qemu/qemu-doc.texi
<<
>>
Prefs
   1\input texinfo @c -*- texinfo -*-
   2@c %**start of header
   3@setfilename qemu-doc.info
   4@include version.texi
   5
   6@documentlanguage en
   7@documentencoding UTF-8
   8
   9@settitle QEMU version @value{VERSION} User Documentation
  10@exampleindent 0
  11@paragraphindent 0
  12@c %**end of header
  13
  14@ifinfo
  15@direntry
  16* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
  17@end direntry
  18@end ifinfo
  19
  20@iftex
  21@titlepage
  22@sp 7
  23@center @titlefont{QEMU version @value{VERSION}}
  24@sp 1
  25@center @titlefont{User Documentation}
  26@sp 3
  27@end titlepage
  28@end iftex
  29
  30@ifnottex
  31@node Top
  32@top
  33
  34@menu
  35* Introduction::
  36* QEMU PC System emulator::
  37* QEMU System emulator for non PC targets::
  38* QEMU Guest Agent::
  39* QEMU User space emulator::
  40* System requirements::
  41* Implementation notes::
  42* Deprecated features::
  43* Supported build platforms::
  44* License::
  45* Index::
  46@end menu
  47@end ifnottex
  48
  49@contents
  50
  51@node Introduction
  52@chapter Introduction
  53
  54@menu
  55* intro_features:: Features
  56@end menu
  57
  58@node intro_features
  59@section Features
  60
  61QEMU is a FAST! processor emulator using dynamic translation to
  62achieve good emulation speed.
  63
  64@cindex operating modes
  65QEMU has two operating modes:
  66
  67@itemize
  68@cindex system emulation
  69@item Full system emulation. In this mode, QEMU emulates a full system (for
  70example a PC), including one or several processors and various
  71peripherals. It can be used to launch different Operating Systems
  72without rebooting the PC or to debug system code.
  73
  74@cindex user mode emulation
  75@item User mode emulation. In this mode, QEMU can launch
  76processes compiled for one CPU on another CPU. It can be used to
  77launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
  78to ease cross-compilation and cross-debugging.
  79
  80@end itemize
  81
  82QEMU has the following features:
  83
  84@itemize
  85@item QEMU can run without a host kernel driver and yet gives acceptable
  86performance.  It uses dynamic translation to native code for reasonable speed,
  87with support for self-modifying code and precise exceptions.
  88
  89@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
  90Windows) and architectures.
  91
  92@item It performs accurate software emulation of the FPU.
  93@end itemize
  94
  95QEMU user mode emulation has the following features:
  96@itemize
  97@item Generic Linux system call converter, including most ioctls.
  98
  99@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
 100
 101@item Accurate signal handling by remapping host signals to target signals.
 102@end itemize
 103
 104QEMU full system emulation has the following features:
 105@itemize
 106@item
 107QEMU uses a full software MMU for maximum portability.
 108
 109@item
 110QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
 111execute most of the guest code natively, while
 112continuing to emulate the rest of the machine.
 113
 114@item
 115Various hardware devices can be emulated and in some cases, host
 116devices (e.g. serial and parallel ports, USB, drives) can be used
 117transparently by the guest Operating System. Host device passthrough
 118can be used for talking to external physical peripherals (e.g. a
 119webcam, modem or tape drive).
 120
 121@item
 122Symmetric multiprocessing (SMP) support.  Currently, an in-kernel
 123accelerator is required to use more than one host CPU for emulation.
 124
 125@end itemize
 126
 127
 128@node QEMU PC System emulator
 129@chapter QEMU PC System emulator
 130@cindex system emulation (PC)
 131
 132@menu
 133* pcsys_introduction:: Introduction
 134* pcsys_quickstart::   Quick Start
 135* sec_invocation::     Invocation
 136* pcsys_keys::         Keys in the graphical frontends
 137* mux_keys::           Keys in the character backend multiplexer
 138* pcsys_monitor::      QEMU Monitor
 139* cpu_models::         CPU models
 140* disk_images::        Disk Images
 141* pcsys_network::      Network emulation
 142* pcsys_other_devs::   Other Devices
 143* direct_linux_boot::  Direct Linux Boot
 144* pcsys_usb::          USB emulation
 145* vnc_security::       VNC security
 146* network_tls::        TLS setup for network services
 147* gdb_usage::          GDB usage
 148* pcsys_os_specific::  Target OS specific information
 149@end menu
 150
 151@node pcsys_introduction
 152@section Introduction
 153
 154@c man begin DESCRIPTION
 155
 156The QEMU PC System emulator simulates the
 157following peripherals:
 158
 159@itemize @minus
 160@item
 161i440FX host PCI bridge and PIIX3 PCI to ISA bridge
 162@item
 163Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
 164extensions (hardware level, including all non standard modes).
 165@item
 166PS/2 mouse and keyboard
 167@item
 1682 PCI IDE interfaces with hard disk and CD-ROM support
 169@item
 170Floppy disk
 171@item
 172PCI and ISA network adapters
 173@item
 174Serial ports
 175@item
 176IPMI BMC, either and internal or external one
 177@item
 178Creative SoundBlaster 16 sound card
 179@item
 180ENSONIQ AudioPCI ES1370 sound card
 181@item
 182Intel 82801AA AC97 Audio compatible sound card
 183@item
 184Intel HD Audio Controller and HDA codec
 185@item
 186Adlib (OPL2) - Yamaha YM3812 compatible chip
 187@item
 188Gravis Ultrasound GF1 sound card
 189@item
 190CS4231A compatible sound card
 191@item
 192PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
 193@end itemize
 194
 195SMP is supported with up to 255 CPUs.
 196
 197QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
 198VGA BIOS.
 199
 200QEMU uses YM3812 emulation by Tatsuyuki Satoh.
 201
 202QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
 203by Tibor "TS" Schütz.
 204
 205Note that, by default, GUS shares IRQ(7) with parallel ports and so
 206QEMU must be told to not have parallel ports to have working GUS.
 207
 208@example
 209qemu-system-i386 dos.img -soundhw gus -parallel none
 210@end example
 211
 212Alternatively:
 213@example
 214qemu-system-i386 dos.img -device gus,irq=5
 215@end example
 216
 217Or some other unclaimed IRQ.
 218
 219CS4231A is the chip used in Windows Sound System and GUSMAX products
 220
 221@c man end
 222
 223@node pcsys_quickstart
 224@section Quick Start
 225@cindex quick start
 226
 227Download and uncompress the linux image (@file{linux.img}) and type:
 228
 229@example
 230qemu-system-i386 linux.img
 231@end example
 232
 233Linux should boot and give you a prompt.
 234
 235@node sec_invocation
 236@section Invocation
 237
 238@example
 239@c man begin SYNOPSIS
 240@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
 241@c man end
 242@end example
 243
 244@c man begin OPTIONS
 245@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
 246targets do not need a disk image.
 247
 248@include qemu-options.texi
 249
 250@c man end
 251
 252@subsection Device URL Syntax
 253@c TODO merge this with section Disk Images
 254
 255@c man begin NOTES
 256
 257In addition to using normal file images for the emulated storage devices,
 258QEMU can also use networked resources such as iSCSI devices. These are
 259specified using a special URL syntax.
 260
 261@table @option
 262@item iSCSI
 263iSCSI support allows QEMU to access iSCSI resources directly and use as
 264images for the guest storage. Both disk and cdrom images are supported.
 265
 266Syntax for specifying iSCSI LUNs is
 267``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
 268
 269By default qemu will use the iSCSI initiator-name
 270'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
 271line or a configuration file.
 272
 273Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
 274stalled requests and force a reestablishment of the session. The timeout
 275is specified in seconds. The default is 0 which means no timeout. Libiscsi
 2761.15.0 or greater is required for this feature.
 277
 278Example (without authentication):
 279@example
 280qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
 281                 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
 282                 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
 283@end example
 284
 285Example (CHAP username/password via URL):
 286@example
 287qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
 288@end example
 289
 290Example (CHAP username/password via environment variables):
 291@example
 292LIBISCSI_CHAP_USERNAME="user" \
 293LIBISCSI_CHAP_PASSWORD="password" \
 294qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
 295@end example
 296
 297@item NBD
 298QEMU supports NBD (Network Block Devices) both using TCP protocol as well
 299as Unix Domain Sockets.
 300
 301Syntax for specifying a NBD device using TCP
 302``nbd:<server-ip>:<port>[:exportname=<export>]''
 303
 304Syntax for specifying a NBD device using Unix Domain Sockets
 305``nbd:unix:<domain-socket>[:exportname=<export>]''
 306
 307Example for TCP
 308@example
 309qemu-system-i386 --drive file=nbd:192.0.2.1:30000
 310@end example
 311
 312Example for Unix Domain Sockets
 313@example
 314qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
 315@end example
 316
 317@item SSH
 318QEMU supports SSH (Secure Shell) access to remote disks.
 319
 320Examples:
 321@example
 322qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
 323qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
 324@end example
 325
 326Currently authentication must be done using ssh-agent.  Other
 327authentication methods may be supported in future.
 328
 329@item Sheepdog
 330Sheepdog is a distributed storage system for QEMU.
 331QEMU supports using either local sheepdog devices or remote networked
 332devices.
 333
 334Syntax for specifying a sheepdog device
 335@example
 336sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
 337@end example
 338
 339Example
 340@example
 341qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
 342@end example
 343
 344See also @url{https://sheepdog.github.io/sheepdog/}.
 345
 346@item GlusterFS
 347GlusterFS is a user space distributed file system.
 348QEMU supports the use of GlusterFS volumes for hosting VM disk images using
 349TCP, Unix Domain Sockets and RDMA transport protocols.
 350
 351Syntax for specifying a VM disk image on GlusterFS volume is
 352@example
 353
 354URI:
 355gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
 356
 357JSON:
 358'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
 359@                                 "server":[@{"type":"tcp","host":"...","port":"..."@},
 360@                                           @{"type":"unix","socket":"..."@}]@}@}'
 361@end example
 362
 363
 364Example
 365@example
 366URI:
 367qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
 368@                               file.debug=9,file.logfile=/var/log/qemu-gluster.log
 369
 370JSON:
 371qemu-system-x86_64 'json:@{"driver":"qcow2",
 372@                          "file":@{"driver":"gluster",
 373@                                   "volume":"testvol","path":"a.img",
 374@                                   "debug":9,"logfile":"/var/log/qemu-gluster.log",
 375@                                   "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
 376@                                             @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
 377qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
 378@                                      file.debug=9,file.logfile=/var/log/qemu-gluster.log,
 379@                                      file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
 380@                                      file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
 381@end example
 382
 383See also @url{http://www.gluster.org}.
 384
 385@item HTTP/HTTPS/FTP/FTPS
 386QEMU supports read-only access to files accessed over http(s) and ftp(s).
 387
 388Syntax using a single filename:
 389@example
 390<protocol>://[<username>[:<password>]@@]<host>/<path>
 391@end example
 392
 393where:
 394@table @option
 395@item protocol
 396'http', 'https', 'ftp', or 'ftps'.
 397
 398@item username
 399Optional username for authentication to the remote server.
 400
 401@item password
 402Optional password for authentication to the remote server.
 403
 404@item host
 405Address of the remote server.
 406
 407@item path
 408Path on the remote server, including any query string.
 409@end table
 410
 411The following options are also supported:
 412@table @option
 413@item url
 414The full URL when passing options to the driver explicitly.
 415
 416@item readahead
 417The amount of data to read ahead with each range request to the remote server.
 418This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
 419does not have a suffix, it will be assumed to be in bytes. The value must be a
 420multiple of 512 bytes. It defaults to 256k.
 421
 422@item sslverify
 423Whether to verify the remote server's certificate when connecting over SSL. It
 424can have the value 'on' or 'off'. It defaults to 'on'.
 425
 426@item cookie
 427Send this cookie (it can also be a list of cookies separated by ';') with
 428each outgoing request.  Only supported when using protocols such as HTTP
 429which support cookies, otherwise ignored.
 430
 431@item timeout
 432Set the timeout in seconds of the CURL connection. This timeout is the time
 433that CURL waits for a response from the remote server to get the size of the
 434image to be downloaded. If not set, the default timeout of 5 seconds is used.
 435@end table
 436
 437Note that when passing options to qemu explicitly, @option{driver} is the value
 438of <protocol>.
 439
 440Example: boot from a remote Fedora 20 live ISO image
 441@example
 442qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
 443
 444qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
 445@end example
 446
 447Example: boot from a remote Fedora 20 cloud image using a local overlay for
 448writes, copy-on-read, and a readahead of 64k
 449@example
 450qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
 451
 452qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
 453@end example
 454
 455Example: boot from an image stored on a VMware vSphere server with a self-signed
 456certificate using a local overlay for writes, a readahead of 64k and a timeout
 457of 10 seconds.
 458@example
 459qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
 460
 461qemu-system-x86_64 -drive file=/tmp/test.qcow2
 462@end example
 463
 464@end table
 465
 466@c man end
 467
 468@node pcsys_keys
 469@section Keys in the graphical frontends
 470
 471@c man begin OPTIONS
 472
 473During the graphical emulation, you can use special key combinations to change
 474modes. The default key mappings are shown below, but if you use @code{-alt-grab}
 475then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
 476@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
 477
 478@table @key
 479@item Ctrl-Alt-f
 480@kindex Ctrl-Alt-f
 481Toggle full screen
 482
 483@item Ctrl-Alt-+
 484@kindex Ctrl-Alt-+
 485Enlarge the screen
 486
 487@item Ctrl-Alt--
 488@kindex Ctrl-Alt--
 489Shrink the screen
 490
 491@item Ctrl-Alt-u
 492@kindex Ctrl-Alt-u
 493Restore the screen's un-scaled dimensions
 494
 495@item Ctrl-Alt-n
 496@kindex Ctrl-Alt-n
 497Switch to virtual console 'n'. Standard console mappings are:
 498@table @emph
 499@item 1
 500Target system display
 501@item 2
 502Monitor
 503@item 3
 504Serial port
 505@end table
 506
 507@item Ctrl-Alt
 508@kindex Ctrl-Alt
 509Toggle mouse and keyboard grab.
 510@end table
 511
 512@kindex Ctrl-Up
 513@kindex Ctrl-Down
 514@kindex Ctrl-PageUp
 515@kindex Ctrl-PageDown
 516In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
 517@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
 518
 519@c man end
 520
 521@node mux_keys
 522@section Keys in the character backend multiplexer
 523
 524@c man begin OPTIONS
 525
 526During emulation, if you are using a character backend multiplexer
 527(which is the default if you are using @option{-nographic}) then
 528several commands are available via an escape sequence. These
 529key sequences all start with an escape character, which is @key{Ctrl-a}
 530by default, but can be changed with @option{-echr}. The list below assumes
 531you're using the default.
 532
 533@table @key
 534@item Ctrl-a h
 535@kindex Ctrl-a h
 536Print this help
 537@item Ctrl-a x
 538@kindex Ctrl-a x
 539Exit emulator
 540@item Ctrl-a s
 541@kindex Ctrl-a s
 542Save disk data back to file (if -snapshot)
 543@item Ctrl-a t
 544@kindex Ctrl-a t
 545Toggle console timestamps
 546@item Ctrl-a b
 547@kindex Ctrl-a b
 548Send break (magic sysrq in Linux)
 549@item Ctrl-a c
 550@kindex Ctrl-a c
 551Rotate between the frontends connected to the multiplexer (usually
 552this switches between the monitor and the console)
 553@item Ctrl-a Ctrl-a
 554@kindex Ctrl-a Ctrl-a
 555Send the escape character to the frontend
 556@end table
 557@c man end
 558
 559@ignore
 560
 561@c man begin SEEALSO
 562The HTML documentation of QEMU for more precise information and Linux
 563user mode emulator invocation.
 564@c man end
 565
 566@c man begin AUTHOR
 567Fabrice Bellard
 568@c man end
 569
 570@end ignore
 571
 572@node pcsys_monitor
 573@section QEMU Monitor
 574@cindex QEMU monitor
 575
 576The QEMU monitor is used to give complex commands to the QEMU
 577emulator. You can use it to:
 578
 579@itemize @minus
 580
 581@item
 582Remove or insert removable media images
 583(such as CD-ROM or floppies).
 584
 585@item
 586Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
 587from a disk file.
 588
 589@item Inspect the VM state without an external debugger.
 590
 591@end itemize
 592
 593@subsection Commands
 594
 595The following commands are available:
 596
 597@include qemu-monitor.texi
 598
 599@include qemu-monitor-info.texi
 600
 601@subsection Integer expressions
 602
 603The monitor understands integers expressions for every integer
 604argument. You can use register names to get the value of specifics
 605CPU registers by prefixing them with @emph{$}.
 606
 607@node cpu_models
 608@section CPU models
 609
 610@include docs/qemu-cpu-models.texi
 611
 612@node disk_images
 613@section Disk Images
 614
 615QEMU supports many disk image formats, including growable disk images
 616(their size increase as non empty sectors are written), compressed and
 617encrypted disk images.
 618
 619@menu
 620* disk_images_quickstart::    Quick start for disk image creation
 621* disk_images_snapshot_mode:: Snapshot mode
 622* vm_snapshots::              VM snapshots
 623* qemu_img_invocation::       qemu-img Invocation
 624* qemu_nbd_invocation::       qemu-nbd Invocation
 625* disk_images_formats::       Disk image file formats
 626* host_drives::               Using host drives
 627* disk_images_fat_images::    Virtual FAT disk images
 628* disk_images_nbd::           NBD access
 629* disk_images_sheepdog::      Sheepdog disk images
 630* disk_images_iscsi::         iSCSI LUNs
 631* disk_images_gluster::       GlusterFS disk images
 632* disk_images_ssh::           Secure Shell (ssh) disk images
 633* disk_images_nvme::          NVMe userspace driver
 634* disk_image_locking::        Disk image file locking
 635@end menu
 636
 637@node disk_images_quickstart
 638@subsection Quick start for disk image creation
 639
 640You can create a disk image with the command:
 641@example
 642qemu-img create myimage.img mysize
 643@end example
 644where @var{myimage.img} is the disk image filename and @var{mysize} is its
 645size in kilobytes. You can add an @code{M} suffix to give the size in
 646megabytes and a @code{G} suffix for gigabytes.
 647
 648See @ref{qemu_img_invocation} for more information.
 649
 650@node disk_images_snapshot_mode
 651@subsection Snapshot mode
 652
 653If you use the option @option{-snapshot}, all disk images are
 654considered as read only. When sectors in written, they are written in
 655a temporary file created in @file{/tmp}. You can however force the
 656write back to the raw disk images by using the @code{commit} monitor
 657command (or @key{C-a s} in the serial console).
 658
 659@node vm_snapshots
 660@subsection VM snapshots
 661
 662VM snapshots are snapshots of the complete virtual machine including
 663CPU state, RAM, device state and the content of all the writable
 664disks. In order to use VM snapshots, you must have at least one non
 665removable and writable block device using the @code{qcow2} disk image
 666format. Normally this device is the first virtual hard drive.
 667
 668Use the monitor command @code{savevm} to create a new VM snapshot or
 669replace an existing one. A human readable name can be assigned to each
 670snapshot in addition to its numerical ID.
 671
 672Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
 673a VM snapshot. @code{info snapshots} lists the available snapshots
 674with their associated information:
 675
 676@example
 677(qemu) info snapshots
 678Snapshot devices: hda
 679Snapshot list (from hda):
 680ID        TAG                 VM SIZE                DATE       VM CLOCK
 6811         start                   41M 2006-08-06 12:38:02   00:00:14.954
 6822                                 40M 2006-08-06 12:43:29   00:00:18.633
 6833         msys                    40M 2006-08-06 12:44:04   00:00:23.514
 684@end example
 685
 686A VM snapshot is made of a VM state info (its size is shown in
 687@code{info snapshots}) and a snapshot of every writable disk image.
 688The VM state info is stored in the first @code{qcow2} non removable
 689and writable block device. The disk image snapshots are stored in
 690every disk image. The size of a snapshot in a disk image is difficult
 691to evaluate and is not shown by @code{info snapshots} because the
 692associated disk sectors are shared among all the snapshots to save
 693disk space (otherwise each snapshot would need a full copy of all the
 694disk images).
 695
 696When using the (unrelated) @code{-snapshot} option
 697(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
 698but they are deleted as soon as you exit QEMU.
 699
 700VM snapshots currently have the following known limitations:
 701@itemize
 702@item
 703They cannot cope with removable devices if they are removed or
 704inserted after a snapshot is done.
 705@item
 706A few device drivers still have incomplete snapshot support so their
 707state is not saved or restored properly (in particular USB).
 708@end itemize
 709
 710@node qemu_img_invocation
 711@subsection @code{qemu-img} Invocation
 712
 713@include qemu-img.texi
 714
 715@node qemu_nbd_invocation
 716@subsection @code{qemu-nbd} Invocation
 717
 718@include qemu-nbd.texi
 719
 720@include docs/qemu-block-drivers.texi
 721
 722@node pcsys_network
 723@section Network emulation
 724
 725QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
 726target) and can connect them to a network backend on the host or an emulated
 727hub. The various host network backends can either be used to connect the NIC of
 728the guest to a real network (e.g. by using a TAP devices or the non-privileged
 729user mode network stack), or to other guest instances running in another QEMU
 730process (e.g. by using the socket host network backend).
 731
 732@subsection Using TAP network interfaces
 733
 734This is the standard way to connect QEMU to a real network. QEMU adds
 735a virtual network device on your host (called @code{tapN}), and you
 736can then configure it as if it was a real ethernet card.
 737
 738@subsubsection Linux host
 739
 740As an example, you can download the @file{linux-test-xxx.tar.gz}
 741archive and copy the script @file{qemu-ifup} in @file{/etc} and
 742configure properly @code{sudo} so that the command @code{ifconfig}
 743contained in @file{qemu-ifup} can be executed as root. You must verify
 744that your host kernel supports the TAP network interfaces: the
 745device @file{/dev/net/tun} must be present.
 746
 747See @ref{sec_invocation} to have examples of command lines using the
 748TAP network interfaces.
 749
 750@subsubsection Windows host
 751
 752There is a virtual ethernet driver for Windows 2000/XP systems, called
 753TAP-Win32. But it is not included in standard QEMU for Windows,
 754so you will need to get it separately. It is part of OpenVPN package,
 755so download OpenVPN from : @url{https://openvpn.net/}.
 756
 757@subsection Using the user mode network stack
 758
 759By using the option @option{-net user} (default configuration if no
 760@option{-net} option is specified), QEMU uses a completely user mode
 761network stack (you don't need root privilege to use the virtual
 762network). The virtual network configuration is the following:
 763
 764@example
 765
 766     guest (10.0.2.15)  <------>  Firewall/DHCP server <-----> Internet
 767                           |          (10.0.2.2)
 768                           |
 769                           ---->  DNS server (10.0.2.3)
 770                           |
 771                           ---->  SMB server (10.0.2.4)
 772@end example
 773
 774The QEMU VM behaves as if it was behind a firewall which blocks all
 775incoming connections. You can use a DHCP client to automatically
 776configure the network in the QEMU VM. The DHCP server assign addresses
 777to the hosts starting from 10.0.2.15.
 778
 779In order to check that the user mode network is working, you can ping
 780the address 10.0.2.2 and verify that you got an address in the range
 78110.0.2.x from the QEMU virtual DHCP server.
 782
 783Note that ICMP traffic in general does not work with user mode networking.
 784@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
 785however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
 786ping sockets to allow @code{ping} to the Internet. The host admin has to set
 787the ping_group_range in order to grant access to those sockets. To allow ping
 788for GID 100 (usually users group):
 789
 790@example
 791echo 100 100 > /proc/sys/net/ipv4/ping_group_range
 792@end example
 793
 794When using the built-in TFTP server, the router is also the TFTP
 795server.
 796
 797When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
 798connections can be redirected from the host to the guest. It allows for
 799example to redirect X11, telnet or SSH connections.
 800
 801@subsection Hubs
 802
 803QEMU can simulate several hubs. A hub can be thought of as a virtual connection
 804between several network devices. These devices can be for example QEMU virtual
 805ethernet cards or virtual Host ethernet devices (TAP devices). You can connect
 806guest NICs or host network backends to such a hub using the @option{-netdev
 807hubport} or @option{-nic hubport} options. The legacy @option{-net} option
 808also connects the given device to the emulated hub with ID 0 (i.e. the default
 809hub) unless you specify a netdev with @option{-net nic,netdev=xxx} here.
 810
 811@subsection Connecting emulated networks between QEMU instances
 812
 813Using the @option{-netdev socket} (or @option{-nic socket} or
 814@option{-net socket}) option, it is possible to create emulated
 815networks that span several QEMU instances.
 816See the description of the @option{-netdev socket} option in the
 817@ref{sec_invocation,,Invocation chapter} to have a basic example.
 818
 819@node pcsys_other_devs
 820@section Other Devices
 821
 822@subsection Inter-VM Shared Memory device
 823
 824On Linux hosts, a shared memory device is available.  The basic syntax
 825is:
 826
 827@example
 828qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
 829@end example
 830
 831where @var{hostmem} names a host memory backend.  For a POSIX shared
 832memory backend, use something like
 833
 834@example
 835-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
 836@end example
 837
 838If desired, interrupts can be sent between guest VMs accessing the same shared
 839memory region.  Interrupt support requires using a shared memory server and
 840using a chardev socket to connect to it.  The code for the shared memory server
 841is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
 842memory server is:
 843
 844@example
 845# First start the ivshmem server once and for all
 846ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
 847
 848# Then start your qemu instances with matching arguments
 849qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
 850                 -chardev socket,path=@var{path},id=@var{id}
 851@end example
 852
 853When using the server, the guest will be assigned a VM ID (>=0) that allows guests
 854using the same server to communicate via interrupts.  Guests can read their
 855VM ID from a device register (see ivshmem-spec.txt).
 856
 857@subsubsection Migration with ivshmem
 858
 859With device property @option{master=on}, the guest will copy the shared
 860memory on migration to the destination host.  With @option{master=off},
 861the guest will not be able to migrate with the device attached.  In the
 862latter case, the device should be detached and then reattached after
 863migration using the PCI hotplug support.
 864
 865At most one of the devices sharing the same memory can be master.  The
 866master must complete migration before you plug back the other devices.
 867
 868@subsubsection ivshmem and hugepages
 869
 870Instead of specifying the <shm size> using POSIX shm, you may specify
 871a memory backend that has hugepage support:
 872
 873@example
 874qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
 875                 -device ivshmem-plain,memdev=mb1
 876@end example
 877
 878ivshmem-server also supports hugepages mount points with the
 879@option{-m} memory path argument.
 880
 881@node direct_linux_boot
 882@section Direct Linux Boot
 883
 884This section explains how to launch a Linux kernel inside QEMU without
 885having to make a full bootable image. It is very useful for fast Linux
 886kernel testing.
 887
 888The syntax is:
 889@example
 890qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
 891@end example
 892
 893Use @option{-kernel} to provide the Linux kernel image and
 894@option{-append} to give the kernel command line arguments. The
 895@option{-initrd} option can be used to provide an INITRD image.
 896
 897When using the direct Linux boot, a disk image for the first hard disk
 898@file{hda} is required because its boot sector is used to launch the
 899Linux kernel.
 900
 901If you do not need graphical output, you can disable it and redirect
 902the virtual serial port and the QEMU monitor to the console with the
 903@option{-nographic} option. The typical command line is:
 904@example
 905qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
 906                 -append "root=/dev/hda console=ttyS0" -nographic
 907@end example
 908
 909Use @key{Ctrl-a c} to switch between the serial console and the
 910monitor (@pxref{pcsys_keys}).
 911
 912@node pcsys_usb
 913@section USB emulation
 914
 915QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
 916plug virtual USB devices or real host USB devices (only works with certain
 917host operating systems). QEMU will automatically create and connect virtual
 918USB hubs as necessary to connect multiple USB devices.
 919
 920@menu
 921* usb_devices::
 922* host_usb_devices::
 923@end menu
 924@node usb_devices
 925@subsection Connecting USB devices
 926
 927USB devices can be connected with the @option{-device usb-...} command line
 928option or the @code{device_add} monitor command. Available devices are:
 929
 930@table @code
 931@item usb-mouse
 932Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
 933@item usb-tablet
 934Pointer device that uses absolute coordinates (like a touchscreen).
 935This means QEMU is able to report the mouse position without having
 936to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
 937@item usb-storage,drive=@var{drive_id}
 938Mass storage device backed by @var{drive_id} (@pxref{disk_images})
 939@item usb-uas
 940USB attached SCSI device, see
 941@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
 942for details
 943@item usb-bot
 944Bulk-only transport storage device, see
 945@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
 946for details here, too
 947@item usb-mtp,rootdir=@var{dir}
 948Media transfer protocol device, using @var{dir} as root of the file tree
 949that is presented to the guest.
 950@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
 951Pass through the host device identified by @var{bus} and @var{addr}
 952@item usb-host,vendorid=@var{vendor},productid=@var{product}
 953Pass through the host device identified by @var{vendor} and @var{product} ID
 954@item usb-wacom-tablet
 955Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
 956above but it can be used with the tslib library because in addition to touch
 957coordinates it reports touch pressure.
 958@item usb-kbd
 959Standard USB keyboard.  Will override the PS/2 keyboard (if present).
 960@item usb-serial,chardev=@var{id}
 961Serial converter. This emulates an FTDI FT232BM chip connected to host character
 962device @var{id}.
 963@item usb-braille,chardev=@var{id}
 964Braille device.  This will use BrlAPI to display the braille output on a real
 965or fake device referenced by @var{id}.
 966@item usb-net[,netdev=@var{id}]
 967Network adapter that supports CDC ethernet and RNDIS protocols.  @var{id}
 968specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
 969For instance, user-mode networking can be used with
 970@example
 971qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
 972@end example
 973@item usb-ccid
 974Smartcard reader device
 975@item usb-audio
 976USB audio device
 977@item usb-bt-dongle
 978Bluetooth dongle for the transport layer of HCI. It is connected to HCI
 979scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
 980Note that the syntax for the @code{-device usb-bt-dongle} option is not as
 981useful yet as it was with the legacy @code{-usbdevice} option. So to
 982configure an USB bluetooth device, you might need to use
 983"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
 984bluetooth dongle whose type is specified in the same format as with
 985the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
 986no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
 987This USB device implements the USB Transport Layer of HCI.  Example
 988usage:
 989@example
 990@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
 991@end example
 992@end table
 993
 994@node host_usb_devices
 995@subsection Using host USB devices on a Linux host
 996
 997WARNING: this is an experimental feature. QEMU will slow down when
 998using it. USB devices requiring real time streaming (i.e. USB Video
 999Cameras) are not supported yet.
1000
1001@enumerate
1002@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1003is actually using the USB device. A simple way to do that is simply to
1004disable the corresponding kernel module by renaming it from @file{mydriver.o}
1005to @file{mydriver.o.disabled}.
1006
1007@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1008@example
1009ls /proc/bus/usb
1010001  devices  drivers
1011@end example
1012
1013@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1014@example
1015chown -R myuid /proc/bus/usb
1016@end example
1017
1018@item Launch QEMU and do in the monitor:
1019@example
1020info usbhost
1021  Device 1.2, speed 480 Mb/s
1022    Class 00: USB device 1234:5678, USB DISK
1023@end example
1024You should see the list of the devices you can use (Never try to use
1025hubs, it won't work).
1026
1027@item Add the device in QEMU by using:
1028@example
1029device_add usb-host,vendorid=0x1234,productid=0x5678
1030@end example
1031
1032Normally the guest OS should report that a new USB device is plugged.
1033You can use the option @option{-device usb-host,...} to do the same.
1034
1035@item Now you can try to use the host USB device in QEMU.
1036
1037@end enumerate
1038
1039When relaunching QEMU, you may have to unplug and plug again the USB
1040device to make it work again (this is a bug).
1041
1042@node vnc_security
1043@section VNC security
1044
1045The VNC server capability provides access to the graphical console
1046of the guest VM across the network. This has a number of security
1047considerations depending on the deployment scenarios.
1048
1049@menu
1050* vnc_sec_none::
1051* vnc_sec_password::
1052* vnc_sec_certificate::
1053* vnc_sec_certificate_verify::
1054* vnc_sec_certificate_pw::
1055* vnc_sec_sasl::
1056* vnc_sec_certificate_sasl::
1057* vnc_setup_sasl::
1058@end menu
1059@node vnc_sec_none
1060@subsection Without passwords
1061
1062The simplest VNC server setup does not include any form of authentication.
1063For this setup it is recommended to restrict it to listen on a UNIX domain
1064socket only. For example
1065
1066@example
1067qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1068@end example
1069
1070This ensures that only users on local box with read/write access to that
1071path can access the VNC server. To securely access the VNC server from a
1072remote machine, a combination of netcat+ssh can be used to provide a secure
1073tunnel.
1074
1075@node vnc_sec_password
1076@subsection With passwords
1077
1078The VNC protocol has limited support for password based authentication. Since
1079the protocol limits passwords to 8 characters it should not be considered
1080to provide high security. The password can be fairly easily brute-forced by
1081a client making repeat connections. For this reason, a VNC server using password
1082authentication should be restricted to only listen on the loopback interface
1083or UNIX domain sockets. Password authentication is not supported when operating
1084in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1085authentication is requested with the @code{password} option, and then once QEMU
1086is running the password is set with the monitor. Until the monitor is used to
1087set the password all clients will be rejected.
1088
1089@example
1090qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
1091(qemu) change vnc password
1092Password: ********
1093(qemu)
1094@end example
1095
1096@node vnc_sec_certificate
1097@subsection With x509 certificates
1098
1099The QEMU VNC server also implements the VeNCrypt extension allowing use of
1100TLS for encryption of the session, and x509 certificates for authentication.
1101The use of x509 certificates is strongly recommended, because TLS on its
1102own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1103support provides a secure session, but no authentication. This allows any
1104client to connect, and provides an encrypted session.
1105
1106@example
1107qemu-system-i386 [...OPTIONS...] \
1108  -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=no \
1109  -vnc :1,tls-creds=tls0 -monitor stdio
1110@end example
1111
1112In the above example @code{/etc/pki/qemu} should contain at least three files,
1113@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1114users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1115NB the @code{server-key.pem} file should be protected with file mode 0600 to
1116only be readable by the user owning it.
1117
1118@node vnc_sec_certificate_verify
1119@subsection With x509 certificates and client verification
1120
1121Certificates can also provide a means to authenticate the client connecting.
1122The server will request that the client provide a certificate, which it will
1123then validate against the CA certificate. This is a good choice if deploying
1124in an environment with a private internal certificate authority. It uses the
1125same syntax as previously, but with @code{verify-peer} set to @code{yes}
1126instead.
1127
1128@example
1129qemu-system-i386 [...OPTIONS...] \
1130  -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1131  -vnc :1,tls-creds=tls0 -monitor stdio
1132@end example
1133
1134
1135@node vnc_sec_certificate_pw
1136@subsection With x509 certificates, client verification and passwords
1137
1138Finally, the previous method can be combined with VNC password authentication
1139to provide two layers of authentication for clients.
1140
1141@example
1142qemu-system-i386 [...OPTIONS...] \
1143  -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1144  -vnc :1,tls-creds=tls0,password -monitor stdio
1145(qemu) change vnc password
1146Password: ********
1147(qemu)
1148@end example
1149
1150
1151@node vnc_sec_sasl
1152@subsection With SASL authentication
1153
1154The SASL authentication method is a VNC extension, that provides an
1155easily extendable, pluggable authentication method. This allows for
1156integration with a wide range of authentication mechanisms, such as
1157PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1158The strength of the authentication depends on the exact mechanism
1159configured. If the chosen mechanism also provides a SSF layer, then
1160it will encrypt the datastream as well.
1161
1162Refer to the later docs on how to choose the exact SASL mechanism
1163used for authentication, but assuming use of one supporting SSF,
1164then QEMU can be launched with:
1165
1166@example
1167qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
1168@end example
1169
1170@node vnc_sec_certificate_sasl
1171@subsection With x509 certificates and SASL authentication
1172
1173If the desired SASL authentication mechanism does not supported
1174SSF layers, then it is strongly advised to run it in combination
1175with TLS and x509 certificates. This provides securely encrypted
1176data stream, avoiding risk of compromising of the security
1177credentials. This can be enabled, by combining the 'sasl' option
1178with the aforementioned TLS + x509 options:
1179
1180@example
1181qemu-system-i386 [...OPTIONS...] \
1182  -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1183  -vnc :1,tls-creds=tls0,sasl -monitor stdio
1184@end example
1185
1186@node vnc_setup_sasl
1187
1188@subsection Configuring SASL mechanisms
1189
1190The following documentation assumes use of the Cyrus SASL implementation on a
1191Linux host, but the principles should apply to any other SASL implementation
1192or host. When SASL is enabled, the mechanism configuration will be loaded from
1193system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1194unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1195it search alternate locations for the service config file.
1196
1197If the TLS option is enabled for VNC, then it will provide session encryption,
1198otherwise the SASL mechanism will have to provide encryption. In the latter
1199case the list of possible plugins that can be used is drastically reduced. In
1200fact only the GSSAPI SASL mechanism provides an acceptable level of security
1201by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1202mechanism, however, it has multiple serious flaws described in detail in
1203RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1204provides a simple username/password auth facility similar to DIGEST-MD5, but
1205does not support session encryption, so can only be used in combination with
1206TLS.
1207
1208When not using TLS the recommended configuration is
1209
1210@example
1211mech_list: gssapi
1212keytab: /etc/qemu/krb5.tab
1213@end example
1214
1215This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1216the server principal stored in /etc/qemu/krb5.tab. For this to work the
1217administrator of your KDC must generate a Kerberos principal for the server,
1218with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1219'somehost.example.com' with the fully qualified host name of the machine
1220running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1221
1222When using TLS, if username+password authentication is desired, then a
1223reasonable configuration is
1224
1225@example
1226mech_list: scram-sha-1
1227sasldb_path: /etc/qemu/passwd.db
1228@end example
1229
1230The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1231file with accounts.
1232
1233Other SASL configurations will be left as an exercise for the reader. Note that
1234all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1235secure data channel.
1236
1237
1238@node network_tls
1239@section TLS setup for network services
1240
1241Almost all network services in QEMU have the ability to use TLS for
1242session data encryption, along with x509 certificates for simple
1243client authentication. What follows is a description of how to
1244generate certificates suitable for usage with QEMU, and applies to
1245the VNC server, character devices with the TCP backend, NBD server
1246and client, and migration server and client.
1247
1248At a high level, QEMU requires certificates and private keys to be
1249provided in PEM format. Aside from the core fields, the certificates
1250should include various extension data sets, including v3 basic
1251constraints data, key purpose, key usage and subject alt name.
1252
1253The GnuTLS package includes a command called @code{certtool} which can
1254be used to easily generate certificates and keys in the required format
1255with expected data present. Alternatively a certificate management
1256service may be used.
1257
1258At a minimum it is necessary to setup a certificate authority, and
1259issue certificates to each server. If using x509 certificates for
1260authentication, then each client will also need to be issued a
1261certificate.
1262
1263Assuming that the QEMU network services will only ever be exposed to
1264clients on a private intranet, there is no need to use a commercial
1265certificate authority to create certificates. A self-signed CA is
1266sufficient, and in fact likely to be more secure since it removes
1267the ability of malicious 3rd parties to trick the CA into mis-issuing
1268certs for impersonating your services. The only likely exception
1269where a commercial CA might be desirable is if enabling the VNC
1270websockets server and exposing it directly to remote browser clients.
1271In such a case it might be useful to use a commercial CA to avoid
1272needing to install custom CA certs in the web browsers.
1273
1274The recommendation is for the server to keep its certificates in either
1275@code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
1276
1277@menu
1278* tls_generate_ca::
1279* tls_generate_server::
1280* tls_generate_client::
1281* tls_creds_setup::
1282* tls_psk::
1283@end menu
1284@node tls_generate_ca
1285@subsection Setup the Certificate Authority
1286
1287This step only needs to be performed once per organization / organizational
1288unit. First the CA needs a private key. This key must be kept VERY secret
1289and secure. If this key is compromised the entire trust chain of the certificates
1290issued with it is lost.
1291
1292@example
1293# certtool --generate-privkey > ca-key.pem
1294@end example
1295
1296To generate a self-signed certificate requires one core piece of information,
1297the name of the organization. A template file @code{ca.info} should be
1298populated with the desired data to avoid having to deal with interactive
1299prompts from certtool:
1300@example
1301# cat > ca.info <<EOF
1302cn = Name of your organization
1303ca
1304cert_signing_key
1305EOF
1306# certtool --generate-self-signed \
1307           --load-privkey ca-key.pem
1308           --template ca.info \
1309           --outfile ca-cert.pem
1310@end example
1311
1312The @code{ca} keyword in the template sets the v3 basic constraints extension
1313to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1314the key usage extension to indicate this will be used for signing other keys.
1315The generated @code{ca-cert.pem} file should be copied to all servers and
1316clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1317must not be disclosed/copied anywhere except the host responsible for issuing
1318certificates.
1319
1320@node tls_generate_server
1321@subsection Issuing server certificates
1322
1323Each server (or host) needs to be issued with a key and certificate. When connecting
1324the certificate is sent to the client which validates it against the CA certificate.
1325The core pieces of information for a server certificate are the hostnames and/or IP
1326addresses that will be used by clients when connecting. The hostname / IP address
1327that the client specifies when connecting will be validated against the hostname(s)
1328and IP address(es) recorded in the server certificate, and if no match is found
1329the client will close the connection.
1330
1331Thus it is recommended that the server certificate include both the fully qualified
1332and unqualified hostnames. If the server will have permanently assigned IP address(es),
1333and clients are likely to use them when connecting, they may also be included in the
1334certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1335only included 1 hostname in the @code{CN} field, however, usage of this field for
1336validation is now deprecated. Instead modern TLS clients will validate against the
1337Subject Alt Name extension data, which allows for multiple entries. In the future
1338usage of the @code{CN} field may be discontinued entirely, so providing SAN
1339extension data is strongly recommended.
1340
1341On the host holding the CA, create template files containing the information
1342for each server, and use it to issue server certificates.
1343
1344@example
1345# cat > server-hostNNN.info <<EOF
1346organization = Name  of your organization
1347cn = hostNNN.foo.example.com
1348dns_name = hostNNN
1349dns_name = hostNNN.foo.example.com
1350ip_address = 10.0.1.87
1351ip_address = 192.8.0.92
1352ip_address = 2620:0:cafe::87
1353ip_address = 2001:24::92
1354tls_www_server
1355encryption_key
1356signing_key
1357EOF
1358# certtool --generate-privkey > server-hostNNN-key.pem
1359# certtool --generate-certificate \
1360           --load-ca-certificate ca-cert.pem \
1361           --load-ca-privkey ca-key.pem \
1362           --load-privkey server-hostNNN-key.pem \
1363           --template server-hostNNN.info \
1364           --outfile server-hostNNN-cert.pem
1365@end example
1366
1367The @code{dns_name} and @code{ip_address} fields in the template are setting
1368the subject alt name extension data. The @code{tls_www_server} keyword is the
1369key purpose extension to indicate this certificate is intended for usage in
1370a web server. Although QEMU network services are not in fact HTTP servers
1371(except for VNC websockets), setting this key purpose is still recommended.
1372The @code{encryption_key} and @code{signing_key} keyword is the key usage
1373extension to indicate this certificate is intended for usage in the data
1374session.
1375
1376The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1377should now be securely copied to the server for which they were generated,
1378and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1379to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1380file is security sensitive and should be kept protected with file mode 0600
1381to prevent disclosure.
1382
1383@node tls_generate_client
1384@subsection Issuing client certificates
1385
1386The QEMU x509 TLS credential setup defaults to enabling client verification
1387using certificates, providing a simple authentication mechanism. If this
1388default is used, each client also needs to be issued a certificate. The client
1389certificate contains enough metadata to uniquely identify the client with the
1390scope of the certificate authority. The client certificate would typically
1391include fields for organization, state, city, building, etc.
1392
1393Once again on the host holding the CA, create template files containing the
1394information for each client, and use it to issue client certificates.
1395
1396
1397@example
1398# cat > client-hostNNN.info <<EOF
1399country = GB
1400state = London
1401locality = City Of London
1402organization = Name of your organization
1403cn = hostNNN.foo.example.com
1404tls_www_client
1405encryption_key
1406signing_key
1407EOF
1408# certtool --generate-privkey > client-hostNNN-key.pem
1409# certtool --generate-certificate \
1410           --load-ca-certificate ca-cert.pem \
1411           --load-ca-privkey ca-key.pem \
1412           --load-privkey client-hostNNN-key.pem \
1413           --template client-hostNNN.info \
1414           --outfile client-hostNNN-cert.pem
1415@end example
1416
1417The subject alt name extension data is not required for clients, so the
1418the @code{dns_name} and @code{ip_address} fields are not included.
1419The @code{tls_www_client} keyword is the key purpose extension to indicate
1420this certificate is intended for usage in a web client. Although QEMU
1421network clients are not in fact HTTP clients, setting this key purpose is
1422still recommended. The @code{encryption_key} and @code{signing_key} keyword
1423is the key usage extension to indicate this certificate is intended for
1424usage in the data session.
1425
1426The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1427should now be securely copied to the client for which they were generated,
1428and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1429to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1430file is security sensitive and should be kept protected with file mode 0600
1431to prevent disclosure.
1432
1433If a single host is going to be using TLS in both a client and server
1434role, it is possible to create a single certificate to cover both roles.
1435This would be quite common for the migration and NBD services, where a
1436QEMU process will be started by accepting a TLS protected incoming migration,
1437and later itself be migrated out to another host. To generate a single
1438certificate, simply include the template data from both the client and server
1439instructions in one.
1440
1441@example
1442# cat > both-hostNNN.info <<EOF
1443country = GB
1444state = London
1445locality = City Of London
1446organization = Name of your organization
1447cn = hostNNN.foo.example.com
1448dns_name = hostNNN
1449dns_name = hostNNN.foo.example.com
1450ip_address = 10.0.1.87
1451ip_address = 192.8.0.92
1452ip_address = 2620:0:cafe::87
1453ip_address = 2001:24::92
1454tls_www_server
1455tls_www_client
1456encryption_key
1457signing_key
1458EOF
1459# certtool --generate-privkey > both-hostNNN-key.pem
1460# certtool --generate-certificate \
1461           --load-ca-certificate ca-cert.pem \
1462           --load-ca-privkey ca-key.pem \
1463           --load-privkey both-hostNNN-key.pem \
1464           --template both-hostNNN.info \
1465           --outfile both-hostNNN-cert.pem
1466@end example
1467
1468When copying the PEM files to the target host, save them twice,
1469once as @code{server-cert.pem} and @code{server-key.pem}, and
1470again as @code{client-cert.pem} and @code{client-key.pem}.
1471
1472@node tls_creds_setup
1473@subsection TLS x509 credential configuration
1474
1475QEMU has a standard mechanism for loading x509 credentials that will be
1476used for network services and clients. It requires specifying the
1477@code{tls-creds-x509} class name to the @code{--object} command line
1478argument for the system emulators.  Each set of credentials loaded should
1479be given a unique string identifier via the @code{id} parameter. A single
1480set of TLS credentials can be used for multiple network backends, so VNC,
1481migration, NBD, character devices can all share the same credentials. Note,
1482however, that credentials for use in a client endpoint must be loaded
1483separately from those used in a server endpoint.
1484
1485When specifying the object, the @code{dir} parameters specifies which
1486directory contains the credential files. This directory is expected to
1487contain files with the names mentioned previously, @code{ca-cert.pem},
1488@code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1489and @code{client-cert.pem} as appropriate. It is also possible to
1490include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1491@code{dh-params.pem}, which can be created using the
1492@code{certtool --generate-dh-params} command. If omitted, QEMU will
1493dynamically generate DH parameters when loading the credentials.
1494
1495The @code{endpoint} parameter indicates whether the credentials will
1496be used for a network client or server, and determines which PEM
1497files are loaded.
1498
1499The @code{verify} parameter determines whether x509 certificate
1500validation should be performed. This defaults to enabled, meaning
1501clients will always validate the server hostname against the
1502certificate subject alt name fields and/or CN field. It also
1503means that servers will request that clients provide a certificate
1504and validate them. Verification should never be turned off for
1505client endpoints, however, it may be turned off for server endpoints
1506if an alternative mechanism is used to authenticate clients. For
1507example, the VNC server can use SASL to authenticate clients
1508instead.
1509
1510To load server credentials with client certificate validation
1511enabled
1512
1513@example
1514$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
1515@end example
1516
1517while to load client credentials use
1518
1519@example
1520$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
1521@end example
1522
1523Network services which support TLS will all have a @code{tls-creds}
1524parameter which expects the ID of the TLS credentials object. For
1525example with VNC:
1526
1527@example
1528$QEMU -vnc 0.0.0.0:0,tls-creds=tls0
1529@end example
1530
1531@node tls_psk
1532@subsection TLS Pre-Shared Keys (PSK)
1533
1534Instead of using certificates, you may also use TLS Pre-Shared Keys
1535(TLS-PSK).  This can be simpler to set up than certificates but is
1536less scalable.
1537
1538Use the GnuTLS @code{psktool} program to generate a @code{keys.psk}
1539file containing one or more usernames and random keys:
1540
1541@example
1542mkdir -m 0700 /tmp/keys
1543psktool -u rich -p /tmp/keys/keys.psk
1544@end example
1545
1546TLS-enabled servers such as qemu-nbd can use this directory like so:
1547
1548@example
1549qemu-nbd \
1550  -t -x / \
1551  --object tls-creds-psk,id=tls0,endpoint=server,dir=/tmp/keys \
1552  --tls-creds tls0 \
1553  image.qcow2
1554@end example
1555
1556When connecting from a qemu-based client you must specify the
1557directory containing @code{keys.psk} and an optional @var{username}
1558(defaults to ``qemu''):
1559
1560@example
1561qemu-img info \
1562  --object tls-creds-psk,id=tls0,dir=/tmp/keys,username=rich,endpoint=client \
1563  --image-opts \
1564  file.driver=nbd,file.host=localhost,file.port=10809,file.tls-creds=tls0,file.export=/
1565@end example
1566
1567@node gdb_usage
1568@section GDB usage
1569
1570QEMU has a primitive support to work with gdb, so that you can do
1571'Ctrl-C' while the virtual machine is running and inspect its state.
1572
1573In order to use gdb, launch QEMU with the '-s' option. It will wait for a
1574gdb connection:
1575@example
1576qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1577                    -append "root=/dev/hda"
1578Connected to host network interface: tun0
1579Waiting gdb connection on port 1234
1580@end example
1581
1582Then launch gdb on the 'vmlinux' executable:
1583@example
1584> gdb vmlinux
1585@end example
1586
1587In gdb, connect to QEMU:
1588@example
1589(gdb) target remote localhost:1234
1590@end example
1591
1592Then you can use gdb normally. For example, type 'c' to launch the kernel:
1593@example
1594(gdb) c
1595@end example
1596
1597Here are some useful tips in order to use gdb on system code:
1598
1599@enumerate
1600@item
1601Use @code{info reg} to display all the CPU registers.
1602@item
1603Use @code{x/10i $eip} to display the code at the PC position.
1604@item
1605Use @code{set architecture i8086} to dump 16 bit code. Then use
1606@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1607@end enumerate
1608
1609Advanced debugging options:
1610
1611The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1612@table @code
1613@item maintenance packet qqemu.sstepbits
1614
1615This will display the MASK bits used to control the single stepping IE:
1616@example
1617(gdb) maintenance packet qqemu.sstepbits
1618sending: "qqemu.sstepbits"
1619received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1620@end example
1621@item maintenance packet qqemu.sstep
1622
1623This will display the current value of the mask used when single stepping IE:
1624@example
1625(gdb) maintenance packet qqemu.sstep
1626sending: "qqemu.sstep"
1627received: "0x7"
1628@end example
1629@item maintenance packet Qqemu.sstep=HEX_VALUE
1630
1631This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1632@example
1633(gdb) maintenance packet Qqemu.sstep=0x5
1634sending: "qemu.sstep=0x5"
1635received: "OK"
1636@end example
1637@end table
1638
1639@node pcsys_os_specific
1640@section Target OS specific information
1641
1642@subsection Linux
1643
1644To have access to SVGA graphic modes under X11, use the @code{vesa} or
1645the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1646color depth in the guest and the host OS.
1647
1648When using a 2.6 guest Linux kernel, you should add the option
1649@code{clock=pit} on the kernel command line because the 2.6 Linux
1650kernels make very strict real time clock checks by default that QEMU
1651cannot simulate exactly.
1652
1653When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1654not activated because QEMU is slower with this patch. The QEMU
1655Accelerator Module is also much slower in this case. Earlier Fedora
1656Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1657patch by default. Newer kernels don't have it.
1658
1659@subsection Windows
1660
1661If you have a slow host, using Windows 95 is better as it gives the
1662best speed. Windows 2000 is also a good choice.
1663
1664@subsubsection SVGA graphic modes support
1665
1666QEMU emulates a Cirrus Logic GD5446 Video
1667card. All Windows versions starting from Windows 95 should recognize
1668and use this graphic card. For optimal performances, use 16 bit color
1669depth in the guest and the host OS.
1670
1671If you are using Windows XP as guest OS and if you want to use high
1672resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
16731280x1024x16), then you should use the VESA VBE virtual graphic card
1674(option @option{-std-vga}).
1675
1676@subsubsection CPU usage reduction
1677
1678Windows 9x does not correctly use the CPU HLT
1679instruction. The result is that it takes host CPU cycles even when
1680idle. You can install the utility from
1681@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
1682to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1683
1684@subsubsection Windows 2000 disk full problem
1685
1686Windows 2000 has a bug which gives a disk full problem during its
1687installation. When installing it, use the @option{-win2k-hack} QEMU
1688option to enable a specific workaround. After Windows 2000 is
1689installed, you no longer need this option (this option slows down the
1690IDE transfers).
1691
1692@subsubsection Windows 2000 shutdown
1693
1694Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1695can. It comes from the fact that Windows 2000 does not automatically
1696use the APM driver provided by the BIOS.
1697
1698In order to correct that, do the following (thanks to Struan
1699Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1700Add/Troubleshoot a device => Add a new device & Next => No, select the
1701hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1702(again) a few times. Now the driver is installed and Windows 2000 now
1703correctly instructs QEMU to shutdown at the appropriate moment.
1704
1705@subsubsection Share a directory between Unix and Windows
1706
1707See @ref{sec_invocation} about the help of the option
1708@option{'-netdev user,smb=...'}.
1709
1710@subsubsection Windows XP security problem
1711
1712Some releases of Windows XP install correctly but give a security
1713error when booting:
1714@example
1715A problem is preventing Windows from accurately checking the
1716license for this computer. Error code: 0x800703e6.
1717@end example
1718
1719The workaround is to install a service pack for XP after a boot in safe
1720mode. Then reboot, and the problem should go away. Since there is no
1721network while in safe mode, its recommended to download the full
1722installation of SP1 or SP2 and transfer that via an ISO or using the
1723vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1724
1725@subsection MS-DOS and FreeDOS
1726
1727@subsubsection CPU usage reduction
1728
1729DOS does not correctly use the CPU HLT instruction. The result is that
1730it takes host CPU cycles even when idle. You can install the utility from
1731@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
1732to solve this problem.
1733
1734@node QEMU System emulator for non PC targets
1735@chapter QEMU System emulator for non PC targets
1736
1737QEMU is a generic emulator and it emulates many non PC
1738machines. Most of the options are similar to the PC emulator. The
1739differences are mentioned in the following sections.
1740
1741@menu
1742* PowerPC System emulator::
1743* Sparc32 System emulator::
1744* Sparc64 System emulator::
1745* MIPS System emulator::
1746* ARM System emulator::
1747* ColdFire System emulator::
1748* Cris System emulator::
1749* Microblaze System emulator::
1750* SH4 System emulator::
1751* Xtensa System emulator::
1752@end menu
1753
1754@node PowerPC System emulator
1755@section PowerPC System emulator
1756@cindex system emulation (PowerPC)
1757
1758Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1759or PowerMac PowerPC system.
1760
1761QEMU emulates the following PowerMac peripherals:
1762
1763@itemize @minus
1764@item
1765UniNorth or Grackle PCI Bridge
1766@item
1767PCI VGA compatible card with VESA Bochs Extensions
1768@item
17692 PMAC IDE interfaces with hard disk and CD-ROM support
1770@item
1771NE2000 PCI adapters
1772@item
1773Non Volatile RAM
1774@item
1775VIA-CUDA with ADB keyboard and mouse.
1776@end itemize
1777
1778QEMU emulates the following PREP peripherals:
1779
1780@itemize @minus
1781@item
1782PCI Bridge
1783@item
1784PCI VGA compatible card with VESA Bochs Extensions
1785@item
17862 IDE interfaces with hard disk and CD-ROM support
1787@item
1788Floppy disk
1789@item
1790NE2000 network adapters
1791@item
1792Serial port
1793@item
1794PREP Non Volatile RAM
1795@item
1796PC compatible keyboard and mouse.
1797@end itemize
1798
1799QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1800@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1801
1802Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
1803for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1804v2) portable firmware implementation. The goal is to implement a 100%
1805IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1806
1807@c man begin OPTIONS
1808
1809The following options are specific to the PowerPC emulation:
1810
1811@table @option
1812
1813@item -g @var{W}x@var{H}[x@var{DEPTH}]
1814
1815Set the initial VGA graphic mode. The default is 800x600x32.
1816
1817@item -prom-env @var{string}
1818
1819Set OpenBIOS variables in NVRAM, for example:
1820
1821@example
1822qemu-system-ppc -prom-env 'auto-boot?=false' \
1823 -prom-env 'boot-device=hd:2,\yaboot' \
1824 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1825@end example
1826
1827These variables are not used by Open Hack'Ware.
1828
1829@end table
1830
1831@c man end
1832
1833
1834More information is available at
1835@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1836
1837@node Sparc32 System emulator
1838@section Sparc32 System emulator
1839@cindex system emulation (Sparc32)
1840
1841Use the executable @file{qemu-system-sparc} to simulate the following
1842Sun4m architecture machines:
1843@itemize @minus
1844@item
1845SPARCstation 4
1846@item
1847SPARCstation 5
1848@item
1849SPARCstation 10
1850@item
1851SPARCstation 20
1852@item
1853SPARCserver 600MP
1854@item
1855SPARCstation LX
1856@item
1857SPARCstation Voyager
1858@item
1859SPARCclassic
1860@item
1861SPARCbook
1862@end itemize
1863
1864The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1865but Linux limits the number of usable CPUs to 4.
1866
1867QEMU emulates the following sun4m peripherals:
1868
1869@itemize @minus
1870@item
1871IOMMU
1872@item
1873TCX or cgthree Frame buffer
1874@item
1875Lance (Am7990) Ethernet
1876@item
1877Non Volatile RAM M48T02/M48T08
1878@item
1879Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1880and power/reset logic
1881@item
1882ESP SCSI controller with hard disk and CD-ROM support
1883@item
1884Floppy drive (not on SS-600MP)
1885@item
1886CS4231 sound device (only on SS-5, not working yet)
1887@end itemize
1888
1889The number of peripherals is fixed in the architecture.  Maximum
1890memory size depends on the machine type, for SS-5 it is 256MB and for
1891others 2047MB.
1892
1893Since version 0.8.2, QEMU uses OpenBIOS
1894@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1895firmware implementation. The goal is to implement a 100% IEEE
18961275-1994 (referred to as Open Firmware) compliant firmware.
1897
1898A sample Linux 2.6 series kernel and ram disk image are available on
1899the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1900most kernel versions work. Please note that currently older Solaris kernels
1901don't work probably due to interface issues between OpenBIOS and
1902Solaris.
1903
1904@c man begin OPTIONS
1905
1906The following options are specific to the Sparc32 emulation:
1907
1908@table @option
1909
1910@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1911
1912Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1913option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1914of 1152x900x8 for people who wish to use OBP.
1915
1916@item -prom-env @var{string}
1917
1918Set OpenBIOS variables in NVRAM, for example:
1919
1920@example
1921qemu-system-sparc -prom-env 'auto-boot?=false' \
1922 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1923@end example
1924
1925@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
1926
1927Set the emulated machine type. Default is SS-5.
1928
1929@end table
1930
1931@c man end
1932
1933@node Sparc64 System emulator
1934@section Sparc64 System emulator
1935@cindex system emulation (Sparc64)
1936
1937Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1938(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1939Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1940able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
1941Sun4v emulator is still a work in progress.
1942
1943The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1944of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1945and is able to boot the disk.s10hw2 Solaris image.
1946@example
1947qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1948                    -nographic -m 256 \
1949                    -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1950@end example
1951
1952
1953QEMU emulates the following peripherals:
1954
1955@itemize @minus
1956@item
1957UltraSparc IIi APB PCI Bridge
1958@item
1959PCI VGA compatible card with VESA Bochs Extensions
1960@item
1961PS/2 mouse and keyboard
1962@item
1963Non Volatile RAM M48T59
1964@item
1965PC-compatible serial ports
1966@item
19672 PCI IDE interfaces with hard disk and CD-ROM support
1968@item
1969Floppy disk
1970@end itemize
1971
1972@c man begin OPTIONS
1973
1974The following options are specific to the Sparc64 emulation:
1975
1976@table @option
1977
1978@item -prom-env @var{string}
1979
1980Set OpenBIOS variables in NVRAM, for example:
1981
1982@example
1983qemu-system-sparc64 -prom-env 'auto-boot?=false'
1984@end example
1985
1986@item -M [sun4u|sun4v|niagara]
1987
1988Set the emulated machine type. The default is sun4u.
1989
1990@end table
1991
1992@c man end
1993
1994@node MIPS System emulator
1995@section MIPS System emulator
1996@cindex system emulation (MIPS)
1997
1998@menu
1999* nanoMIPS System emulator ::
2000@end menu
2001
2002Four executables cover simulation of 32 and 64-bit MIPS systems in
2003both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2004@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2005Five different machine types are emulated:
2006
2007@itemize @minus
2008@item
2009A generic ISA PC-like machine "mips"
2010@item
2011The MIPS Malta prototype board "malta"
2012@item
2013An ACER Pica "pica61". This machine needs the 64-bit emulator.
2014@item
2015MIPS emulator pseudo board "mipssim"
2016@item
2017A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2018@end itemize
2019
2020The generic emulation is supported by Debian 'Etch' and is able to
2021install Debian into a virtual disk image. The following devices are
2022emulated:
2023
2024@itemize @minus
2025@item
2026A range of MIPS CPUs, default is the 24Kf
2027@item
2028PC style serial port
2029@item
2030PC style IDE disk
2031@item
2032NE2000 network card
2033@end itemize
2034
2035The Malta emulation supports the following devices:
2036
2037@itemize @minus
2038@item
2039Core board with MIPS 24Kf CPU and Galileo system controller
2040@item
2041PIIX4 PCI/USB/SMbus controller
2042@item
2043The Multi-I/O chip's serial device
2044@item
2045PCI network cards (PCnet32 and others)
2046@item
2047Malta FPGA serial device
2048@item
2049Cirrus (default) or any other PCI VGA graphics card
2050@end itemize
2051
2052The Boston board emulation supports the following devices:
2053
2054@itemize @minus
2055@item
2056Xilinx FPGA, which includes a PCIe root port and an UART
2057@item
2058Intel EG20T PCH connects the I/O peripherals, but only the SATA bus is emulated
2059@end itemize
2060
2061The ACER Pica emulation supports:
2062
2063@itemize @minus
2064@item
2065MIPS R4000 CPU
2066@item
2067PC-style IRQ and DMA controllers
2068@item
2069PC Keyboard
2070@item
2071IDE controller
2072@end itemize
2073
2074The MIPS Magnum R4000 emulation supports:
2075
2076@itemize @minus
2077@item
2078MIPS R4000 CPU
2079@item
2080PC-style IRQ controller
2081@item
2082PC Keyboard
2083@item
2084SCSI controller
2085@item
2086G364 framebuffer
2087@end itemize
2088
2089The Fulong 2E emulation supports:
2090
2091@itemize @minus
2092@item
2093Loongson 2E CPU
2094@item
2095Bonito64 system controller as North Bridge
2096@item
2097VT82C686 chipset as South Bridge
2098@item
2099RTL8139D as a network card chipset
2100@end itemize
2101
2102The mipssim pseudo board emulation provides an environment similar
2103to what the proprietary MIPS emulator uses for running Linux.
2104It supports:
2105
2106@itemize @minus
2107@item
2108A range of MIPS CPUs, default is the 24Kf
2109@item
2110PC style serial port
2111@item
2112MIPSnet network emulation
2113@end itemize
2114
2115@node nanoMIPS System emulator
2116@subsection nanoMIPS System emulator
2117@cindex system emulation (nanoMIPS)
2118
2119Executable @file{qemu-system-mipsel} also covers simulation of
212032-bit nanoMIPS system in little endian mode:
2121
2122@itemize @minus
2123@item
2124nanoMIPS I7200 CPU
2125@end itemize
2126
2127Example of @file{qemu-system-mipsel} usage for nanoMIPS is shown below:
2128
2129Download @code{<disk_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/buildroot/index.html}.
2130
2131Download @code{<kernel_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/kernels/v4.15.18-432-gb2eb9a8b07a1-20180627102142/index.html}.
2132
2133Start system emulation of Malta board with nanoMIPS I7200 CPU:
2134@example
2135qemu-system-mipsel -cpu I7200 -kernel @code{<kernel_image_file>} \
2136    -M malta -serial stdio -m @code{<memory_size>} -hda @code{<disk_image_file>} \
2137    -append "mem=256m@@0x0 rw console=ttyS0 vga=cirrus vesa=0x111 root=/dev/sda"
2138@end example
2139
2140
2141@node ARM System emulator
2142@section ARM System emulator
2143@cindex system emulation (ARM)
2144
2145Use the executable @file{qemu-system-arm} to simulate a ARM
2146machine. The ARM Integrator/CP board is emulated with the following
2147devices:
2148
2149@itemize @minus
2150@item
2151ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2152@item
2153Two PL011 UARTs
2154@item
2155SMC 91c111 Ethernet adapter
2156@item
2157PL110 LCD controller
2158@item
2159PL050 KMI with PS/2 keyboard and mouse.
2160@item
2161PL181 MultiMedia Card Interface with SD card.
2162@end itemize
2163
2164The ARM Versatile baseboard is emulated with the following devices:
2165
2166@itemize @minus
2167@item
2168ARM926E, ARM1136 or Cortex-A8 CPU
2169@item
2170PL190 Vectored Interrupt Controller
2171@item
2172Four PL011 UARTs
2173@item
2174SMC 91c111 Ethernet adapter
2175@item
2176PL110 LCD controller
2177@item
2178PL050 KMI with PS/2 keyboard and mouse.
2179@item
2180PCI host bridge.  Note the emulated PCI bridge only provides access to
2181PCI memory space.  It does not provide access to PCI IO space.
2182This means some devices (eg. ne2k_pci NIC) are not usable, and others
2183(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2184mapped control registers.
2185@item
2186PCI OHCI USB controller.
2187@item
2188LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2189@item
2190PL181 MultiMedia Card Interface with SD card.
2191@end itemize
2192
2193Several variants of the ARM RealView baseboard are emulated,
2194including the EB, PB-A8 and PBX-A9.  Due to interactions with the
2195bootloader, only certain Linux kernel configurations work out
2196of the box on these boards.
2197
2198Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2199enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
2200should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2201disabled and expect 1024M RAM.
2202
2203The following devices are emulated:
2204
2205@itemize @minus
2206@item
2207ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
2208@item
2209ARM AMBA Generic/Distributed Interrupt Controller
2210@item
2211Four PL011 UARTs
2212@item
2213SMC 91c111 or SMSC LAN9118 Ethernet adapter
2214@item
2215PL110 LCD controller
2216@item
2217PL050 KMI with PS/2 keyboard and mouse
2218@item
2219PCI host bridge
2220@item
2221PCI OHCI USB controller
2222@item
2223LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2224@item
2225PL181 MultiMedia Card Interface with SD card.
2226@end itemize
2227
2228The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2229and "Terrier") emulation includes the following peripherals:
2230
2231@itemize @minus
2232@item
2233Intel PXA270 System-on-chip (ARM V5TE core)
2234@item
2235NAND Flash memory
2236@item
2237IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2238@item
2239On-chip OHCI USB controller
2240@item
2241On-chip LCD controller
2242@item
2243On-chip Real Time Clock
2244@item
2245TI ADS7846 touchscreen controller on SSP bus
2246@item
2247Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2248@item
2249GPIO-connected keyboard controller and LEDs
2250@item
2251Secure Digital card connected to PXA MMC/SD host
2252@item
2253Three on-chip UARTs
2254@item
2255WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2256@end itemize
2257
2258The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2259following elements:
2260
2261@itemize @minus
2262@item
2263Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2264@item
2265ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2266@item
2267On-chip LCD controller
2268@item
2269On-chip Real Time Clock
2270@item
2271TI TSC2102i touchscreen controller / analog-digital converter / Audio
2272CODEC, connected through MicroWire and I@math{^2}S busses
2273@item
2274GPIO-connected matrix keypad
2275@item
2276Secure Digital card connected to OMAP MMC/SD host
2277@item
2278Three on-chip UARTs
2279@end itemize
2280
2281Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2282emulation supports the following elements:
2283
2284@itemize @minus
2285@item
2286Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2287@item
2288RAM and non-volatile OneNAND Flash memories
2289@item
2290Display connected to EPSON remote framebuffer chip and OMAP on-chip
2291display controller and a LS041y3 MIPI DBI-C controller
2292@item
2293TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2294driven through SPI bus
2295@item
2296National Semiconductor LM8323-controlled qwerty keyboard driven
2297through I@math{^2}C bus
2298@item
2299Secure Digital card connected to OMAP MMC/SD host
2300@item
2301Three OMAP on-chip UARTs and on-chip STI debugging console
2302@item
2303A Bluetooth(R) transceiver and HCI connected to an UART
2304@item
2305Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2306TUSB6010 chip - only USB host mode is supported
2307@item
2308TI TMP105 temperature sensor driven through I@math{^2}C bus
2309@item
2310TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2311@item
2312Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2313through CBUS
2314@end itemize
2315
2316The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2317devices:
2318
2319@itemize @minus
2320@item
2321Cortex-M3 CPU core.
2322@item
232364k Flash and 8k SRAM.
2324@item
2325Timers, UARTs, ADC and I@math{^2}C interface.
2326@item
2327OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2328@end itemize
2329
2330The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2331devices:
2332
2333@itemize @minus
2334@item
2335Cortex-M3 CPU core.
2336@item
2337256k Flash and 64k SRAM.
2338@item
2339Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2340@item
2341OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2342@end itemize
2343
2344The Freecom MusicPal internet radio emulation includes the following
2345elements:
2346
2347@itemize @minus
2348@item
2349Marvell MV88W8618 ARM core.
2350@item
235132 MB RAM, 256 KB SRAM, 8 MB flash.
2352@item
2353Up to 2 16550 UARTs
2354@item
2355MV88W8xx8 Ethernet controller
2356@item
2357MV88W8618 audio controller, WM8750 CODEC and mixer
2358@item
2359128×64 display with brightness control
2360@item
23612 buttons, 2 navigation wheels with button function
2362@end itemize
2363
2364The Siemens SX1 models v1 and v2 (default) basic emulation.
2365The emulation includes the following elements:
2366
2367@itemize @minus
2368@item
2369Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2370@item
2371ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2372V1
23731 Flash of 16MB and 1 Flash of 8MB
2374V2
23751 Flash of 32MB
2376@item
2377On-chip LCD controller
2378@item
2379On-chip Real Time Clock
2380@item
2381Secure Digital card connected to OMAP MMC/SD host
2382@item
2383Three on-chip UARTs
2384@end itemize
2385
2386A Linux 2.6 test image is available on the QEMU web site. More
2387information is available in the QEMU mailing-list archive.
2388
2389@c man begin OPTIONS
2390
2391The following options are specific to the ARM emulation:
2392
2393@table @option
2394
2395@item -semihosting
2396Enable semihosting syscall emulation.
2397
2398On ARM this implements the "Angel" interface.
2399
2400Note that this allows guest direct access to the host filesystem,
2401so should only be used with trusted guest OS.
2402
2403@end table
2404
2405@c man end
2406
2407@node ColdFire System emulator
2408@section ColdFire System emulator
2409@cindex system emulation (ColdFire)
2410@cindex system emulation (M68K)
2411
2412Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2413The emulator is able to boot a uClinux kernel.
2414
2415The M5208EVB emulation includes the following devices:
2416
2417@itemize @minus
2418@item
2419MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2420@item
2421Three Two on-chip UARTs.
2422@item
2423Fast Ethernet Controller (FEC)
2424@end itemize
2425
2426The AN5206 emulation includes the following devices:
2427
2428@itemize @minus
2429@item
2430MCF5206 ColdFire V2 Microprocessor.
2431@item
2432Two on-chip UARTs.
2433@end itemize
2434
2435@c man begin OPTIONS
2436
2437The following options are specific to the ColdFire emulation:
2438
2439@table @option
2440
2441@item -semihosting
2442Enable semihosting syscall emulation.
2443
2444On M68K this implements the "ColdFire GDB" interface used by libgloss.
2445
2446Note that this allows guest direct access to the host filesystem,
2447so should only be used with trusted guest OS.
2448
2449@end table
2450
2451@c man end
2452
2453@node Cris System emulator
2454@section Cris System emulator
2455@cindex system emulation (Cris)
2456
2457TODO
2458
2459@node Microblaze System emulator
2460@section Microblaze System emulator
2461@cindex system emulation (Microblaze)
2462
2463TODO
2464
2465@node SH4 System emulator
2466@section SH4 System emulator
2467@cindex system emulation (SH4)
2468
2469TODO
2470
2471@node Xtensa System emulator
2472@section Xtensa System emulator
2473@cindex system emulation (Xtensa)
2474
2475Two executables cover simulation of both Xtensa endian options,
2476@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2477Two different machine types are emulated:
2478
2479@itemize @minus
2480@item
2481Xtensa emulator pseudo board "sim"
2482@item
2483Avnet LX60/LX110/LX200 board
2484@end itemize
2485
2486The sim pseudo board emulation provides an environment similar
2487to one provided by the proprietary Tensilica ISS.
2488It supports:
2489
2490@itemize @minus
2491@item
2492A range of Xtensa CPUs, default is the DC232B
2493@item
2494Console and filesystem access via semihosting calls
2495@end itemize
2496
2497The Avnet LX60/LX110/LX200 emulation supports:
2498
2499@itemize @minus
2500@item
2501A range of Xtensa CPUs, default is the DC232B
2502@item
250316550 UART
2504@item
2505OpenCores 10/100 Mbps Ethernet MAC
2506@end itemize
2507
2508@c man begin OPTIONS
2509
2510The following options are specific to the Xtensa emulation:
2511
2512@table @option
2513
2514@item -semihosting
2515Enable semihosting syscall emulation.
2516
2517Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2518Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2519
2520Note that this allows guest direct access to the host filesystem,
2521so should only be used with trusted guest OS.
2522
2523@end table
2524
2525@c man end
2526
2527@node QEMU Guest Agent
2528@chapter QEMU Guest Agent invocation
2529
2530@include qemu-ga.texi
2531
2532@node QEMU User space emulator
2533@chapter QEMU User space emulator
2534
2535@menu
2536* Supported Operating Systems ::
2537* Features::
2538* Linux User space emulator::
2539* BSD User space emulator ::
2540@end menu
2541
2542@node Supported Operating Systems
2543@section Supported Operating Systems
2544
2545The following OS are supported in user space emulation:
2546
2547@itemize @minus
2548@item
2549Linux (referred as qemu-linux-user)
2550@item
2551BSD (referred as qemu-bsd-user)
2552@end itemize
2553
2554@node Features
2555@section Features
2556
2557QEMU user space emulation has the following notable features:
2558
2559@table @strong
2560@item System call translation:
2561QEMU includes a generic system call translator.  This means that
2562the parameters of the system calls can be converted to fix
2563endianness and 32/64-bit mismatches between hosts and targets.
2564IOCTLs can be converted too.
2565
2566@item POSIX signal handling:
2567QEMU can redirect to the running program all signals coming from
2568the host (such as @code{SIGALRM}), as well as synthesize signals from
2569virtual CPU exceptions (for example @code{SIGFPE} when the program
2570executes a division by zero).
2571
2572QEMU relies on the host kernel to emulate most signal system
2573calls, for example to emulate the signal mask.  On Linux, QEMU
2574supports both normal and real-time signals.
2575
2576@item Threading:
2577On Linux, QEMU can emulate the @code{clone} syscall and create a real
2578host thread (with a separate virtual CPU) for each emulated thread.
2579Note that not all targets currently emulate atomic operations correctly.
2580x86 and ARM use a global lock in order to preserve their semantics.
2581@end table
2582
2583QEMU was conceived so that ultimately it can emulate itself. Although
2584it is not very useful, it is an important test to show the power of the
2585emulator.
2586
2587@node Linux User space emulator
2588@section Linux User space emulator
2589
2590@menu
2591* Quick Start::
2592* Wine launch::
2593* Command line options::
2594* Other binaries::
2595@end menu
2596
2597@node Quick Start
2598@subsection Quick Start
2599
2600In order to launch a Linux process, QEMU needs the process executable
2601itself and all the target (x86) dynamic libraries used by it.
2602
2603@itemize
2604
2605@item On x86, you can just try to launch any process by using the native
2606libraries:
2607
2608@example
2609qemu-i386 -L / /bin/ls
2610@end example
2611
2612@code{-L /} tells that the x86 dynamic linker must be searched with a
2613@file{/} prefix.
2614
2615@item Since QEMU is also a linux process, you can launch QEMU with
2616QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
2617
2618@example
2619qemu-i386 -L / qemu-i386 -L / /bin/ls
2620@end example
2621
2622@item On non x86 CPUs, you need first to download at least an x86 glibc
2623(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2624@code{LD_LIBRARY_PATH} is not set:
2625
2626@example
2627unset LD_LIBRARY_PATH
2628@end example
2629
2630Then you can launch the precompiled @file{ls} x86 executable:
2631
2632@example
2633qemu-i386 tests/i386/ls
2634@end example
2635You can look at @file{scripts/qemu-binfmt-conf.sh} so that
2636QEMU is automatically launched by the Linux kernel when you try to
2637launch x86 executables. It requires the @code{binfmt_misc} module in the
2638Linux kernel.
2639
2640@item The x86 version of QEMU is also included. You can try weird things such as:
2641@example
2642qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2643          /usr/local/qemu-i386/bin/ls-i386
2644@end example
2645
2646@end itemize
2647
2648@node Wine launch
2649@subsection Wine launch
2650
2651@itemize
2652
2653@item Ensure that you have a working QEMU with the x86 glibc
2654distribution (see previous section). In order to verify it, you must be
2655able to do:
2656
2657@example
2658qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2659@end example
2660
2661@item Download the binary x86 Wine install
2662(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2663
2664@item Configure Wine on your account. Look at the provided script
2665@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2666@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2667
2668@item Then you can try the example @file{putty.exe}:
2669
2670@example
2671qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2672          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2673@end example
2674
2675@end itemize
2676
2677@node Command line options
2678@subsection Command line options
2679
2680@example
2681@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
2682@end example
2683
2684@table @option
2685@item -h
2686Print the help
2687@item -L path
2688Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2689@item -s size
2690Set the x86 stack size in bytes (default=524288)
2691@item -cpu model
2692Select CPU model (-cpu help for list and additional feature selection)
2693@item -E @var{var}=@var{value}
2694Set environment @var{var} to @var{value}.
2695@item -U @var{var}
2696Remove @var{var} from the environment.
2697@item -B offset
2698Offset guest address by the specified number of bytes.  This is useful when
2699the address region required by guest applications is reserved on the host.
2700This option is currently only supported on some hosts.
2701@item -R size
2702Pre-allocate a guest virtual address space of the given size (in bytes).
2703"G", "M", and "k" suffixes may be used when specifying the size.
2704@end table
2705
2706Debug options:
2707
2708@table @option
2709@item -d item1,...
2710Activate logging of the specified items (use '-d help' for a list of log items)
2711@item -p pagesize
2712Act as if the host page size was 'pagesize' bytes
2713@item -g port
2714Wait gdb connection to port
2715@item -singlestep
2716Run the emulation in single step mode.
2717@end table
2718
2719Environment variables:
2720
2721@table @env
2722@item QEMU_STRACE
2723Print system calls and arguments similar to the 'strace' program
2724(NOTE: the actual 'strace' program will not work because the user
2725space emulator hasn't implemented ptrace).  At the moment this is
2726incomplete.  All system calls that don't have a specific argument
2727format are printed with information for six arguments.  Many
2728flag-style arguments don't have decoders and will show up as numbers.
2729@end table
2730
2731@node Other binaries
2732@subsection Other binaries
2733
2734@cindex user mode (Alpha)
2735@command{qemu-alpha} TODO.
2736
2737@cindex user mode (ARM)
2738@command{qemu-armeb} TODO.
2739
2740@cindex user mode (ARM)
2741@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2742binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2743configurations), and arm-uclinux bFLT format binaries.
2744
2745@cindex user mode (ColdFire)
2746@cindex user mode (M68K)
2747@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2748(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2749coldfire uClinux bFLT format binaries.
2750
2751The binary format is detected automatically.
2752
2753@cindex user mode (Cris)
2754@command{qemu-cris} TODO.
2755
2756@cindex user mode (i386)
2757@command{qemu-i386} TODO.
2758@command{qemu-x86_64} TODO.
2759
2760@cindex user mode (Microblaze)
2761@command{qemu-microblaze} TODO.
2762
2763@cindex user mode (MIPS)
2764@command{qemu-mips} executes 32-bit big endian MIPS binaries (MIPS O32 ABI).
2765
2766@command{qemu-mipsel} executes 32-bit little endian MIPS binaries (MIPS O32 ABI).
2767
2768@command{qemu-mips64} executes 64-bit big endian MIPS binaries (MIPS N64 ABI).
2769
2770@command{qemu-mips64el} executes 64-bit little endian MIPS binaries (MIPS N64 ABI).
2771
2772@command{qemu-mipsn32} executes 32-bit big endian MIPS binaries (MIPS N32 ABI).
2773
2774@command{qemu-mipsn32el} executes 32-bit little endian MIPS binaries (MIPS N32 ABI).
2775
2776@cindex user mode (NiosII)
2777@command{qemu-nios2} TODO.
2778
2779@cindex user mode (PowerPC)
2780@command{qemu-ppc64abi32} TODO.
2781@command{qemu-ppc64} TODO.
2782@command{qemu-ppc} TODO.
2783
2784@cindex user mode (SH4)
2785@command{qemu-sh4eb} TODO.
2786@command{qemu-sh4} TODO.
2787
2788@cindex user mode (SPARC)
2789@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2790
2791@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2792(Sparc64 CPU, 32 bit ABI).
2793
2794@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2795SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2796
2797@node BSD User space emulator
2798@section BSD User space emulator
2799
2800@menu
2801* BSD Status::
2802* BSD Quick Start::
2803* BSD Command line options::
2804@end menu
2805
2806@node BSD Status
2807@subsection BSD Status
2808
2809@itemize @minus
2810@item
2811target Sparc64 on Sparc64: Some trivial programs work.
2812@end itemize
2813
2814@node BSD Quick Start
2815@subsection Quick Start
2816
2817In order to launch a BSD process, QEMU needs the process executable
2818itself and all the target dynamic libraries used by it.
2819
2820@itemize
2821
2822@item On Sparc64, you can just try to launch any process by using the native
2823libraries:
2824
2825@example
2826qemu-sparc64 /bin/ls
2827@end example
2828
2829@end itemize
2830
2831@node BSD Command line options
2832@subsection Command line options
2833
2834@example
2835@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
2836@end example
2837
2838@table @option
2839@item -h
2840Print the help
2841@item -L path
2842Set the library root path (default=/)
2843@item -s size
2844Set the stack size in bytes (default=524288)
2845@item -ignore-environment
2846Start with an empty environment. Without this option,
2847the initial environment is a copy of the caller's environment.
2848@item -E @var{var}=@var{value}
2849Set environment @var{var} to @var{value}.
2850@item -U @var{var}
2851Remove @var{var} from the environment.
2852@item -bsd type
2853Set the type of the emulated BSD Operating system. Valid values are
2854FreeBSD, NetBSD and OpenBSD (default).
2855@end table
2856
2857Debug options:
2858
2859@table @option
2860@item -d item1,...
2861Activate logging of the specified items (use '-d help' for a list of log items)
2862@item -p pagesize
2863Act as if the host page size was 'pagesize' bytes
2864@item -singlestep
2865Run the emulation in single step mode.
2866@end table
2867
2868@node System requirements
2869@chapter System requirements
2870
2871@section KVM kernel module
2872
2873On x86_64 hosts, the default set of CPU features enabled by the KVM accelerator
2874require the host to be running Linux v4.5 or newer.
2875
2876The OpteronG[345] CPU models require KVM support for RDTSCP, which was
2877added with Linux 4.5 which is supported by the major distros. And even
2878if RHEL7 has kernel 3.10, KVM there has the required functionality there
2879to make it close to a 4.5 or newer kernel.
2880
2881@include qemu-tech.texi
2882
2883@include qemu-deprecated.texi
2884
2885@node Supported build platforms
2886@appendix Supported build platforms
2887
2888QEMU aims to support building and executing on multiple host OS platforms.
2889This appendix outlines which platforms are the major build targets. These
2890platforms are used as the basis for deciding upon the minimum required
2891versions of 3rd party software QEMU depends on. The supported platforms
2892are the targets for automated testing performed by the project when patches
2893are submitted for review, and tested before and after merge.
2894
2895If a platform is not listed here, it does not imply that QEMU won't work.
2896If an unlisted platform has comparable software versions to a listed platform,
2897there is every expectation that it will work. Bug reports are welcome for
2898problems encountered on unlisted platforms unless they are clearly older
2899vintage than what is described here.
2900
2901Note that when considering software versions shipped in distros as support
2902targets, QEMU considers only the version number, and assumes the features in
2903that distro match the upstream release with the same version. In other words,
2904if a distro backports extra features to the software in their distro, QEMU
2905upstream code will not add explicit support for those backports, unless the
2906feature is auto-detectable in a manner that works for the upstream releases
2907too.
2908
2909The Repology site @url{https://repology.org} is a useful resource to identify
2910currently shipped versions of software in various operating systems, though
2911it does not cover all distros listed below.
2912
2913@section Linux OS
2914
2915For distributions with frequent, short-lifetime releases, the project will
2916aim to support all versions that are not end of life by their respective
2917vendors. For the purposes of identifying supported software versions, the
2918project will look at Fedora, Ubuntu, and openSUSE distros. Other short-
2919lifetime distros will be assumed to ship similar software versions.
2920
2921For distributions with long-lifetime releases, the project will aim to support
2922the most recent major version at all times. Support for the previous major
2923version will be dropped 2 years after the new major version is released. For
2924the purposes of identifying supported software versions, the project will look
2925at RHEL, Debian, Ubuntu LTS, and SLES distros. Other long-lifetime distros will
2926be assumed to ship similar software versions.
2927
2928@section Windows
2929
2930The project supports building with current versions of the MinGW toolchain,
2931hosted on Linux.
2932
2933@section macOS
2934
2935The project supports building with the two most recent versions of macOS, with
2936the current homebrew package set available.
2937
2938@section FreeBSD
2939
2940The project aims to support the all the versions which are not end of life.
2941
2942@section NetBSD
2943
2944The project aims to support the most recent major version at all times. Support
2945for the previous major version will be dropped 2 years after the new major
2946version is released.
2947
2948@section OpenBSD
2949
2950The project aims to support the all the versions which are not end of life.
2951
2952@node License
2953@appendix License
2954
2955QEMU is a trademark of Fabrice Bellard.
2956
2957QEMU is released under the
2958@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2959version 2. Parts of QEMU have specific licenses, see file
2960@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
2961
2962@node Index
2963@appendix Index
2964@menu
2965* Concept Index::
2966* Function Index::
2967* Keystroke Index::
2968* Program Index::
2969* Data Type Index::
2970* Variable Index::
2971@end menu
2972
2973@node Concept Index
2974@section Concept Index
2975This is the main index. Should we combine all keywords in one index? TODO
2976@printindex cp
2977
2978@node Function Index
2979@section Function Index
2980This index could be used for command line options and monitor functions.
2981@printindex fn
2982
2983@node Keystroke Index
2984@section Keystroke Index
2985
2986This is a list of all keystrokes which have a special function
2987in system emulation.
2988
2989@printindex ky
2990
2991@node Program Index
2992@section Program Index
2993@printindex pg
2994
2995@node Data Type Index
2996@section Data Type Index
2997
2998This index could be used for qdev device names and options.
2999
3000@printindex tp
3001
3002@node Variable Index
3003@section Variable Index
3004@printindex vr
3005
3006@bye
3007