qemu/migration/postcopy-ram.c
<<
>>
Prefs
   1/*
   2 * Postcopy migration for RAM
   3 *
   4 * Copyright 2013-2015 Red Hat, Inc. and/or its affiliates
   5 *
   6 * Authors:
   7 *  Dave Gilbert  <dgilbert@redhat.com>
   8 *
   9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  10 * See the COPYING file in the top-level directory.
  11 *
  12 */
  13
  14/*
  15 * Postcopy is a migration technique where the execution flips from the
  16 * source to the destination before all the data has been copied.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "exec/target_page.h"
  21#include "migration.h"
  22#include "qemu-file.h"
  23#include "savevm.h"
  24#include "postcopy-ram.h"
  25#include "ram.h"
  26#include "qapi/error.h"
  27#include "qemu/notify.h"
  28#include "sysemu/sysemu.h"
  29#include "sysemu/balloon.h"
  30#include "qemu/error-report.h"
  31#include "trace.h"
  32
  33/* Arbitrary limit on size of each discard command,
  34 * keeps them around ~200 bytes
  35 */
  36#define MAX_DISCARDS_PER_COMMAND 12
  37
  38struct PostcopyDiscardState {
  39    const char *ramblock_name;
  40    uint16_t cur_entry;
  41    /*
  42     * Start and length of a discard range (bytes)
  43     */
  44    uint64_t start_list[MAX_DISCARDS_PER_COMMAND];
  45    uint64_t length_list[MAX_DISCARDS_PER_COMMAND];
  46    unsigned int nsentwords;
  47    unsigned int nsentcmds;
  48};
  49
  50static NotifierWithReturnList postcopy_notifier_list;
  51
  52void postcopy_infrastructure_init(void)
  53{
  54    notifier_with_return_list_init(&postcopy_notifier_list);
  55}
  56
  57void postcopy_add_notifier(NotifierWithReturn *nn)
  58{
  59    notifier_with_return_list_add(&postcopy_notifier_list, nn);
  60}
  61
  62void postcopy_remove_notifier(NotifierWithReturn *n)
  63{
  64    notifier_with_return_remove(n);
  65}
  66
  67int postcopy_notify(enum PostcopyNotifyReason reason, Error **errp)
  68{
  69    struct PostcopyNotifyData pnd;
  70    pnd.reason = reason;
  71    pnd.errp = errp;
  72
  73    return notifier_with_return_list_notify(&postcopy_notifier_list,
  74                                            &pnd);
  75}
  76
  77/* Postcopy needs to detect accesses to pages that haven't yet been copied
  78 * across, and efficiently map new pages in, the techniques for doing this
  79 * are target OS specific.
  80 */
  81#if defined(__linux__)
  82
  83#include <poll.h>
  84#include <sys/ioctl.h>
  85#include <sys/syscall.h>
  86#include <asm/types.h> /* for __u64 */
  87#endif
  88
  89#if defined(__linux__) && defined(__NR_userfaultfd) && defined(CONFIG_EVENTFD)
  90#include <sys/eventfd.h>
  91#include <linux/userfaultfd.h>
  92
  93typedef struct PostcopyBlocktimeContext {
  94    /* time when page fault initiated per vCPU */
  95    uint32_t *page_fault_vcpu_time;
  96    /* page address per vCPU */
  97    uintptr_t *vcpu_addr;
  98    uint32_t total_blocktime;
  99    /* blocktime per vCPU */
 100    uint32_t *vcpu_blocktime;
 101    /* point in time when last page fault was initiated */
 102    uint32_t last_begin;
 103    /* number of vCPU are suspended */
 104    int smp_cpus_down;
 105    uint64_t start_time;
 106
 107    /*
 108     * Handler for exit event, necessary for
 109     * releasing whole blocktime_ctx
 110     */
 111    Notifier exit_notifier;
 112} PostcopyBlocktimeContext;
 113
 114static void destroy_blocktime_context(struct PostcopyBlocktimeContext *ctx)
 115{
 116    g_free(ctx->page_fault_vcpu_time);
 117    g_free(ctx->vcpu_addr);
 118    g_free(ctx->vcpu_blocktime);
 119    g_free(ctx);
 120}
 121
 122static void migration_exit_cb(Notifier *n, void *data)
 123{
 124    PostcopyBlocktimeContext *ctx = container_of(n, PostcopyBlocktimeContext,
 125                                                 exit_notifier);
 126    destroy_blocktime_context(ctx);
 127}
 128
 129static struct PostcopyBlocktimeContext *blocktime_context_new(void)
 130{
 131    PostcopyBlocktimeContext *ctx = g_new0(PostcopyBlocktimeContext, 1);
 132    ctx->page_fault_vcpu_time = g_new0(uint32_t, smp_cpus);
 133    ctx->vcpu_addr = g_new0(uintptr_t, smp_cpus);
 134    ctx->vcpu_blocktime = g_new0(uint32_t, smp_cpus);
 135
 136    ctx->exit_notifier.notify = migration_exit_cb;
 137    ctx->start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 138    qemu_add_exit_notifier(&ctx->exit_notifier);
 139    return ctx;
 140}
 141
 142static uint32List *get_vcpu_blocktime_list(PostcopyBlocktimeContext *ctx)
 143{
 144    uint32List *list = NULL, *entry = NULL;
 145    int i;
 146
 147    for (i = smp_cpus - 1; i >= 0; i--) {
 148        entry = g_new0(uint32List, 1);
 149        entry->value = ctx->vcpu_blocktime[i];
 150        entry->next = list;
 151        list = entry;
 152    }
 153
 154    return list;
 155}
 156
 157/*
 158 * This function just populates MigrationInfo from postcopy's
 159 * blocktime context. It will not populate MigrationInfo,
 160 * unless postcopy-blocktime capability was set.
 161 *
 162 * @info: pointer to MigrationInfo to populate
 163 */
 164void fill_destination_postcopy_migration_info(MigrationInfo *info)
 165{
 166    MigrationIncomingState *mis = migration_incoming_get_current();
 167    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 168
 169    if (!bc) {
 170        return;
 171    }
 172
 173    info->has_postcopy_blocktime = true;
 174    info->postcopy_blocktime = bc->total_blocktime;
 175    info->has_postcopy_vcpu_blocktime = true;
 176    info->postcopy_vcpu_blocktime = get_vcpu_blocktime_list(bc);
 177}
 178
 179static uint32_t get_postcopy_total_blocktime(void)
 180{
 181    MigrationIncomingState *mis = migration_incoming_get_current();
 182    PostcopyBlocktimeContext *bc = mis->blocktime_ctx;
 183
 184    if (!bc) {
 185        return 0;
 186    }
 187
 188    return bc->total_blocktime;
 189}
 190
 191/**
 192 * receive_ufd_features: check userfault fd features, to request only supported
 193 * features in the future.
 194 *
 195 * Returns: true on success
 196 *
 197 * __NR_userfaultfd - should be checked before
 198 *  @features: out parameter will contain uffdio_api.features provided by kernel
 199 *              in case of success
 200 */
 201static bool receive_ufd_features(uint64_t *features)
 202{
 203    struct uffdio_api api_struct = {0};
 204    int ufd;
 205    bool ret = true;
 206
 207    /* if we are here __NR_userfaultfd should exists */
 208    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 209    if (ufd == -1) {
 210        error_report("%s: syscall __NR_userfaultfd failed: %s", __func__,
 211                     strerror(errno));
 212        return false;
 213    }
 214
 215    /* ask features */
 216    api_struct.api = UFFD_API;
 217    api_struct.features = 0;
 218    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 219        error_report("%s: UFFDIO_API failed: %s", __func__,
 220                     strerror(errno));
 221        ret = false;
 222        goto release_ufd;
 223    }
 224
 225    *features = api_struct.features;
 226
 227release_ufd:
 228    close(ufd);
 229    return ret;
 230}
 231
 232/**
 233 * request_ufd_features: this function should be called only once on a newly
 234 * opened ufd, subsequent calls will lead to error.
 235 *
 236 * Returns: true on succes
 237 *
 238 * @ufd: fd obtained from userfaultfd syscall
 239 * @features: bit mask see UFFD_API_FEATURES
 240 */
 241static bool request_ufd_features(int ufd, uint64_t features)
 242{
 243    struct uffdio_api api_struct = {0};
 244    uint64_t ioctl_mask;
 245
 246    api_struct.api = UFFD_API;
 247    api_struct.features = features;
 248    if (ioctl(ufd, UFFDIO_API, &api_struct)) {
 249        error_report("%s failed: UFFDIO_API failed: %s", __func__,
 250                     strerror(errno));
 251        return false;
 252    }
 253
 254    ioctl_mask = (__u64)1 << _UFFDIO_REGISTER |
 255                 (__u64)1 << _UFFDIO_UNREGISTER;
 256    if ((api_struct.ioctls & ioctl_mask) != ioctl_mask) {
 257        error_report("Missing userfault features: %" PRIx64,
 258                     (uint64_t)(~api_struct.ioctls & ioctl_mask));
 259        return false;
 260    }
 261
 262    return true;
 263}
 264
 265static bool ufd_check_and_apply(int ufd, MigrationIncomingState *mis)
 266{
 267    uint64_t asked_features = 0;
 268    static uint64_t supported_features;
 269
 270    /*
 271     * it's not possible to
 272     * request UFFD_API twice per one fd
 273     * userfault fd features is persistent
 274     */
 275    if (!supported_features) {
 276        if (!receive_ufd_features(&supported_features)) {
 277            error_report("%s failed", __func__);
 278            return false;
 279        }
 280    }
 281
 282#ifdef UFFD_FEATURE_THREAD_ID
 283    if (migrate_postcopy_blocktime() && mis &&
 284        UFFD_FEATURE_THREAD_ID & supported_features) {
 285        /* kernel supports that feature */
 286        /* don't create blocktime_context if it exists */
 287        if (!mis->blocktime_ctx) {
 288            mis->blocktime_ctx = blocktime_context_new();
 289        }
 290
 291        asked_features |= UFFD_FEATURE_THREAD_ID;
 292    }
 293#endif
 294
 295    /*
 296     * request features, even if asked_features is 0, due to
 297     * kernel expects UFFD_API before UFFDIO_REGISTER, per
 298     * userfault file descriptor
 299     */
 300    if (!request_ufd_features(ufd, asked_features)) {
 301        error_report("%s failed: features %" PRIu64, __func__,
 302                     asked_features);
 303        return false;
 304    }
 305
 306    if (getpagesize() != ram_pagesize_summary()) {
 307        bool have_hp = false;
 308        /* We've got a huge page */
 309#ifdef UFFD_FEATURE_MISSING_HUGETLBFS
 310        have_hp = supported_features & UFFD_FEATURE_MISSING_HUGETLBFS;
 311#endif
 312        if (!have_hp) {
 313            error_report("Userfault on this host does not support huge pages");
 314            return false;
 315        }
 316    }
 317    return true;
 318}
 319
 320/* Callback from postcopy_ram_supported_by_host block iterator.
 321 */
 322static int test_ramblock_postcopiable(RAMBlock *rb, void *opaque)
 323{
 324    const char *block_name = qemu_ram_get_idstr(rb);
 325    ram_addr_t length = qemu_ram_get_used_length(rb);
 326    size_t pagesize = qemu_ram_pagesize(rb);
 327
 328    if (length % pagesize) {
 329        error_report("Postcopy requires RAM blocks to be a page size multiple,"
 330                     " block %s is 0x" RAM_ADDR_FMT " bytes with a "
 331                     "page size of 0x%zx", block_name, length, pagesize);
 332        return 1;
 333    }
 334    return 0;
 335}
 336
 337/*
 338 * Note: This has the side effect of munlock'ing all of RAM, that's
 339 * normally fine since if the postcopy succeeds it gets turned back on at the
 340 * end.
 341 */
 342bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
 343{
 344    long pagesize = getpagesize();
 345    int ufd = -1;
 346    bool ret = false; /* Error unless we change it */
 347    void *testarea = NULL;
 348    struct uffdio_register reg_struct;
 349    struct uffdio_range range_struct;
 350    uint64_t feature_mask;
 351    Error *local_err = NULL;
 352
 353    if (qemu_target_page_size() > pagesize) {
 354        error_report("Target page size bigger than host page size");
 355        goto out;
 356    }
 357
 358    ufd = syscall(__NR_userfaultfd, O_CLOEXEC);
 359    if (ufd == -1) {
 360        error_report("%s: userfaultfd not available: %s", __func__,
 361                     strerror(errno));
 362        goto out;
 363    }
 364
 365    /* Give devices a chance to object */
 366    if (postcopy_notify(POSTCOPY_NOTIFY_PROBE, &local_err)) {
 367        error_report_err(local_err);
 368        goto out;
 369    }
 370
 371    /* Version and features check */
 372    if (!ufd_check_and_apply(ufd, mis)) {
 373        goto out;
 374    }
 375
 376    /* We don't support postcopy with shared RAM yet */
 377    if (foreach_not_ignored_block(test_ramblock_postcopiable, NULL)) {
 378        goto out;
 379    }
 380
 381    /*
 382     * userfault and mlock don't go together; we'll put it back later if
 383     * it was enabled.
 384     */
 385    if (munlockall()) {
 386        error_report("%s: munlockall: %s", __func__,  strerror(errno));
 387        return -1;
 388    }
 389
 390    /*
 391     *  We need to check that the ops we need are supported on anon memory
 392     *  To do that we need to register a chunk and see the flags that
 393     *  are returned.
 394     */
 395    testarea = mmap(NULL, pagesize, PROT_READ | PROT_WRITE, MAP_PRIVATE |
 396                                    MAP_ANONYMOUS, -1, 0);
 397    if (testarea == MAP_FAILED) {
 398        error_report("%s: Failed to map test area: %s", __func__,
 399                     strerror(errno));
 400        goto out;
 401    }
 402    g_assert(((size_t)testarea & (pagesize-1)) == 0);
 403
 404    reg_struct.range.start = (uintptr_t)testarea;
 405    reg_struct.range.len = pagesize;
 406    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 407
 408    if (ioctl(ufd, UFFDIO_REGISTER, &reg_struct)) {
 409        error_report("%s userfault register: %s", __func__, strerror(errno));
 410        goto out;
 411    }
 412
 413    range_struct.start = (uintptr_t)testarea;
 414    range_struct.len = pagesize;
 415    if (ioctl(ufd, UFFDIO_UNREGISTER, &range_struct)) {
 416        error_report("%s userfault unregister: %s", __func__, strerror(errno));
 417        goto out;
 418    }
 419
 420    feature_mask = (__u64)1 << _UFFDIO_WAKE |
 421                   (__u64)1 << _UFFDIO_COPY |
 422                   (__u64)1 << _UFFDIO_ZEROPAGE;
 423    if ((reg_struct.ioctls & feature_mask) != feature_mask) {
 424        error_report("Missing userfault map features: %" PRIx64,
 425                     (uint64_t)(~reg_struct.ioctls & feature_mask));
 426        goto out;
 427    }
 428
 429    /* Success! */
 430    ret = true;
 431out:
 432    if (testarea) {
 433        munmap(testarea, pagesize);
 434    }
 435    if (ufd != -1) {
 436        close(ufd);
 437    }
 438    return ret;
 439}
 440
 441/*
 442 * Setup an area of RAM so that it *can* be used for postcopy later; this
 443 * must be done right at the start prior to pre-copy.
 444 * opaque should be the MIS.
 445 */
 446static int init_range(RAMBlock *rb, void *opaque)
 447{
 448    const char *block_name = qemu_ram_get_idstr(rb);
 449    void *host_addr = qemu_ram_get_host_addr(rb);
 450    ram_addr_t offset = qemu_ram_get_offset(rb);
 451    ram_addr_t length = qemu_ram_get_used_length(rb);
 452    trace_postcopy_init_range(block_name, host_addr, offset, length);
 453
 454    /*
 455     * We need the whole of RAM to be truly empty for postcopy, so things
 456     * like ROMs and any data tables built during init must be zero'd
 457     * - we're going to get the copy from the source anyway.
 458     * (Precopy will just overwrite this data, so doesn't need the discard)
 459     */
 460    if (ram_discard_range(block_name, 0, length)) {
 461        return -1;
 462    }
 463
 464    return 0;
 465}
 466
 467/*
 468 * At the end of migration, undo the effects of init_range
 469 * opaque should be the MIS.
 470 */
 471static int cleanup_range(RAMBlock *rb, void *opaque)
 472{
 473    const char *block_name = qemu_ram_get_idstr(rb);
 474    void *host_addr = qemu_ram_get_host_addr(rb);
 475    ram_addr_t offset = qemu_ram_get_offset(rb);
 476    ram_addr_t length = qemu_ram_get_used_length(rb);
 477    MigrationIncomingState *mis = opaque;
 478    struct uffdio_range range_struct;
 479    trace_postcopy_cleanup_range(block_name, host_addr, offset, length);
 480
 481    /*
 482     * We turned off hugepage for the precopy stage with postcopy enabled
 483     * we can turn it back on now.
 484     */
 485    qemu_madvise(host_addr, length, QEMU_MADV_HUGEPAGE);
 486
 487    /*
 488     * We can also turn off userfault now since we should have all the
 489     * pages.   It can be useful to leave it on to debug postcopy
 490     * if you're not sure it's always getting every page.
 491     */
 492    range_struct.start = (uintptr_t)host_addr;
 493    range_struct.len = length;
 494
 495    if (ioctl(mis->userfault_fd, UFFDIO_UNREGISTER, &range_struct)) {
 496        error_report("%s: userfault unregister %s", __func__, strerror(errno));
 497
 498        return -1;
 499    }
 500
 501    return 0;
 502}
 503
 504/*
 505 * Initialise postcopy-ram, setting the RAM to a state where we can go into
 506 * postcopy later; must be called prior to any precopy.
 507 * called from arch_init's similarly named ram_postcopy_incoming_init
 508 */
 509int postcopy_ram_incoming_init(MigrationIncomingState *mis)
 510{
 511    if (foreach_not_ignored_block(init_range, NULL)) {
 512        return -1;
 513    }
 514
 515    return 0;
 516}
 517
 518/*
 519 * Manage a single vote to the QEMU balloon inhibitor for all postcopy usage,
 520 * last caller wins.
 521 */
 522static void postcopy_balloon_inhibit(bool state)
 523{
 524    static bool cur_state = false;
 525
 526    if (state != cur_state) {
 527        qemu_balloon_inhibit(state);
 528        cur_state = state;
 529    }
 530}
 531
 532/*
 533 * At the end of a migration where postcopy_ram_incoming_init was called.
 534 */
 535int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
 536{
 537    trace_postcopy_ram_incoming_cleanup_entry();
 538
 539    if (mis->have_fault_thread) {
 540        Error *local_err = NULL;
 541
 542        /* Let the fault thread quit */
 543        atomic_set(&mis->fault_thread_quit, 1);
 544        postcopy_fault_thread_notify(mis);
 545        trace_postcopy_ram_incoming_cleanup_join();
 546        qemu_thread_join(&mis->fault_thread);
 547
 548        if (postcopy_notify(POSTCOPY_NOTIFY_INBOUND_END, &local_err)) {
 549            error_report_err(local_err);
 550            return -1;
 551        }
 552
 553        if (foreach_not_ignored_block(cleanup_range, mis)) {
 554            return -1;
 555        }
 556
 557        trace_postcopy_ram_incoming_cleanup_closeuf();
 558        close(mis->userfault_fd);
 559        close(mis->userfault_event_fd);
 560        mis->have_fault_thread = false;
 561    }
 562
 563    postcopy_balloon_inhibit(false);
 564
 565    if (enable_mlock) {
 566        if (os_mlock() < 0) {
 567            error_report("mlock: %s", strerror(errno));
 568            /*
 569             * It doesn't feel right to fail at this point, we have a valid
 570             * VM state.
 571             */
 572        }
 573    }
 574
 575    postcopy_state_set(POSTCOPY_INCOMING_END);
 576
 577    if (mis->postcopy_tmp_page) {
 578        munmap(mis->postcopy_tmp_page, mis->largest_page_size);
 579        mis->postcopy_tmp_page = NULL;
 580    }
 581    if (mis->postcopy_tmp_zero_page) {
 582        munmap(mis->postcopy_tmp_zero_page, mis->largest_page_size);
 583        mis->postcopy_tmp_zero_page = NULL;
 584    }
 585    trace_postcopy_ram_incoming_cleanup_blocktime(
 586            get_postcopy_total_blocktime());
 587
 588    trace_postcopy_ram_incoming_cleanup_exit();
 589    return 0;
 590}
 591
 592/*
 593 * Disable huge pages on an area
 594 */
 595static int nhp_range(RAMBlock *rb, void *opaque)
 596{
 597    const char *block_name = qemu_ram_get_idstr(rb);
 598    void *host_addr = qemu_ram_get_host_addr(rb);
 599    ram_addr_t offset = qemu_ram_get_offset(rb);
 600    ram_addr_t length = qemu_ram_get_used_length(rb);
 601    trace_postcopy_nhp_range(block_name, host_addr, offset, length);
 602
 603    /*
 604     * Before we do discards we need to ensure those discards really
 605     * do delete areas of the page, even if THP thinks a hugepage would
 606     * be a good idea, so force hugepages off.
 607     */
 608    qemu_madvise(host_addr, length, QEMU_MADV_NOHUGEPAGE);
 609
 610    return 0;
 611}
 612
 613/*
 614 * Userfault requires us to mark RAM as NOHUGEPAGE prior to discard
 615 * however leaving it until after precopy means that most of the precopy
 616 * data is still THPd
 617 */
 618int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
 619{
 620    if (foreach_not_ignored_block(nhp_range, mis)) {
 621        return -1;
 622    }
 623
 624    postcopy_state_set(POSTCOPY_INCOMING_DISCARD);
 625
 626    return 0;
 627}
 628
 629/*
 630 * Mark the given area of RAM as requiring notification to unwritten areas
 631 * Used as a  callback on foreach_not_ignored_block.
 632 *   host_addr: Base of area to mark
 633 *   offset: Offset in the whole ram arena
 634 *   length: Length of the section
 635 *   opaque: MigrationIncomingState pointer
 636 * Returns 0 on success
 637 */
 638static int ram_block_enable_notify(RAMBlock *rb, void *opaque)
 639{
 640    MigrationIncomingState *mis = opaque;
 641    struct uffdio_register reg_struct;
 642
 643    reg_struct.range.start = (uintptr_t)qemu_ram_get_host_addr(rb);
 644    reg_struct.range.len = qemu_ram_get_used_length(rb);
 645    reg_struct.mode = UFFDIO_REGISTER_MODE_MISSING;
 646
 647    /* Now tell our userfault_fd that it's responsible for this area */
 648    if (ioctl(mis->userfault_fd, UFFDIO_REGISTER, &reg_struct)) {
 649        error_report("%s userfault register: %s", __func__, strerror(errno));
 650        return -1;
 651    }
 652    if (!(reg_struct.ioctls & ((__u64)1 << _UFFDIO_COPY))) {
 653        error_report("%s userfault: Region doesn't support COPY", __func__);
 654        return -1;
 655    }
 656    if (reg_struct.ioctls & ((__u64)1 << _UFFDIO_ZEROPAGE)) {
 657        qemu_ram_set_uf_zeroable(rb);
 658    }
 659
 660    return 0;
 661}
 662
 663int postcopy_wake_shared(struct PostCopyFD *pcfd,
 664                         uint64_t client_addr,
 665                         RAMBlock *rb)
 666{
 667    size_t pagesize = qemu_ram_pagesize(rb);
 668    struct uffdio_range range;
 669    int ret;
 670    trace_postcopy_wake_shared(client_addr, qemu_ram_get_idstr(rb));
 671    range.start = client_addr & ~(pagesize - 1);
 672    range.len = pagesize;
 673    ret = ioctl(pcfd->fd, UFFDIO_WAKE, &range);
 674    if (ret) {
 675        error_report("%s: Failed to wake: %zx in %s (%s)",
 676                     __func__, (size_t)client_addr, qemu_ram_get_idstr(rb),
 677                     strerror(errno));
 678    }
 679    return ret;
 680}
 681
 682/*
 683 * Callback from shared fault handlers to ask for a page,
 684 * the page must be specified by a RAMBlock and an offset in that rb
 685 * Note: Only for use by shared fault handlers (in fault thread)
 686 */
 687int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
 688                                 uint64_t client_addr, uint64_t rb_offset)
 689{
 690    size_t pagesize = qemu_ram_pagesize(rb);
 691    uint64_t aligned_rbo = rb_offset & ~(pagesize - 1);
 692    MigrationIncomingState *mis = migration_incoming_get_current();
 693
 694    trace_postcopy_request_shared_page(pcfd->idstr, qemu_ram_get_idstr(rb),
 695                                       rb_offset);
 696    if (ramblock_recv_bitmap_test_byte_offset(rb, aligned_rbo)) {
 697        trace_postcopy_request_shared_page_present(pcfd->idstr,
 698                                        qemu_ram_get_idstr(rb), rb_offset);
 699        return postcopy_wake_shared(pcfd, client_addr, rb);
 700    }
 701    if (rb != mis->last_rb) {
 702        mis->last_rb = rb;
 703        migrate_send_rp_req_pages(mis, qemu_ram_get_idstr(rb),
 704                                  aligned_rbo, pagesize);
 705    } else {
 706        /* Save some space */
 707        migrate_send_rp_req_pages(mis, NULL, aligned_rbo, pagesize);
 708    }
 709    return 0;
 710}
 711
 712static int get_mem_fault_cpu_index(uint32_t pid)
 713{
 714    CPUState *cpu_iter;
 715
 716    CPU_FOREACH(cpu_iter) {
 717        if (cpu_iter->thread_id == pid) {
 718            trace_get_mem_fault_cpu_index(cpu_iter->cpu_index, pid);
 719            return cpu_iter->cpu_index;
 720        }
 721    }
 722    trace_get_mem_fault_cpu_index(-1, pid);
 723    return -1;
 724}
 725
 726static uint32_t get_low_time_offset(PostcopyBlocktimeContext *dc)
 727{
 728    int64_t start_time_offset = qemu_clock_get_ms(QEMU_CLOCK_REALTIME) -
 729                                    dc->start_time;
 730    return start_time_offset < 1 ? 1 : start_time_offset & UINT32_MAX;
 731}
 732
 733/*
 734 * This function is being called when pagefault occurs. It
 735 * tracks down vCPU blocking time.
 736 *
 737 * @addr: faulted host virtual address
 738 * @ptid: faulted process thread id
 739 * @rb: ramblock appropriate to addr
 740 */
 741static void mark_postcopy_blocktime_begin(uintptr_t addr, uint32_t ptid,
 742                                          RAMBlock *rb)
 743{
 744    int cpu, already_received;
 745    MigrationIncomingState *mis = migration_incoming_get_current();
 746    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 747    uint32_t low_time_offset;
 748
 749    if (!dc || ptid == 0) {
 750        return;
 751    }
 752    cpu = get_mem_fault_cpu_index(ptid);
 753    if (cpu < 0) {
 754        return;
 755    }
 756
 757    low_time_offset = get_low_time_offset(dc);
 758    if (dc->vcpu_addr[cpu] == 0) {
 759        atomic_inc(&dc->smp_cpus_down);
 760    }
 761
 762    atomic_xchg(&dc->last_begin, low_time_offset);
 763    atomic_xchg(&dc->page_fault_vcpu_time[cpu], low_time_offset);
 764    atomic_xchg(&dc->vcpu_addr[cpu], addr);
 765
 766    /* check it here, not at the begining of the function,
 767     * due to, check could accur early than bitmap_set in
 768     * qemu_ufd_copy_ioctl */
 769    already_received = ramblock_recv_bitmap_test(rb, (void *)addr);
 770    if (already_received) {
 771        atomic_xchg(&dc->vcpu_addr[cpu], 0);
 772        atomic_xchg(&dc->page_fault_vcpu_time[cpu], 0);
 773        atomic_dec(&dc->smp_cpus_down);
 774    }
 775    trace_mark_postcopy_blocktime_begin(addr, dc, dc->page_fault_vcpu_time[cpu],
 776                                        cpu, already_received);
 777}
 778
 779/*
 780 *  This function just provide calculated blocktime per cpu and trace it.
 781 *  Total blocktime is calculated in mark_postcopy_blocktime_end.
 782 *
 783 *
 784 * Assume we have 3 CPU
 785 *
 786 *      S1        E1           S1               E1
 787 * -----***********------------xxx***************------------------------> CPU1
 788 *
 789 *             S2                E2
 790 * ------------****************xxx---------------------------------------> CPU2
 791 *
 792 *                         S3            E3
 793 * ------------------------****xxx********-------------------------------> CPU3
 794 *
 795 * We have sequence S1,S2,E1,S3,S1,E2,E3,E1
 796 * S2,E1 - doesn't match condition due to sequence S1,S2,E1 doesn't include CPU3
 797 * S3,S1,E2 - sequence includes all CPUs, in this case overlap will be S1,E2 -
 798 *            it's a part of total blocktime.
 799 * S1 - here is last_begin
 800 * Legend of the picture is following:
 801 *              * - means blocktime per vCPU
 802 *              x - means overlapped blocktime (total blocktime)
 803 *
 804 * @addr: host virtual address
 805 */
 806static void mark_postcopy_blocktime_end(uintptr_t addr)
 807{
 808    MigrationIncomingState *mis = migration_incoming_get_current();
 809    PostcopyBlocktimeContext *dc = mis->blocktime_ctx;
 810    int i, affected_cpu = 0;
 811    bool vcpu_total_blocktime = false;
 812    uint32_t read_vcpu_time, low_time_offset;
 813
 814    if (!dc) {
 815        return;
 816    }
 817
 818    low_time_offset = get_low_time_offset(dc);
 819    /* lookup cpu, to clear it,
 820     * that algorithm looks straighforward, but it's not
 821     * optimal, more optimal algorithm is keeping tree or hash
 822     * where key is address value is a list of  */
 823    for (i = 0; i < smp_cpus; i++) {
 824        uint32_t vcpu_blocktime = 0;
 825
 826        read_vcpu_time = atomic_fetch_add(&dc->page_fault_vcpu_time[i], 0);
 827        if (atomic_fetch_add(&dc->vcpu_addr[i], 0) != addr ||
 828            read_vcpu_time == 0) {
 829            continue;
 830        }
 831        atomic_xchg(&dc->vcpu_addr[i], 0);
 832        vcpu_blocktime = low_time_offset - read_vcpu_time;
 833        affected_cpu += 1;
 834        /* we need to know is that mark_postcopy_end was due to
 835         * faulted page, another possible case it's prefetched
 836         * page and in that case we shouldn't be here */
 837        if (!vcpu_total_blocktime &&
 838            atomic_fetch_add(&dc->smp_cpus_down, 0) == smp_cpus) {
 839            vcpu_total_blocktime = true;
 840        }
 841        /* continue cycle, due to one page could affect several vCPUs */
 842        dc->vcpu_blocktime[i] += vcpu_blocktime;
 843    }
 844
 845    atomic_sub(&dc->smp_cpus_down, affected_cpu);
 846    if (vcpu_total_blocktime) {
 847        dc->total_blocktime += low_time_offset - atomic_fetch_add(
 848                &dc->last_begin, 0);
 849    }
 850    trace_mark_postcopy_blocktime_end(addr, dc, dc->total_blocktime,
 851                                      affected_cpu);
 852}
 853
 854static bool postcopy_pause_fault_thread(MigrationIncomingState *mis)
 855{
 856    trace_postcopy_pause_fault_thread();
 857
 858    qemu_sem_wait(&mis->postcopy_pause_sem_fault);
 859
 860    trace_postcopy_pause_fault_thread_continued();
 861
 862    return true;
 863}
 864
 865/*
 866 * Handle faults detected by the USERFAULT markings
 867 */
 868static void *postcopy_ram_fault_thread(void *opaque)
 869{
 870    MigrationIncomingState *mis = opaque;
 871    struct uffd_msg msg;
 872    int ret;
 873    size_t index;
 874    RAMBlock *rb = NULL;
 875
 876    trace_postcopy_ram_fault_thread_entry();
 877    rcu_register_thread();
 878    mis->last_rb = NULL; /* last RAMBlock we sent part of */
 879    qemu_sem_post(&mis->fault_thread_sem);
 880
 881    struct pollfd *pfd;
 882    size_t pfd_len = 2 + mis->postcopy_remote_fds->len;
 883
 884    pfd = g_new0(struct pollfd, pfd_len);
 885
 886    pfd[0].fd = mis->userfault_fd;
 887    pfd[0].events = POLLIN;
 888    pfd[1].fd = mis->userfault_event_fd;
 889    pfd[1].events = POLLIN; /* Waiting for eventfd to go positive */
 890    trace_postcopy_ram_fault_thread_fds_core(pfd[0].fd, pfd[1].fd);
 891    for (index = 0; index < mis->postcopy_remote_fds->len; index++) {
 892        struct PostCopyFD *pcfd = &g_array_index(mis->postcopy_remote_fds,
 893                                                 struct PostCopyFD, index);
 894        pfd[2 + index].fd = pcfd->fd;
 895        pfd[2 + index].events = POLLIN;
 896        trace_postcopy_ram_fault_thread_fds_extra(2 + index, pcfd->idstr,
 897                                                  pcfd->fd);
 898    }
 899
 900    while (true) {
 901        ram_addr_t rb_offset;
 902        int poll_result;
 903
 904        /*
 905         * We're mainly waiting for the kernel to give us a faulting HVA,
 906         * however we can be told to quit via userfault_quit_fd which is
 907         * an eventfd
 908         */
 909
 910        poll_result = poll(pfd, pfd_len, -1 /* Wait forever */);
 911        if (poll_result == -1) {
 912            error_report("%s: userfault poll: %s", __func__, strerror(errno));
 913            break;
 914        }
 915
 916        if (!mis->to_src_file) {
 917            /*
 918             * Possibly someone tells us that the return path is
 919             * broken already using the event. We should hold until
 920             * the channel is rebuilt.
 921             */
 922            if (postcopy_pause_fault_thread(mis)) {
 923                mis->last_rb = NULL;
 924                /* Continue to read the userfaultfd */
 925            } else {
 926                error_report("%s: paused but don't allow to continue",
 927                             __func__);
 928                break;
 929            }
 930        }
 931
 932        if (pfd[1].revents) {
 933            uint64_t tmp64 = 0;
 934
 935            /* Consume the signal */
 936            if (read(mis->userfault_event_fd, &tmp64, 8) != 8) {
 937                /* Nothing obviously nicer than posting this error. */
 938                error_report("%s: read() failed", __func__);
 939            }
 940
 941            if (atomic_read(&mis->fault_thread_quit)) {
 942                trace_postcopy_ram_fault_thread_quit();
 943                break;
 944            }
 945        }
 946
 947        if (pfd[0].revents) {
 948            poll_result--;
 949            ret = read(mis->userfault_fd, &msg, sizeof(msg));
 950            if (ret != sizeof(msg)) {
 951                if (errno == EAGAIN) {
 952                    /*
 953                     * if a wake up happens on the other thread just after
 954                     * the poll, there is nothing to read.
 955                     */
 956                    continue;
 957                }
 958                if (ret < 0) {
 959                    error_report("%s: Failed to read full userfault "
 960                                 "message: %s",
 961                                 __func__, strerror(errno));
 962                    break;
 963                } else {
 964                    error_report("%s: Read %d bytes from userfaultfd "
 965                                 "expected %zd",
 966                                 __func__, ret, sizeof(msg));
 967                    break; /* Lost alignment, don't know what we'd read next */
 968                }
 969            }
 970            if (msg.event != UFFD_EVENT_PAGEFAULT) {
 971                error_report("%s: Read unexpected event %ud from userfaultfd",
 972                             __func__, msg.event);
 973                continue; /* It's not a page fault, shouldn't happen */
 974            }
 975
 976            rb = qemu_ram_block_from_host(
 977                     (void *)(uintptr_t)msg.arg.pagefault.address,
 978                     true, &rb_offset);
 979            if (!rb) {
 980                error_report("postcopy_ram_fault_thread: Fault outside guest: %"
 981                             PRIx64, (uint64_t)msg.arg.pagefault.address);
 982                break;
 983            }
 984
 985            rb_offset &= ~(qemu_ram_pagesize(rb) - 1);
 986            trace_postcopy_ram_fault_thread_request(msg.arg.pagefault.address,
 987                                                qemu_ram_get_idstr(rb),
 988                                                rb_offset,
 989                                                msg.arg.pagefault.feat.ptid);
 990            mark_postcopy_blocktime_begin(
 991                    (uintptr_t)(msg.arg.pagefault.address),
 992                                msg.arg.pagefault.feat.ptid, rb);
 993
 994retry:
 995            /*
 996             * Send the request to the source - we want to request one
 997             * of our host page sizes (which is >= TPS)
 998             */
 999            if (rb != mis->last_rb) {
1000                mis->last_rb = rb;
1001                ret = migrate_send_rp_req_pages(mis,
1002                                                qemu_ram_get_idstr(rb),
1003                                                rb_offset,
1004                                                qemu_ram_pagesize(rb));
1005            } else {
1006                /* Save some space */
1007                ret = migrate_send_rp_req_pages(mis,
1008                                                NULL,
1009                                                rb_offset,
1010                                                qemu_ram_pagesize(rb));
1011            }
1012
1013            if (ret) {
1014                /* May be network failure, try to wait for recovery */
1015                if (ret == -EIO && postcopy_pause_fault_thread(mis)) {
1016                    /* We got reconnected somehow, try to continue */
1017                    mis->last_rb = NULL;
1018                    goto retry;
1019                } else {
1020                    /* This is a unavoidable fault */
1021                    error_report("%s: migrate_send_rp_req_pages() get %d",
1022                                 __func__, ret);
1023                    break;
1024                }
1025            }
1026        }
1027
1028        /* Now handle any requests from external processes on shared memory */
1029        /* TODO: May need to handle devices deregistering during postcopy */
1030        for (index = 2; index < pfd_len && poll_result; index++) {
1031            if (pfd[index].revents) {
1032                struct PostCopyFD *pcfd =
1033                    &g_array_index(mis->postcopy_remote_fds,
1034                                   struct PostCopyFD, index - 2);
1035
1036                poll_result--;
1037                if (pfd[index].revents & POLLERR) {
1038                    error_report("%s: POLLERR on poll %zd fd=%d",
1039                                 __func__, index, pcfd->fd);
1040                    pfd[index].events = 0;
1041                    continue;
1042                }
1043
1044                ret = read(pcfd->fd, &msg, sizeof(msg));
1045                if (ret != sizeof(msg)) {
1046                    if (errno == EAGAIN) {
1047                        /*
1048                         * if a wake up happens on the other thread just after
1049                         * the poll, there is nothing to read.
1050                         */
1051                        continue;
1052                    }
1053                    if (ret < 0) {
1054                        error_report("%s: Failed to read full userfault "
1055                                     "message: %s (shared) revents=%d",
1056                                     __func__, strerror(errno),
1057                                     pfd[index].revents);
1058                        /*TODO: Could just disable this sharer */
1059                        break;
1060                    } else {
1061                        error_report("%s: Read %d bytes from userfaultfd "
1062                                     "expected %zd (shared)",
1063                                     __func__, ret, sizeof(msg));
1064                        /*TODO: Could just disable this sharer */
1065                        break; /*Lost alignment,don't know what we'd read next*/
1066                    }
1067                }
1068                if (msg.event != UFFD_EVENT_PAGEFAULT) {
1069                    error_report("%s: Read unexpected event %ud "
1070                                 "from userfaultfd (shared)",
1071                                 __func__, msg.event);
1072                    continue; /* It's not a page fault, shouldn't happen */
1073                }
1074                /* Call the device handler registered with us */
1075                ret = pcfd->handler(pcfd, &msg);
1076                if (ret) {
1077                    error_report("%s: Failed to resolve shared fault on %zd/%s",
1078                                 __func__, index, pcfd->idstr);
1079                    /* TODO: Fail? Disable this sharer? */
1080                }
1081            }
1082        }
1083    }
1084    rcu_unregister_thread();
1085    trace_postcopy_ram_fault_thread_exit();
1086    g_free(pfd);
1087    return NULL;
1088}
1089
1090int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1091{
1092    /* Open the fd for the kernel to give us userfaults */
1093    mis->userfault_fd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK);
1094    if (mis->userfault_fd == -1) {
1095        error_report("%s: Failed to open userfault fd: %s", __func__,
1096                     strerror(errno));
1097        return -1;
1098    }
1099
1100    /*
1101     * Although the host check already tested the API, we need to
1102     * do the check again as an ABI handshake on the new fd.
1103     */
1104    if (!ufd_check_and_apply(mis->userfault_fd, mis)) {
1105        return -1;
1106    }
1107
1108    /* Now an eventfd we use to tell the fault-thread to quit */
1109    mis->userfault_event_fd = eventfd(0, EFD_CLOEXEC);
1110    if (mis->userfault_event_fd == -1) {
1111        error_report("%s: Opening userfault_event_fd: %s", __func__,
1112                     strerror(errno));
1113        close(mis->userfault_fd);
1114        return -1;
1115    }
1116
1117    qemu_sem_init(&mis->fault_thread_sem, 0);
1118    qemu_thread_create(&mis->fault_thread, "postcopy/fault",
1119                       postcopy_ram_fault_thread, mis, QEMU_THREAD_JOINABLE);
1120    qemu_sem_wait(&mis->fault_thread_sem);
1121    qemu_sem_destroy(&mis->fault_thread_sem);
1122    mis->have_fault_thread = true;
1123
1124    /* Mark so that we get notified of accesses to unwritten areas */
1125    if (foreach_not_ignored_block(ram_block_enable_notify, mis)) {
1126        error_report("ram_block_enable_notify failed");
1127        return -1;
1128    }
1129
1130    /*
1131     * Ballooning can mark pages as absent while we're postcopying
1132     * that would cause false userfaults.
1133     */
1134    postcopy_balloon_inhibit(true);
1135
1136    trace_postcopy_ram_enable_notify();
1137
1138    return 0;
1139}
1140
1141static int qemu_ufd_copy_ioctl(int userfault_fd, void *host_addr,
1142                               void *from_addr, uint64_t pagesize, RAMBlock *rb)
1143{
1144    int ret;
1145    if (from_addr) {
1146        struct uffdio_copy copy_struct;
1147        copy_struct.dst = (uint64_t)(uintptr_t)host_addr;
1148        copy_struct.src = (uint64_t)(uintptr_t)from_addr;
1149        copy_struct.len = pagesize;
1150        copy_struct.mode = 0;
1151        ret = ioctl(userfault_fd, UFFDIO_COPY, &copy_struct);
1152    } else {
1153        struct uffdio_zeropage zero_struct;
1154        zero_struct.range.start = (uint64_t)(uintptr_t)host_addr;
1155        zero_struct.range.len = pagesize;
1156        zero_struct.mode = 0;
1157        ret = ioctl(userfault_fd, UFFDIO_ZEROPAGE, &zero_struct);
1158    }
1159    if (!ret) {
1160        ramblock_recv_bitmap_set_range(rb, host_addr,
1161                                       pagesize / qemu_target_page_size());
1162        mark_postcopy_blocktime_end((uintptr_t)host_addr);
1163
1164    }
1165    return ret;
1166}
1167
1168int postcopy_notify_shared_wake(RAMBlock *rb, uint64_t offset)
1169{
1170    int i;
1171    MigrationIncomingState *mis = migration_incoming_get_current();
1172    GArray *pcrfds = mis->postcopy_remote_fds;
1173
1174    for (i = 0; i < pcrfds->len; i++) {
1175        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1176        int ret = cur->waker(cur, rb, offset);
1177        if (ret) {
1178            return ret;
1179        }
1180    }
1181    return 0;
1182}
1183
1184/*
1185 * Place a host page (from) at (host) atomically
1186 * returns 0 on success
1187 */
1188int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1189                        RAMBlock *rb)
1190{
1191    size_t pagesize = qemu_ram_pagesize(rb);
1192
1193    /* copy also acks to the kernel waking the stalled thread up
1194     * TODO: We can inhibit that ack and only do it if it was requested
1195     * which would be slightly cheaper, but we'd have to be careful
1196     * of the order of updating our page state.
1197     */
1198    if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, from, pagesize, rb)) {
1199        int e = errno;
1200        error_report("%s: %s copy host: %p from: %p (size: %zd)",
1201                     __func__, strerror(e), host, from, pagesize);
1202
1203        return -e;
1204    }
1205
1206    trace_postcopy_place_page(host);
1207    return postcopy_notify_shared_wake(rb,
1208                                       qemu_ram_block_host_offset(rb, host));
1209}
1210
1211/*
1212 * Place a zero page at (host) atomically
1213 * returns 0 on success
1214 */
1215int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1216                             RAMBlock *rb)
1217{
1218    size_t pagesize = qemu_ram_pagesize(rb);
1219    trace_postcopy_place_page_zero(host);
1220
1221    /* Normal RAMBlocks can zero a page using UFFDIO_ZEROPAGE
1222     * but it's not available for everything (e.g. hugetlbpages)
1223     */
1224    if (qemu_ram_is_uf_zeroable(rb)) {
1225        if (qemu_ufd_copy_ioctl(mis->userfault_fd, host, NULL, pagesize, rb)) {
1226            int e = errno;
1227            error_report("%s: %s zero host: %p",
1228                         __func__, strerror(e), host);
1229
1230            return -e;
1231        }
1232        return postcopy_notify_shared_wake(rb,
1233                                           qemu_ram_block_host_offset(rb,
1234                                                                      host));
1235    } else {
1236        /* The kernel can't use UFFDIO_ZEROPAGE for hugepages */
1237        if (!mis->postcopy_tmp_zero_page) {
1238            mis->postcopy_tmp_zero_page = mmap(NULL, mis->largest_page_size,
1239                                               PROT_READ | PROT_WRITE,
1240                                               MAP_PRIVATE | MAP_ANONYMOUS,
1241                                               -1, 0);
1242            if (mis->postcopy_tmp_zero_page == MAP_FAILED) {
1243                int e = errno;
1244                mis->postcopy_tmp_zero_page = NULL;
1245                error_report("%s: %s mapping large zero page",
1246                             __func__, strerror(e));
1247                return -e;
1248            }
1249            memset(mis->postcopy_tmp_zero_page, '\0', mis->largest_page_size);
1250        }
1251        return postcopy_place_page(mis, host, mis->postcopy_tmp_zero_page,
1252                                   rb);
1253    }
1254}
1255
1256/*
1257 * Returns a target page of memory that can be mapped at a later point in time
1258 * using postcopy_place_page
1259 * The same address is used repeatedly, postcopy_place_page just takes the
1260 * backing page away.
1261 * Returns: Pointer to allocated page
1262 *
1263 */
1264void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1265{
1266    if (!mis->postcopy_tmp_page) {
1267        mis->postcopy_tmp_page = mmap(NULL, mis->largest_page_size,
1268                             PROT_READ | PROT_WRITE, MAP_PRIVATE |
1269                             MAP_ANONYMOUS, -1, 0);
1270        if (mis->postcopy_tmp_page == MAP_FAILED) {
1271            mis->postcopy_tmp_page = NULL;
1272            error_report("%s: %s", __func__, strerror(errno));
1273            return NULL;
1274        }
1275    }
1276
1277    return mis->postcopy_tmp_page;
1278}
1279
1280#else
1281/* No target OS support, stubs just fail */
1282void fill_destination_postcopy_migration_info(MigrationInfo *info)
1283{
1284}
1285
1286bool postcopy_ram_supported_by_host(MigrationIncomingState *mis)
1287{
1288    error_report("%s: No OS support", __func__);
1289    return false;
1290}
1291
1292int postcopy_ram_incoming_init(MigrationIncomingState *mis)
1293{
1294    error_report("postcopy_ram_incoming_init: No OS support");
1295    return -1;
1296}
1297
1298int postcopy_ram_incoming_cleanup(MigrationIncomingState *mis)
1299{
1300    assert(0);
1301    return -1;
1302}
1303
1304int postcopy_ram_prepare_discard(MigrationIncomingState *mis)
1305{
1306    assert(0);
1307    return -1;
1308}
1309
1310int postcopy_request_shared_page(struct PostCopyFD *pcfd, RAMBlock *rb,
1311                                 uint64_t client_addr, uint64_t rb_offset)
1312{
1313    assert(0);
1314    return -1;
1315}
1316
1317int postcopy_ram_enable_notify(MigrationIncomingState *mis)
1318{
1319    assert(0);
1320    return -1;
1321}
1322
1323int postcopy_place_page(MigrationIncomingState *mis, void *host, void *from,
1324                        RAMBlock *rb)
1325{
1326    assert(0);
1327    return -1;
1328}
1329
1330int postcopy_place_page_zero(MigrationIncomingState *mis, void *host,
1331                        RAMBlock *rb)
1332{
1333    assert(0);
1334    return -1;
1335}
1336
1337void *postcopy_get_tmp_page(MigrationIncomingState *mis)
1338{
1339    assert(0);
1340    return NULL;
1341}
1342
1343int postcopy_wake_shared(struct PostCopyFD *pcfd,
1344                         uint64_t client_addr,
1345                         RAMBlock *rb)
1346{
1347    assert(0);
1348    return -1;
1349}
1350#endif
1351
1352/* ------------------------------------------------------------------------- */
1353
1354void postcopy_fault_thread_notify(MigrationIncomingState *mis)
1355{
1356    uint64_t tmp64 = 1;
1357
1358    /*
1359     * Wakeup the fault_thread.  It's an eventfd that should currently
1360     * be at 0, we're going to increment it to 1
1361     */
1362    if (write(mis->userfault_event_fd, &tmp64, 8) != 8) {
1363        /* Not much we can do here, but may as well report it */
1364        error_report("%s: incrementing failed: %s", __func__,
1365                     strerror(errno));
1366    }
1367}
1368
1369/**
1370 * postcopy_discard_send_init: Called at the start of each RAMBlock before
1371 *   asking to discard individual ranges.
1372 *
1373 * @ms: The current migration state.
1374 * @offset: the bitmap offset of the named RAMBlock in the migration
1375 *   bitmap.
1376 * @name: RAMBlock that discards will operate on.
1377 *
1378 * returns: a new PDS.
1379 */
1380PostcopyDiscardState *postcopy_discard_send_init(MigrationState *ms,
1381                                                 const char *name)
1382{
1383    PostcopyDiscardState *res = g_malloc0(sizeof(PostcopyDiscardState));
1384
1385    if (res) {
1386        res->ramblock_name = name;
1387    }
1388
1389    return res;
1390}
1391
1392/**
1393 * postcopy_discard_send_range: Called by the bitmap code for each chunk to
1394 *   discard. May send a discard message, may just leave it queued to
1395 *   be sent later.
1396 *
1397 * @ms: Current migration state.
1398 * @pds: Structure initialised by postcopy_discard_send_init().
1399 * @start,@length: a range of pages in the migration bitmap in the
1400 *   RAM block passed to postcopy_discard_send_init() (length=1 is one page)
1401 */
1402void postcopy_discard_send_range(MigrationState *ms, PostcopyDiscardState *pds,
1403                                unsigned long start, unsigned long length)
1404{
1405    size_t tp_size = qemu_target_page_size();
1406    /* Convert to byte offsets within the RAM block */
1407    pds->start_list[pds->cur_entry] = start  * tp_size;
1408    pds->length_list[pds->cur_entry] = length * tp_size;
1409    trace_postcopy_discard_send_range(pds->ramblock_name, start, length);
1410    pds->cur_entry++;
1411    pds->nsentwords++;
1412
1413    if (pds->cur_entry == MAX_DISCARDS_PER_COMMAND) {
1414        /* Full set, ship it! */
1415        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1416                                              pds->ramblock_name,
1417                                              pds->cur_entry,
1418                                              pds->start_list,
1419                                              pds->length_list);
1420        pds->nsentcmds++;
1421        pds->cur_entry = 0;
1422    }
1423}
1424
1425/**
1426 * postcopy_discard_send_finish: Called at the end of each RAMBlock by the
1427 * bitmap code. Sends any outstanding discard messages, frees the PDS
1428 *
1429 * @ms: Current migration state.
1430 * @pds: Structure initialised by postcopy_discard_send_init().
1431 */
1432void postcopy_discard_send_finish(MigrationState *ms, PostcopyDiscardState *pds)
1433{
1434    /* Anything unsent? */
1435    if (pds->cur_entry) {
1436        qemu_savevm_send_postcopy_ram_discard(ms->to_dst_file,
1437                                              pds->ramblock_name,
1438                                              pds->cur_entry,
1439                                              pds->start_list,
1440                                              pds->length_list);
1441        pds->nsentcmds++;
1442    }
1443
1444    trace_postcopy_discard_send_finish(pds->ramblock_name, pds->nsentwords,
1445                                       pds->nsentcmds);
1446
1447    g_free(pds);
1448}
1449
1450/*
1451 * Current state of incoming postcopy; note this is not part of
1452 * MigrationIncomingState since it's state is used during cleanup
1453 * at the end as MIS is being freed.
1454 */
1455static PostcopyState incoming_postcopy_state;
1456
1457PostcopyState  postcopy_state_get(void)
1458{
1459    return atomic_mb_read(&incoming_postcopy_state);
1460}
1461
1462/* Set the state and return the old state */
1463PostcopyState postcopy_state_set(PostcopyState new_state)
1464{
1465    return atomic_xchg(&incoming_postcopy_state, new_state);
1466}
1467
1468/* Register a handler for external shared memory postcopy
1469 * called on the destination.
1470 */
1471void postcopy_register_shared_ufd(struct PostCopyFD *pcfd)
1472{
1473    MigrationIncomingState *mis = migration_incoming_get_current();
1474
1475    mis->postcopy_remote_fds = g_array_append_val(mis->postcopy_remote_fds,
1476                                                  *pcfd);
1477}
1478
1479/* Unregister a handler for external shared memory postcopy
1480 */
1481void postcopy_unregister_shared_ufd(struct PostCopyFD *pcfd)
1482{
1483    guint i;
1484    MigrationIncomingState *mis = migration_incoming_get_current();
1485    GArray *pcrfds = mis->postcopy_remote_fds;
1486
1487    for (i = 0; i < pcrfds->len; i++) {
1488        struct PostCopyFD *cur = &g_array_index(pcrfds, struct PostCopyFD, i);
1489        if (cur->fd == pcfd->fd) {
1490            mis->postcopy_remote_fds = g_array_remove_index(pcrfds, i);
1491            return;
1492        }
1493    }
1494}
1495