qemu/target/arm/cpu.c
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU
   3 *
   4 * Copyright (c) 2012 SUSE LINUX Products GmbH
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 */
  20
  21#include "qemu/osdep.h"
  22#include "target/arm/idau.h"
  23#include "qemu/error-report.h"
  24#include "qapi/error.h"
  25#include "qapi/visitor.h"
  26#include "cpu.h"
  27#include "internals.h"
  28#include "qemu-common.h"
  29#include "exec/exec-all.h"
  30#include "hw/qdev-properties.h"
  31#if !defined(CONFIG_USER_ONLY)
  32#include "hw/loader.h"
  33#endif
  34#include "hw/arm/arm.h"
  35#include "sysemu/sysemu.h"
  36#include "sysemu/hw_accel.h"
  37#include "kvm_arm.h"
  38#include "disas/capstone.h"
  39#include "fpu/softfloat.h"
  40
  41static void arm_cpu_set_pc(CPUState *cs, vaddr value)
  42{
  43    ARMCPU *cpu = ARM_CPU(cs);
  44    CPUARMState *env = &cpu->env;
  45
  46    if (is_a64(env)) {
  47        env->pc = value;
  48        env->thumb = 0;
  49    } else {
  50        env->regs[15] = value & ~1;
  51        env->thumb = value & 1;
  52    }
  53}
  54
  55static void arm_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
  56{
  57    ARMCPU *cpu = ARM_CPU(cs);
  58    CPUARMState *env = &cpu->env;
  59
  60    /*
  61     * It's OK to look at env for the current mode here, because it's
  62     * never possible for an AArch64 TB to chain to an AArch32 TB.
  63     */
  64    if (is_a64(env)) {
  65        env->pc = tb->pc;
  66    } else {
  67        env->regs[15] = tb->pc;
  68    }
  69}
  70
  71static bool arm_cpu_has_work(CPUState *cs)
  72{
  73    ARMCPU *cpu = ARM_CPU(cs);
  74
  75    return (cpu->power_state != PSCI_OFF)
  76        && cs->interrupt_request &
  77        (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
  78         | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ
  79         | CPU_INTERRUPT_EXITTB);
  80}
  81
  82void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  83                                 void *opaque)
  84{
  85    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  86
  87    entry->hook = hook;
  88    entry->opaque = opaque;
  89
  90    QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
  91}
  92
  93void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
  94                                 void *opaque)
  95{
  96    ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
  97
  98    entry->hook = hook;
  99    entry->opaque = opaque;
 100
 101    QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
 102}
 103
 104static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
 105{
 106    /* Reset a single ARMCPRegInfo register */
 107    ARMCPRegInfo *ri = value;
 108    ARMCPU *cpu = opaque;
 109
 110    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS)) {
 111        return;
 112    }
 113
 114    if (ri->resetfn) {
 115        ri->resetfn(&cpu->env, ri);
 116        return;
 117    }
 118
 119    /* A zero offset is never possible as it would be regs[0]
 120     * so we use it to indicate that reset is being handled elsewhere.
 121     * This is basically only used for fields in non-core coprocessors
 122     * (like the pxa2xx ones).
 123     */
 124    if (!ri->fieldoffset) {
 125        return;
 126    }
 127
 128    if (cpreg_field_is_64bit(ri)) {
 129        CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
 130    } else {
 131        CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
 132    }
 133}
 134
 135static void cp_reg_check_reset(gpointer key, gpointer value,  gpointer opaque)
 136{
 137    /* Purely an assertion check: we've already done reset once,
 138     * so now check that running the reset for the cpreg doesn't
 139     * change its value. This traps bugs where two different cpregs
 140     * both try to reset the same state field but to different values.
 141     */
 142    ARMCPRegInfo *ri = value;
 143    ARMCPU *cpu = opaque;
 144    uint64_t oldvalue, newvalue;
 145
 146    if (ri->type & (ARM_CP_SPECIAL | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
 147        return;
 148    }
 149
 150    oldvalue = read_raw_cp_reg(&cpu->env, ri);
 151    cp_reg_reset(key, value, opaque);
 152    newvalue = read_raw_cp_reg(&cpu->env, ri);
 153    assert(oldvalue == newvalue);
 154}
 155
 156/* CPUClass::reset() */
 157static void arm_cpu_reset(CPUState *s)
 158{
 159    ARMCPU *cpu = ARM_CPU(s);
 160    ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
 161    CPUARMState *env = &cpu->env;
 162
 163    acc->parent_reset(s);
 164
 165    memset(env, 0, offsetof(CPUARMState, end_reset_fields));
 166
 167    g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
 168    g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
 169
 170    env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
 171    env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
 172    env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
 173    env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
 174
 175    cpu->power_state = cpu->start_powered_off ? PSCI_OFF : PSCI_ON;
 176    s->halted = cpu->start_powered_off;
 177
 178    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 179        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 180    }
 181
 182    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 183        /* 64 bit CPUs always start in 64 bit mode */
 184        env->aarch64 = 1;
 185#if defined(CONFIG_USER_ONLY)
 186        env->pstate = PSTATE_MODE_EL0t;
 187        /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
 188        env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
 189        /* Enable all PAC keys.  */
 190        env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
 191                                  SCTLR_EnDA | SCTLR_EnDB);
 192        /* Enable all PAC instructions */
 193        env->cp15.hcr_el2 |= HCR_API;
 194        env->cp15.scr_el3 |= SCR_API;
 195        /* and to the FP/Neon instructions */
 196        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 2, 3);
 197        /* and to the SVE instructions */
 198        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 16, 2, 3);
 199        env->cp15.cptr_el[3] |= CPTR_EZ;
 200        /* with maximum vector length */
 201        env->vfp.zcr_el[1] = cpu->sve_max_vq - 1;
 202        env->vfp.zcr_el[2] = env->vfp.zcr_el[1];
 203        env->vfp.zcr_el[3] = env->vfp.zcr_el[1];
 204        /*
 205         * Enable TBI0 and TBI1.  While the real kernel only enables TBI0,
 206         * turning on both here will produce smaller code and otherwise
 207         * make no difference to the user-level emulation.
 208         */
 209        env->cp15.tcr_el[1].raw_tcr = (3ULL << 37);
 210#else
 211        /* Reset into the highest available EL */
 212        if (arm_feature(env, ARM_FEATURE_EL3)) {
 213            env->pstate = PSTATE_MODE_EL3h;
 214        } else if (arm_feature(env, ARM_FEATURE_EL2)) {
 215            env->pstate = PSTATE_MODE_EL2h;
 216        } else {
 217            env->pstate = PSTATE_MODE_EL1h;
 218        }
 219        env->pc = cpu->rvbar;
 220#endif
 221    } else {
 222#if defined(CONFIG_USER_ONLY)
 223        /* Userspace expects access to cp10 and cp11 for FP/Neon */
 224        env->cp15.cpacr_el1 = deposit64(env->cp15.cpacr_el1, 20, 4, 0xf);
 225#endif
 226    }
 227
 228#if defined(CONFIG_USER_ONLY)
 229    env->uncached_cpsr = ARM_CPU_MODE_USR;
 230    /* For user mode we must enable access to coprocessors */
 231    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 232    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 233        env->cp15.c15_cpar = 3;
 234    } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 235        env->cp15.c15_cpar = 1;
 236    }
 237#else
 238
 239    /*
 240     * If the highest available EL is EL2, AArch32 will start in Hyp
 241     * mode; otherwise it starts in SVC. Note that if we start in
 242     * AArch64 then these values in the uncached_cpsr will be ignored.
 243     */
 244    if (arm_feature(env, ARM_FEATURE_EL2) &&
 245        !arm_feature(env, ARM_FEATURE_EL3)) {
 246        env->uncached_cpsr = ARM_CPU_MODE_HYP;
 247    } else {
 248        env->uncached_cpsr = ARM_CPU_MODE_SVC;
 249    }
 250    env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
 251
 252    if (arm_feature(env, ARM_FEATURE_M)) {
 253        uint32_t initial_msp; /* Loaded from 0x0 */
 254        uint32_t initial_pc; /* Loaded from 0x4 */
 255        uint8_t *rom;
 256        uint32_t vecbase;
 257
 258        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 259            env->v7m.secure = true;
 260        } else {
 261            /* This bit resets to 0 if security is supported, but 1 if
 262             * it is not. The bit is not present in v7M, but we set it
 263             * here so we can avoid having to make checks on it conditional
 264             * on ARM_FEATURE_V8 (we don't let the guest see the bit).
 265             */
 266            env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
 267        }
 268
 269        /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
 270         * that it resets to 1, so QEMU always does that rather than making
 271         * it dependent on CPU model. In v8M it is RES1.
 272         */
 273        env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
 274        env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
 275        if (arm_feature(env, ARM_FEATURE_V8)) {
 276            /* in v8M the NONBASETHRDENA bit [0] is RES1 */
 277            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 278            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
 279        }
 280        if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
 281            env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 282            env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
 283        }
 284
 285        /* Unlike A/R profile, M profile defines the reset LR value */
 286        env->regs[14] = 0xffffffff;
 287
 288        env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
 289
 290        /* Load the initial SP and PC from offset 0 and 4 in the vector table */
 291        vecbase = env->v7m.vecbase[env->v7m.secure];
 292        rom = rom_ptr(vecbase, 8);
 293        if (rom) {
 294            /* Address zero is covered by ROM which hasn't yet been
 295             * copied into physical memory.
 296             */
 297            initial_msp = ldl_p(rom);
 298            initial_pc = ldl_p(rom + 4);
 299        } else {
 300            /* Address zero not covered by a ROM blob, or the ROM blob
 301             * is in non-modifiable memory and this is a second reset after
 302             * it got copied into memory. In the latter case, rom_ptr
 303             * will return a NULL pointer and we should use ldl_phys instead.
 304             */
 305            initial_msp = ldl_phys(s->as, vecbase);
 306            initial_pc = ldl_phys(s->as, vecbase + 4);
 307        }
 308
 309        env->regs[13] = initial_msp & 0xFFFFFFFC;
 310        env->regs[15] = initial_pc & ~1;
 311        env->thumb = initial_pc & 1;
 312    }
 313
 314    /* AArch32 has a hard highvec setting of 0xFFFF0000.  If we are currently
 315     * executing as AArch32 then check if highvecs are enabled and
 316     * adjust the PC accordingly.
 317     */
 318    if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 319        env->regs[15] = 0xFFFF0000;
 320    }
 321
 322    /* M profile requires that reset clears the exclusive monitor;
 323     * A profile does not, but clearing it makes more sense than having it
 324     * set with an exclusive access on address zero.
 325     */
 326    arm_clear_exclusive(env);
 327
 328    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 329#endif
 330
 331    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 332        if (cpu->pmsav7_dregion > 0) {
 333            if (arm_feature(env, ARM_FEATURE_V8)) {
 334                memset(env->pmsav8.rbar[M_REG_NS], 0,
 335                       sizeof(*env->pmsav8.rbar[M_REG_NS])
 336                       * cpu->pmsav7_dregion);
 337                memset(env->pmsav8.rlar[M_REG_NS], 0,
 338                       sizeof(*env->pmsav8.rlar[M_REG_NS])
 339                       * cpu->pmsav7_dregion);
 340                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 341                    memset(env->pmsav8.rbar[M_REG_S], 0,
 342                           sizeof(*env->pmsav8.rbar[M_REG_S])
 343                           * cpu->pmsav7_dregion);
 344                    memset(env->pmsav8.rlar[M_REG_S], 0,
 345                           sizeof(*env->pmsav8.rlar[M_REG_S])
 346                           * cpu->pmsav7_dregion);
 347                }
 348            } else if (arm_feature(env, ARM_FEATURE_V7)) {
 349                memset(env->pmsav7.drbar, 0,
 350                       sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
 351                memset(env->pmsav7.drsr, 0,
 352                       sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
 353                memset(env->pmsav7.dracr, 0,
 354                       sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
 355            }
 356        }
 357        env->pmsav7.rnr[M_REG_NS] = 0;
 358        env->pmsav7.rnr[M_REG_S] = 0;
 359        env->pmsav8.mair0[M_REG_NS] = 0;
 360        env->pmsav8.mair0[M_REG_S] = 0;
 361        env->pmsav8.mair1[M_REG_NS] = 0;
 362        env->pmsav8.mair1[M_REG_S] = 0;
 363    }
 364
 365    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 366        if (cpu->sau_sregion > 0) {
 367            memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
 368            memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
 369        }
 370        env->sau.rnr = 0;
 371        /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
 372         * the Cortex-M33 does.
 373         */
 374        env->sau.ctrl = 0;
 375    }
 376
 377    set_flush_to_zero(1, &env->vfp.standard_fp_status);
 378    set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 379    set_default_nan_mode(1, &env->vfp.standard_fp_status);
 380    set_float_detect_tininess(float_tininess_before_rounding,
 381                              &env->vfp.fp_status);
 382    set_float_detect_tininess(float_tininess_before_rounding,
 383                              &env->vfp.standard_fp_status);
 384    set_float_detect_tininess(float_tininess_before_rounding,
 385                              &env->vfp.fp_status_f16);
 386#ifndef CONFIG_USER_ONLY
 387    if (kvm_enabled()) {
 388        kvm_arm_reset_vcpu(cpu);
 389    }
 390#endif
 391
 392    hw_breakpoint_update_all(cpu);
 393    hw_watchpoint_update_all(cpu);
 394}
 395
 396bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 397{
 398    CPUClass *cc = CPU_GET_CLASS(cs);
 399    CPUARMState *env = cs->env_ptr;
 400    uint32_t cur_el = arm_current_el(env);
 401    bool secure = arm_is_secure(env);
 402    uint32_t target_el;
 403    uint32_t excp_idx;
 404    bool ret = false;
 405
 406    if (interrupt_request & CPU_INTERRUPT_FIQ) {
 407        excp_idx = EXCP_FIQ;
 408        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 409        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 410            cs->exception_index = excp_idx;
 411            env->exception.target_el = target_el;
 412            cc->do_interrupt(cs);
 413            ret = true;
 414        }
 415    }
 416    if (interrupt_request & CPU_INTERRUPT_HARD) {
 417        excp_idx = EXCP_IRQ;
 418        target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
 419        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 420            cs->exception_index = excp_idx;
 421            env->exception.target_el = target_el;
 422            cc->do_interrupt(cs);
 423            ret = true;
 424        }
 425    }
 426    if (interrupt_request & CPU_INTERRUPT_VIRQ) {
 427        excp_idx = EXCP_VIRQ;
 428        target_el = 1;
 429        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 430            cs->exception_index = excp_idx;
 431            env->exception.target_el = target_el;
 432            cc->do_interrupt(cs);
 433            ret = true;
 434        }
 435    }
 436    if (interrupt_request & CPU_INTERRUPT_VFIQ) {
 437        excp_idx = EXCP_VFIQ;
 438        target_el = 1;
 439        if (arm_excp_unmasked(cs, excp_idx, target_el)) {
 440            cs->exception_index = excp_idx;
 441            env->exception.target_el = target_el;
 442            cc->do_interrupt(cs);
 443            ret = true;
 444        }
 445    }
 446
 447    return ret;
 448}
 449
 450#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
 451static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
 452{
 453    CPUClass *cc = CPU_GET_CLASS(cs);
 454    ARMCPU *cpu = ARM_CPU(cs);
 455    CPUARMState *env = &cpu->env;
 456    bool ret = false;
 457
 458    /* ARMv7-M interrupt masking works differently than -A or -R.
 459     * There is no FIQ/IRQ distinction. Instead of I and F bits
 460     * masking FIQ and IRQ interrupts, an exception is taken only
 461     * if it is higher priority than the current execution priority
 462     * (which depends on state like BASEPRI, FAULTMASK and the
 463     * currently active exception).
 464     */
 465    if (interrupt_request & CPU_INTERRUPT_HARD
 466        && (armv7m_nvic_can_take_pending_exception(env->nvic))) {
 467        cs->exception_index = EXCP_IRQ;
 468        cc->do_interrupt(cs);
 469        ret = true;
 470    }
 471    return ret;
 472}
 473#endif
 474
 475void arm_cpu_update_virq(ARMCPU *cpu)
 476{
 477    /*
 478     * Update the interrupt level for VIRQ, which is the logical OR of
 479     * the HCR_EL2.VI bit and the input line level from the GIC.
 480     */
 481    CPUARMState *env = &cpu->env;
 482    CPUState *cs = CPU(cpu);
 483
 484    bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
 485        (env->irq_line_state & CPU_INTERRUPT_VIRQ);
 486
 487    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
 488        if (new_state) {
 489            cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
 490        } else {
 491            cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
 492        }
 493    }
 494}
 495
 496void arm_cpu_update_vfiq(ARMCPU *cpu)
 497{
 498    /*
 499     * Update the interrupt level for VFIQ, which is the logical OR of
 500     * the HCR_EL2.VF bit and the input line level from the GIC.
 501     */
 502    CPUARMState *env = &cpu->env;
 503    CPUState *cs = CPU(cpu);
 504
 505    bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
 506        (env->irq_line_state & CPU_INTERRUPT_VFIQ);
 507
 508    if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
 509        if (new_state) {
 510            cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
 511        } else {
 512            cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
 513        }
 514    }
 515}
 516
 517#ifndef CONFIG_USER_ONLY
 518static void arm_cpu_set_irq(void *opaque, int irq, int level)
 519{
 520    ARMCPU *cpu = opaque;
 521    CPUARMState *env = &cpu->env;
 522    CPUState *cs = CPU(cpu);
 523    static const int mask[] = {
 524        [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
 525        [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
 526        [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
 527        [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
 528    };
 529
 530    if (level) {
 531        env->irq_line_state |= mask[irq];
 532    } else {
 533        env->irq_line_state &= ~mask[irq];
 534    }
 535
 536    switch (irq) {
 537    case ARM_CPU_VIRQ:
 538        assert(arm_feature(env, ARM_FEATURE_EL2));
 539        arm_cpu_update_virq(cpu);
 540        break;
 541    case ARM_CPU_VFIQ:
 542        assert(arm_feature(env, ARM_FEATURE_EL2));
 543        arm_cpu_update_vfiq(cpu);
 544        break;
 545    case ARM_CPU_IRQ:
 546    case ARM_CPU_FIQ:
 547        if (level) {
 548            cpu_interrupt(cs, mask[irq]);
 549        } else {
 550            cpu_reset_interrupt(cs, mask[irq]);
 551        }
 552        break;
 553    default:
 554        g_assert_not_reached();
 555    }
 556}
 557
 558static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
 559{
 560#ifdef CONFIG_KVM
 561    ARMCPU *cpu = opaque;
 562    CPUARMState *env = &cpu->env;
 563    CPUState *cs = CPU(cpu);
 564    int kvm_irq = KVM_ARM_IRQ_TYPE_CPU << KVM_ARM_IRQ_TYPE_SHIFT;
 565    uint32_t linestate_bit;
 566
 567    switch (irq) {
 568    case ARM_CPU_IRQ:
 569        kvm_irq |= KVM_ARM_IRQ_CPU_IRQ;
 570        linestate_bit = CPU_INTERRUPT_HARD;
 571        break;
 572    case ARM_CPU_FIQ:
 573        kvm_irq |= KVM_ARM_IRQ_CPU_FIQ;
 574        linestate_bit = CPU_INTERRUPT_FIQ;
 575        break;
 576    default:
 577        g_assert_not_reached();
 578    }
 579
 580    if (level) {
 581        env->irq_line_state |= linestate_bit;
 582    } else {
 583        env->irq_line_state &= ~linestate_bit;
 584    }
 585
 586    kvm_irq |= cs->cpu_index << KVM_ARM_IRQ_VCPU_SHIFT;
 587    kvm_set_irq(kvm_state, kvm_irq, level ? 1 : 0);
 588#endif
 589}
 590
 591static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
 592{
 593    ARMCPU *cpu = ARM_CPU(cs);
 594    CPUARMState *env = &cpu->env;
 595
 596    cpu_synchronize_state(cs);
 597    return arm_cpu_data_is_big_endian(env);
 598}
 599
 600#endif
 601
 602static inline void set_feature(CPUARMState *env, int feature)
 603{
 604    env->features |= 1ULL << feature;
 605}
 606
 607static inline void unset_feature(CPUARMState *env, int feature)
 608{
 609    env->features &= ~(1ULL << feature);
 610}
 611
 612static int
 613print_insn_thumb1(bfd_vma pc, disassemble_info *info)
 614{
 615  return print_insn_arm(pc | 1, info);
 616}
 617
 618static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
 619{
 620    ARMCPU *ac = ARM_CPU(cpu);
 621    CPUARMState *env = &ac->env;
 622    bool sctlr_b;
 623
 624    if (is_a64(env)) {
 625        /* We might not be compiled with the A64 disassembler
 626         * because it needs a C++ compiler. Leave print_insn
 627         * unset in this case to use the caller default behaviour.
 628         */
 629#if defined(CONFIG_ARM_A64_DIS)
 630        info->print_insn = print_insn_arm_a64;
 631#endif
 632        info->cap_arch = CS_ARCH_ARM64;
 633        info->cap_insn_unit = 4;
 634        info->cap_insn_split = 4;
 635    } else {
 636        int cap_mode;
 637        if (env->thumb) {
 638            info->print_insn = print_insn_thumb1;
 639            info->cap_insn_unit = 2;
 640            info->cap_insn_split = 4;
 641            cap_mode = CS_MODE_THUMB;
 642        } else {
 643            info->print_insn = print_insn_arm;
 644            info->cap_insn_unit = 4;
 645            info->cap_insn_split = 4;
 646            cap_mode = CS_MODE_ARM;
 647        }
 648        if (arm_feature(env, ARM_FEATURE_V8)) {
 649            cap_mode |= CS_MODE_V8;
 650        }
 651        if (arm_feature(env, ARM_FEATURE_M)) {
 652            cap_mode |= CS_MODE_MCLASS;
 653        }
 654        info->cap_arch = CS_ARCH_ARM;
 655        info->cap_mode = cap_mode;
 656    }
 657
 658    sctlr_b = arm_sctlr_b(env);
 659    if (bswap_code(sctlr_b)) {
 660#ifdef TARGET_WORDS_BIGENDIAN
 661        info->endian = BFD_ENDIAN_LITTLE;
 662#else
 663        info->endian = BFD_ENDIAN_BIG;
 664#endif
 665    }
 666    info->flags &= ~INSN_ARM_BE32;
 667#ifndef CONFIG_USER_ONLY
 668    if (sctlr_b) {
 669        info->flags |= INSN_ARM_BE32;
 670    }
 671#endif
 672}
 673
 674uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
 675{
 676    uint32_t Aff1 = idx / clustersz;
 677    uint32_t Aff0 = idx % clustersz;
 678    return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
 679}
 680
 681static void cpreg_hashtable_data_destroy(gpointer data)
 682{
 683    /*
 684     * Destroy function for cpu->cp_regs hashtable data entries.
 685     * We must free the name string because it was g_strdup()ed in
 686     * add_cpreg_to_hashtable(). It's OK to cast away the 'const'
 687     * from r->name because we know we definitely allocated it.
 688     */
 689    ARMCPRegInfo *r = data;
 690
 691    g_free((void *)r->name);
 692    g_free(r);
 693}
 694
 695static void arm_cpu_initfn(Object *obj)
 696{
 697    CPUState *cs = CPU(obj);
 698    ARMCPU *cpu = ARM_CPU(obj);
 699
 700    cs->env_ptr = &cpu->env;
 701    cpu->cp_regs = g_hash_table_new_full(g_int_hash, g_int_equal,
 702                                         g_free, cpreg_hashtable_data_destroy);
 703
 704    QLIST_INIT(&cpu->pre_el_change_hooks);
 705    QLIST_INIT(&cpu->el_change_hooks);
 706
 707#ifndef CONFIG_USER_ONLY
 708    /* Our inbound IRQ and FIQ lines */
 709    if (kvm_enabled()) {
 710        /* VIRQ and VFIQ are unused with KVM but we add them to maintain
 711         * the same interface as non-KVM CPUs.
 712         */
 713        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
 714    } else {
 715        qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
 716    }
 717
 718    qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
 719                       ARRAY_SIZE(cpu->gt_timer_outputs));
 720
 721    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
 722                             "gicv3-maintenance-interrupt", 1);
 723    qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
 724                             "pmu-interrupt", 1);
 725#endif
 726
 727    /* DTB consumers generally don't in fact care what the 'compatible'
 728     * string is, so always provide some string and trust that a hypothetical
 729     * picky DTB consumer will also provide a helpful error message.
 730     */
 731    cpu->dtb_compatible = "qemu,unknown";
 732    cpu->psci_version = 1; /* By default assume PSCI v0.1 */
 733    cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
 734
 735    if (tcg_enabled()) {
 736        cpu->psci_version = 2; /* TCG implements PSCI 0.2 */
 737    }
 738}
 739
 740static Property arm_cpu_reset_cbar_property =
 741            DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
 742
 743static Property arm_cpu_reset_hivecs_property =
 744            DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
 745
 746static Property arm_cpu_rvbar_property =
 747            DEFINE_PROP_UINT64("rvbar", ARMCPU, rvbar, 0);
 748
 749static Property arm_cpu_has_el2_property =
 750            DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
 751
 752static Property arm_cpu_has_el3_property =
 753            DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
 754
 755static Property arm_cpu_cfgend_property =
 756            DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
 757
 758/* use property name "pmu" to match other archs and virt tools */
 759static Property arm_cpu_has_pmu_property =
 760            DEFINE_PROP_BOOL("pmu", ARMCPU, has_pmu, true);
 761
 762static Property arm_cpu_has_mpu_property =
 763            DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
 764
 765/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
 766 * because the CPU initfn will have already set cpu->pmsav7_dregion to
 767 * the right value for that particular CPU type, and we don't want
 768 * to override that with an incorrect constant value.
 769 */
 770static Property arm_cpu_pmsav7_dregion_property =
 771            DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
 772                                           pmsav7_dregion,
 773                                           qdev_prop_uint32, uint32_t);
 774
 775static void arm_get_init_svtor(Object *obj, Visitor *v, const char *name,
 776                               void *opaque, Error **errp)
 777{
 778    ARMCPU *cpu = ARM_CPU(obj);
 779
 780    visit_type_uint32(v, name, &cpu->init_svtor, errp);
 781}
 782
 783static void arm_set_init_svtor(Object *obj, Visitor *v, const char *name,
 784                               void *opaque, Error **errp)
 785{
 786    ARMCPU *cpu = ARM_CPU(obj);
 787
 788    visit_type_uint32(v, name, &cpu->init_svtor, errp);
 789}
 790
 791void arm_cpu_post_init(Object *obj)
 792{
 793    ARMCPU *cpu = ARM_CPU(obj);
 794
 795    /* M profile implies PMSA. We have to do this here rather than
 796     * in realize with the other feature-implication checks because
 797     * we look at the PMSA bit to see if we should add some properties.
 798     */
 799    if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
 800        set_feature(&cpu->env, ARM_FEATURE_PMSA);
 801    }
 802
 803    if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
 804        arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
 805        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property,
 806                                 &error_abort);
 807    }
 808
 809    if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
 810        qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property,
 811                                 &error_abort);
 812    }
 813
 814    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 815        qdev_property_add_static(DEVICE(obj), &arm_cpu_rvbar_property,
 816                                 &error_abort);
 817    }
 818
 819    if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
 820        /* Add the has_el3 state CPU property only if EL3 is allowed.  This will
 821         * prevent "has_el3" from existing on CPUs which cannot support EL3.
 822         */
 823        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property,
 824                                 &error_abort);
 825
 826#ifndef CONFIG_USER_ONLY
 827        object_property_add_link(obj, "secure-memory",
 828                                 TYPE_MEMORY_REGION,
 829                                 (Object **)&cpu->secure_memory,
 830                                 qdev_prop_allow_set_link_before_realize,
 831                                 OBJ_PROP_LINK_STRONG,
 832                                 &error_abort);
 833#endif
 834    }
 835
 836    if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
 837        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property,
 838                                 &error_abort);
 839    }
 840
 841    if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
 842        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_pmu_property,
 843                                 &error_abort);
 844    }
 845
 846    if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
 847        qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property,
 848                                 &error_abort);
 849        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 850            qdev_property_add_static(DEVICE(obj),
 851                                     &arm_cpu_pmsav7_dregion_property,
 852                                     &error_abort);
 853        }
 854    }
 855
 856    if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
 857        object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
 858                                 qdev_prop_allow_set_link_before_realize,
 859                                 OBJ_PROP_LINK_STRONG,
 860                                 &error_abort);
 861        /*
 862         * M profile: initial value of the Secure VTOR. We can't just use
 863         * a simple DEFINE_PROP_UINT32 for this because we want to permit
 864         * the property to be set after realize.
 865         */
 866        object_property_add(obj, "init-svtor", "uint32",
 867                            arm_get_init_svtor, arm_set_init_svtor,
 868                            NULL, NULL, &error_abort);
 869    }
 870
 871    qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property,
 872                             &error_abort);
 873}
 874
 875static void arm_cpu_finalizefn(Object *obj)
 876{
 877    ARMCPU *cpu = ARM_CPU(obj);
 878    ARMELChangeHook *hook, *next;
 879
 880    g_hash_table_destroy(cpu->cp_regs);
 881
 882    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
 883        QLIST_REMOVE(hook, node);
 884        g_free(hook);
 885    }
 886    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
 887        QLIST_REMOVE(hook, node);
 888        g_free(hook);
 889    }
 890#ifndef CONFIG_USER_ONLY
 891    if (cpu->pmu_timer) {
 892        timer_del(cpu->pmu_timer);
 893        timer_deinit(cpu->pmu_timer);
 894        timer_free(cpu->pmu_timer);
 895    }
 896#endif
 897}
 898
 899static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
 900{
 901    CPUState *cs = CPU(dev);
 902    ARMCPU *cpu = ARM_CPU(dev);
 903    ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
 904    CPUARMState *env = &cpu->env;
 905    int pagebits;
 906    Error *local_err = NULL;
 907    bool no_aa32 = false;
 908
 909    /* If we needed to query the host kernel for the CPU features
 910     * then it's possible that might have failed in the initfn, but
 911     * this is the first point where we can report it.
 912     */
 913    if (cpu->host_cpu_probe_failed) {
 914        if (!kvm_enabled()) {
 915            error_setg(errp, "The 'host' CPU type can only be used with KVM");
 916        } else {
 917            error_setg(errp, "Failed to retrieve host CPU features");
 918        }
 919        return;
 920    }
 921
 922#ifndef CONFIG_USER_ONLY
 923    /* The NVIC and M-profile CPU are two halves of a single piece of
 924     * hardware; trying to use one without the other is a command line
 925     * error and will result in segfaults if not caught here.
 926     */
 927    if (arm_feature(env, ARM_FEATURE_M)) {
 928        if (!env->nvic) {
 929            error_setg(errp, "This board cannot be used with Cortex-M CPUs");
 930            return;
 931        }
 932    } else {
 933        if (env->nvic) {
 934            error_setg(errp, "This board can only be used with Cortex-M CPUs");
 935            return;
 936        }
 937    }
 938
 939    cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
 940                                           arm_gt_ptimer_cb, cpu);
 941    cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
 942                                           arm_gt_vtimer_cb, cpu);
 943    cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
 944                                          arm_gt_htimer_cb, cpu);
 945    cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, GTIMER_SCALE,
 946                                          arm_gt_stimer_cb, cpu);
 947#endif
 948
 949    cpu_exec_realizefn(cs, &local_err);
 950    if (local_err != NULL) {
 951        error_propagate(errp, local_err);
 952        return;
 953    }
 954
 955    /* Some features automatically imply others: */
 956    if (arm_feature(env, ARM_FEATURE_V8)) {
 957        if (arm_feature(env, ARM_FEATURE_M)) {
 958            set_feature(env, ARM_FEATURE_V7);
 959        } else {
 960            set_feature(env, ARM_FEATURE_V7VE);
 961        }
 962    }
 963
 964    /*
 965     * There exist AArch64 cpus without AArch32 support.  When KVM
 966     * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
 967     * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
 968     */
 969    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 970        no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
 971    }
 972
 973    if (arm_feature(env, ARM_FEATURE_V7VE)) {
 974        /* v7 Virtualization Extensions. In real hardware this implies
 975         * EL2 and also the presence of the Security Extensions.
 976         * For QEMU, for backwards-compatibility we implement some
 977         * CPUs or CPU configs which have no actual EL2 or EL3 but do
 978         * include the various other features that V7VE implies.
 979         * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
 980         * Security Extensions is ARM_FEATURE_EL3.
 981         */
 982        assert(no_aa32 || cpu_isar_feature(arm_div, cpu));
 983        set_feature(env, ARM_FEATURE_LPAE);
 984        set_feature(env, ARM_FEATURE_V7);
 985    }
 986    if (arm_feature(env, ARM_FEATURE_V7)) {
 987        set_feature(env, ARM_FEATURE_VAPA);
 988        set_feature(env, ARM_FEATURE_THUMB2);
 989        set_feature(env, ARM_FEATURE_MPIDR);
 990        if (!arm_feature(env, ARM_FEATURE_M)) {
 991            set_feature(env, ARM_FEATURE_V6K);
 992        } else {
 993            set_feature(env, ARM_FEATURE_V6);
 994        }
 995
 996        /* Always define VBAR for V7 CPUs even if it doesn't exist in
 997         * non-EL3 configs. This is needed by some legacy boards.
 998         */
 999        set_feature(env, ARM_FEATURE_VBAR);
1000    }
1001    if (arm_feature(env, ARM_FEATURE_V6K)) {
1002        set_feature(env, ARM_FEATURE_V6);
1003        set_feature(env, ARM_FEATURE_MVFR);
1004    }
1005    if (arm_feature(env, ARM_FEATURE_V6)) {
1006        set_feature(env, ARM_FEATURE_V5);
1007        if (!arm_feature(env, ARM_FEATURE_M)) {
1008            assert(no_aa32 || cpu_isar_feature(jazelle, cpu));
1009            set_feature(env, ARM_FEATURE_AUXCR);
1010        }
1011    }
1012    if (arm_feature(env, ARM_FEATURE_V5)) {
1013        set_feature(env, ARM_FEATURE_V4T);
1014    }
1015    if (arm_feature(env, ARM_FEATURE_VFP4)) {
1016        set_feature(env, ARM_FEATURE_VFP3);
1017    }
1018    if (arm_feature(env, ARM_FEATURE_VFP3)) {
1019        set_feature(env, ARM_FEATURE_VFP);
1020    }
1021    if (arm_feature(env, ARM_FEATURE_LPAE)) {
1022        set_feature(env, ARM_FEATURE_V7MP);
1023        set_feature(env, ARM_FEATURE_PXN);
1024    }
1025    if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1026        set_feature(env, ARM_FEATURE_CBAR);
1027    }
1028    if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1029        !arm_feature(env, ARM_FEATURE_M)) {
1030        set_feature(env, ARM_FEATURE_THUMB_DSP);
1031    }
1032
1033    if (arm_feature(env, ARM_FEATURE_V7) &&
1034        !arm_feature(env, ARM_FEATURE_M) &&
1035        !arm_feature(env, ARM_FEATURE_PMSA)) {
1036        /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1037         * can use 4K pages.
1038         */
1039        pagebits = 12;
1040    } else {
1041        /* For CPUs which might have tiny 1K pages, or which have an
1042         * MPU and might have small region sizes, stick with 1K pages.
1043         */
1044        pagebits = 10;
1045    }
1046    if (!set_preferred_target_page_bits(pagebits)) {
1047        /* This can only ever happen for hotplugging a CPU, or if
1048         * the board code incorrectly creates a CPU which it has
1049         * promised via minimum_page_size that it will not.
1050         */
1051        error_setg(errp, "This CPU requires a smaller page size than the "
1052                   "system is using");
1053        return;
1054    }
1055
1056    /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1057     * We don't support setting cluster ID ([16..23]) (known as Aff2
1058     * in later ARM ARM versions), or any of the higher affinity level fields,
1059     * so these bits always RAZ.
1060     */
1061    if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1062        cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1063                                               ARM_DEFAULT_CPUS_PER_CLUSTER);
1064    }
1065
1066    if (cpu->reset_hivecs) {
1067            cpu->reset_sctlr |= (1 << 13);
1068    }
1069
1070    if (cpu->cfgend) {
1071        if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1072            cpu->reset_sctlr |= SCTLR_EE;
1073        } else {
1074            cpu->reset_sctlr |= SCTLR_B;
1075        }
1076    }
1077
1078    if (!cpu->has_el3) {
1079        /* If the has_el3 CPU property is disabled then we need to disable the
1080         * feature.
1081         */
1082        unset_feature(env, ARM_FEATURE_EL3);
1083
1084        /* Disable the security extension feature bits in the processor feature
1085         * registers as well. These are id_pfr1[7:4] and id_aa64pfr0[15:12].
1086         */
1087        cpu->id_pfr1 &= ~0xf0;
1088        cpu->isar.id_aa64pfr0 &= ~0xf000;
1089    }
1090
1091    if (!cpu->has_el2) {
1092        unset_feature(env, ARM_FEATURE_EL2);
1093    }
1094
1095    if (!cpu->has_pmu) {
1096        unset_feature(env, ARM_FEATURE_PMU);
1097    }
1098    if (arm_feature(env, ARM_FEATURE_PMU)) {
1099        pmu_init(cpu);
1100
1101        if (!kvm_enabled()) {
1102            arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1103            arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1104        }
1105
1106#ifndef CONFIG_USER_ONLY
1107        cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1108                cpu);
1109#endif
1110    } else {
1111        cpu->id_aa64dfr0 &= ~0xf00;
1112        cpu->id_dfr0 &= ~(0xf << 24);
1113        cpu->pmceid0 = 0;
1114        cpu->pmceid1 = 0;
1115    }
1116
1117    if (!arm_feature(env, ARM_FEATURE_EL2)) {
1118        /* Disable the hypervisor feature bits in the processor feature
1119         * registers if we don't have EL2. These are id_pfr1[15:12] and
1120         * id_aa64pfr0_el1[11:8].
1121         */
1122        cpu->isar.id_aa64pfr0 &= ~0xf00;
1123        cpu->id_pfr1 &= ~0xf000;
1124    }
1125
1126    /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1127     * to false or by setting pmsav7-dregion to 0.
1128     */
1129    if (!cpu->has_mpu) {
1130        cpu->pmsav7_dregion = 0;
1131    }
1132    if (cpu->pmsav7_dregion == 0) {
1133        cpu->has_mpu = false;
1134    }
1135
1136    if (arm_feature(env, ARM_FEATURE_PMSA) &&
1137        arm_feature(env, ARM_FEATURE_V7)) {
1138        uint32_t nr = cpu->pmsav7_dregion;
1139
1140        if (nr > 0xff) {
1141            error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1142            return;
1143        }
1144
1145        if (nr) {
1146            if (arm_feature(env, ARM_FEATURE_V8)) {
1147                /* PMSAv8 */
1148                env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1149                env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1150                if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1151                    env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1152                    env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1153                }
1154            } else {
1155                env->pmsav7.drbar = g_new0(uint32_t, nr);
1156                env->pmsav7.drsr = g_new0(uint32_t, nr);
1157                env->pmsav7.dracr = g_new0(uint32_t, nr);
1158            }
1159        }
1160    }
1161
1162    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1163        uint32_t nr = cpu->sau_sregion;
1164
1165        if (nr > 0xff) {
1166            error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1167            return;
1168        }
1169
1170        if (nr) {
1171            env->sau.rbar = g_new0(uint32_t, nr);
1172            env->sau.rlar = g_new0(uint32_t, nr);
1173        }
1174    }
1175
1176    if (arm_feature(env, ARM_FEATURE_EL3)) {
1177        set_feature(env, ARM_FEATURE_VBAR);
1178    }
1179
1180    register_cp_regs_for_features(cpu);
1181    arm_cpu_register_gdb_regs_for_features(cpu);
1182
1183    init_cpreg_list(cpu);
1184
1185#ifndef CONFIG_USER_ONLY
1186    if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1187        cs->num_ases = 2;
1188
1189        if (!cpu->secure_memory) {
1190            cpu->secure_memory = cs->memory;
1191        }
1192        cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1193                               cpu->secure_memory);
1194    } else {
1195        cs->num_ases = 1;
1196    }
1197    cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
1198
1199    /* No core_count specified, default to smp_cpus. */
1200    if (cpu->core_count == -1) {
1201        cpu->core_count = smp_cpus;
1202    }
1203#endif
1204
1205    qemu_init_vcpu(cs);
1206    cpu_reset(cs);
1207
1208    acc->parent_realize(dev, errp);
1209}
1210
1211static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
1212{
1213    ObjectClass *oc;
1214    char *typename;
1215    char **cpuname;
1216    const char *cpunamestr;
1217
1218    cpuname = g_strsplit(cpu_model, ",", 1);
1219    cpunamestr = cpuname[0];
1220#ifdef CONFIG_USER_ONLY
1221    /* For backwards compatibility usermode emulation allows "-cpu any",
1222     * which has the same semantics as "-cpu max".
1223     */
1224    if (!strcmp(cpunamestr, "any")) {
1225        cpunamestr = "max";
1226    }
1227#endif
1228    typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
1229    oc = object_class_by_name(typename);
1230    g_strfreev(cpuname);
1231    g_free(typename);
1232    if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
1233        object_class_is_abstract(oc)) {
1234        return NULL;
1235    }
1236    return oc;
1237}
1238
1239/* CPU models. These are not needed for the AArch64 linux-user build. */
1240#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
1241
1242static void arm926_initfn(Object *obj)
1243{
1244    ARMCPU *cpu = ARM_CPU(obj);
1245
1246    cpu->dtb_compatible = "arm,arm926";
1247    set_feature(&cpu->env, ARM_FEATURE_V5);
1248    set_feature(&cpu->env, ARM_FEATURE_VFP);
1249    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1250    set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1251    cpu->midr = 0x41069265;
1252    cpu->reset_fpsid = 0x41011090;
1253    cpu->ctr = 0x1dd20d2;
1254    cpu->reset_sctlr = 0x00090078;
1255
1256    /*
1257     * ARMv5 does not have the ID_ISAR registers, but we can still
1258     * set the field to indicate Jazelle support within QEMU.
1259     */
1260    cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1261}
1262
1263static void arm946_initfn(Object *obj)
1264{
1265    ARMCPU *cpu = ARM_CPU(obj);
1266
1267    cpu->dtb_compatible = "arm,arm946";
1268    set_feature(&cpu->env, ARM_FEATURE_V5);
1269    set_feature(&cpu->env, ARM_FEATURE_PMSA);
1270    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1271    cpu->midr = 0x41059461;
1272    cpu->ctr = 0x0f004006;
1273    cpu->reset_sctlr = 0x00000078;
1274}
1275
1276static void arm1026_initfn(Object *obj)
1277{
1278    ARMCPU *cpu = ARM_CPU(obj);
1279
1280    cpu->dtb_compatible = "arm,arm1026";
1281    set_feature(&cpu->env, ARM_FEATURE_V5);
1282    set_feature(&cpu->env, ARM_FEATURE_VFP);
1283    set_feature(&cpu->env, ARM_FEATURE_AUXCR);
1284    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1285    set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
1286    cpu->midr = 0x4106a262;
1287    cpu->reset_fpsid = 0x410110a0;
1288    cpu->ctr = 0x1dd20d2;
1289    cpu->reset_sctlr = 0x00090078;
1290    cpu->reset_auxcr = 1;
1291
1292    /*
1293     * ARMv5 does not have the ID_ISAR registers, but we can still
1294     * set the field to indicate Jazelle support within QEMU.
1295     */
1296    cpu->isar.id_isar1 = FIELD_DP32(cpu->isar.id_isar1, ID_ISAR1, JAZELLE, 1);
1297
1298    {
1299        /* The 1026 had an IFAR at c6,c0,0,1 rather than the ARMv6 c6,c0,0,2 */
1300        ARMCPRegInfo ifar = {
1301            .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1302            .access = PL1_RW,
1303            .fieldoffset = offsetof(CPUARMState, cp15.ifar_ns),
1304            .resetvalue = 0
1305        };
1306        define_one_arm_cp_reg(cpu, &ifar);
1307    }
1308}
1309
1310static void arm1136_r2_initfn(Object *obj)
1311{
1312    ARMCPU *cpu = ARM_CPU(obj);
1313    /* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
1314     * older core than plain "arm1136". In particular this does not
1315     * have the v6K features.
1316     * These ID register values are correct for 1136 but may be wrong
1317     * for 1136_r2 (in particular r0p2 does not actually implement most
1318     * of the ID registers).
1319     */
1320
1321    cpu->dtb_compatible = "arm,arm1136";
1322    set_feature(&cpu->env, ARM_FEATURE_V6);
1323    set_feature(&cpu->env, ARM_FEATURE_VFP);
1324    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1325    set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1326    set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1327    cpu->midr = 0x4107b362;
1328    cpu->reset_fpsid = 0x410120b4;
1329    cpu->isar.mvfr0 = 0x11111111;
1330    cpu->isar.mvfr1 = 0x00000000;
1331    cpu->ctr = 0x1dd20d2;
1332    cpu->reset_sctlr = 0x00050078;
1333    cpu->id_pfr0 = 0x111;
1334    cpu->id_pfr1 = 0x1;
1335    cpu->id_dfr0 = 0x2;
1336    cpu->id_afr0 = 0x3;
1337    cpu->id_mmfr0 = 0x01130003;
1338    cpu->id_mmfr1 = 0x10030302;
1339    cpu->id_mmfr2 = 0x01222110;
1340    cpu->isar.id_isar0 = 0x00140011;
1341    cpu->isar.id_isar1 = 0x12002111;
1342    cpu->isar.id_isar2 = 0x11231111;
1343    cpu->isar.id_isar3 = 0x01102131;
1344    cpu->isar.id_isar4 = 0x141;
1345    cpu->reset_auxcr = 7;
1346}
1347
1348static void arm1136_initfn(Object *obj)
1349{
1350    ARMCPU *cpu = ARM_CPU(obj);
1351
1352    cpu->dtb_compatible = "arm,arm1136";
1353    set_feature(&cpu->env, ARM_FEATURE_V6K);
1354    set_feature(&cpu->env, ARM_FEATURE_V6);
1355    set_feature(&cpu->env, ARM_FEATURE_VFP);
1356    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1357    set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1358    set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1359    cpu->midr = 0x4117b363;
1360    cpu->reset_fpsid = 0x410120b4;
1361    cpu->isar.mvfr0 = 0x11111111;
1362    cpu->isar.mvfr1 = 0x00000000;
1363    cpu->ctr = 0x1dd20d2;
1364    cpu->reset_sctlr = 0x00050078;
1365    cpu->id_pfr0 = 0x111;
1366    cpu->id_pfr1 = 0x1;
1367    cpu->id_dfr0 = 0x2;
1368    cpu->id_afr0 = 0x3;
1369    cpu->id_mmfr0 = 0x01130003;
1370    cpu->id_mmfr1 = 0x10030302;
1371    cpu->id_mmfr2 = 0x01222110;
1372    cpu->isar.id_isar0 = 0x00140011;
1373    cpu->isar.id_isar1 = 0x12002111;
1374    cpu->isar.id_isar2 = 0x11231111;
1375    cpu->isar.id_isar3 = 0x01102131;
1376    cpu->isar.id_isar4 = 0x141;
1377    cpu->reset_auxcr = 7;
1378}
1379
1380static void arm1176_initfn(Object *obj)
1381{
1382    ARMCPU *cpu = ARM_CPU(obj);
1383
1384    cpu->dtb_compatible = "arm,arm1176";
1385    set_feature(&cpu->env, ARM_FEATURE_V6K);
1386    set_feature(&cpu->env, ARM_FEATURE_VFP);
1387    set_feature(&cpu->env, ARM_FEATURE_VAPA);
1388    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1389    set_feature(&cpu->env, ARM_FEATURE_CACHE_DIRTY_REG);
1390    set_feature(&cpu->env, ARM_FEATURE_CACHE_BLOCK_OPS);
1391    set_feature(&cpu->env, ARM_FEATURE_EL3);
1392    cpu->midr = 0x410fb767;
1393    cpu->reset_fpsid = 0x410120b5;
1394    cpu->isar.mvfr0 = 0x11111111;
1395    cpu->isar.mvfr1 = 0x00000000;
1396    cpu->ctr = 0x1dd20d2;
1397    cpu->reset_sctlr = 0x00050078;
1398    cpu->id_pfr0 = 0x111;
1399    cpu->id_pfr1 = 0x11;
1400    cpu->id_dfr0 = 0x33;
1401    cpu->id_afr0 = 0;
1402    cpu->id_mmfr0 = 0x01130003;
1403    cpu->id_mmfr1 = 0x10030302;
1404    cpu->id_mmfr2 = 0x01222100;
1405    cpu->isar.id_isar0 = 0x0140011;
1406    cpu->isar.id_isar1 = 0x12002111;
1407    cpu->isar.id_isar2 = 0x11231121;
1408    cpu->isar.id_isar3 = 0x01102131;
1409    cpu->isar.id_isar4 = 0x01141;
1410    cpu->reset_auxcr = 7;
1411}
1412
1413static void arm11mpcore_initfn(Object *obj)
1414{
1415    ARMCPU *cpu = ARM_CPU(obj);
1416
1417    cpu->dtb_compatible = "arm,arm11mpcore";
1418    set_feature(&cpu->env, ARM_FEATURE_V6K);
1419    set_feature(&cpu->env, ARM_FEATURE_VFP);
1420    set_feature(&cpu->env, ARM_FEATURE_VAPA);
1421    set_feature(&cpu->env, ARM_FEATURE_MPIDR);
1422    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1423    cpu->midr = 0x410fb022;
1424    cpu->reset_fpsid = 0x410120b4;
1425    cpu->isar.mvfr0 = 0x11111111;
1426    cpu->isar.mvfr1 = 0x00000000;
1427    cpu->ctr = 0x1d192992; /* 32K icache 32K dcache */
1428    cpu->id_pfr0 = 0x111;
1429    cpu->id_pfr1 = 0x1;
1430    cpu->id_dfr0 = 0;
1431    cpu->id_afr0 = 0x2;
1432    cpu->id_mmfr0 = 0x01100103;
1433    cpu->id_mmfr1 = 0x10020302;
1434    cpu->id_mmfr2 = 0x01222000;
1435    cpu->isar.id_isar0 = 0x00100011;
1436    cpu->isar.id_isar1 = 0x12002111;
1437    cpu->isar.id_isar2 = 0x11221011;
1438    cpu->isar.id_isar3 = 0x01102131;
1439    cpu->isar.id_isar4 = 0x141;
1440    cpu->reset_auxcr = 1;
1441}
1442
1443static void cortex_m0_initfn(Object *obj)
1444{
1445    ARMCPU *cpu = ARM_CPU(obj);
1446    set_feature(&cpu->env, ARM_FEATURE_V6);
1447    set_feature(&cpu->env, ARM_FEATURE_M);
1448
1449    cpu->midr = 0x410cc200;
1450}
1451
1452static void cortex_m3_initfn(Object *obj)
1453{
1454    ARMCPU *cpu = ARM_CPU(obj);
1455    set_feature(&cpu->env, ARM_FEATURE_V7);
1456    set_feature(&cpu->env, ARM_FEATURE_M);
1457    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1458    cpu->midr = 0x410fc231;
1459    cpu->pmsav7_dregion = 8;
1460    cpu->id_pfr0 = 0x00000030;
1461    cpu->id_pfr1 = 0x00000200;
1462    cpu->id_dfr0 = 0x00100000;
1463    cpu->id_afr0 = 0x00000000;
1464    cpu->id_mmfr0 = 0x00000030;
1465    cpu->id_mmfr1 = 0x00000000;
1466    cpu->id_mmfr2 = 0x00000000;
1467    cpu->id_mmfr3 = 0x00000000;
1468    cpu->isar.id_isar0 = 0x01141110;
1469    cpu->isar.id_isar1 = 0x02111000;
1470    cpu->isar.id_isar2 = 0x21112231;
1471    cpu->isar.id_isar3 = 0x01111110;
1472    cpu->isar.id_isar4 = 0x01310102;
1473    cpu->isar.id_isar5 = 0x00000000;
1474    cpu->isar.id_isar6 = 0x00000000;
1475}
1476
1477static void cortex_m4_initfn(Object *obj)
1478{
1479    ARMCPU *cpu = ARM_CPU(obj);
1480
1481    set_feature(&cpu->env, ARM_FEATURE_V7);
1482    set_feature(&cpu->env, ARM_FEATURE_M);
1483    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1484    set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1485    cpu->midr = 0x410fc240; /* r0p0 */
1486    cpu->pmsav7_dregion = 8;
1487    cpu->id_pfr0 = 0x00000030;
1488    cpu->id_pfr1 = 0x00000200;
1489    cpu->id_dfr0 = 0x00100000;
1490    cpu->id_afr0 = 0x00000000;
1491    cpu->id_mmfr0 = 0x00000030;
1492    cpu->id_mmfr1 = 0x00000000;
1493    cpu->id_mmfr2 = 0x00000000;
1494    cpu->id_mmfr3 = 0x00000000;
1495    cpu->isar.id_isar0 = 0x01141110;
1496    cpu->isar.id_isar1 = 0x02111000;
1497    cpu->isar.id_isar2 = 0x21112231;
1498    cpu->isar.id_isar3 = 0x01111110;
1499    cpu->isar.id_isar4 = 0x01310102;
1500    cpu->isar.id_isar5 = 0x00000000;
1501    cpu->isar.id_isar6 = 0x00000000;
1502}
1503
1504static void cortex_m33_initfn(Object *obj)
1505{
1506    ARMCPU *cpu = ARM_CPU(obj);
1507
1508    set_feature(&cpu->env, ARM_FEATURE_V8);
1509    set_feature(&cpu->env, ARM_FEATURE_M);
1510    set_feature(&cpu->env, ARM_FEATURE_M_MAIN);
1511    set_feature(&cpu->env, ARM_FEATURE_M_SECURITY);
1512    set_feature(&cpu->env, ARM_FEATURE_THUMB_DSP);
1513    cpu->midr = 0x410fd213; /* r0p3 */
1514    cpu->pmsav7_dregion = 16;
1515    cpu->sau_sregion = 8;
1516    cpu->id_pfr0 = 0x00000030;
1517    cpu->id_pfr1 = 0x00000210;
1518    cpu->id_dfr0 = 0x00200000;
1519    cpu->id_afr0 = 0x00000000;
1520    cpu->id_mmfr0 = 0x00101F40;
1521    cpu->id_mmfr1 = 0x00000000;
1522    cpu->id_mmfr2 = 0x01000000;
1523    cpu->id_mmfr3 = 0x00000000;
1524    cpu->isar.id_isar0 = 0x01101110;
1525    cpu->isar.id_isar1 = 0x02212000;
1526    cpu->isar.id_isar2 = 0x20232232;
1527    cpu->isar.id_isar3 = 0x01111131;
1528    cpu->isar.id_isar4 = 0x01310132;
1529    cpu->isar.id_isar5 = 0x00000000;
1530    cpu->isar.id_isar6 = 0x00000000;
1531    cpu->clidr = 0x00000000;
1532    cpu->ctr = 0x8000c000;
1533}
1534
1535static void arm_v7m_class_init(ObjectClass *oc, void *data)
1536{
1537    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
1538    CPUClass *cc = CPU_CLASS(oc);
1539
1540    acc->info = data;
1541#ifndef CONFIG_USER_ONLY
1542    cc->do_interrupt = arm_v7m_cpu_do_interrupt;
1543#endif
1544
1545    cc->cpu_exec_interrupt = arm_v7m_cpu_exec_interrupt;
1546}
1547
1548static const ARMCPRegInfo cortexr5_cp_reginfo[] = {
1549    /* Dummy the TCM region regs for the moment */
1550    { .name = "ATCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
1551      .access = PL1_RW, .type = ARM_CP_CONST },
1552    { .name = "BTCM", .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
1553      .access = PL1_RW, .type = ARM_CP_CONST },
1554    { .name = "DCACHE_INVAL", .cp = 15, .opc1 = 0, .crn = 15, .crm = 5,
1555      .opc2 = 0, .access = PL1_W, .type = ARM_CP_NOP },
1556    REGINFO_SENTINEL
1557};
1558
1559static void cortex_r5_initfn(Object *obj)
1560{
1561    ARMCPU *cpu = ARM_CPU(obj);
1562
1563    set_feature(&cpu->env, ARM_FEATURE_V7);
1564    set_feature(&cpu->env, ARM_FEATURE_V7MP);
1565    set_feature(&cpu->env, ARM_FEATURE_PMSA);
1566    cpu->midr = 0x411fc153; /* r1p3 */
1567    cpu->id_pfr0 = 0x0131;
1568    cpu->id_pfr1 = 0x001;
1569    cpu->id_dfr0 = 0x010400;
1570    cpu->id_afr0 = 0x0;
1571    cpu->id_mmfr0 = 0x0210030;
1572    cpu->id_mmfr1 = 0x00000000;
1573    cpu->id_mmfr2 = 0x01200000;
1574    cpu->id_mmfr3 = 0x0211;
1575    cpu->isar.id_isar0 = 0x02101111;
1576    cpu->isar.id_isar1 = 0x13112111;
1577    cpu->isar.id_isar2 = 0x21232141;
1578    cpu->isar.id_isar3 = 0x01112131;
1579    cpu->isar.id_isar4 = 0x0010142;
1580    cpu->isar.id_isar5 = 0x0;
1581    cpu->isar.id_isar6 = 0x0;
1582    cpu->mp_is_up = true;
1583    cpu->pmsav7_dregion = 16;
1584    define_arm_cp_regs(cpu, cortexr5_cp_reginfo);
1585}
1586
1587static void cortex_r5f_initfn(Object *obj)
1588{
1589    ARMCPU *cpu = ARM_CPU(obj);
1590
1591    cortex_r5_initfn(obj);
1592    set_feature(&cpu->env, ARM_FEATURE_VFP3);
1593}
1594
1595static const ARMCPRegInfo cortexa8_cp_reginfo[] = {
1596    { .name = "L2LOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 0,
1597      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1598    { .name = "L2AUXCR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1599      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1600    REGINFO_SENTINEL
1601};
1602
1603static void cortex_a8_initfn(Object *obj)
1604{
1605    ARMCPU *cpu = ARM_CPU(obj);
1606
1607    cpu->dtb_compatible = "arm,cortex-a8";
1608    set_feature(&cpu->env, ARM_FEATURE_V7);
1609    set_feature(&cpu->env, ARM_FEATURE_VFP3);
1610    set_feature(&cpu->env, ARM_FEATURE_NEON);
1611    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1612    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1613    set_feature(&cpu->env, ARM_FEATURE_EL3);
1614    cpu->midr = 0x410fc080;
1615    cpu->reset_fpsid = 0x410330c0;
1616    cpu->isar.mvfr0 = 0x11110222;
1617    cpu->isar.mvfr1 = 0x00011111;
1618    cpu->ctr = 0x82048004;
1619    cpu->reset_sctlr = 0x00c50078;
1620    cpu->id_pfr0 = 0x1031;
1621    cpu->id_pfr1 = 0x11;
1622    cpu->id_dfr0 = 0x400;
1623    cpu->id_afr0 = 0;
1624    cpu->id_mmfr0 = 0x31100003;
1625    cpu->id_mmfr1 = 0x20000000;
1626    cpu->id_mmfr2 = 0x01202000;
1627    cpu->id_mmfr3 = 0x11;
1628    cpu->isar.id_isar0 = 0x00101111;
1629    cpu->isar.id_isar1 = 0x12112111;
1630    cpu->isar.id_isar2 = 0x21232031;
1631    cpu->isar.id_isar3 = 0x11112131;
1632    cpu->isar.id_isar4 = 0x00111142;
1633    cpu->dbgdidr = 0x15141000;
1634    cpu->clidr = (1 << 27) | (2 << 24) | 3;
1635    cpu->ccsidr[0] = 0xe007e01a; /* 16k L1 dcache. */
1636    cpu->ccsidr[1] = 0x2007e01a; /* 16k L1 icache. */
1637    cpu->ccsidr[2] = 0xf0000000; /* No L2 icache. */
1638    cpu->reset_auxcr = 2;
1639    define_arm_cp_regs(cpu, cortexa8_cp_reginfo);
1640}
1641
1642static const ARMCPRegInfo cortexa9_cp_reginfo[] = {
1643    /* power_control should be set to maximum latency. Again,
1644     * default to 0 and set by private hook
1645     */
1646    { .name = "A9_PWRCTL", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
1647      .access = PL1_RW, .resetvalue = 0,
1648      .fieldoffset = offsetof(CPUARMState, cp15.c15_power_control) },
1649    { .name = "A9_DIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 1,
1650      .access = PL1_RW, .resetvalue = 0,
1651      .fieldoffset = offsetof(CPUARMState, cp15.c15_diagnostic) },
1652    { .name = "A9_PWRDIAG", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 2,
1653      .access = PL1_RW, .resetvalue = 0,
1654      .fieldoffset = offsetof(CPUARMState, cp15.c15_power_diagnostic) },
1655    { .name = "NEONBUSY", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
1656      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1657    /* TLB lockdown control */
1658    { .name = "TLB_LOCKR", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 2,
1659      .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1660    { .name = "TLB_LOCKW", .cp = 15, .crn = 15, .crm = 4, .opc1 = 5, .opc2 = 4,
1661      .access = PL1_W, .resetvalue = 0, .type = ARM_CP_NOP },
1662    { .name = "TLB_VA", .cp = 15, .crn = 15, .crm = 5, .opc1 = 5, .opc2 = 2,
1663      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1664    { .name = "TLB_PA", .cp = 15, .crn = 15, .crm = 6, .opc1 = 5, .opc2 = 2,
1665      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1666    { .name = "TLB_ATTR", .cp = 15, .crn = 15, .crm = 7, .opc1 = 5, .opc2 = 2,
1667      .access = PL1_RW, .resetvalue = 0, .type = ARM_CP_CONST },
1668    REGINFO_SENTINEL
1669};
1670
1671static void cortex_a9_initfn(Object *obj)
1672{
1673    ARMCPU *cpu = ARM_CPU(obj);
1674
1675    cpu->dtb_compatible = "arm,cortex-a9";
1676    set_feature(&cpu->env, ARM_FEATURE_V7);
1677    set_feature(&cpu->env, ARM_FEATURE_VFP3);
1678    set_feature(&cpu->env, ARM_FEATURE_NEON);
1679    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1680    set_feature(&cpu->env, ARM_FEATURE_EL3);
1681    /* Note that A9 supports the MP extensions even for
1682     * A9UP and single-core A9MP (which are both different
1683     * and valid configurations; we don't model A9UP).
1684     */
1685    set_feature(&cpu->env, ARM_FEATURE_V7MP);
1686    set_feature(&cpu->env, ARM_FEATURE_CBAR);
1687    cpu->midr = 0x410fc090;
1688    cpu->reset_fpsid = 0x41033090;
1689    cpu->isar.mvfr0 = 0x11110222;
1690    cpu->isar.mvfr1 = 0x01111111;
1691    cpu->ctr = 0x80038003;
1692    cpu->reset_sctlr = 0x00c50078;
1693    cpu->id_pfr0 = 0x1031;
1694    cpu->id_pfr1 = 0x11;
1695    cpu->id_dfr0 = 0x000;
1696    cpu->id_afr0 = 0;
1697    cpu->id_mmfr0 = 0x00100103;
1698    cpu->id_mmfr1 = 0x20000000;
1699    cpu->id_mmfr2 = 0x01230000;
1700    cpu->id_mmfr3 = 0x00002111;
1701    cpu->isar.id_isar0 = 0x00101111;
1702    cpu->isar.id_isar1 = 0x13112111;
1703    cpu->isar.id_isar2 = 0x21232041;
1704    cpu->isar.id_isar3 = 0x11112131;
1705    cpu->isar.id_isar4 = 0x00111142;
1706    cpu->dbgdidr = 0x35141000;
1707    cpu->clidr = (1 << 27) | (1 << 24) | 3;
1708    cpu->ccsidr[0] = 0xe00fe019; /* 16k L1 dcache. */
1709    cpu->ccsidr[1] = 0x200fe019; /* 16k L1 icache. */
1710    define_arm_cp_regs(cpu, cortexa9_cp_reginfo);
1711}
1712
1713#ifndef CONFIG_USER_ONLY
1714static uint64_t a15_l2ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1715{
1716    /* Linux wants the number of processors from here.
1717     * Might as well set the interrupt-controller bit too.
1718     */
1719    return ((smp_cpus - 1) << 24) | (1 << 23);
1720}
1721#endif
1722
1723static const ARMCPRegInfo cortexa15_cp_reginfo[] = {
1724#ifndef CONFIG_USER_ONLY
1725    { .name = "L2CTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 2,
1726      .access = PL1_RW, .resetvalue = 0, .readfn = a15_l2ctlr_read,
1727      .writefn = arm_cp_write_ignore, },
1728#endif
1729    { .name = "L2ECTLR", .cp = 15, .crn = 9, .crm = 0, .opc1 = 1, .opc2 = 3,
1730      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1731    REGINFO_SENTINEL
1732};
1733
1734static void cortex_a7_initfn(Object *obj)
1735{
1736    ARMCPU *cpu = ARM_CPU(obj);
1737
1738    cpu->dtb_compatible = "arm,cortex-a7";
1739    set_feature(&cpu->env, ARM_FEATURE_V7VE);
1740    set_feature(&cpu->env, ARM_FEATURE_VFP4);
1741    set_feature(&cpu->env, ARM_FEATURE_NEON);
1742    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1743    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1744    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1745    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1746    set_feature(&cpu->env, ARM_FEATURE_EL2);
1747    set_feature(&cpu->env, ARM_FEATURE_EL3);
1748    set_feature(&cpu->env, ARM_FEATURE_PMU);
1749    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A7;
1750    cpu->midr = 0x410fc075;
1751    cpu->reset_fpsid = 0x41023075;
1752    cpu->isar.mvfr0 = 0x10110222;
1753    cpu->isar.mvfr1 = 0x11111111;
1754    cpu->ctr = 0x84448003;
1755    cpu->reset_sctlr = 0x00c50078;
1756    cpu->id_pfr0 = 0x00001131;
1757    cpu->id_pfr1 = 0x00011011;
1758    cpu->id_dfr0 = 0x02010555;
1759    cpu->id_afr0 = 0x00000000;
1760    cpu->id_mmfr0 = 0x10101105;
1761    cpu->id_mmfr1 = 0x40000000;
1762    cpu->id_mmfr2 = 0x01240000;
1763    cpu->id_mmfr3 = 0x02102211;
1764    /* a7_mpcore_r0p5_trm, page 4-4 gives 0x01101110; but
1765     * table 4-41 gives 0x02101110, which includes the arm div insns.
1766     */
1767    cpu->isar.id_isar0 = 0x02101110;
1768    cpu->isar.id_isar1 = 0x13112111;
1769    cpu->isar.id_isar2 = 0x21232041;
1770    cpu->isar.id_isar3 = 0x11112131;
1771    cpu->isar.id_isar4 = 0x10011142;
1772    cpu->dbgdidr = 0x3515f005;
1773    cpu->clidr = 0x0a200023;
1774    cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1775    cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1776    cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1777    define_arm_cp_regs(cpu, cortexa15_cp_reginfo); /* Same as A15 */
1778}
1779
1780static void cortex_a15_initfn(Object *obj)
1781{
1782    ARMCPU *cpu = ARM_CPU(obj);
1783
1784    cpu->dtb_compatible = "arm,cortex-a15";
1785    set_feature(&cpu->env, ARM_FEATURE_V7VE);
1786    set_feature(&cpu->env, ARM_FEATURE_VFP4);
1787    set_feature(&cpu->env, ARM_FEATURE_NEON);
1788    set_feature(&cpu->env, ARM_FEATURE_THUMB2EE);
1789    set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
1790    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1791    set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
1792    set_feature(&cpu->env, ARM_FEATURE_EL2);
1793    set_feature(&cpu->env, ARM_FEATURE_EL3);
1794    set_feature(&cpu->env, ARM_FEATURE_PMU);
1795    cpu->kvm_target = QEMU_KVM_ARM_TARGET_CORTEX_A15;
1796    cpu->midr = 0x412fc0f1;
1797    cpu->reset_fpsid = 0x410430f0;
1798    cpu->isar.mvfr0 = 0x10110222;
1799    cpu->isar.mvfr1 = 0x11111111;
1800    cpu->ctr = 0x8444c004;
1801    cpu->reset_sctlr = 0x00c50078;
1802    cpu->id_pfr0 = 0x00001131;
1803    cpu->id_pfr1 = 0x00011011;
1804    cpu->id_dfr0 = 0x02010555;
1805    cpu->id_afr0 = 0x00000000;
1806    cpu->id_mmfr0 = 0x10201105;
1807    cpu->id_mmfr1 = 0x20000000;
1808    cpu->id_mmfr2 = 0x01240000;
1809    cpu->id_mmfr3 = 0x02102211;
1810    cpu->isar.id_isar0 = 0x02101110;
1811    cpu->isar.id_isar1 = 0x13112111;
1812    cpu->isar.id_isar2 = 0x21232041;
1813    cpu->isar.id_isar3 = 0x11112131;
1814    cpu->isar.id_isar4 = 0x10011142;
1815    cpu->dbgdidr = 0x3515f021;
1816    cpu->clidr = 0x0a200023;
1817    cpu->ccsidr[0] = 0x701fe00a; /* 32K L1 dcache */
1818    cpu->ccsidr[1] = 0x201fe00a; /* 32K L1 icache */
1819    cpu->ccsidr[2] = 0x711fe07a; /* 4096K L2 unified cache */
1820    define_arm_cp_regs(cpu, cortexa15_cp_reginfo);
1821}
1822
1823static void ti925t_initfn(Object *obj)
1824{
1825    ARMCPU *cpu = ARM_CPU(obj);
1826    set_feature(&cpu->env, ARM_FEATURE_V4T);
1827    set_feature(&cpu->env, ARM_FEATURE_OMAPCP);
1828    cpu->midr = ARM_CPUID_TI925T;
1829    cpu->ctr = 0x5109149;
1830    cpu->reset_sctlr = 0x00000070;
1831}
1832
1833static void sa1100_initfn(Object *obj)
1834{
1835    ARMCPU *cpu = ARM_CPU(obj);
1836
1837    cpu->dtb_compatible = "intel,sa1100";
1838    set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1839    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1840    cpu->midr = 0x4401A11B;
1841    cpu->reset_sctlr = 0x00000070;
1842}
1843
1844static void sa1110_initfn(Object *obj)
1845{
1846    ARMCPU *cpu = ARM_CPU(obj);
1847    set_feature(&cpu->env, ARM_FEATURE_STRONGARM);
1848    set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
1849    cpu->midr = 0x6901B119;
1850    cpu->reset_sctlr = 0x00000070;
1851}
1852
1853static void pxa250_initfn(Object *obj)
1854{
1855    ARMCPU *cpu = ARM_CPU(obj);
1856
1857    cpu->dtb_compatible = "marvell,xscale";
1858    set_feature(&cpu->env, ARM_FEATURE_V5);
1859    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1860    cpu->midr = 0x69052100;
1861    cpu->ctr = 0xd172172;
1862    cpu->reset_sctlr = 0x00000078;
1863}
1864
1865static void pxa255_initfn(Object *obj)
1866{
1867    ARMCPU *cpu = ARM_CPU(obj);
1868
1869    cpu->dtb_compatible = "marvell,xscale";
1870    set_feature(&cpu->env, ARM_FEATURE_V5);
1871    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1872    cpu->midr = 0x69052d00;
1873    cpu->ctr = 0xd172172;
1874    cpu->reset_sctlr = 0x00000078;
1875}
1876
1877static void pxa260_initfn(Object *obj)
1878{
1879    ARMCPU *cpu = ARM_CPU(obj);
1880
1881    cpu->dtb_compatible = "marvell,xscale";
1882    set_feature(&cpu->env, ARM_FEATURE_V5);
1883    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1884    cpu->midr = 0x69052903;
1885    cpu->ctr = 0xd172172;
1886    cpu->reset_sctlr = 0x00000078;
1887}
1888
1889static void pxa261_initfn(Object *obj)
1890{
1891    ARMCPU *cpu = ARM_CPU(obj);
1892
1893    cpu->dtb_compatible = "marvell,xscale";
1894    set_feature(&cpu->env, ARM_FEATURE_V5);
1895    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1896    cpu->midr = 0x69052d05;
1897    cpu->ctr = 0xd172172;
1898    cpu->reset_sctlr = 0x00000078;
1899}
1900
1901static void pxa262_initfn(Object *obj)
1902{
1903    ARMCPU *cpu = ARM_CPU(obj);
1904
1905    cpu->dtb_compatible = "marvell,xscale";
1906    set_feature(&cpu->env, ARM_FEATURE_V5);
1907    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1908    cpu->midr = 0x69052d06;
1909    cpu->ctr = 0xd172172;
1910    cpu->reset_sctlr = 0x00000078;
1911}
1912
1913static void pxa270a0_initfn(Object *obj)
1914{
1915    ARMCPU *cpu = ARM_CPU(obj);
1916
1917    cpu->dtb_compatible = "marvell,xscale";
1918    set_feature(&cpu->env, ARM_FEATURE_V5);
1919    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1920    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1921    cpu->midr = 0x69054110;
1922    cpu->ctr = 0xd172172;
1923    cpu->reset_sctlr = 0x00000078;
1924}
1925
1926static void pxa270a1_initfn(Object *obj)
1927{
1928    ARMCPU *cpu = ARM_CPU(obj);
1929
1930    cpu->dtb_compatible = "marvell,xscale";
1931    set_feature(&cpu->env, ARM_FEATURE_V5);
1932    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1933    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1934    cpu->midr = 0x69054111;
1935    cpu->ctr = 0xd172172;
1936    cpu->reset_sctlr = 0x00000078;
1937}
1938
1939static void pxa270b0_initfn(Object *obj)
1940{
1941    ARMCPU *cpu = ARM_CPU(obj);
1942
1943    cpu->dtb_compatible = "marvell,xscale";
1944    set_feature(&cpu->env, ARM_FEATURE_V5);
1945    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1946    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1947    cpu->midr = 0x69054112;
1948    cpu->ctr = 0xd172172;
1949    cpu->reset_sctlr = 0x00000078;
1950}
1951
1952static void pxa270b1_initfn(Object *obj)
1953{
1954    ARMCPU *cpu = ARM_CPU(obj);
1955
1956    cpu->dtb_compatible = "marvell,xscale";
1957    set_feature(&cpu->env, ARM_FEATURE_V5);
1958    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1959    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1960    cpu->midr = 0x69054113;
1961    cpu->ctr = 0xd172172;
1962    cpu->reset_sctlr = 0x00000078;
1963}
1964
1965static void pxa270c0_initfn(Object *obj)
1966{
1967    ARMCPU *cpu = ARM_CPU(obj);
1968
1969    cpu->dtb_compatible = "marvell,xscale";
1970    set_feature(&cpu->env, ARM_FEATURE_V5);
1971    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1972    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1973    cpu->midr = 0x69054114;
1974    cpu->ctr = 0xd172172;
1975    cpu->reset_sctlr = 0x00000078;
1976}
1977
1978static void pxa270c5_initfn(Object *obj)
1979{
1980    ARMCPU *cpu = ARM_CPU(obj);
1981
1982    cpu->dtb_compatible = "marvell,xscale";
1983    set_feature(&cpu->env, ARM_FEATURE_V5);
1984    set_feature(&cpu->env, ARM_FEATURE_XSCALE);
1985    set_feature(&cpu->env, ARM_FEATURE_IWMMXT);
1986    cpu->midr = 0x69054117;
1987    cpu->ctr = 0xd172172;
1988    cpu->reset_sctlr = 0x00000078;
1989}
1990
1991#ifndef TARGET_AARCH64
1992/* -cpu max: if KVM is enabled, like -cpu host (best possible with this host);
1993 * otherwise, a CPU with as many features enabled as our emulation supports.
1994 * The version of '-cpu max' for qemu-system-aarch64 is defined in cpu64.c;
1995 * this only needs to handle 32 bits.
1996 */
1997static void arm_max_initfn(Object *obj)
1998{
1999    ARMCPU *cpu = ARM_CPU(obj);
2000
2001    if (kvm_enabled()) {
2002        kvm_arm_set_cpu_features_from_host(cpu);
2003    } else {
2004        cortex_a15_initfn(obj);
2005#ifdef CONFIG_USER_ONLY
2006        /* We don't set these in system emulation mode for the moment,
2007         * since we don't correctly set (all of) the ID registers to
2008         * advertise them.
2009         */
2010        set_feature(&cpu->env, ARM_FEATURE_V8);
2011        {
2012            uint32_t t;
2013
2014            t = cpu->isar.id_isar5;
2015            t = FIELD_DP32(t, ID_ISAR5, AES, 2);
2016            t = FIELD_DP32(t, ID_ISAR5, SHA1, 1);
2017            t = FIELD_DP32(t, ID_ISAR5, SHA2, 1);
2018            t = FIELD_DP32(t, ID_ISAR5, CRC32, 1);
2019            t = FIELD_DP32(t, ID_ISAR5, RDM, 1);
2020            t = FIELD_DP32(t, ID_ISAR5, VCMA, 1);
2021            cpu->isar.id_isar5 = t;
2022
2023            t = cpu->isar.id_isar6;
2024            t = FIELD_DP32(t, ID_ISAR6, JSCVT, 1);
2025            t = FIELD_DP32(t, ID_ISAR6, DP, 1);
2026            t = FIELD_DP32(t, ID_ISAR6, FHM, 1);
2027            t = FIELD_DP32(t, ID_ISAR6, SB, 1);
2028            t = FIELD_DP32(t, ID_ISAR6, SPECRES, 1);
2029            cpu->isar.id_isar6 = t;
2030
2031            t = cpu->isar.mvfr2;
2032            t = FIELD_DP32(t, MVFR2, SIMDMISC, 3); /* SIMD MaxNum */
2033            t = FIELD_DP32(t, MVFR2, FPMISC, 4);   /* FP MaxNum */
2034            cpu->isar.mvfr2 = t;
2035
2036            t = cpu->id_mmfr4;
2037            t = FIELD_DP32(t, ID_MMFR4, HPDS, 1); /* AA32HPD */
2038            cpu->id_mmfr4 = t;
2039        }
2040#endif
2041    }
2042}
2043#endif
2044
2045#endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
2046
2047struct ARMCPUInfo {
2048    const char *name;
2049    void (*initfn)(Object *obj);
2050    void (*class_init)(ObjectClass *oc, void *data);
2051};
2052
2053static const ARMCPUInfo arm_cpus[] = {
2054#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
2055    { .name = "arm926",      .initfn = arm926_initfn },
2056    { .name = "arm946",      .initfn = arm946_initfn },
2057    { .name = "arm1026",     .initfn = arm1026_initfn },
2058    /* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
2059     * older core than plain "arm1136". In particular this does not
2060     * have the v6K features.
2061     */
2062    { .name = "arm1136-r2",  .initfn = arm1136_r2_initfn },
2063    { .name = "arm1136",     .initfn = arm1136_initfn },
2064    { .name = "arm1176",     .initfn = arm1176_initfn },
2065    { .name = "arm11mpcore", .initfn = arm11mpcore_initfn },
2066    { .name = "cortex-m0",   .initfn = cortex_m0_initfn,
2067                             .class_init = arm_v7m_class_init },
2068    { .name = "cortex-m3",   .initfn = cortex_m3_initfn,
2069                             .class_init = arm_v7m_class_init },
2070    { .name = "cortex-m4",   .initfn = cortex_m4_initfn,
2071                             .class_init = arm_v7m_class_init },
2072    { .name = "cortex-m33",  .initfn = cortex_m33_initfn,
2073                             .class_init = arm_v7m_class_init },
2074    { .name = "cortex-r5",   .initfn = cortex_r5_initfn },
2075    { .name = "cortex-r5f",  .initfn = cortex_r5f_initfn },
2076    { .name = "cortex-a7",   .initfn = cortex_a7_initfn },
2077    { .name = "cortex-a8",   .initfn = cortex_a8_initfn },
2078    { .name = "cortex-a9",   .initfn = cortex_a9_initfn },
2079    { .name = "cortex-a15",  .initfn = cortex_a15_initfn },
2080    { .name = "ti925t",      .initfn = ti925t_initfn },
2081    { .name = "sa1100",      .initfn = sa1100_initfn },
2082    { .name = "sa1110",      .initfn = sa1110_initfn },
2083    { .name = "pxa250",      .initfn = pxa250_initfn },
2084    { .name = "pxa255",      .initfn = pxa255_initfn },
2085    { .name = "pxa260",      .initfn = pxa260_initfn },
2086    { .name = "pxa261",      .initfn = pxa261_initfn },
2087    { .name = "pxa262",      .initfn = pxa262_initfn },
2088    /* "pxa270" is an alias for "pxa270-a0" */
2089    { .name = "pxa270",      .initfn = pxa270a0_initfn },
2090    { .name = "pxa270-a0",   .initfn = pxa270a0_initfn },
2091    { .name = "pxa270-a1",   .initfn = pxa270a1_initfn },
2092    { .name = "pxa270-b0",   .initfn = pxa270b0_initfn },
2093    { .name = "pxa270-b1",   .initfn = pxa270b1_initfn },
2094    { .name = "pxa270-c0",   .initfn = pxa270c0_initfn },
2095    { .name = "pxa270-c5",   .initfn = pxa270c5_initfn },
2096#ifndef TARGET_AARCH64
2097    { .name = "max",         .initfn = arm_max_initfn },
2098#endif
2099#ifdef CONFIG_USER_ONLY
2100    { .name = "any",         .initfn = arm_max_initfn },
2101#endif
2102#endif
2103    { .name = NULL }
2104};
2105
2106static Property arm_cpu_properties[] = {
2107    DEFINE_PROP_BOOL("start-powered-off", ARMCPU, start_powered_off, false),
2108    DEFINE_PROP_UINT32("psci-conduit", ARMCPU, psci_conduit, 0),
2109    DEFINE_PROP_UINT32("midr", ARMCPU, midr, 0),
2110    DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2111                        mp_affinity, ARM64_AFFINITY_INVALID),
2112    DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2113    DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2114    DEFINE_PROP_END_OF_LIST()
2115};
2116
2117#ifdef CONFIG_USER_ONLY
2118static int arm_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
2119                                    int rw, int mmu_idx)
2120{
2121    ARMCPU *cpu = ARM_CPU(cs);
2122    CPUARMState *env = &cpu->env;
2123
2124    env->exception.vaddress = address;
2125    if (rw == 2) {
2126        cs->exception_index = EXCP_PREFETCH_ABORT;
2127    } else {
2128        cs->exception_index = EXCP_DATA_ABORT;
2129    }
2130    return 1;
2131}
2132#endif
2133
2134static gchar *arm_gdb_arch_name(CPUState *cs)
2135{
2136    ARMCPU *cpu = ARM_CPU(cs);
2137    CPUARMState *env = &cpu->env;
2138
2139    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2140        return g_strdup("iwmmxt");
2141    }
2142    return g_strdup("arm");
2143}
2144
2145static void arm_cpu_class_init(ObjectClass *oc, void *data)
2146{
2147    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2148    CPUClass *cc = CPU_CLASS(acc);
2149    DeviceClass *dc = DEVICE_CLASS(oc);
2150
2151    device_class_set_parent_realize(dc, arm_cpu_realizefn,
2152                                    &acc->parent_realize);
2153    dc->props = arm_cpu_properties;
2154
2155    acc->parent_reset = cc->reset;
2156    cc->reset = arm_cpu_reset;
2157
2158    cc->class_by_name = arm_cpu_class_by_name;
2159    cc->has_work = arm_cpu_has_work;
2160    cc->cpu_exec_interrupt = arm_cpu_exec_interrupt;
2161    cc->dump_state = arm_cpu_dump_state;
2162    cc->set_pc = arm_cpu_set_pc;
2163    cc->synchronize_from_tb = arm_cpu_synchronize_from_tb;
2164    cc->gdb_read_register = arm_cpu_gdb_read_register;
2165    cc->gdb_write_register = arm_cpu_gdb_write_register;
2166#ifdef CONFIG_USER_ONLY
2167    cc->handle_mmu_fault = arm_cpu_handle_mmu_fault;
2168#else
2169    cc->do_interrupt = arm_cpu_do_interrupt;
2170    cc->do_unaligned_access = arm_cpu_do_unaligned_access;
2171    cc->do_transaction_failed = arm_cpu_do_transaction_failed;
2172    cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
2173    cc->asidx_from_attrs = arm_asidx_from_attrs;
2174    cc->vmsd = &vmstate_arm_cpu;
2175    cc->virtio_is_big_endian = arm_cpu_virtio_is_big_endian;
2176    cc->write_elf64_note = arm_cpu_write_elf64_note;
2177    cc->write_elf32_note = arm_cpu_write_elf32_note;
2178#endif
2179    cc->gdb_num_core_regs = 26;
2180    cc->gdb_core_xml_file = "arm-core.xml";
2181    cc->gdb_arch_name = arm_gdb_arch_name;
2182    cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2183    cc->gdb_stop_before_watchpoint = true;
2184    cc->debug_excp_handler = arm_debug_excp_handler;
2185    cc->debug_check_watchpoint = arm_debug_check_watchpoint;
2186#if !defined(CONFIG_USER_ONLY)
2187    cc->adjust_watchpoint_address = arm_adjust_watchpoint_address;
2188#endif
2189
2190    cc->disas_set_info = arm_disas_set_info;
2191#ifdef CONFIG_TCG
2192    cc->tcg_initialize = arm_translate_init;
2193#endif
2194}
2195
2196#ifdef CONFIG_KVM
2197static void arm_host_initfn(Object *obj)
2198{
2199    ARMCPU *cpu = ARM_CPU(obj);
2200
2201    kvm_arm_set_cpu_features_from_host(cpu);
2202    arm_cpu_post_init(obj);
2203}
2204
2205static const TypeInfo host_arm_cpu_type_info = {
2206    .name = TYPE_ARM_HOST_CPU,
2207#ifdef TARGET_AARCH64
2208    .parent = TYPE_AARCH64_CPU,
2209#else
2210    .parent = TYPE_ARM_CPU,
2211#endif
2212    .instance_init = arm_host_initfn,
2213};
2214
2215#endif
2216
2217static void arm_cpu_instance_init(Object *obj)
2218{
2219    ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2220
2221    acc->info->initfn(obj);
2222    arm_cpu_post_init(obj);
2223}
2224
2225static void cpu_register_class_init(ObjectClass *oc, void *data)
2226{
2227    ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2228
2229    acc->info = data;
2230}
2231
2232static void cpu_register(const ARMCPUInfo *info)
2233{
2234    TypeInfo type_info = {
2235        .parent = TYPE_ARM_CPU,
2236        .instance_size = sizeof(ARMCPU),
2237        .instance_init = arm_cpu_instance_init,
2238        .class_size = sizeof(ARMCPUClass),
2239        .class_init = info->class_init ?: cpu_register_class_init,
2240        .class_data = (void *)info,
2241    };
2242
2243    type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2244    type_register(&type_info);
2245    g_free((void *)type_info.name);
2246}
2247
2248static const TypeInfo arm_cpu_type_info = {
2249    .name = TYPE_ARM_CPU,
2250    .parent = TYPE_CPU,
2251    .instance_size = sizeof(ARMCPU),
2252    .instance_init = arm_cpu_initfn,
2253    .instance_finalize = arm_cpu_finalizefn,
2254    .abstract = true,
2255    .class_size = sizeof(ARMCPUClass),
2256    .class_init = arm_cpu_class_init,
2257};
2258
2259static const TypeInfo idau_interface_type_info = {
2260    .name = TYPE_IDAU_INTERFACE,
2261    .parent = TYPE_INTERFACE,
2262    .class_size = sizeof(IDAUInterfaceClass),
2263};
2264
2265static void arm_cpu_register_types(void)
2266{
2267    const ARMCPUInfo *info = arm_cpus;
2268
2269    type_register_static(&arm_cpu_type_info);
2270    type_register_static(&idau_interface_type_info);
2271
2272    while (info->name) {
2273        cpu_register(info);
2274        info++;
2275    }
2276
2277#ifdef CONFIG_KVM
2278    type_register_static(&host_arm_cpu_type_info);
2279#endif
2280}
2281
2282type_init(arm_cpu_register_types)
2283