            object_unparent(OBJECT(&quirk->mem[i]));
1887        }
1888        g_free(quirk->mem);
1889        g_free(quirk->data);
1890        g_free(quirk);
1891    }
1892}
1893
1894/*
1895 * Reset quirks
1896 */
1897void vfio_quirk_reset(VFIOPCIDevice *vdev)
1898{
1899    int i;
1900
1901    for (i = 0; i < PCI_ROM_SLOT; i++) {
1902        VFIOQuirk *quirk;
1903        VFIOBAR *bar = &vdev->bars[i];
1904
1905        QLIST_FOREACH(quirk, &bar->quirks, next) {
1906            if (quirk->reset) {
1907                quirk->reset(vdev, quirk);
1908            }
1909        }
1910    }
1911}
1912
1913/*
1914 * AMD Radeon PCI config reset, based on Linux:
1915 *   drivers/gpu/drm/radeon/ci_smc.c:ci_is_smc_running()
1916 *   drivers/gpu/drm/radeon/radeon_device.c:radeon_pci_config_reset
1917 *   drivers/gpu/drm/radeon/ci_smc.c:ci_reset_smc()
1918 *   drivers/gpu/drm/radeon/ci_smc.c:ci_stop_smc_clock()
1919 * IDs: include/drm/drm_pciids.h
1920 * Registers: http://cgit.freedesktop.org/~agd5f/linux/commit/?id=4e2aa447f6f0
1921 *
1922 * Bonaire and Hawaii GPUs do not respond to a bus reset.  This is a bug in the
1923 * hardware that should be fixed on future ASICs.  The symptom of this is that
1924 * once the accerlated driver loads, Windows guests will bsod on subsequent
1925 * attmpts to load the driver, such as after VM reset or shutdown/restart.  To
1926 * work around this, we do an AMD specific PCI config reset, followed by an SMC
1927 * reset.  The PCI config reset only works if SMC firmware is running, so we
1928 * have a dependency on the state of the device as to whether this reset will
1929 * be effective.  There are still cases where we won't be able to kick the
1930 * device into working, but this greatly improves the usability overall.  The
1931 * config reset magic is relatively common on AMD GPUs, but the setup and SMC
1932 * poking is largely ASIC specific.
1933 */
1934static bool vfio_radeon_smc_is_running(VFIOPCIDevice *vdev)
1935{
1936    uint32_t clk, pc_c;
1937
1938    /*
1939     * Registers 200h and 204h are index and data registers for accessing
1940     * indirect configuration registers within the device.
1941     */
1942    vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
1943    clk = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1944    vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000370, 4);
1945    pc_c = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1946
1947    return (!(clk & 1) && (0x20100 <= pc_c));
1948}
1949
1950/*
1951 * The scope of a config reset is controlled by a mode bit in the misc register
1952 * and a fuse, exposed as a bit in another register.  The fuse is the default
1953 * (0 = GFX, 1 = whole GPU), the misc bit is a toggle, with the forumula
1954 * scope = !(misc ^ fuse), where the resulting scope is defined the same as
1955 * the fuse.  A truth table therefore tells us that if misc == fuse, we need
1956 * to flip the value of the bit in the misc register.
1957 */
1958static void vfio_radeon_set_gfx_only_reset(VFIOPCIDevice *vdev)
1959{
1960    uint32_t misc, fuse;
1961    bool a, b;
1962
1963    vfio_region_write(&vdev->bars[5].region, 0x200, 0xc00c0000, 4);
1964    fuse = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1965    b = fuse & 64;
1966
1967    vfio_region_write(&vdev->bars[5].region, 0x200, 0xc0000010, 4);
1968    misc = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
1969    a = misc & 2;
1970
1971    if (a == b) {
1972        vfio_region_write(&vdev->bars[5].region, 0x204, misc ^ 2, 4);
1973        vfio_region_read(&vdev->bars[5].region, 0x204, 4); /* flush */
1974    }
1975}
1976
1977static int vfio_radeon_reset(VFIOPCIDevice *vdev)
1978{
1979    PCIDevice *pdev = &vdev->pdev;
1980    int i, ret = 0;
1981    uint32_t data;
1982
1983    /* Defer to a kernel implemented reset */
1984    if (vdev->vbasedev.reset_works) {
1985        trace_vfio_quirk_ati_bonaire_reset_skipped(vdev->vbasedev.name);
1986        return -ENODEV;
1987    }
1988
1989    /* Enable only memory BAR access */
1990    vfio_pci_write_config(pdev, PCI_COMMAND, PCI_COMMAND_MEMORY, 2);
1991
1992    /* Reset only works if SMC firmware is loaded and running */
1993    if (!vfio_radeon_smc_is_running(vdev)) {
1994        ret = -EINVAL;
1995        trace_vfio_quirk_ati_bonaire_reset_no_smc(vdev->vbasedev.name);
1996        goto out;
1997    }
1998
1999    /* Make sure only the GFX function is reset */
2000    vfio_radeon_set_gfx_only_reset(vdev);
2001
2002    /* AMD PCI config reset */
2003    vfio_pci_write_config(pdev, 0x7c, 0x39d5e86b, 4);
2004    usleep(100);
2005
2006    /* Read back the memory size to make sure we're out of reset */
2007    for (i = 0; i < 100000; i++) {
2008        if (vfio_region_read(&vdev->bars[5].region, 0x5428, 4) != 0xffffffff) {
2009            goto reset_smc;
2010        }
2011        usleep(1);
2012    }
2013
2014    trace_vfio_quirk_ati_bonaire_reset_timeout(vdev->vbasedev.name);
2015
2016reset_smc:
2017    /* Reset SMC */
2018    vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000000, 4);
2019    data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2020    data |= 1;
2021    vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2022
2023    /* Disable SMC clock */
2024    vfio_region_write(&vdev->bars[5].region, 0x200, 0x80000004, 4);
2025    data = vfio_region_read(&vdev->bars[5].region, 0x204, 4);
2026    data |= 1;
2027    vfio_region_write(&vdev->bars[5].region, 0x204, data, 4);
2028
2029    trace_vfio_quirk_ati_bonaire_reset_done(vdev->vbasedev.name);
2030
2031out:
2032    /* Restore PCI command register */
2033    vfio_pci_write_config(pdev, PCI_COMMAND, 0, 2);
2034
2035    return ret;
2036}
2037
2038void vfio_setup_resetfn_quirk(VFIOPCIDevice *vdev)
2039{
2040    switch (vdev->vendor_id) {
2041    case 0x1002:
2042        switch (vdev->device_id) {
2043        /* Bonaire */
2044        case 0x6649: /* Bonaire [FirePro W5100] */
2045        case 0x6650:
2046        case 0x6651:
2047        case 0x6658: /* Bonaire XTX [Radeon R7 260X] */
2048        case 0x665c: /* Bonaire XT [Radeon HD 7790/8770 / R9 260 OEM] */
2049        case 0x665d: /* Bonaire [Radeon R7 200 Series] */
2050        /* Hawaii */
2051        case 0x67A0: /* Hawaii XT GL [FirePro W9100] */
2052        case 0x67A1: /* Hawaii PRO GL [FirePro W8100] */
2053        case 0x67A2:
2054        case 0x67A8:
2055        case 0x67A9:
2056        case 0x67AA:
2057        case 0x67B0: /* Hawaii XT [Radeon R9 290X] */
2058        case 0x67B1: /* Hawaii PRO [Radeon R9 290] */
2059        case 0x67B8:
2060        case 0x67B9:
2061        case 0x67BA:
2062        case 0x67BE:
2063            vdev->resetfn = vfio_radeon_reset;
2064            trace_vfio_quirk_ati_bonaire_reset(vdev->vbasedev.name);
2065            break;
2066        }
2067        break;
2068    }
2069}
2070
2071/*
2072 * The NVIDIA GPUDirect P2P Vendor capability allows the user to specify
2073 * devices as a member of a clique.  Devices within the same clique ID
2074 * are capable of direct P2P.  It's the user's responsibility that this
2075 * is correct.  The spec says that this may reside at any unused config
2076 * offset, but reserves and recommends hypervisors place this at C8h.
2077 * The spec also states that the hypervisor should place this capability
2078 * at the end of the capability list, thus next is defined as 0h.
2079 *
2080 * +----------------+----------------+----------------+----------------+
2081 * | sig 7:0 ('P')  |  vndr len (8h) |    next (0h)   |   cap id (9h)  |
2082 * +----------------+----------------+----------------+----------------+
2083 * | rsvd 15:7(0h),id 6:3,ver 2:0(0h)|          sig 23:8 ('P2')        |
2084 * +---------------------------------+---------------------------------+
2085 *
2086 * https://lists.gnu.org/archive/html/qemu-devel/2017-08/pdfUda5iEpgOS.pdf
2087 */
2088static void get_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2089                                       const char *name, void *opaque,
2090                                       Error **errp)
2091{
2092    DeviceState *dev = DEVICE(obj);
2093    Property *prop = opaque;
2094    uint8_t *ptr = qdev_get_prop_ptr(dev, prop);
2095
2096    visit_type_uint8(v, name, ptr, errp);
2097}
2098
2099static void set_nv_gpudirect_clique_id(Object *obj, Visitor *v,
2100                                       const char *name, void *opaque,
2101                                       Error **errp)
2102{
2103    DeviceState *dev = DEVICE(obj);
2104    Property *prop = opaque;
2105    uint8_t value, *ptr = qdev_get_prop_ptr(dev, prop);
2106    Error *local_err = NULL;
2107
2108    if (dev->realized) {
2109        qdev_prop_set_after_realize(dev, name, errp);
2110        return;
2111    }
2112
2113    visit_type_uint8(v, name, &value, &local_err);
2114    if (local_err) {
2115        error_propagate(errp, local_err);
2116        return;
2117    }
2118
2119    if (value & ~0xF) {
2120        error_setg(errp, "Property %s: valid range 0-15", name);
2121        return;
2122    }
2123
2124    *ptr = value;
2125}
2126
2127const PropertyInfo qdev_prop_nv_gpudirect_clique = {
2128    .name = "uint4",
2129    .description = "NVIDIA GPUDirect Clique ID (0 - 15)",
2130    .get = get_nv_gpudirect_clique_id,
2131    .set = set_nv_gpudirect_clique_id,
2132};
2133
2134static int vfio_add_nv_gpudirect_cap(VFIOPCIDevice *vdev, Error **errp)
2135{
2136    PCIDevice *pdev = &vdev->pdev;
2137    int ret, pos = 0xC8;
2138
2139    if (vdev->nv_gpudirect_clique == 0xFF) {
2140        return 0;
2141    }
2142
2143    if (!vfio_pci_is(vdev, PCI_VENDOR_ID_NVIDIA, PCI_ANY_ID)) {
2144        error_setg(errp, "NVIDIA GPUDirect Clique ID: invalid device vendor");
2145        return -EINVAL;
2146    }
2147
2148    if (pci_get_byte(pdev->config + PCI_CLASS_DEVICE + 1) !=
2149        PCI_BASE_CLASS_DISPLAY) {
2150        error_setg(errp, "NVIDIA GPUDirect Clique ID: unsupported PCI class");
2151        return -EINVAL;
2152    }
2153
2154    ret = pci_add_capability(pdev, PCI_CAP_ID_VNDR, pos, 8, errp);
2155    if (ret < 0) {
2156        error_prepend(errp, "Failed to add NVIDIA GPUDirect cap: ");
2157        return ret;
2158    }
2159
2160    memset(vdev->emulated_config_bits + pos, 0xFF, 8);
2161    pos += PCI_CAP_FLAGS;
2162    pci_set_byte(pdev->config + pos++, 8);
2163    pci_set_byte(pdev->config + pos++, 'P');
2164    pci_set_byte(pdev->config + pos++, '2');
2165    pci_set_byte(pdev->config + pos++, 'P');
2166    pci_set_byte(pdev->config + pos++, vdev->nv_gpudirect_clique << 3);
2167    pci_set_byte(pdev->config + pos, 0);
2168
2169    return 0;
2170}
2171
2172int vfio_add_virt_caps(VFIOPCIDevice *vdev, Error **errp)
2173{
2174    int ret;
2175
2176    ret = vfio_add_nv_gpudirect_cap(vdev, errp);
2177    if (ret) {
2178        return ret;
2179    }
2180
2181    return 0;
2182}
2183