qemu/target/arm/cpu.h
<<
>>
Prefs
   1/*
   2 * ARM virtual CPU header
   3 *
   4 *  Copyright (c) 2003 Fabrice Bellard
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#ifndef ARM_CPU_H
  21#define ARM_CPU_H
  22
  23#include "kvm-consts.h"
  24#include "hw/registerfields.h"
  25
  26#if defined(TARGET_AARCH64)
  27  /* AArch64 definitions */
  28#  define TARGET_LONG_BITS 64
  29#else
  30#  define TARGET_LONG_BITS 32
  31#endif
  32
  33/* ARM processors have a weak memory model */
  34#define TCG_GUEST_DEFAULT_MO      (0)
  35
  36#define CPUArchState struct CPUARMState
  37
  38#include "qemu-common.h"
  39#include "cpu-qom.h"
  40#include "exec/cpu-defs.h"
  41
  42#define EXCP_UDEF            1   /* undefined instruction */
  43#define EXCP_SWI             2   /* software interrupt */
  44#define EXCP_PREFETCH_ABORT  3
  45#define EXCP_DATA_ABORT      4
  46#define EXCP_IRQ             5
  47#define EXCP_FIQ             6
  48#define EXCP_BKPT            7
  49#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
  50#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
  51#define EXCP_HVC            11   /* HyperVisor Call */
  52#define EXCP_HYP_TRAP       12
  53#define EXCP_SMC            13   /* Secure Monitor Call */
  54#define EXCP_VIRQ           14
  55#define EXCP_VFIQ           15
  56#define EXCP_SEMIHOST       16   /* semihosting call */
  57#define EXCP_NOCP           17   /* v7M NOCP UsageFault */
  58#define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
  59#define EXCP_STKOF          19   /* v8M STKOF UsageFault */
  60/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
  61
  62#define ARMV7M_EXCP_RESET   1
  63#define ARMV7M_EXCP_NMI     2
  64#define ARMV7M_EXCP_HARD    3
  65#define ARMV7M_EXCP_MEM     4
  66#define ARMV7M_EXCP_BUS     5
  67#define ARMV7M_EXCP_USAGE   6
  68#define ARMV7M_EXCP_SECURE  7
  69#define ARMV7M_EXCP_SVC     11
  70#define ARMV7M_EXCP_DEBUG   12
  71#define ARMV7M_EXCP_PENDSV  14
  72#define ARMV7M_EXCP_SYSTICK 15
  73
  74/* For M profile, some registers are banked secure vs non-secure;
  75 * these are represented as a 2-element array where the first element
  76 * is the non-secure copy and the second is the secure copy.
  77 * When the CPU does not have implement the security extension then
  78 * only the first element is used.
  79 * This means that the copy for the current security state can be
  80 * accessed via env->registerfield[env->v7m.secure] (whether the security
  81 * extension is implemented or not).
  82 */
  83enum {
  84    M_REG_NS = 0,
  85    M_REG_S = 1,
  86    M_REG_NUM_BANKS = 2,
  87};
  88
  89/* ARM-specific interrupt pending bits.  */
  90#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
  91#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
  92#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
  93
  94/* The usual mapping for an AArch64 system register to its AArch32
  95 * counterpart is for the 32 bit world to have access to the lower
  96 * half only (with writes leaving the upper half untouched). It's
  97 * therefore useful to be able to pass TCG the offset of the least
  98 * significant half of a uint64_t struct member.
  99 */
 100#ifdef HOST_WORDS_BIGENDIAN
 101#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 102#define offsetofhigh32(S, M) offsetof(S, M)
 103#else
 104#define offsetoflow32(S, M) offsetof(S, M)
 105#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 106#endif
 107
 108/* Meanings of the ARMCPU object's four inbound GPIO lines */
 109#define ARM_CPU_IRQ 0
 110#define ARM_CPU_FIQ 1
 111#define ARM_CPU_VIRQ 2
 112#define ARM_CPU_VFIQ 3
 113
 114#define NB_MMU_MODES 8
 115/* ARM-specific extra insn start words:
 116 * 1: Conditional execution bits
 117 * 2: Partial exception syndrome for data aborts
 118 */
 119#define TARGET_INSN_START_EXTRA_WORDS 2
 120
 121/* The 2nd extra word holding syndrome info for data aborts does not use
 122 * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 123 * help the sleb128 encoder do a better job.
 124 * When restoring the CPU state, we shift it back up.
 125 */
 126#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
 127#define ARM_INSN_START_WORD2_SHIFT 14
 128
 129/* We currently assume float and double are IEEE single and double
 130   precision respectively.
 131   Doing runtime conversions is tricky because VFP registers may contain
 132   integer values (eg. as the result of a FTOSI instruction).
 133   s<2n> maps to the least significant half of d<n>
 134   s<2n+1> maps to the most significant half of d<n>
 135 */
 136
 137/**
 138 * DynamicGDBXMLInfo:
 139 * @desc: Contains the XML descriptions.
 140 * @num_cpregs: Number of the Coprocessor registers seen by GDB.
 141 * @cpregs_keys: Array that contains the corresponding Key of
 142 * a given cpreg with the same order of the cpreg in the XML description.
 143 */
 144typedef struct DynamicGDBXMLInfo {
 145    char *desc;
 146    int num_cpregs;
 147    uint32_t *cpregs_keys;
 148} DynamicGDBXMLInfo;
 149
 150/* CPU state for each instance of a generic timer (in cp15 c14) */
 151typedef struct ARMGenericTimer {
 152    uint64_t cval; /* Timer CompareValue register */
 153    uint64_t ctl; /* Timer Control register */
 154} ARMGenericTimer;
 155
 156#define GTIMER_PHYS 0
 157#define GTIMER_VIRT 1
 158#define GTIMER_HYP  2
 159#define GTIMER_SEC  3
 160#define NUM_GTIMERS 4
 161
 162typedef struct {
 163    uint64_t raw_tcr;
 164    uint32_t mask;
 165    uint32_t base_mask;
 166} TCR;
 167
 168/* Define a maximum sized vector register.
 169 * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
 170 * For 64-bit, this is a 2048-bit SVE register.
 171 *
 172 * Note that the mapping between S, D, and Q views of the register bank
 173 * differs between AArch64 and AArch32.
 174 * In AArch32:
 175 *  Qn = regs[n].d[1]:regs[n].d[0]
 176 *  Dn = regs[n / 2].d[n & 1]
 177 *  Sn = regs[n / 4].d[n % 4 / 2],
 178 *       bits 31..0 for even n, and bits 63..32 for odd n
 179 *       (and regs[16] to regs[31] are inaccessible)
 180 * In AArch64:
 181 *  Zn = regs[n].d[*]
 182 *  Qn = regs[n].d[1]:regs[n].d[0]
 183 *  Dn = regs[n].d[0]
 184 *  Sn = regs[n].d[0] bits 31..0
 185 *  Hn = regs[n].d[0] bits 15..0
 186 *
 187 * This corresponds to the architecturally defined mapping between
 188 * the two execution states, and means we do not need to explicitly
 189 * map these registers when changing states.
 190 *
 191 * Align the data for use with TCG host vector operations.
 192 */
 193
 194#ifdef TARGET_AARCH64
 195# define ARM_MAX_VQ    16
 196#else
 197# define ARM_MAX_VQ    1
 198#endif
 199
 200typedef struct ARMVectorReg {
 201    uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
 202} ARMVectorReg;
 203
 204#ifdef TARGET_AARCH64
 205/* In AArch32 mode, predicate registers do not exist at all.  */
 206typedef struct ARMPredicateReg {
 207    uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
 208} ARMPredicateReg;
 209
 210/* In AArch32 mode, PAC keys do not exist at all.  */
 211typedef struct ARMPACKey {
 212    uint64_t lo, hi;
 213} ARMPACKey;
 214#endif
 215
 216
 217typedef struct CPUARMState {
 218    /* Regs for current mode.  */
 219    uint32_t regs[16];
 220
 221    /* 32/64 switch only happens when taking and returning from
 222     * exceptions so the overlap semantics are taken care of then
 223     * instead of having a complicated union.
 224     */
 225    /* Regs for A64 mode.  */
 226    uint64_t xregs[32];
 227    uint64_t pc;
 228    /* PSTATE isn't an architectural register for ARMv8. However, it is
 229     * convenient for us to assemble the underlying state into a 32 bit format
 230     * identical to the architectural format used for the SPSR. (This is also
 231     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 232     * 'pstate' register are.) Of the PSTATE bits:
 233     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 234     *    semantics as for AArch32, as described in the comments on each field)
 235     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 236     *  DAIF (exception masks) are kept in env->daif
 237     *  BTYPE is kept in env->btype
 238     *  all other bits are stored in their correct places in env->pstate
 239     */
 240    uint32_t pstate;
 241    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
 242
 243    /* Frequently accessed CPSR bits are stored separately for efficiency.
 244       This contains all the other bits.  Use cpsr_{read,write} to access
 245       the whole CPSR.  */
 246    uint32_t uncached_cpsr;
 247    uint32_t spsr;
 248
 249    /* Banked registers.  */
 250    uint64_t banked_spsr[8];
 251    uint32_t banked_r13[8];
 252    uint32_t banked_r14[8];
 253
 254    /* These hold r8-r12.  */
 255    uint32_t usr_regs[5];
 256    uint32_t fiq_regs[5];
 257
 258    /* cpsr flag cache for faster execution */
 259    uint32_t CF; /* 0 or 1 */
 260    uint32_t VF; /* V is the bit 31. All other bits are undefined */
 261    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 262    uint32_t ZF; /* Z set if zero.  */
 263    uint32_t QF; /* 0 or 1 */
 264    uint32_t GE; /* cpsr[19:16] */
 265    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
 266    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 267    uint32_t btype;  /* BTI branch type.  spsr[11:10].  */
 268    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
 269
 270    uint64_t elr_el[4]; /* AArch64 exception link regs  */
 271    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 272
 273    /* System control coprocessor (cp15) */
 274    struct {
 275        uint32_t c0_cpuid;
 276        union { /* Cache size selection */
 277            struct {
 278                uint64_t _unused_csselr0;
 279                uint64_t csselr_ns;
 280                uint64_t _unused_csselr1;
 281                uint64_t csselr_s;
 282            };
 283            uint64_t csselr_el[4];
 284        };
 285        union { /* System control register. */
 286            struct {
 287                uint64_t _unused_sctlr;
 288                uint64_t sctlr_ns;
 289                uint64_t hsctlr;
 290                uint64_t sctlr_s;
 291            };
 292            uint64_t sctlr_el[4];
 293        };
 294        uint64_t cpacr_el1; /* Architectural feature access control register */
 295        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
 296        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 297        uint64_t sder; /* Secure debug enable register. */
 298        uint32_t nsacr; /* Non-secure access control register. */
 299        union { /* MMU translation table base 0. */
 300            struct {
 301                uint64_t _unused_ttbr0_0;
 302                uint64_t ttbr0_ns;
 303                uint64_t _unused_ttbr0_1;
 304                uint64_t ttbr0_s;
 305            };
 306            uint64_t ttbr0_el[4];
 307        };
 308        union { /* MMU translation table base 1. */
 309            struct {
 310                uint64_t _unused_ttbr1_0;
 311                uint64_t ttbr1_ns;
 312                uint64_t _unused_ttbr1_1;
 313                uint64_t ttbr1_s;
 314            };
 315            uint64_t ttbr1_el[4];
 316        };
 317        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
 318        /* MMU translation table base control. */
 319        TCR tcr_el[4];
 320        TCR vtcr_el2; /* Virtualization Translation Control.  */
 321        uint32_t c2_data; /* MPU data cacheable bits.  */
 322        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
 323        union { /* MMU domain access control register
 324                 * MPU write buffer control.
 325                 */
 326            struct {
 327                uint64_t dacr_ns;
 328                uint64_t dacr_s;
 329            };
 330            struct {
 331                uint64_t dacr32_el2;
 332            };
 333        };
 334        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 335        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 336        uint64_t hcr_el2; /* Hypervisor configuration register */
 337        uint64_t scr_el3; /* Secure configuration register.  */
 338        union { /* Fault status registers.  */
 339            struct {
 340                uint64_t ifsr_ns;
 341                uint64_t ifsr_s;
 342            };
 343            struct {
 344                uint64_t ifsr32_el2;
 345            };
 346        };
 347        union {
 348            struct {
 349                uint64_t _unused_dfsr;
 350                uint64_t dfsr_ns;
 351                uint64_t hsr;
 352                uint64_t dfsr_s;
 353            };
 354            uint64_t esr_el[4];
 355        };
 356        uint32_t c6_region[8]; /* MPU base/size registers.  */
 357        union { /* Fault address registers. */
 358            struct {
 359                uint64_t _unused_far0;
 360#ifdef HOST_WORDS_BIGENDIAN
 361                uint32_t ifar_ns;
 362                uint32_t dfar_ns;
 363                uint32_t ifar_s;
 364                uint32_t dfar_s;
 365#else
 366                uint32_t dfar_ns;
 367                uint32_t ifar_ns;
 368                uint32_t dfar_s;
 369                uint32_t ifar_s;
 370#endif
 371                uint64_t _unused_far3;
 372            };
 373            uint64_t far_el[4];
 374        };
 375        uint64_t hpfar_el2;
 376        uint64_t hstr_el2;
 377        union { /* Translation result. */
 378            struct {
 379                uint64_t _unused_par_0;
 380                uint64_t par_ns;
 381                uint64_t _unused_par_1;
 382                uint64_t par_s;
 383            };
 384            uint64_t par_el[4];
 385        };
 386
 387        uint32_t c9_insn; /* Cache lockdown registers.  */
 388        uint32_t c9_data;
 389        uint64_t c9_pmcr; /* performance monitor control register */
 390        uint64_t c9_pmcnten; /* perf monitor counter enables */
 391        uint64_t c9_pmovsr; /* perf monitor overflow status */
 392        uint64_t c9_pmuserenr; /* perf monitor user enable */
 393        uint64_t c9_pmselr; /* perf monitor counter selection register */
 394        uint64_t c9_pminten; /* perf monitor interrupt enables */
 395        union { /* Memory attribute redirection */
 396            struct {
 397#ifdef HOST_WORDS_BIGENDIAN
 398                uint64_t _unused_mair_0;
 399                uint32_t mair1_ns;
 400                uint32_t mair0_ns;
 401                uint64_t _unused_mair_1;
 402                uint32_t mair1_s;
 403                uint32_t mair0_s;
 404#else
 405                uint64_t _unused_mair_0;
 406                uint32_t mair0_ns;
 407                uint32_t mair1_ns;
 408                uint64_t _unused_mair_1;
 409                uint32_t mair0_s;
 410                uint32_t mair1_s;
 411#endif
 412            };
 413            uint64_t mair_el[4];
 414        };
 415        union { /* vector base address register */
 416            struct {
 417                uint64_t _unused_vbar;
 418                uint64_t vbar_ns;
 419                uint64_t hvbar;
 420                uint64_t vbar_s;
 421            };
 422            uint64_t vbar_el[4];
 423        };
 424        uint32_t mvbar; /* (monitor) vector base address register */
 425        struct { /* FCSE PID. */
 426            uint32_t fcseidr_ns;
 427            uint32_t fcseidr_s;
 428        };
 429        union { /* Context ID. */
 430            struct {
 431                uint64_t _unused_contextidr_0;
 432                uint64_t contextidr_ns;
 433                uint64_t _unused_contextidr_1;
 434                uint64_t contextidr_s;
 435            };
 436            uint64_t contextidr_el[4];
 437        };
 438        union { /* User RW Thread register. */
 439            struct {
 440                uint64_t tpidrurw_ns;
 441                uint64_t tpidrprw_ns;
 442                uint64_t htpidr;
 443                uint64_t _tpidr_el3;
 444            };
 445            uint64_t tpidr_el[4];
 446        };
 447        /* The secure banks of these registers don't map anywhere */
 448        uint64_t tpidrurw_s;
 449        uint64_t tpidrprw_s;
 450        uint64_t tpidruro_s;
 451
 452        union { /* User RO Thread register. */
 453            uint64_t tpidruro_ns;
 454            uint64_t tpidrro_el[1];
 455        };
 456        uint64_t c14_cntfrq; /* Counter Frequency register */
 457        uint64_t c14_cntkctl; /* Timer Control register */
 458        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
 459        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
 460        ARMGenericTimer c14_timer[NUM_GTIMERS];
 461        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 462        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 463        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 464        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 465        uint32_t c15_threadid; /* TI debugger thread-ID.  */
 466        uint32_t c15_config_base_address; /* SCU base address.  */
 467        uint32_t c15_diagnostic; /* diagnostic register */
 468        uint32_t c15_power_diagnostic;
 469        uint32_t c15_power_control; /* power control */
 470        uint64_t dbgbvr[16]; /* breakpoint value registers */
 471        uint64_t dbgbcr[16]; /* breakpoint control registers */
 472        uint64_t dbgwvr[16]; /* watchpoint value registers */
 473        uint64_t dbgwcr[16]; /* watchpoint control registers */
 474        uint64_t mdscr_el1;
 475        uint64_t oslsr_el1; /* OS Lock Status */
 476        uint64_t mdcr_el2;
 477        uint64_t mdcr_el3;
 478        /* Stores the architectural value of the counter *the last time it was
 479         * updated* by pmccntr_op_start. Accesses should always be surrounded
 480         * by pmccntr_op_start/pmccntr_op_finish to guarantee the latest
 481         * architecturally-correct value is being read/set.
 482         */
 483        uint64_t c15_ccnt;
 484        /* Stores the delta between the architectural value and the underlying
 485         * cycle count during normal operation. It is used to update c15_ccnt
 486         * to be the correct architectural value before accesses. During
 487         * accesses, c15_ccnt_delta contains the underlying count being used
 488         * for the access, after which it reverts to the delta value in
 489         * pmccntr_op_finish.
 490         */
 491        uint64_t c15_ccnt_delta;
 492        uint64_t c14_pmevcntr[31];
 493        uint64_t c14_pmevcntr_delta[31];
 494        uint64_t c14_pmevtyper[31];
 495        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 496        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
 497        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
 498    } cp15;
 499
 500    struct {
 501        /* M profile has up to 4 stack pointers:
 502         * a Main Stack Pointer and a Process Stack Pointer for each
 503         * of the Secure and Non-Secure states. (If the CPU doesn't support
 504         * the security extension then it has only two SPs.)
 505         * In QEMU we always store the currently active SP in regs[13],
 506         * and the non-active SP for the current security state in
 507         * v7m.other_sp. The stack pointers for the inactive security state
 508         * are stored in other_ss_msp and other_ss_psp.
 509         * switch_v7m_security_state() is responsible for rearranging them
 510         * when we change security state.
 511         */
 512        uint32_t other_sp;
 513        uint32_t other_ss_msp;
 514        uint32_t other_ss_psp;
 515        uint32_t vecbase[M_REG_NUM_BANKS];
 516        uint32_t basepri[M_REG_NUM_BANKS];
 517        uint32_t control[M_REG_NUM_BANKS];
 518        uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
 519        uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
 520        uint32_t hfsr; /* HardFault Status */
 521        uint32_t dfsr; /* Debug Fault Status Register */
 522        uint32_t sfsr; /* Secure Fault Status Register */
 523        uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
 524        uint32_t bfar; /* BusFault Address */
 525        uint32_t sfar; /* Secure Fault Address Register */
 526        unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
 527        int exception;
 528        uint32_t primask[M_REG_NUM_BANKS];
 529        uint32_t faultmask[M_REG_NUM_BANKS];
 530        uint32_t aircr; /* only holds r/w state if security extn implemented */
 531        uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
 532        uint32_t csselr[M_REG_NUM_BANKS];
 533        uint32_t scr[M_REG_NUM_BANKS];
 534        uint32_t msplim[M_REG_NUM_BANKS];
 535        uint32_t psplim[M_REG_NUM_BANKS];
 536    } v7m;
 537
 538    /* Information associated with an exception about to be taken:
 539     * code which raises an exception must set cs->exception_index and
 540     * the relevant parts of this structure; the cpu_do_interrupt function
 541     * will then set the guest-visible registers as part of the exception
 542     * entry process.
 543     */
 544    struct {
 545        uint32_t syndrome; /* AArch64 format syndrome register */
 546        uint32_t fsr; /* AArch32 format fault status register info */
 547        uint64_t vaddress; /* virtual addr associated with exception, if any */
 548        uint32_t target_el; /* EL the exception should be targeted for */
 549        /* If we implement EL2 we will also need to store information
 550         * about the intermediate physical address for stage 2 faults.
 551         */
 552    } exception;
 553
 554    /* Information associated with an SError */
 555    struct {
 556        uint8_t pending;
 557        uint8_t has_esr;
 558        uint64_t esr;
 559    } serror;
 560
 561    /* State of our input IRQ/FIQ/VIRQ/VFIQ lines */
 562    uint32_t irq_line_state;
 563
 564    /* Thumb-2 EE state.  */
 565    uint32_t teecr;
 566    uint32_t teehbr;
 567
 568    /* VFP coprocessor state.  */
 569    struct {
 570        ARMVectorReg zregs[32];
 571
 572#ifdef TARGET_AARCH64
 573        /* Store FFR as pregs[16] to make it easier to treat as any other.  */
 574#define FFR_PRED_NUM 16
 575        ARMPredicateReg pregs[17];
 576        /* Scratch space for aa64 sve predicate temporary.  */
 577        ARMPredicateReg preg_tmp;
 578#endif
 579
 580        /* We store these fpcsr fields separately for convenience.  */
 581        uint32_t qc[4] QEMU_ALIGNED(16);
 582        int vec_len;
 583        int vec_stride;
 584
 585        uint32_t xregs[16];
 586
 587        /* Scratch space for aa32 neon expansion.  */
 588        uint32_t scratch[8];
 589
 590        /* There are a number of distinct float control structures:
 591         *
 592         *  fp_status: is the "normal" fp status.
 593         *  fp_status_fp16: used for half-precision calculations
 594         *  standard_fp_status : the ARM "Standard FPSCR Value"
 595         *
 596         * Half-precision operations are governed by a separate
 597         * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
 598         * status structure to control this.
 599         *
 600         * The "Standard FPSCR", ie default-NaN, flush-to-zero,
 601         * round-to-nearest and is used by any operations (generally
 602         * Neon) which the architecture defines as controlled by the
 603         * standard FPSCR value rather than the FPSCR.
 604         *
 605         * To avoid having to transfer exception bits around, we simply
 606         * say that the FPSCR cumulative exception flags are the logical
 607         * OR of the flags in the three fp statuses. This relies on the
 608         * only thing which needs to read the exception flags being
 609         * an explicit FPSCR read.
 610         */
 611        float_status fp_status;
 612        float_status fp_status_f16;
 613        float_status standard_fp_status;
 614
 615        /* ZCR_EL[1-3] */
 616        uint64_t zcr_el[4];
 617    } vfp;
 618    uint64_t exclusive_addr;
 619    uint64_t exclusive_val;
 620    uint64_t exclusive_high;
 621
 622    /* iwMMXt coprocessor state.  */
 623    struct {
 624        uint64_t regs[16];
 625        uint64_t val;
 626
 627        uint32_t cregs[16];
 628    } iwmmxt;
 629
 630#ifdef TARGET_AARCH64
 631    ARMPACKey apia_key;
 632    ARMPACKey apib_key;
 633    ARMPACKey apda_key;
 634    ARMPACKey apdb_key;
 635    ARMPACKey apga_key;
 636#endif
 637
 638#if defined(CONFIG_USER_ONLY)
 639    /* For usermode syscall translation.  */
 640    int eabi;
 641#endif
 642
 643    struct CPUBreakpoint *cpu_breakpoint[16];
 644    struct CPUWatchpoint *cpu_watchpoint[16];
 645
 646    /* Fields up to this point are cleared by a CPU reset */
 647    struct {} end_reset_fields;
 648
 649    CPU_COMMON
 650
 651    /* Fields after CPU_COMMON are preserved across CPU reset. */
 652
 653    /* Internal CPU feature flags.  */
 654    uint64_t features;
 655
 656    /* PMSAv7 MPU */
 657    struct {
 658        uint32_t *drbar;
 659        uint32_t *drsr;
 660        uint32_t *dracr;
 661        uint32_t rnr[M_REG_NUM_BANKS];
 662    } pmsav7;
 663
 664    /* PMSAv8 MPU */
 665    struct {
 666        /* The PMSAv8 implementation also shares some PMSAv7 config
 667         * and state:
 668         *  pmsav7.rnr (region number register)
 669         *  pmsav7_dregion (number of configured regions)
 670         */
 671        uint32_t *rbar[M_REG_NUM_BANKS];
 672        uint32_t *rlar[M_REG_NUM_BANKS];
 673        uint32_t mair0[M_REG_NUM_BANKS];
 674        uint32_t mair1[M_REG_NUM_BANKS];
 675    } pmsav8;
 676
 677    /* v8M SAU */
 678    struct {
 679        uint32_t *rbar;
 680        uint32_t *rlar;
 681        uint32_t rnr;
 682        uint32_t ctrl;
 683    } sau;
 684
 685    void *nvic;
 686    const struct arm_boot_info *boot_info;
 687    /* Store GICv3CPUState to access from this struct */
 688    void *gicv3state;
 689} CPUARMState;
 690
 691/**
 692 * ARMELChangeHookFn:
 693 * type of a function which can be registered via arm_register_el_change_hook()
 694 * to get callbacks when the CPU changes its exception level or mode.
 695 */
 696typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
 697typedef struct ARMELChangeHook ARMELChangeHook;
 698struct ARMELChangeHook {
 699    ARMELChangeHookFn *hook;
 700    void *opaque;
 701    QLIST_ENTRY(ARMELChangeHook) node;
 702};
 703
 704/* These values map onto the return values for
 705 * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
 706typedef enum ARMPSCIState {
 707    PSCI_ON = 0,
 708    PSCI_OFF = 1,
 709    PSCI_ON_PENDING = 2
 710} ARMPSCIState;
 711
 712typedef struct ARMISARegisters ARMISARegisters;
 713
 714/**
 715 * ARMCPU:
 716 * @env: #CPUARMState
 717 *
 718 * An ARM CPU core.
 719 */
 720struct ARMCPU {
 721    /*< private >*/
 722    CPUState parent_obj;
 723    /*< public >*/
 724
 725    CPUARMState env;
 726
 727    /* Coprocessor information */
 728    GHashTable *cp_regs;
 729    /* For marshalling (mostly coprocessor) register state between the
 730     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
 731     * we use these arrays.
 732     */
 733    /* List of register indexes managed via these arrays; (full KVM style
 734     * 64 bit indexes, not CPRegInfo 32 bit indexes)
 735     */
 736    uint64_t *cpreg_indexes;
 737    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
 738    uint64_t *cpreg_values;
 739    /* Length of the indexes, values, reset_values arrays */
 740    int32_t cpreg_array_len;
 741    /* These are used only for migration: incoming data arrives in
 742     * these fields and is sanity checked in post_load before copying
 743     * to the working data structures above.
 744     */
 745    uint64_t *cpreg_vmstate_indexes;
 746    uint64_t *cpreg_vmstate_values;
 747    int32_t cpreg_vmstate_array_len;
 748
 749    DynamicGDBXMLInfo dyn_xml;
 750
 751    /* Timers used by the generic (architected) timer */
 752    QEMUTimer *gt_timer[NUM_GTIMERS];
 753    /*
 754     * Timer used by the PMU. Its state is restored after migration by
 755     * pmu_op_finish() - it does not need other handling during migration
 756     */
 757    QEMUTimer *pmu_timer;
 758    /* GPIO outputs for generic timer */
 759    qemu_irq gt_timer_outputs[NUM_GTIMERS];
 760    /* GPIO output for GICv3 maintenance interrupt signal */
 761    qemu_irq gicv3_maintenance_interrupt;
 762    /* GPIO output for the PMU interrupt */
 763    qemu_irq pmu_interrupt;
 764
 765    /* MemoryRegion to use for secure physical accesses */
 766    MemoryRegion *secure_memory;
 767
 768    /* For v8M, pointer to the IDAU interface provided by board/SoC */
 769    Object *idau;
 770
 771    /* 'compatible' string for this CPU for Linux device trees */
 772    const char *dtb_compatible;
 773
 774    /* PSCI version for this CPU
 775     * Bits[31:16] = Major Version
 776     * Bits[15:0] = Minor Version
 777     */
 778    uint32_t psci_version;
 779
 780    /* Should CPU start in PSCI powered-off state? */
 781    bool start_powered_off;
 782
 783    /* Current power state, access guarded by BQL */
 784    ARMPSCIState power_state;
 785
 786    /* CPU has virtualization extension */
 787    bool has_el2;
 788    /* CPU has security extension */
 789    bool has_el3;
 790    /* CPU has PMU (Performance Monitor Unit) */
 791    bool has_pmu;
 792
 793    /* CPU has memory protection unit */
 794    bool has_mpu;
 795    /* PMSAv7 MPU number of supported regions */
 796    uint32_t pmsav7_dregion;
 797    /* v8M SAU number of supported regions */
 798    uint32_t sau_sregion;
 799
 800    /* PSCI conduit used to invoke PSCI methods
 801     * 0 - disabled, 1 - smc, 2 - hvc
 802     */
 803    uint32_t psci_conduit;
 804
 805    /* For v8M, initial value of the Secure VTOR */
 806    uint32_t init_svtor;
 807
 808    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
 809     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
 810     */
 811    uint32_t kvm_target;
 812
 813    /* KVM init features for this CPU */
 814    uint32_t kvm_init_features[7];
 815
 816    /* Uniprocessor system with MP extensions */
 817    bool mp_is_up;
 818
 819    /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
 820     * and the probe failed (so we need to report the error in realize)
 821     */
 822    bool host_cpu_probe_failed;
 823
 824    /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
 825     * register.
 826     */
 827    int32_t core_count;
 828
 829    /* The instance init functions for implementation-specific subclasses
 830     * set these fields to specify the implementation-dependent values of
 831     * various constant registers and reset values of non-constant
 832     * registers.
 833     * Some of these might become QOM properties eventually.
 834     * Field names match the official register names as defined in the
 835     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
 836     * is used for reset values of non-constant registers; no reset_
 837     * prefix means a constant register.
 838     * Some of these registers are split out into a substructure that
 839     * is shared with the translators to control the ISA.
 840     */
 841    struct ARMISARegisters {
 842        uint32_t id_isar0;
 843        uint32_t id_isar1;
 844        uint32_t id_isar2;
 845        uint32_t id_isar3;
 846        uint32_t id_isar4;
 847        uint32_t id_isar5;
 848        uint32_t id_isar6;
 849        uint32_t mvfr0;
 850        uint32_t mvfr1;
 851        uint32_t mvfr2;
 852        uint64_t id_aa64isar0;
 853        uint64_t id_aa64isar1;
 854        uint64_t id_aa64pfr0;
 855        uint64_t id_aa64pfr1;
 856        uint64_t id_aa64mmfr0;
 857        uint64_t id_aa64mmfr1;
 858    } isar;
 859    uint32_t midr;
 860    uint32_t revidr;
 861    uint32_t reset_fpsid;
 862    uint32_t ctr;
 863    uint32_t reset_sctlr;
 864    uint32_t id_pfr0;
 865    uint32_t id_pfr1;
 866    uint32_t id_dfr0;
 867    uint64_t pmceid0;
 868    uint64_t pmceid1;
 869    uint32_t id_afr0;
 870    uint32_t id_mmfr0;
 871    uint32_t id_mmfr1;
 872    uint32_t id_mmfr2;
 873    uint32_t id_mmfr3;
 874    uint32_t id_mmfr4;
 875    uint64_t id_aa64dfr0;
 876    uint64_t id_aa64dfr1;
 877    uint64_t id_aa64afr0;
 878    uint64_t id_aa64afr1;
 879    uint32_t dbgdidr;
 880    uint32_t clidr;
 881    uint64_t mp_affinity; /* MP ID without feature bits */
 882    /* The elements of this array are the CCSIDR values for each cache,
 883     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
 884     */
 885    uint32_t ccsidr[16];
 886    uint64_t reset_cbar;
 887    uint32_t reset_auxcr;
 888    bool reset_hivecs;
 889    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
 890    uint32_t dcz_blocksize;
 891    uint64_t rvbar;
 892
 893    /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
 894    int gic_num_lrs; /* number of list registers */
 895    int gic_vpribits; /* number of virtual priority bits */
 896    int gic_vprebits; /* number of virtual preemption bits */
 897
 898    /* Whether the cfgend input is high (i.e. this CPU should reset into
 899     * big-endian mode).  This setting isn't used directly: instead it modifies
 900     * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
 901     * architecture version.
 902     */
 903    bool cfgend;
 904
 905    QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
 906    QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
 907
 908    int32_t node_id; /* NUMA node this CPU belongs to */
 909
 910    /* Used to synchronize KVM and QEMU in-kernel device levels */
 911    uint8_t device_irq_level;
 912
 913    /* Used to set the maximum vector length the cpu will support.  */
 914    uint32_t sve_max_vq;
 915};
 916
 917static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
 918{
 919    return container_of(env, ARMCPU, env);
 920}
 921
 922void arm_cpu_post_init(Object *obj);
 923
 924uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
 925
 926#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
 927
 928#define ENV_OFFSET offsetof(ARMCPU, env)
 929
 930#ifndef CONFIG_USER_ONLY
 931extern const struct VMStateDescription vmstate_arm_cpu;
 932#endif
 933
 934void arm_cpu_do_interrupt(CPUState *cpu);
 935void arm_v7m_cpu_do_interrupt(CPUState *cpu);
 936bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
 937
 938void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
 939                        int flags);
 940
 941hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
 942                                         MemTxAttrs *attrs);
 943
 944int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
 945int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
 946
 947/* Dynamically generates for gdb stub an XML description of the sysregs from
 948 * the cp_regs hashtable. Returns the registered sysregs number.
 949 */
 950int arm_gen_dynamic_xml(CPUState *cpu);
 951
 952/* Returns the dynamically generated XML for the gdb stub.
 953 * Returns a pointer to the XML contents for the specified XML file or NULL
 954 * if the XML name doesn't match the predefined one.
 955 */
 956const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
 957
 958int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
 959                             int cpuid, void *opaque);
 960int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
 961                             int cpuid, void *opaque);
 962
 963#ifdef TARGET_AARCH64
 964int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
 965int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
 966void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
 967void aarch64_sve_change_el(CPUARMState *env, int old_el,
 968                           int new_el, bool el0_a64);
 969#else
 970static inline void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) { }
 971static inline void aarch64_sve_change_el(CPUARMState *env, int o,
 972                                         int n, bool a)
 973{ }
 974#endif
 975
 976target_ulong do_arm_semihosting(CPUARMState *env);
 977void aarch64_sync_32_to_64(CPUARMState *env);
 978void aarch64_sync_64_to_32(CPUARMState *env);
 979
 980int fp_exception_el(CPUARMState *env, int cur_el);
 981int sve_exception_el(CPUARMState *env, int cur_el);
 982uint32_t sve_zcr_len_for_el(CPUARMState *env, int el);
 983
 984static inline bool is_a64(CPUARMState *env)
 985{
 986    return env->aarch64;
 987}
 988
 989/* you can call this signal handler from your SIGBUS and SIGSEGV
 990   signal handlers to inform the virtual CPU of exceptions. non zero
 991   is returned if the signal was handled by the virtual CPU.  */
 992int cpu_arm_signal_handler(int host_signum, void *pinfo,
 993                           void *puc);
 994
 995/**
 996 * pmu_op_start/finish
 997 * @env: CPUARMState
 998 *
 999 * Convert all PMU counters between their delta form (the typical mode when
1000 * they are enabled) and the guest-visible values. These two calls must
1001 * surround any action which might affect the counters.
1002 */
1003void pmu_op_start(CPUARMState *env);
1004void pmu_op_finish(CPUARMState *env);
1005
1006/*
1007 * Called when a PMU counter is due to overflow
1008 */
1009void arm_pmu_timer_cb(void *opaque);
1010
1011/**
1012 * Functions to register as EL change hooks for PMU mode filtering
1013 */
1014void pmu_pre_el_change(ARMCPU *cpu, void *ignored);
1015void pmu_post_el_change(ARMCPU *cpu, void *ignored);
1016
1017/*
1018 * pmu_init
1019 * @cpu: ARMCPU
1020 *
1021 * Initialize the CPU's PMCEID[01]_EL0 registers and associated internal state
1022 * for the current configuration
1023 */
1024void pmu_init(ARMCPU *cpu);
1025
1026/* SCTLR bit meanings. Several bits have been reused in newer
1027 * versions of the architecture; in that case we define constants
1028 * for both old and new bit meanings. Code which tests against those
1029 * bits should probably check or otherwise arrange that the CPU
1030 * is the architectural version it expects.
1031 */
1032#define SCTLR_M       (1U << 0)
1033#define SCTLR_A       (1U << 1)
1034#define SCTLR_C       (1U << 2)
1035#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
1036#define SCTLR_nTLSMD_32 (1U << 3) /* v8.2-LSMAOC, AArch32 only */
1037#define SCTLR_SA      (1U << 3) /* AArch64 only */
1038#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
1039#define SCTLR_LSMAOE_32 (1U << 4) /* v8.2-LSMAOC, AArch32 only */
1040#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
1041#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
1042#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
1043#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
1044#define SCTLR_nAA     (1U << 6) /* when v8.4-LSE is implemented */
1045#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
1046#define SCTLR_ITD     (1U << 7) /* v8 onward */
1047#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
1048#define SCTLR_SED     (1U << 8) /* v8 onward */
1049#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
1050#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
1051#define SCTLR_F       (1U << 10) /* up to v6 */
1052#define SCTLR_SW      (1U << 10) /* v7 */
1053#define SCTLR_EnRCTX  (1U << 10) /* in v8.0-PredInv */
1054#define SCTLR_Z       (1U << 11) /* in v7, RES1 in v8 */
1055#define SCTLR_EOS     (1U << 11) /* v8.5-ExS */
1056#define SCTLR_I       (1U << 12)
1057#define SCTLR_V       (1U << 13) /* AArch32 only */
1058#define SCTLR_EnDB    (1U << 13) /* v8.3, AArch64 only */
1059#define SCTLR_RR      (1U << 14) /* up to v7 */
1060#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
1061#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
1062#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
1063#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
1064#define SCTLR_nTWI    (1U << 16) /* v8 onward */
1065#define SCTLR_HA      (1U << 17) /* up to v7, RES0 in v8 */
1066#define SCTLR_BR      (1U << 17) /* PMSA only */
1067#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
1068#define SCTLR_nTWE    (1U << 18) /* v8 onward */
1069#define SCTLR_WXN     (1U << 19)
1070#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
1071#define SCTLR_UWXN    (1U << 20) /* v7 onward, AArch32 only */
1072#define SCTLR_FI      (1U << 21) /* up to v7, v8 RES0 */
1073#define SCTLR_IESB    (1U << 21) /* v8.2-IESB, AArch64 only */
1074#define SCTLR_U       (1U << 22) /* up to v6, RAO in v7 */
1075#define SCTLR_EIS     (1U << 22) /* v8.5-ExS */
1076#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
1077#define SCTLR_SPAN    (1U << 23) /* v8.1-PAN */
1078#define SCTLR_VE      (1U << 24) /* up to v7 */
1079#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
1080#define SCTLR_EE      (1U << 25)
1081#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
1082#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
1083#define SCTLR_NMFI    (1U << 27) /* up to v7, RAZ in v7VE and v8 */
1084#define SCTLR_EnDA    (1U << 27) /* v8.3, AArch64 only */
1085#define SCTLR_TRE     (1U << 28) /* AArch32 only */
1086#define SCTLR_nTLSMD_64 (1U << 28) /* v8.2-LSMAOC, AArch64 only */
1087#define SCTLR_AFE     (1U << 29) /* AArch32 only */
1088#define SCTLR_LSMAOE_64 (1U << 29) /* v8.2-LSMAOC, AArch64 only */
1089#define SCTLR_TE      (1U << 30) /* AArch32 only */
1090#define SCTLR_EnIB    (1U << 30) /* v8.3, AArch64 only */
1091#define SCTLR_EnIA    (1U << 31) /* v8.3, AArch64 only */
1092#define SCTLR_BT0     (1ULL << 35) /* v8.5-BTI */
1093#define SCTLR_BT1     (1ULL << 36) /* v8.5-BTI */
1094#define SCTLR_ITFSB   (1ULL << 37) /* v8.5-MemTag */
1095#define SCTLR_TCF0    (3ULL << 38) /* v8.5-MemTag */
1096#define SCTLR_TCF     (3ULL << 40) /* v8.5-MemTag */
1097#define SCTLR_ATA0    (1ULL << 42) /* v8.5-MemTag */
1098#define SCTLR_ATA     (1ULL << 43) /* v8.5-MemTag */
1099#define SCTLR_DSSBS   (1ULL << 44) /* v8.5 */
1100
1101#define CPTR_TCPAC    (1U << 31)
1102#define CPTR_TTA      (1U << 20)
1103#define CPTR_TFP      (1U << 10)
1104#define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
1105#define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
1106
1107#define MDCR_EPMAD    (1U << 21)
1108#define MDCR_EDAD     (1U << 20)
1109#define MDCR_SPME     (1U << 17)  /* MDCR_EL3 */
1110#define MDCR_HPMD     (1U << 17)  /* MDCR_EL2 */
1111#define MDCR_SDD      (1U << 16)
1112#define MDCR_SPD      (3U << 14)
1113#define MDCR_TDRA     (1U << 11)
1114#define MDCR_TDOSA    (1U << 10)
1115#define MDCR_TDA      (1U << 9)
1116#define MDCR_TDE      (1U << 8)
1117#define MDCR_HPME     (1U << 7)
1118#define MDCR_TPM      (1U << 6)
1119#define MDCR_TPMCR    (1U << 5)
1120#define MDCR_HPMN     (0x1fU)
1121
1122/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
1123#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
1124
1125#define CPSR_M (0x1fU)
1126#define CPSR_T (1U << 5)
1127#define CPSR_F (1U << 6)
1128#define CPSR_I (1U << 7)
1129#define CPSR_A (1U << 8)
1130#define CPSR_E (1U << 9)
1131#define CPSR_IT_2_7 (0xfc00U)
1132#define CPSR_GE (0xfU << 16)
1133#define CPSR_IL (1U << 20)
1134/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
1135 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
1136 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
1137 * where it is live state but not accessible to the AArch32 code.
1138 */
1139#define CPSR_RESERVED (0x7U << 21)
1140#define CPSR_J (1U << 24)
1141#define CPSR_IT_0_1 (3U << 25)
1142#define CPSR_Q (1U << 27)
1143#define CPSR_V (1U << 28)
1144#define CPSR_C (1U << 29)
1145#define CPSR_Z (1U << 30)
1146#define CPSR_N (1U << 31)
1147#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
1148#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
1149
1150#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
1151#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
1152    | CPSR_NZCV)
1153/* Bits writable in user mode.  */
1154#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
1155/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
1156#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
1157/* Mask of bits which may be set by exception return copying them from SPSR */
1158#define CPSR_ERET_MASK (~CPSR_RESERVED)
1159
1160/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
1161#define XPSR_EXCP 0x1ffU
1162#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
1163#define XPSR_IT_2_7 CPSR_IT_2_7
1164#define XPSR_GE CPSR_GE
1165#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
1166#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
1167#define XPSR_IT_0_1 CPSR_IT_0_1
1168#define XPSR_Q CPSR_Q
1169#define XPSR_V CPSR_V
1170#define XPSR_C CPSR_C
1171#define XPSR_Z CPSR_Z
1172#define XPSR_N CPSR_N
1173#define XPSR_NZCV CPSR_NZCV
1174#define XPSR_IT CPSR_IT
1175
1176#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
1177#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
1178#define TTBCR_PD0    (1U << 4)
1179#define TTBCR_PD1    (1U << 5)
1180#define TTBCR_EPD0   (1U << 7)
1181#define TTBCR_IRGN0  (3U << 8)
1182#define TTBCR_ORGN0  (3U << 10)
1183#define TTBCR_SH0    (3U << 12)
1184#define TTBCR_T1SZ   (3U << 16)
1185#define TTBCR_A1     (1U << 22)
1186#define TTBCR_EPD1   (1U << 23)
1187#define TTBCR_IRGN1  (3U << 24)
1188#define TTBCR_ORGN1  (3U << 26)
1189#define TTBCR_SH1    (1U << 28)
1190#define TTBCR_EAE    (1U << 31)
1191
1192/* Bit definitions for ARMv8 SPSR (PSTATE) format.
1193 * Only these are valid when in AArch64 mode; in
1194 * AArch32 mode SPSRs are basically CPSR-format.
1195 */
1196#define PSTATE_SP (1U)
1197#define PSTATE_M (0xFU)
1198#define PSTATE_nRW (1U << 4)
1199#define PSTATE_F (1U << 6)
1200#define PSTATE_I (1U << 7)
1201#define PSTATE_A (1U << 8)
1202#define PSTATE_D (1U << 9)
1203#define PSTATE_BTYPE (3U << 10)
1204#define PSTATE_IL (1U << 20)
1205#define PSTATE_SS (1U << 21)
1206#define PSTATE_V (1U << 28)
1207#define PSTATE_C (1U << 29)
1208#define PSTATE_Z (1U << 30)
1209#define PSTATE_N (1U << 31)
1210#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
1211#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
1212#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF | PSTATE_BTYPE)
1213/* Mode values for AArch64 */
1214#define PSTATE_MODE_EL3h 13
1215#define PSTATE_MODE_EL3t 12
1216#define PSTATE_MODE_EL2h 9
1217#define PSTATE_MODE_EL2t 8
1218#define PSTATE_MODE_EL1h 5
1219#define PSTATE_MODE_EL1t 4
1220#define PSTATE_MODE_EL0t 0
1221
1222/* Write a new value to v7m.exception, thus transitioning into or out
1223 * of Handler mode; this may result in a change of active stack pointer.
1224 */
1225void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
1226
1227/* Map EL and handler into a PSTATE_MODE.  */
1228static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
1229{
1230    return (el << 2) | handler;
1231}
1232
1233/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
1234 * interprocessing, so we don't attempt to sync with the cpsr state used by
1235 * the 32 bit decoder.
1236 */
1237static inline uint32_t pstate_read(CPUARMState *env)
1238{
1239    int ZF;
1240
1241    ZF = (env->ZF == 0);
1242    return (env->NF & 0x80000000) | (ZF << 30)
1243        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
1244        | env->pstate | env->daif | (env->btype << 10);
1245}
1246
1247static inline void pstate_write(CPUARMState *env, uint32_t val)
1248{
1249    env->ZF = (~val) & PSTATE_Z;
1250    env->NF = val;
1251    env->CF = (val >> 29) & 1;
1252    env->VF = (val << 3) & 0x80000000;
1253    env->daif = val & PSTATE_DAIF;
1254    env->btype = (val >> 10) & 3;
1255    env->pstate = val & ~CACHED_PSTATE_BITS;
1256}
1257
1258/* Return the current CPSR value.  */
1259uint32_t cpsr_read(CPUARMState *env);
1260
1261typedef enum CPSRWriteType {
1262    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
1263    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
1264    CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
1265    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
1266} CPSRWriteType;
1267
1268/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
1269void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
1270                CPSRWriteType write_type);
1271
1272/* Return the current xPSR value.  */
1273static inline uint32_t xpsr_read(CPUARMState *env)
1274{
1275    int ZF;
1276    ZF = (env->ZF == 0);
1277    return (env->NF & 0x80000000) | (ZF << 30)
1278        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1279        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
1280        | ((env->condexec_bits & 0xfc) << 8)
1281        | env->v7m.exception;
1282}
1283
1284/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
1285static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1286{
1287    if (mask & XPSR_NZCV) {
1288        env->ZF = (~val) & XPSR_Z;
1289        env->NF = val;
1290        env->CF = (val >> 29) & 1;
1291        env->VF = (val << 3) & 0x80000000;
1292    }
1293    if (mask & XPSR_Q) {
1294        env->QF = ((val & XPSR_Q) != 0);
1295    }
1296    if (mask & XPSR_T) {
1297        env->thumb = ((val & XPSR_T) != 0);
1298    }
1299    if (mask & XPSR_IT_0_1) {
1300        env->condexec_bits &= ~3;
1301        env->condexec_bits |= (val >> 25) & 3;
1302    }
1303    if (mask & XPSR_IT_2_7) {
1304        env->condexec_bits &= 3;
1305        env->condexec_bits |= (val >> 8) & 0xfc;
1306    }
1307    if (mask & XPSR_EXCP) {
1308        /* Note that this only happens on exception exit */
1309        write_v7m_exception(env, val & XPSR_EXCP);
1310    }
1311}
1312
1313#define HCR_VM        (1ULL << 0)
1314#define HCR_SWIO      (1ULL << 1)
1315#define HCR_PTW       (1ULL << 2)
1316#define HCR_FMO       (1ULL << 3)
1317#define HCR_IMO       (1ULL << 4)
1318#define HCR_AMO       (1ULL << 5)
1319#define HCR_VF        (1ULL << 6)
1320#define HCR_VI        (1ULL << 7)
1321#define HCR_VSE       (1ULL << 8)
1322#define HCR_FB        (1ULL << 9)
1323#define HCR_BSU_MASK  (3ULL << 10)
1324#define HCR_DC        (1ULL << 12)
1325#define HCR_TWI       (1ULL << 13)
1326#define HCR_TWE       (1ULL << 14)
1327#define HCR_TID0      (1ULL << 15)
1328#define HCR_TID1      (1ULL << 16)
1329#define HCR_TID2      (1ULL << 17)
1330#define HCR_TID3      (1ULL << 18)
1331#define HCR_TSC       (1ULL << 19)
1332#define HCR_TIDCP     (1ULL << 20)
1333#define HCR_TACR      (1ULL << 21)
1334#define HCR_TSW       (1ULL << 22)
1335#define HCR_TPCP      (1ULL << 23)
1336#define HCR_TPU       (1ULL << 24)
1337#define HCR_TTLB      (1ULL << 25)
1338#define HCR_TVM       (1ULL << 26)
1339#define HCR_TGE       (1ULL << 27)
1340#define HCR_TDZ       (1ULL << 28)
1341#define HCR_HCD       (1ULL << 29)
1342#define HCR_TRVM      (1ULL << 30)
1343#define HCR_RW        (1ULL << 31)
1344#define HCR_CD        (1ULL << 32)
1345#define HCR_ID        (1ULL << 33)
1346#define HCR_E2H       (1ULL << 34)
1347#define HCR_TLOR      (1ULL << 35)
1348#define HCR_TERR      (1ULL << 36)
1349#define HCR_TEA       (1ULL << 37)
1350#define HCR_MIOCNCE   (1ULL << 38)
1351#define HCR_APK       (1ULL << 40)
1352#define HCR_API       (1ULL << 41)
1353#define HCR_NV        (1ULL << 42)
1354#define HCR_NV1       (1ULL << 43)
1355#define HCR_AT        (1ULL << 44)
1356#define HCR_NV2       (1ULL << 45)
1357#define HCR_FWB       (1ULL << 46)
1358#define HCR_FIEN      (1ULL << 47)
1359#define HCR_TID4      (1ULL << 49)
1360#define HCR_TICAB     (1ULL << 50)
1361#define HCR_TOCU      (1ULL << 52)
1362#define HCR_TTLBIS    (1ULL << 54)
1363#define HCR_TTLBOS    (1ULL << 55)
1364#define HCR_ATA       (1ULL << 56)
1365#define HCR_DCT       (1ULL << 57)
1366
1367/*
1368 * When we actually implement ARMv8.1-VHE we should add HCR_E2H to
1369 * HCR_MASK and then clear it again if the feature bit is not set in
1370 * hcr_write().
1371 */
1372#define HCR_MASK      ((1ULL << 34) - 1)
1373
1374#define SCR_NS                (1U << 0)
1375#define SCR_IRQ               (1U << 1)
1376#define SCR_FIQ               (1U << 2)
1377#define SCR_EA                (1U << 3)
1378#define SCR_FW                (1U << 4)
1379#define SCR_AW                (1U << 5)
1380#define SCR_NET               (1U << 6)
1381#define SCR_SMD               (1U << 7)
1382#define SCR_HCE               (1U << 8)
1383#define SCR_SIF               (1U << 9)
1384#define SCR_RW                (1U << 10)
1385#define SCR_ST                (1U << 11)
1386#define SCR_TWI               (1U << 12)
1387#define SCR_TWE               (1U << 13)
1388#define SCR_TLOR              (1U << 14)
1389#define SCR_TERR              (1U << 15)
1390#define SCR_APK               (1U << 16)
1391#define SCR_API               (1U << 17)
1392#define SCR_EEL2              (1U << 18)
1393#define SCR_EASE              (1U << 19)
1394#define SCR_NMEA              (1U << 20)
1395#define SCR_FIEN              (1U << 21)
1396#define SCR_ENSCXT            (1U << 25)
1397#define SCR_ATA               (1U << 26)
1398
1399/* Return the current FPSCR value.  */
1400uint32_t vfp_get_fpscr(CPUARMState *env);
1401void vfp_set_fpscr(CPUARMState *env, uint32_t val);
1402
1403/* FPCR, Floating Point Control Register
1404 * FPSR, Floating Poiht Status Register
1405 *
1406 * For A64 the FPSCR is split into two logically distinct registers,
1407 * FPCR and FPSR. However since they still use non-overlapping bits
1408 * we store the underlying state in fpscr and just mask on read/write.
1409 */
1410#define FPSR_MASK 0xf800009f
1411#define FPCR_MASK 0x07ff9f00
1412
1413#define FPCR_IOE    (1 << 8)    /* Invalid Operation exception trap enable */
1414#define FPCR_DZE    (1 << 9)    /* Divide by Zero exception trap enable */
1415#define FPCR_OFE    (1 << 10)   /* Overflow exception trap enable */
1416#define FPCR_UFE    (1 << 11)   /* Underflow exception trap enable */
1417#define FPCR_IXE    (1 << 12)   /* Inexact exception trap enable */
1418#define FPCR_IDE    (1 << 15)   /* Input Denormal exception trap enable */
1419#define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
1420#define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
1421#define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
1422#define FPCR_QC     (1 << 27)   /* Cumulative saturation bit */
1423
1424static inline uint32_t vfp_get_fpsr(CPUARMState *env)
1425{
1426    return vfp_get_fpscr(env) & FPSR_MASK;
1427}
1428
1429static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
1430{
1431    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
1432    vfp_set_fpscr(env, new_fpscr);
1433}
1434
1435static inline uint32_t vfp_get_fpcr(CPUARMState *env)
1436{
1437    return vfp_get_fpscr(env) & FPCR_MASK;
1438}
1439
1440static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
1441{
1442    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
1443    vfp_set_fpscr(env, new_fpscr);
1444}
1445
1446enum arm_cpu_mode {
1447  ARM_CPU_MODE_USR = 0x10,
1448  ARM_CPU_MODE_FIQ = 0x11,
1449  ARM_CPU_MODE_IRQ = 0x12,
1450  ARM_CPU_MODE_SVC = 0x13,
1451  ARM_CPU_MODE_MON = 0x16,
1452  ARM_CPU_MODE_ABT = 0x17,
1453  ARM_CPU_MODE_HYP = 0x1a,
1454  ARM_CPU_MODE_UND = 0x1b,
1455  ARM_CPU_MODE_SYS = 0x1f
1456};
1457
1458/* VFP system registers.  */
1459#define ARM_VFP_FPSID   0
1460#define ARM_VFP_FPSCR   1
1461#define ARM_VFP_MVFR2   5
1462#define ARM_VFP_MVFR1   6
1463#define ARM_VFP_MVFR0   7
1464#define ARM_VFP_FPEXC   8
1465#define ARM_VFP_FPINST  9
1466#define ARM_VFP_FPINST2 10
1467
1468/* iwMMXt coprocessor control registers.  */
1469#define ARM_IWMMXT_wCID  0
1470#define ARM_IWMMXT_wCon  1
1471#define ARM_IWMMXT_wCSSF 2
1472#define ARM_IWMMXT_wCASF 3
1473#define ARM_IWMMXT_wCGR0 8
1474#define ARM_IWMMXT_wCGR1 9
1475#define ARM_IWMMXT_wCGR2 10
1476#define ARM_IWMMXT_wCGR3 11
1477
1478/* V7M CCR bits */
1479FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
1480FIELD(V7M_CCR, USERSETMPEND, 1, 1)
1481FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
1482FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
1483FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
1484FIELD(V7M_CCR, STKALIGN, 9, 1)
1485FIELD(V7M_CCR, STKOFHFNMIGN, 10, 1)
1486FIELD(V7M_CCR, DC, 16, 1)
1487FIELD(V7M_CCR, IC, 17, 1)
1488FIELD(V7M_CCR, BP, 18, 1)
1489
1490/* V7M SCR bits */
1491FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
1492FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
1493FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
1494FIELD(V7M_SCR, SEVONPEND, 4, 1)
1495
1496/* V7M AIRCR bits */
1497FIELD(V7M_AIRCR, VECTRESET, 0, 1)
1498FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
1499FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
1500FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
1501FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
1502FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
1503FIELD(V7M_AIRCR, PRIS, 14, 1)
1504FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
1505FIELD(V7M_AIRCR, VECTKEY, 16, 16)
1506
1507/* V7M CFSR bits for MMFSR */
1508FIELD(V7M_CFSR, IACCVIOL, 0, 1)
1509FIELD(V7M_CFSR, DACCVIOL, 1, 1)
1510FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
1511FIELD(V7M_CFSR, MSTKERR, 4, 1)
1512FIELD(V7M_CFSR, MLSPERR, 5, 1)
1513FIELD(V7M_CFSR, MMARVALID, 7, 1)
1514
1515/* V7M CFSR bits for BFSR */
1516FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
1517FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
1518FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
1519FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
1520FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
1521FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
1522FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
1523
1524/* V7M CFSR bits for UFSR */
1525FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
1526FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
1527FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
1528FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
1529FIELD(V7M_CFSR, STKOF, 16 + 4, 1)
1530FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
1531FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
1532
1533/* V7M CFSR bit masks covering all of the subregister bits */
1534FIELD(V7M_CFSR, MMFSR, 0, 8)
1535FIELD(V7M_CFSR, BFSR, 8, 8)
1536FIELD(V7M_CFSR, UFSR, 16, 16)
1537
1538/* V7M HFSR bits */
1539FIELD(V7M_HFSR, VECTTBL, 1, 1)
1540FIELD(V7M_HFSR, FORCED, 30, 1)
1541FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
1542
1543/* V7M DFSR bits */
1544FIELD(V7M_DFSR, HALTED, 0, 1)
1545FIELD(V7M_DFSR, BKPT, 1, 1)
1546FIELD(V7M_DFSR, DWTTRAP, 2, 1)
1547FIELD(V7M_DFSR, VCATCH, 3, 1)
1548FIELD(V7M_DFSR, EXTERNAL, 4, 1)
1549
1550/* V7M SFSR bits */
1551FIELD(V7M_SFSR, INVEP, 0, 1)
1552FIELD(V7M_SFSR, INVIS, 1, 1)
1553FIELD(V7M_SFSR, INVER, 2, 1)
1554FIELD(V7M_SFSR, AUVIOL, 3, 1)
1555FIELD(V7M_SFSR, INVTRAN, 4, 1)
1556FIELD(V7M_SFSR, LSPERR, 5, 1)
1557FIELD(V7M_SFSR, SFARVALID, 6, 1)
1558FIELD(V7M_SFSR, LSERR, 7, 1)
1559
1560/* v7M MPU_CTRL bits */
1561FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
1562FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
1563FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
1564
1565/* v7M CLIDR bits */
1566FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
1567FIELD(V7M_CLIDR, LOUIS, 21, 3)
1568FIELD(V7M_CLIDR, LOC, 24, 3)
1569FIELD(V7M_CLIDR, LOUU, 27, 3)
1570FIELD(V7M_CLIDR, ICB, 30, 2)
1571
1572FIELD(V7M_CSSELR, IND, 0, 1)
1573FIELD(V7M_CSSELR, LEVEL, 1, 3)
1574/* We use the combination of InD and Level to index into cpu->ccsidr[];
1575 * define a mask for this and check that it doesn't permit running off
1576 * the end of the array.
1577 */
1578FIELD(V7M_CSSELR, INDEX, 0, 4)
1579
1580/*
1581 * System register ID fields.
1582 */
1583FIELD(ID_ISAR0, SWAP, 0, 4)
1584FIELD(ID_ISAR0, BITCOUNT, 4, 4)
1585FIELD(ID_ISAR0, BITFIELD, 8, 4)
1586FIELD(ID_ISAR0, CMPBRANCH, 12, 4)
1587FIELD(ID_ISAR0, COPROC, 16, 4)
1588FIELD(ID_ISAR0, DEBUG, 20, 4)
1589FIELD(ID_ISAR0, DIVIDE, 24, 4)
1590
1591FIELD(ID_ISAR1, ENDIAN, 0, 4)
1592FIELD(ID_ISAR1, EXCEPT, 4, 4)
1593FIELD(ID_ISAR1, EXCEPT_AR, 8, 4)
1594FIELD(ID_ISAR1, EXTEND, 12, 4)
1595FIELD(ID_ISAR1, IFTHEN, 16, 4)
1596FIELD(ID_ISAR1, IMMEDIATE, 20, 4)
1597FIELD(ID_ISAR1, INTERWORK, 24, 4)
1598FIELD(ID_ISAR1, JAZELLE, 28, 4)
1599
1600FIELD(ID_ISAR2, LOADSTORE, 0, 4)
1601FIELD(ID_ISAR2, MEMHINT, 4, 4)
1602FIELD(ID_ISAR2, MULTIACCESSINT, 8, 4)
1603FIELD(ID_ISAR2, MULT, 12, 4)
1604FIELD(ID_ISAR2, MULTS, 16, 4)
1605FIELD(ID_ISAR2, MULTU, 20, 4)
1606FIELD(ID_ISAR2, PSR_AR, 24, 4)
1607FIELD(ID_ISAR2, REVERSAL, 28, 4)
1608
1609FIELD(ID_ISAR3, SATURATE, 0, 4)
1610FIELD(ID_ISAR3, SIMD, 4, 4)
1611FIELD(ID_ISAR3, SVC, 8, 4)
1612FIELD(ID_ISAR3, SYNCHPRIM, 12, 4)
1613FIELD(ID_ISAR3, TABBRANCH, 16, 4)
1614FIELD(ID_ISAR3, T32COPY, 20, 4)
1615FIELD(ID_ISAR3, TRUENOP, 24, 4)
1616FIELD(ID_ISAR3, T32EE, 28, 4)
1617
1618FIELD(ID_ISAR4, UNPRIV, 0, 4)
1619FIELD(ID_ISAR4, WITHSHIFTS, 4, 4)
1620FIELD(ID_ISAR4, WRITEBACK, 8, 4)
1621FIELD(ID_ISAR4, SMC, 12, 4)
1622FIELD(ID_ISAR4, BARRIER, 16, 4)
1623FIELD(ID_ISAR4, SYNCHPRIM_FRAC, 20, 4)
1624FIELD(ID_ISAR4, PSR_M, 24, 4)
1625FIELD(ID_ISAR4, SWP_FRAC, 28, 4)
1626
1627FIELD(ID_ISAR5, SEVL, 0, 4)
1628FIELD(ID_ISAR5, AES, 4, 4)
1629FIELD(ID_ISAR5, SHA1, 8, 4)
1630FIELD(ID_ISAR5, SHA2, 12, 4)
1631FIELD(ID_ISAR5, CRC32, 16, 4)
1632FIELD(ID_ISAR5, RDM, 24, 4)
1633FIELD(ID_ISAR5, VCMA, 28, 4)
1634
1635FIELD(ID_ISAR6, JSCVT, 0, 4)
1636FIELD(ID_ISAR6, DP, 4, 4)
1637FIELD(ID_ISAR6, FHM, 8, 4)
1638FIELD(ID_ISAR6, SB, 12, 4)
1639FIELD(ID_ISAR6, SPECRES, 16, 4)
1640
1641FIELD(ID_MMFR4, SPECSEI, 0, 4)
1642FIELD(ID_MMFR4, AC2, 4, 4)
1643FIELD(ID_MMFR4, XNX, 8, 4)
1644FIELD(ID_MMFR4, CNP, 12, 4)
1645FIELD(ID_MMFR4, HPDS, 16, 4)
1646FIELD(ID_MMFR4, LSM, 20, 4)
1647FIELD(ID_MMFR4, CCIDX, 24, 4)
1648FIELD(ID_MMFR4, EVT, 28, 4)
1649
1650FIELD(ID_AA64ISAR0, AES, 4, 4)
1651FIELD(ID_AA64ISAR0, SHA1, 8, 4)
1652FIELD(ID_AA64ISAR0, SHA2, 12, 4)
1653FIELD(ID_AA64ISAR0, CRC32, 16, 4)
1654FIELD(ID_AA64ISAR0, ATOMIC, 20, 4)
1655FIELD(ID_AA64ISAR0, RDM, 28, 4)
1656FIELD(ID_AA64ISAR0, SHA3, 32, 4)
1657FIELD(ID_AA64ISAR0, SM3, 36, 4)
1658FIELD(ID_AA64ISAR0, SM4, 40, 4)
1659FIELD(ID_AA64ISAR0, DP, 44, 4)
1660FIELD(ID_AA64ISAR0, FHM, 48, 4)
1661FIELD(ID_AA64ISAR0, TS, 52, 4)
1662FIELD(ID_AA64ISAR0, TLB, 56, 4)
1663FIELD(ID_AA64ISAR0, RNDR, 60, 4)
1664
1665FIELD(ID_AA64ISAR1, DPB, 0, 4)
1666FIELD(ID_AA64ISAR1, APA, 4, 4)
1667FIELD(ID_AA64ISAR1, API, 8, 4)
1668FIELD(ID_AA64ISAR1, JSCVT, 12, 4)
1669FIELD(ID_AA64ISAR1, FCMA, 16, 4)
1670FIELD(ID_AA64ISAR1, LRCPC, 20, 4)
1671FIELD(ID_AA64ISAR1, GPA, 24, 4)
1672FIELD(ID_AA64ISAR1, GPI, 28, 4)
1673FIELD(ID_AA64ISAR1, FRINTTS, 32, 4)
1674FIELD(ID_AA64ISAR1, SB, 36, 4)
1675FIELD(ID_AA64ISAR1, SPECRES, 40, 4)
1676
1677FIELD(ID_AA64PFR0, EL0, 0, 4)
1678FIELD(ID_AA64PFR0, EL1, 4, 4)
1679FIELD(ID_AA64PFR0, EL2, 8, 4)
1680FIELD(ID_AA64PFR0, EL3, 12, 4)
1681FIELD(ID_AA64PFR0, FP, 16, 4)
1682FIELD(ID_AA64PFR0, ADVSIMD, 20, 4)
1683FIELD(ID_AA64PFR0, GIC, 24, 4)
1684FIELD(ID_AA64PFR0, RAS, 28, 4)
1685FIELD(ID_AA64PFR0, SVE, 32, 4)
1686
1687FIELD(ID_AA64PFR1, BT, 0, 4)
1688FIELD(ID_AA64PFR1, SBSS, 4, 4)
1689FIELD(ID_AA64PFR1, MTE, 8, 4)
1690FIELD(ID_AA64PFR1, RAS_FRAC, 12, 4)
1691
1692FIELD(ID_AA64MMFR0, PARANGE, 0, 4)
1693FIELD(ID_AA64MMFR0, ASIDBITS, 4, 4)
1694FIELD(ID_AA64MMFR0, BIGEND, 8, 4)
1695FIELD(ID_AA64MMFR0, SNSMEM, 12, 4)
1696FIELD(ID_AA64MMFR0, BIGENDEL0, 16, 4)
1697FIELD(ID_AA64MMFR0, TGRAN16, 20, 4)
1698FIELD(ID_AA64MMFR0, TGRAN64, 24, 4)
1699FIELD(ID_AA64MMFR0, TGRAN4, 28, 4)
1700FIELD(ID_AA64MMFR0, TGRAN16_2, 32, 4)
1701FIELD(ID_AA64MMFR0, TGRAN64_2, 36, 4)
1702FIELD(ID_AA64MMFR0, TGRAN4_2, 40, 4)
1703FIELD(ID_AA64MMFR0, EXS, 44, 4)
1704
1705FIELD(ID_AA64MMFR1, HAFDBS, 0, 4)
1706FIELD(ID_AA64MMFR1, VMIDBITS, 4, 4)
1707FIELD(ID_AA64MMFR1, VH, 8, 4)
1708FIELD(ID_AA64MMFR1, HPDS, 12, 4)
1709FIELD(ID_AA64MMFR1, LO, 16, 4)
1710FIELD(ID_AA64MMFR1, PAN, 20, 4)
1711FIELD(ID_AA64MMFR1, SPECSEI, 24, 4)
1712FIELD(ID_AA64MMFR1, XNX, 28, 4)
1713
1714FIELD(ID_DFR0, COPDBG, 0, 4)
1715FIELD(ID_DFR0, COPSDBG, 4, 4)
1716FIELD(ID_DFR0, MMAPDBG, 8, 4)
1717FIELD(ID_DFR0, COPTRC, 12, 4)
1718FIELD(ID_DFR0, MMAPTRC, 16, 4)
1719FIELD(ID_DFR0, MPROFDBG, 20, 4)
1720FIELD(ID_DFR0, PERFMON, 24, 4)
1721FIELD(ID_DFR0, TRACEFILT, 28, 4)
1722
1723FIELD(MVFR0, SIMDREG, 0, 4)
1724FIELD(MVFR0, FPSP, 4, 4)
1725FIELD(MVFR0, FPDP, 8, 4)
1726FIELD(MVFR0, FPTRAP, 12, 4)
1727FIELD(MVFR0, FPDIVIDE, 16, 4)
1728FIELD(MVFR0, FPSQRT, 20, 4)
1729FIELD(MVFR0, FPSHVEC, 24, 4)
1730FIELD(MVFR0, FPROUND, 28, 4)
1731
1732FIELD(MVFR1, FPFTZ, 0, 4)
1733FIELD(MVFR1, FPDNAN, 4, 4)
1734FIELD(MVFR1, SIMDLS, 8, 4)
1735FIELD(MVFR1, SIMDINT, 12, 4)
1736FIELD(MVFR1, SIMDSP, 16, 4)
1737FIELD(MVFR1, SIMDHP, 20, 4)
1738FIELD(MVFR1, FPHP, 24, 4)
1739FIELD(MVFR1, SIMDFMAC, 28, 4)
1740
1741FIELD(MVFR2, SIMDMISC, 0, 4)
1742FIELD(MVFR2, FPMISC, 4, 4)
1743
1744QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
1745
1746/* If adding a feature bit which corresponds to a Linux ELF
1747 * HWCAP bit, remember to update the feature-bit-to-hwcap
1748 * mapping in linux-user/elfload.c:get_elf_hwcap().
1749 */
1750enum arm_features {
1751    ARM_FEATURE_VFP,
1752    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
1753    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
1754    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
1755    ARM_FEATURE_V6,
1756    ARM_FEATURE_V6K,
1757    ARM_FEATURE_V7,
1758    ARM_FEATURE_THUMB2,
1759    ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
1760    ARM_FEATURE_VFP3,
1761    ARM_FEATURE_NEON,
1762    ARM_FEATURE_M, /* Microcontroller profile.  */
1763    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
1764    ARM_FEATURE_THUMB2EE,
1765    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
1766    ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
1767    ARM_FEATURE_V4T,
1768    ARM_FEATURE_V5,
1769    ARM_FEATURE_STRONGARM,
1770    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
1771    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
1772    ARM_FEATURE_GENERIC_TIMER,
1773    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
1774    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
1775    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
1776    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
1777    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
1778    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
1779    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
1780    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
1781    ARM_FEATURE_V8,
1782    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
1783    ARM_FEATURE_CBAR, /* has cp15 CBAR */
1784    ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
1785    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
1786    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
1787    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
1788    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
1789    ARM_FEATURE_PMU, /* has PMU support */
1790    ARM_FEATURE_VBAR, /* has cp15 VBAR */
1791    ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
1792    ARM_FEATURE_M_MAIN, /* M profile Main Extension */
1793};
1794
1795static inline int arm_feature(CPUARMState *env, int feature)
1796{
1797    return (env->features & (1ULL << feature)) != 0;
1798}
1799
1800#if !defined(CONFIG_USER_ONLY)
1801/* Return true if exception levels below EL3 are in secure state,
1802 * or would be following an exception return to that level.
1803 * Unlike arm_is_secure() (which is always a question about the
1804 * _current_ state of the CPU) this doesn't care about the current
1805 * EL or mode.
1806 */
1807static inline bool arm_is_secure_below_el3(CPUARMState *env)
1808{
1809    if (arm_feature(env, ARM_FEATURE_EL3)) {
1810        return !(env->cp15.scr_el3 & SCR_NS);
1811    } else {
1812        /* If EL3 is not supported then the secure state is implementation
1813         * defined, in which case QEMU defaults to non-secure.
1814         */
1815        return false;
1816    }
1817}
1818
1819/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
1820static inline bool arm_is_el3_or_mon(CPUARMState *env)
1821{
1822    if (arm_feature(env, ARM_FEATURE_EL3)) {
1823        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
1824            /* CPU currently in AArch64 state and EL3 */
1825            return true;
1826        } else if (!is_a64(env) &&
1827                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
1828            /* CPU currently in AArch32 state and monitor mode */
1829            return true;
1830        }
1831    }
1832    return false;
1833}
1834
1835/* Return true if the processor is in secure state */
1836static inline bool arm_is_secure(CPUARMState *env)
1837{
1838    if (arm_is_el3_or_mon(env)) {
1839        return true;
1840    }
1841    return arm_is_secure_below_el3(env);
1842}
1843
1844#else
1845static inline bool arm_is_secure_below_el3(CPUARMState *env)
1846{
1847    return false;
1848}
1849
1850static inline bool arm_is_secure(CPUARMState *env)
1851{
1852    return false;
1853}
1854#endif
1855
1856/**
1857 * arm_hcr_el2_eff(): Return the effective value of HCR_EL2.
1858 * E.g. when in secure state, fields in HCR_EL2 are suppressed,
1859 * "for all purposes other than a direct read or write access of HCR_EL2."
1860 * Not included here is HCR_RW.
1861 */
1862uint64_t arm_hcr_el2_eff(CPUARMState *env);
1863
1864/* Return true if the specified exception level is running in AArch64 state. */
1865static inline bool arm_el_is_aa64(CPUARMState *env, int el)
1866{
1867    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
1868     * and if we're not in EL0 then the state of EL0 isn't well defined.)
1869     */
1870    assert(el >= 1 && el <= 3);
1871    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
1872
1873    /* The highest exception level is always at the maximum supported
1874     * register width, and then lower levels have a register width controlled
1875     * by bits in the SCR or HCR registers.
1876     */
1877    if (el == 3) {
1878        return aa64;
1879    }
1880
1881    if (arm_feature(env, ARM_FEATURE_EL3)) {
1882        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
1883    }
1884
1885    if (el == 2) {
1886        return aa64;
1887    }
1888
1889    if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
1890        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
1891    }
1892
1893    return aa64;
1894}
1895
1896/* Function for determing whether guest cp register reads and writes should
1897 * access the secure or non-secure bank of a cp register.  When EL3 is
1898 * operating in AArch32 state, the NS-bit determines whether the secure
1899 * instance of a cp register should be used. When EL3 is AArch64 (or if
1900 * it doesn't exist at all) then there is no register banking, and all
1901 * accesses are to the non-secure version.
1902 */
1903static inline bool access_secure_reg(CPUARMState *env)
1904{
1905    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
1906                !arm_el_is_aa64(env, 3) &&
1907                !(env->cp15.scr_el3 & SCR_NS));
1908
1909    return ret;
1910}
1911
1912/* Macros for accessing a specified CP register bank */
1913#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
1914    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
1915
1916#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
1917    do {                                                \
1918        if (_secure) {                                   \
1919            (_env)->cp15._regname##_s = (_val);            \
1920        } else {                                        \
1921            (_env)->cp15._regname##_ns = (_val);           \
1922        }                                               \
1923    } while (0)
1924
1925/* Macros for automatically accessing a specific CP register bank depending on
1926 * the current secure state of the system.  These macros are not intended for
1927 * supporting instruction translation reads/writes as these are dependent
1928 * solely on the SCR.NS bit and not the mode.
1929 */
1930#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
1931    A32_BANKED_REG_GET((_env), _regname,                \
1932                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
1933
1934#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
1935    A32_BANKED_REG_SET((_env), _regname,                                    \
1936                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
1937                       (_val))
1938
1939void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
1940uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
1941                                 uint32_t cur_el, bool secure);
1942
1943/* Interface between CPU and Interrupt controller.  */
1944#ifndef CONFIG_USER_ONLY
1945bool armv7m_nvic_can_take_pending_exception(void *opaque);
1946#else
1947static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
1948{
1949    return true;
1950}
1951#endif
1952/**
1953 * armv7m_nvic_set_pending: mark the specified exception as pending
1954 * @opaque: the NVIC
1955 * @irq: the exception number to mark pending
1956 * @secure: false for non-banked exceptions or for the nonsecure
1957 * version of a banked exception, true for the secure version of a banked
1958 * exception.
1959 *
1960 * Marks the specified exception as pending. Note that we will assert()
1961 * if @secure is true and @irq does not specify one of the fixed set
1962 * of architecturally banked exceptions.
1963 */
1964void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
1965/**
1966 * armv7m_nvic_set_pending_derived: mark this derived exception as pending
1967 * @opaque: the NVIC
1968 * @irq: the exception number to mark pending
1969 * @secure: false for non-banked exceptions or for the nonsecure
1970 * version of a banked exception, true for the secure version of a banked
1971 * exception.
1972 *
1973 * Similar to armv7m_nvic_set_pending(), but specifically for derived
1974 * exceptions (exceptions generated in the course of trying to take
1975 * a different exception).
1976 */
1977void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
1978/**
1979 * armv7m_nvic_get_pending_irq_info: return highest priority pending
1980 *    exception, and whether it targets Secure state
1981 * @opaque: the NVIC
1982 * @pirq: set to pending exception number
1983 * @ptargets_secure: set to whether pending exception targets Secure
1984 *
1985 * This function writes the number of the highest priority pending
1986 * exception (the one which would be made active by
1987 * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
1988 * to true if the current highest priority pending exception should
1989 * be taken to Secure state, false for NS.
1990 */
1991void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
1992                                      bool *ptargets_secure);
1993/**
1994 * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
1995 * @opaque: the NVIC
1996 *
1997 * Move the current highest priority pending exception from the pending
1998 * state to the active state, and update v7m.exception to indicate that
1999 * it is the exception currently being handled.
2000 */
2001void armv7m_nvic_acknowledge_irq(void *opaque);
2002/**
2003 * armv7m_nvic_complete_irq: complete specified interrupt or exception
2004 * @opaque: the NVIC
2005 * @irq: the exception number to complete
2006 * @secure: true if this exception was secure
2007 *
2008 * Returns: -1 if the irq was not active
2009 *           1 if completing this irq brought us back to base (no active irqs)
2010 *           0 if there is still an irq active after this one was completed
2011 * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
2012 */
2013int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
2014/**
2015 * armv7m_nvic_raw_execution_priority: return the raw execution priority
2016 * @opaque: the NVIC
2017 *
2018 * Returns: the raw execution priority as defined by the v8M architecture.
2019 * This is the execution priority minus the effects of AIRCR.PRIS,
2020 * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
2021 * (v8M ARM ARM I_PKLD.)
2022 */
2023int armv7m_nvic_raw_execution_priority(void *opaque);
2024/**
2025 * armv7m_nvic_neg_prio_requested: return true if the requested execution
2026 * priority is negative for the specified security state.
2027 * @opaque: the NVIC
2028 * @secure: the security state to test
2029 * This corresponds to the pseudocode IsReqExecPriNeg().
2030 */
2031#ifndef CONFIG_USER_ONLY
2032bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
2033#else
2034static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
2035{
2036    return false;
2037}
2038#endif
2039
2040/* Interface for defining coprocessor registers.
2041 * Registers are defined in tables of arm_cp_reginfo structs
2042 * which are passed to define_arm_cp_regs().
2043 */
2044
2045/* When looking up a coprocessor register we look for it
2046 * via an integer which encodes all of:
2047 *  coprocessor number
2048 *  Crn, Crm, opc1, opc2 fields
2049 *  32 or 64 bit register (ie is it accessed via MRC/MCR
2050 *    or via MRRC/MCRR?)
2051 *  non-secure/secure bank (AArch32 only)
2052 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
2053 * (In this case crn and opc2 should be zero.)
2054 * For AArch64, there is no 32/64 bit size distinction;
2055 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
2056 * and 4 bit CRn and CRm. The encoding patterns are chosen
2057 * to be easy to convert to and from the KVM encodings, and also
2058 * so that the hashtable can contain both AArch32 and AArch64
2059 * registers (to allow for interprocessing where we might run
2060 * 32 bit code on a 64 bit core).
2061 */
2062/* This bit is private to our hashtable cpreg; in KVM register
2063 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
2064 * in the upper bits of the 64 bit ID.
2065 */
2066#define CP_REG_AA64_SHIFT 28
2067#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
2068
2069/* To enable banking of coprocessor registers depending on ns-bit we
2070 * add a bit to distinguish between secure and non-secure cpregs in the
2071 * hashtable.
2072 */
2073#define CP_REG_NS_SHIFT 29
2074#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
2075
2076#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
2077    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
2078     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
2079
2080#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
2081    (CP_REG_AA64_MASK |                                 \
2082     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
2083     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
2084     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
2085     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
2086     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
2087     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
2088
2089/* Convert a full 64 bit KVM register ID to the truncated 32 bit
2090 * version used as a key for the coprocessor register hashtable
2091 */
2092static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
2093{
2094    uint32_t cpregid = kvmid;
2095    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
2096        cpregid |= CP_REG_AA64_MASK;
2097    } else {
2098        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
2099            cpregid |= (1 << 15);
2100        }
2101
2102        /* KVM is always non-secure so add the NS flag on AArch32 register
2103         * entries.
2104         */
2105         cpregid |= 1 << CP_REG_NS_SHIFT;
2106    }
2107    return cpregid;
2108}
2109
2110/* Convert a truncated 32 bit hashtable key into the full
2111 * 64 bit KVM register ID.
2112 */
2113static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
2114{
2115    uint64_t kvmid;
2116
2117    if (cpregid & CP_REG_AA64_MASK) {
2118        kvmid = cpregid & ~CP_REG_AA64_MASK;
2119        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
2120    } else {
2121        kvmid = cpregid & ~(1 << 15);
2122        if (cpregid & (1 << 15)) {
2123            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
2124        } else {
2125            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
2126        }
2127    }
2128    return kvmid;
2129}
2130
2131/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
2132 * special-behaviour cp reg and bits [11..8] indicate what behaviour
2133 * it has. Otherwise it is a simple cp reg, where CONST indicates that
2134 * TCG can assume the value to be constant (ie load at translate time)
2135 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
2136 * indicates that the TB should not be ended after a write to this register
2137 * (the default is that the TB ends after cp writes). OVERRIDE permits
2138 * a register definition to override a previous definition for the
2139 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
2140 * old must have the OVERRIDE bit set.
2141 * ALIAS indicates that this register is an alias view of some underlying
2142 * state which is also visible via another register, and that the other
2143 * register is handling migration and reset; registers marked ALIAS will not be
2144 * migrated but may have their state set by syncing of register state from KVM.
2145 * NO_RAW indicates that this register has no underlying state and does not
2146 * support raw access for state saving/loading; it will not be used for either
2147 * migration or KVM state synchronization. (Typically this is for "registers"
2148 * which are actually used as instructions for cache maintenance and so on.)
2149 * IO indicates that this register does I/O and therefore its accesses
2150 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
2151 * registers which implement clocks or timers require this.
2152 */
2153#define ARM_CP_SPECIAL           0x0001
2154#define ARM_CP_CONST             0x0002
2155#define ARM_CP_64BIT             0x0004
2156#define ARM_CP_SUPPRESS_TB_END   0x0008
2157#define ARM_CP_OVERRIDE          0x0010
2158#define ARM_CP_ALIAS             0x0020
2159#define ARM_CP_IO                0x0040
2160#define ARM_CP_NO_RAW            0x0080
2161#define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
2162#define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
2163#define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
2164#define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
2165#define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
2166#define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
2167#define ARM_CP_FPU               0x1000
2168#define ARM_CP_SVE               0x2000
2169#define ARM_CP_NO_GDB            0x4000
2170/* Used only as a terminator for ARMCPRegInfo lists */
2171#define ARM_CP_SENTINEL          0xffff
2172/* Mask of only the flag bits in a type field */
2173#define ARM_CP_FLAG_MASK         0x70ff
2174
2175/* Valid values for ARMCPRegInfo state field, indicating which of
2176 * the AArch32 and AArch64 execution states this register is visible in.
2177 * If the reginfo doesn't explicitly specify then it is AArch32 only.
2178 * If the reginfo is declared to be visible in both states then a second
2179 * reginfo is synthesised for the AArch32 view of the AArch64 register,
2180 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
2181 * Note that we rely on the values of these enums as we iterate through
2182 * the various states in some places.
2183 */
2184enum {
2185    ARM_CP_STATE_AA32 = 0,
2186    ARM_CP_STATE_AA64 = 1,
2187    ARM_CP_STATE_BOTH = 2,
2188};
2189
2190/* ARM CP register secure state flags.  These flags identify security state
2191 * attributes for a given CP register entry.
2192 * The existence of both or neither secure and non-secure flags indicates that
2193 * the register has both a secure and non-secure hash entry.  A single one of
2194 * these flags causes the register to only be hashed for the specified
2195 * security state.
2196 * Although definitions may have any combination of the S/NS bits, each
2197 * registered entry will only have one to identify whether the entry is secure
2198 * or non-secure.
2199 */
2200enum {
2201    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
2202    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
2203};
2204
2205/* Return true if cptype is a valid type field. This is used to try to
2206 * catch errors where the sentinel has been accidentally left off the end
2207 * of a list of registers.
2208 */
2209static inline bool cptype_valid(int cptype)
2210{
2211    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
2212        || ((cptype & ARM_CP_SPECIAL) &&
2213            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
2214}
2215
2216/* Access rights:
2217 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
2218 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
2219 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
2220 * (ie any of the privileged modes in Secure state, or Monitor mode).
2221 * If a register is accessible in one privilege level it's always accessible
2222 * in higher privilege levels too. Since "Secure PL1" also follows this rule
2223 * (ie anything visible in PL2 is visible in S-PL1, some things are only
2224 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
2225 * terminology a little and call this PL3.
2226 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
2227 * with the ELx exception levels.
2228 *
2229 * If access permissions for a register are more complex than can be
2230 * described with these bits, then use a laxer set of restrictions, and
2231 * do the more restrictive/complex check inside a helper function.
2232 */
2233#define PL3_R 0x80
2234#define PL3_W 0x40
2235#define PL2_R (0x20 | PL3_R)
2236#define PL2_W (0x10 | PL3_W)
2237#define PL1_R (0x08 | PL2_R)
2238#define PL1_W (0x04 | PL2_W)
2239#define PL0_R (0x02 | PL1_R)
2240#define PL0_W (0x01 | PL1_W)
2241
2242/*
2243 * For user-mode some registers are accessible to EL0 via a kernel
2244 * trap-and-emulate ABI. In this case we define the read permissions
2245 * as actually being PL0_R. However some bits of any given register
2246 * may still be masked.
2247 */
2248#ifdef CONFIG_USER_ONLY
2249#define PL0U_R PL0_R
2250#else
2251#define PL0U_R PL1_R
2252#endif
2253
2254#define PL3_RW (PL3_R | PL3_W)
2255#define PL2_RW (PL2_R | PL2_W)
2256#define PL1_RW (PL1_R | PL1_W)
2257#define PL0_RW (PL0_R | PL0_W)
2258
2259/* Return the highest implemented Exception Level */
2260static inline int arm_highest_el(CPUARMState *env)
2261{
2262    if (arm_feature(env, ARM_FEATURE_EL3)) {
2263        return 3;
2264    }
2265    if (arm_feature(env, ARM_FEATURE_EL2)) {
2266        return 2;
2267    }
2268    return 1;
2269}
2270
2271/* Return true if a v7M CPU is in Handler mode */
2272static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
2273{
2274    return env->v7m.exception != 0;
2275}
2276
2277/* Return the current Exception Level (as per ARMv8; note that this differs
2278 * from the ARMv7 Privilege Level).
2279 */
2280static inline int arm_current_el(CPUARMState *env)
2281{
2282    if (arm_feature(env, ARM_FEATURE_M)) {
2283        return arm_v7m_is_handler_mode(env) ||
2284            !(env->v7m.control[env->v7m.secure] & 1);
2285    }
2286
2287    if (is_a64(env)) {
2288        return extract32(env->pstate, 2, 2);
2289    }
2290
2291    switch (env->uncached_cpsr & 0x1f) {
2292    case ARM_CPU_MODE_USR:
2293        return 0;
2294    case ARM_CPU_MODE_HYP:
2295        return 2;
2296    case ARM_CPU_MODE_MON:
2297        return 3;
2298    default:
2299        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
2300            /* If EL3 is 32-bit then all secure privileged modes run in
2301             * EL3
2302             */
2303            return 3;
2304        }
2305
2306        return 1;
2307    }
2308}
2309
2310typedef struct ARMCPRegInfo ARMCPRegInfo;
2311
2312typedef enum CPAccessResult {
2313    /* Access is permitted */
2314    CP_ACCESS_OK = 0,
2315    /* Access fails due to a configurable trap or enable which would
2316     * result in a categorized exception syndrome giving information about
2317     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
2318     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
2319     * PL1 if in EL0, otherwise to the current EL).
2320     */
2321    CP_ACCESS_TRAP = 1,
2322    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
2323     * Note that this is not a catch-all case -- the set of cases which may
2324     * result in this failure is specifically defined by the architecture.
2325     */
2326    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
2327    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
2328    CP_ACCESS_TRAP_EL2 = 3,
2329    CP_ACCESS_TRAP_EL3 = 4,
2330    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
2331    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
2332    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
2333    /* Access fails and results in an exception syndrome for an FP access,
2334     * trapped directly to EL2 or EL3
2335     */
2336    CP_ACCESS_TRAP_FP_EL2 = 7,
2337    CP_ACCESS_TRAP_FP_EL3 = 8,
2338} CPAccessResult;
2339
2340/* Access functions for coprocessor registers. These cannot fail and
2341 * may not raise exceptions.
2342 */
2343typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2344typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
2345                       uint64_t value);
2346/* Access permission check functions for coprocessor registers. */
2347typedef CPAccessResult CPAccessFn(CPUARMState *env,
2348                                  const ARMCPRegInfo *opaque,
2349                                  bool isread);
2350/* Hook function for register reset */
2351typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
2352
2353#define CP_ANY 0xff
2354
2355/* Definition of an ARM coprocessor register */
2356struct ARMCPRegInfo {
2357    /* Name of register (useful mainly for debugging, need not be unique) */
2358    const char *name;
2359    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
2360     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
2361     * 'wildcard' field -- any value of that field in the MRC/MCR insn
2362     * will be decoded to this register. The register read and write
2363     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
2364     * used by the program, so it is possible to register a wildcard and
2365     * then behave differently on read/write if necessary.
2366     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
2367     * must both be zero.
2368     * For AArch64-visible registers, opc0 is also used.
2369     * Since there are no "coprocessors" in AArch64, cp is purely used as a
2370     * way to distinguish (for KVM's benefit) guest-visible system registers
2371     * from demuxed ones provided to preserve the "no side effects on
2372     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
2373     * visible (to match KVM's encoding); cp==0 will be converted to
2374     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
2375     */
2376    uint8_t cp;
2377    uint8_t crn;
2378    uint8_t crm;
2379    uint8_t opc0;
2380    uint8_t opc1;
2381    uint8_t opc2;
2382    /* Execution state in which this register is visible: ARM_CP_STATE_* */
2383    int state;
2384    /* Register type: ARM_CP_* bits/values */
2385    int type;
2386    /* Access rights: PL*_[RW] */
2387    int access;
2388    /* Security state: ARM_CP_SECSTATE_* bits/values */
2389    int secure;
2390    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
2391     * this register was defined: can be used to hand data through to the
2392     * register read/write functions, since they are passed the ARMCPRegInfo*.
2393     */
2394    void *opaque;
2395    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
2396     * fieldoffset is non-zero, the reset value of the register.
2397     */
2398    uint64_t resetvalue;
2399    /* Offset of the field in CPUARMState for this register.
2400     *
2401     * This is not needed if either:
2402     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
2403     *  2. both readfn and writefn are specified
2404     */
2405    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
2406
2407    /* Offsets of the secure and non-secure fields in CPUARMState for the
2408     * register if it is banked.  These fields are only used during the static
2409     * registration of a register.  During hashing the bank associated
2410     * with a given security state is copied to fieldoffset which is used from
2411     * there on out.
2412     *
2413     * It is expected that register definitions use either fieldoffset or
2414     * bank_fieldoffsets in the definition but not both.  It is also expected
2415     * that both bank offsets are set when defining a banked register.  This
2416     * use indicates that a register is banked.
2417     */
2418    ptrdiff_t bank_fieldoffsets[2];
2419
2420    /* Function for making any access checks for this register in addition to
2421     * those specified by the 'access' permissions bits. If NULL, no extra
2422     * checks required. The access check is performed at runtime, not at
2423     * translate time.
2424     */
2425    CPAccessFn *accessfn;
2426    /* Function for handling reads of this register. If NULL, then reads
2427     * will be done by loading from the offset into CPUARMState specified
2428     * by fieldoffset.
2429     */
2430    CPReadFn *readfn;
2431    /* Function for handling writes of this register. If NULL, then writes
2432     * will be done by writing to the offset into CPUARMState specified
2433     * by fieldoffset.
2434     */
2435    CPWriteFn *writefn;
2436    /* Function for doing a "raw" read; used when we need to copy
2437     * coprocessor state to the kernel for KVM or out for
2438     * migration. This only needs to be provided if there is also a
2439     * readfn and it has side effects (for instance clear-on-read bits).
2440     */
2441    CPReadFn *raw_readfn;
2442    /* Function for doing a "raw" write; used when we need to copy KVM
2443     * kernel coprocessor state into userspace, or for inbound
2444     * migration. This only needs to be provided if there is also a
2445     * writefn and it masks out "unwritable" bits or has write-one-to-clear
2446     * or similar behaviour.
2447     */
2448    CPWriteFn *raw_writefn;
2449    /* Function for resetting the register. If NULL, then reset will be done
2450     * by writing resetvalue to the field specified in fieldoffset. If
2451     * fieldoffset is 0 then no reset will be done.
2452     */
2453    CPResetFn *resetfn;
2454};
2455
2456/* Macros which are lvalues for the field in CPUARMState for the
2457 * ARMCPRegInfo *ri.
2458 */
2459#define CPREG_FIELD32(env, ri) \
2460    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
2461#define CPREG_FIELD64(env, ri) \
2462    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
2463
2464#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
2465
2466void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
2467                                    const ARMCPRegInfo *regs, void *opaque);
2468void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
2469                                       const ARMCPRegInfo *regs, void *opaque);
2470static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
2471{
2472    define_arm_cp_regs_with_opaque(cpu, regs, 0);
2473}
2474static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
2475{
2476    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
2477}
2478const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
2479
2480/*
2481 * Definition of an ARM co-processor register as viewed from
2482 * userspace. This is used for presenting sanitised versions of
2483 * registers to userspace when emulating the Linux AArch64 CPU
2484 * ID/feature ABI (advertised as HWCAP_CPUID).
2485 */
2486typedef struct ARMCPRegUserSpaceInfo {
2487    /* Name of register */
2488    const char *name;
2489
2490    /* Is the name actually a glob pattern */
2491    bool is_glob;
2492
2493    /* Only some bits are exported to user space */
2494    uint64_t exported_bits;
2495
2496    /* Fixed bits are applied after the mask */
2497    uint64_t fixed_bits;
2498} ARMCPRegUserSpaceInfo;
2499
2500#define REGUSERINFO_SENTINEL { .name = NULL }
2501
2502void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods);
2503
2504/* CPWriteFn that can be used to implement writes-ignored behaviour */
2505void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
2506                         uint64_t value);
2507/* CPReadFn that can be used for read-as-zero behaviour */
2508uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
2509
2510/* CPResetFn that does nothing, for use if no reset is required even
2511 * if fieldoffset is non zero.
2512 */
2513void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
2514
2515/* Return true if this reginfo struct's field in the cpu state struct
2516 * is 64 bits wide.
2517 */
2518static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
2519{
2520    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
2521}
2522
2523static inline bool cp_access_ok(int current_el,
2524                                const ARMCPRegInfo *ri, int isread)
2525{
2526    return (ri->access >> ((current_el * 2) + isread)) & 1;
2527}
2528
2529/* Raw read of a coprocessor register (as needed for migration, etc) */
2530uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
2531
2532/**
2533 * write_list_to_cpustate
2534 * @cpu: ARMCPU
2535 *
2536 * For each register listed in the ARMCPU cpreg_indexes list, write
2537 * its value from the cpreg_values list into the ARMCPUState structure.
2538 * This updates TCG's working data structures from KVM data or
2539 * from incoming migration state.
2540 *
2541 * Returns: true if all register values were updated correctly,
2542 * false if some register was unknown or could not be written.
2543 * Note that we do not stop early on failure -- we will attempt
2544 * writing all registers in the list.
2545 */
2546bool write_list_to_cpustate(ARMCPU *cpu);
2547
2548/**
2549 * write_cpustate_to_list:
2550 * @cpu: ARMCPU
2551 *
2552 * For each register listed in the ARMCPU cpreg_indexes list, write
2553 * its value from the ARMCPUState structure into the cpreg_values list.
2554 * This is used to copy info from TCG's working data structures into
2555 * KVM or for outbound migration.
2556 *
2557 * Returns: true if all register values were read correctly,
2558 * false if some register was unknown or could not be read.
2559 * Note that we do not stop early on failure -- we will attempt
2560 * reading all registers in the list.
2561 */
2562bool write_cpustate_to_list(ARMCPU *cpu);
2563
2564#define ARM_CPUID_TI915T      0x54029152
2565#define ARM_CPUID_TI925T      0x54029252
2566
2567#if defined(CONFIG_USER_ONLY)
2568#define TARGET_PAGE_BITS 12
2569#else
2570/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
2571 * have to support 1K tiny pages.
2572 */
2573#define TARGET_PAGE_BITS_VARY
2574#define TARGET_PAGE_BITS_MIN 10
2575#endif
2576
2577#if defined(TARGET_AARCH64)
2578#  define TARGET_PHYS_ADDR_SPACE_BITS 48
2579#  define TARGET_VIRT_ADDR_SPACE_BITS 48
2580#else
2581#  define TARGET_PHYS_ADDR_SPACE_BITS 40
2582#  define TARGET_VIRT_ADDR_SPACE_BITS 32
2583#endif
2584
2585static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
2586                                     unsigned int target_el)
2587{
2588    CPUARMState *env = cs->env_ptr;
2589    unsigned int cur_el = arm_current_el(env);
2590    bool secure = arm_is_secure(env);
2591    bool pstate_unmasked;
2592    int8_t unmasked = 0;
2593    uint64_t hcr_el2;
2594
2595    /* Don't take exceptions if they target a lower EL.
2596     * This check should catch any exceptions that would not be taken but left
2597     * pending.
2598     */
2599    if (cur_el > target_el) {
2600        return false;
2601    }
2602
2603    hcr_el2 = arm_hcr_el2_eff(env);
2604
2605    switch (excp_idx) {
2606    case EXCP_FIQ:
2607        pstate_unmasked = !(env->daif & PSTATE_F);
2608        break;
2609
2610    case EXCP_IRQ:
2611        pstate_unmasked = !(env->daif & PSTATE_I);
2612        break;
2613
2614    case EXCP_VFIQ:
2615        if (secure || !(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
2616            /* VFIQs are only taken when hypervized and non-secure.  */
2617            return false;
2618        }
2619        return !(env->daif & PSTATE_F);
2620    case EXCP_VIRQ:
2621        if (secure || !(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
2622            /* VIRQs are only taken when hypervized and non-secure.  */
2623            return false;
2624        }
2625        return !(env->daif & PSTATE_I);
2626    default:
2627        g_assert_not_reached();
2628    }
2629
2630    /* Use the target EL, current execution state and SCR/HCR settings to
2631     * determine whether the corresponding CPSR bit is used to mask the
2632     * interrupt.
2633     */
2634    if ((target_el > cur_el) && (target_el != 1)) {
2635        /* Exceptions targeting a higher EL may not be maskable */
2636        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
2637            /* 64-bit masking rules are simple: exceptions to EL3
2638             * can't be masked, and exceptions to EL2 can only be
2639             * masked from Secure state. The HCR and SCR settings
2640             * don't affect the masking logic, only the interrupt routing.
2641             */
2642            if (target_el == 3 || !secure) {
2643                unmasked = 1;
2644            }
2645        } else {
2646            /* The old 32-bit-only environment has a more complicated
2647             * masking setup. HCR and SCR bits not only affect interrupt
2648             * routing but also change the behaviour of masking.
2649             */
2650            bool hcr, scr;
2651
2652            switch (excp_idx) {
2653            case EXCP_FIQ:
2654                /* If FIQs are routed to EL3 or EL2 then there are cases where
2655                 * we override the CPSR.F in determining if the exception is
2656                 * masked or not. If neither of these are set then we fall back
2657                 * to the CPSR.F setting otherwise we further assess the state
2658                 * below.
2659                 */
2660                hcr = hcr_el2 & HCR_FMO;
2661                scr = (env->cp15.scr_el3 & SCR_FIQ);
2662
2663                /* When EL3 is 32-bit, the SCR.FW bit controls whether the
2664                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
2665                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
2666                 * when non-secure but only when FIQs are only routed to EL3.
2667                 */
2668                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
2669                break;
2670            case EXCP_IRQ:
2671                /* When EL3 execution state is 32-bit, if HCR.IMO is set then
2672                 * we may override the CPSR.I masking when in non-secure state.
2673                 * The SCR.IRQ setting has already been taken into consideration
2674                 * when setting the target EL, so it does not have a further
2675                 * affect here.
2676                 */
2677                hcr = hcr_el2 & HCR_IMO;
2678                scr = false;
2679                break;
2680            default:
2681                g_assert_not_reached();
2682            }
2683
2684            if ((scr || hcr) && !secure) {
2685                unmasked = 1;
2686            }
2687        }
2688    }
2689
2690    /* The PSTATE bits only mask the interrupt if we have not overriden the
2691     * ability above.
2692     */
2693    return unmasked || pstate_unmasked;
2694}
2695
2696#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
2697#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
2698#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
2699
2700#define cpu_signal_handler cpu_arm_signal_handler
2701#define cpu_list arm_cpu_list
2702
2703/* ARM has the following "translation regimes" (as the ARM ARM calls them):
2704 *
2705 * If EL3 is 64-bit:
2706 *  + NonSecure EL1 & 0 stage 1
2707 *  + NonSecure EL1 & 0 stage 2
2708 *  + NonSecure EL2
2709 *  + Secure EL1 & EL0
2710 *  + Secure EL3
2711 * If EL3 is 32-bit:
2712 *  + NonSecure PL1 & 0 stage 1
2713 *  + NonSecure PL1 & 0 stage 2
2714 *  + NonSecure PL2
2715 *  + Secure PL0 & PL1
2716 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
2717 *
2718 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
2719 *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
2720 *     may differ in access permissions even if the VA->PA map is the same
2721 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
2722 *     translation, which means that we have one mmu_idx that deals with two
2723 *     concatenated translation regimes [this sort of combined s1+2 TLB is
2724 *     architecturally permitted]
2725 *  3. we don't need to allocate an mmu_idx to translations that we won't be
2726 *     handling via the TLB. The only way to do a stage 1 translation without
2727 *     the immediate stage 2 translation is via the ATS or AT system insns,
2728 *     which can be slow-pathed and always do a page table walk.
2729 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
2730 *     translation regimes, because they map reasonably well to each other
2731 *     and they can't both be active at the same time.
2732 * This gives us the following list of mmu_idx values:
2733 *
2734 * NS EL0 (aka NS PL0) stage 1+2
2735 * NS EL1 (aka NS PL1) stage 1+2
2736 * NS EL2 (aka NS PL2)
2737 * S EL3 (aka S PL1)
2738 * S EL0 (aka S PL0)
2739 * S EL1 (not used if EL3 is 32 bit)
2740 * NS EL0+1 stage 2
2741 *
2742 * (The last of these is an mmu_idx because we want to be able to use the TLB
2743 * for the accesses done as part of a stage 1 page table walk, rather than
2744 * having to walk the stage 2 page table over and over.)
2745 *
2746 * R profile CPUs have an MPU, but can use the same set of MMU indexes
2747 * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
2748 * NS EL2 if we ever model a Cortex-R52).
2749 *
2750 * M profile CPUs are rather different as they do not have a true MMU.
2751 * They have the following different MMU indexes:
2752 *  User
2753 *  Privileged
2754 *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
2755 *  Privileged, execution priority negative (ditto)
2756 * If the CPU supports the v8M Security Extension then there are also:
2757 *  Secure User
2758 *  Secure Privileged
2759 *  Secure User, execution priority negative
2760 *  Secure Privileged, execution priority negative
2761 *
2762 * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
2763 * are not quite the same -- different CPU types (most notably M profile
2764 * vs A/R profile) would like to use MMU indexes with different semantics,
2765 * but since we don't ever need to use all of those in a single CPU we
2766 * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
2767 * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
2768 * the same for any particular CPU.
2769 * Variables of type ARMMUIdx are always full values, and the core
2770 * index values are in variables of type 'int'.
2771 *
2772 * Our enumeration includes at the end some entries which are not "true"
2773 * mmu_idx values in that they don't have corresponding TLBs and are only
2774 * valid for doing slow path page table walks.
2775 *
2776 * The constant names here are patterned after the general style of the names
2777 * of the AT/ATS operations.
2778 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
2779 * For M profile we arrange them to have a bit for priv, a bit for negpri
2780 * and a bit for secure.
2781 */
2782#define ARM_MMU_IDX_A 0x10 /* A profile */
2783#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
2784#define ARM_MMU_IDX_M 0x40 /* M profile */
2785
2786/* meanings of the bits for M profile mmu idx values */
2787#define ARM_MMU_IDX_M_PRIV 0x1
2788#define ARM_MMU_IDX_M_NEGPRI 0x2
2789#define ARM_MMU_IDX_M_S 0x4
2790
2791#define ARM_MMU_IDX_TYPE_MASK (~0x7)
2792#define ARM_MMU_IDX_COREIDX_MASK 0x7
2793
2794typedef enum ARMMMUIdx {
2795    ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
2796    ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
2797    ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
2798    ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
2799    ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
2800    ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
2801    ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
2802    ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
2803    ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
2804    ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
2805    ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
2806    ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
2807    ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
2808    ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
2809    ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
2810    /* Indexes below here don't have TLBs and are used only for AT system
2811     * instructions or for the first stage of an S12 page table walk.
2812     */
2813    ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
2814    ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
2815} ARMMMUIdx;
2816
2817/* Bit macros for the core-mmu-index values for each index,
2818 * for use when calling tlb_flush_by_mmuidx() and friends.
2819 */
2820typedef enum ARMMMUIdxBit {
2821    ARMMMUIdxBit_S12NSE0 = 1 << 0,
2822    ARMMMUIdxBit_S12NSE1 = 1 << 1,
2823    ARMMMUIdxBit_S1E2 = 1 << 2,
2824    ARMMMUIdxBit_S1E3 = 1 << 3,
2825    ARMMMUIdxBit_S1SE0 = 1 << 4,
2826    ARMMMUIdxBit_S1SE1 = 1 << 5,
2827    ARMMMUIdxBit_S2NS = 1 << 6,
2828    ARMMMUIdxBit_MUser = 1 << 0,
2829    ARMMMUIdxBit_MPriv = 1 << 1,
2830    ARMMMUIdxBit_MUserNegPri = 1 << 2,
2831    ARMMMUIdxBit_MPrivNegPri = 1 << 3,
2832    ARMMMUIdxBit_MSUser = 1 << 4,
2833    ARMMMUIdxBit_MSPriv = 1 << 5,
2834    ARMMMUIdxBit_MSUserNegPri = 1 << 6,
2835    ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
2836} ARMMMUIdxBit;
2837
2838#define MMU_USER_IDX 0
2839
2840static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
2841{
2842    return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
2843}
2844
2845static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
2846{
2847    if (arm_feature(env, ARM_FEATURE_M)) {
2848        return mmu_idx | ARM_MMU_IDX_M;
2849    } else {
2850        return mmu_idx | ARM_MMU_IDX_A;
2851    }
2852}
2853
2854/* Return the exception level we're running at if this is our mmu_idx */
2855static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
2856{
2857    switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
2858    case ARM_MMU_IDX_A:
2859        return mmu_idx & 3;
2860    case ARM_MMU_IDX_M:
2861        return mmu_idx & ARM_MMU_IDX_M_PRIV;
2862    default:
2863        g_assert_not_reached();
2864    }
2865}
2866
2867/* Return the MMU index for a v7M CPU in the specified security and
2868 * privilege state.
2869 */
2870ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
2871                                                bool secstate, bool priv);
2872
2873/* Return the MMU index for a v7M CPU in the specified security state */
2874ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
2875
2876/**
2877 * cpu_mmu_index:
2878 * @env: The cpu environment
2879 * @ifetch: True for code access, false for data access.
2880 *
2881 * Return the core mmu index for the current translation regime.
2882 * This function is used by generic TCG code paths.
2883 */
2884int cpu_mmu_index(CPUARMState *env, bool ifetch);
2885
2886/* Indexes used when registering address spaces with cpu_address_space_init */
2887typedef enum ARMASIdx {
2888    ARMASIdx_NS = 0,
2889    ARMASIdx_S = 1,
2890} ARMASIdx;
2891
2892/* Return the Exception Level targeted by debug exceptions. */
2893static inline int arm_debug_target_el(CPUARMState *env)
2894{
2895    bool secure = arm_is_secure(env);
2896    bool route_to_el2 = false;
2897
2898    if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
2899        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
2900                       env->cp15.mdcr_el2 & MDCR_TDE;
2901    }
2902
2903    if (route_to_el2) {
2904        return 2;
2905    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
2906               !arm_el_is_aa64(env, 3) && secure) {
2907        return 3;
2908    } else {
2909        return 1;
2910    }
2911}
2912
2913static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
2914{
2915    /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
2916     * CSSELR is RAZ/WI.
2917     */
2918    return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
2919}
2920
2921/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
2922static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
2923{
2924    int cur_el = arm_current_el(env);
2925    int debug_el;
2926
2927    if (cur_el == 3) {
2928        return false;
2929    }
2930
2931    /* MDCR_EL3.SDD disables debug events from Secure state */
2932    if (arm_is_secure_below_el3(env)
2933        && extract32(env->cp15.mdcr_el3, 16, 1)) {
2934        return false;
2935    }
2936
2937    /*
2938     * Same EL to same EL debug exceptions need MDSCR_KDE enabled
2939     * while not masking the (D)ebug bit in DAIF.
2940     */
2941    debug_el = arm_debug_target_el(env);
2942
2943    if (cur_el == debug_el) {
2944        return extract32(env->cp15.mdscr_el1, 13, 1)
2945            && !(env->daif & PSTATE_D);
2946    }
2947
2948    /* Otherwise the debug target needs to be a higher EL */
2949    return debug_el > cur_el;
2950}
2951
2952static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
2953{
2954    int el = arm_current_el(env);
2955
2956    if (el == 0 && arm_el_is_aa64(env, 1)) {
2957        return aa64_generate_debug_exceptions(env);
2958    }
2959
2960    if (arm_is_secure(env)) {
2961        int spd;
2962
2963        if (el == 0 && (env->cp15.sder & 1)) {
2964            /* SDER.SUIDEN means debug exceptions from Secure EL0
2965             * are always enabled. Otherwise they are controlled by
2966             * SDCR.SPD like those from other Secure ELs.
2967             */
2968            return true;
2969        }
2970
2971        spd = extract32(env->cp15.mdcr_el3, 14, 2);
2972        switch (spd) {
2973        case 1:
2974            /* SPD == 0b01 is reserved, but behaves as 0b00. */
2975        case 0:
2976            /* For 0b00 we return true if external secure invasive debug
2977             * is enabled. On real hardware this is controlled by external
2978             * signals to the core. QEMU always permits debug, and behaves
2979             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
2980             */
2981            return true;
2982        case 2:
2983            return false;
2984        case 3:
2985            return true;
2986        }
2987    }
2988
2989    return el != 2;
2990}
2991
2992/* Return true if debugging exceptions are currently enabled.
2993 * This corresponds to what in ARM ARM pseudocode would be
2994 *    if UsingAArch32() then
2995 *        return AArch32.GenerateDebugExceptions()
2996 *    else
2997 *        return AArch64.GenerateDebugExceptions()
2998 * We choose to push the if() down into this function for clarity,
2999 * since the pseudocode has it at all callsites except for the one in
3000 * CheckSoftwareStep(), where it is elided because both branches would
3001 * always return the same value.
3002 */
3003static inline bool arm_generate_debug_exceptions(CPUARMState *env)
3004{
3005    if (env->aarch64) {
3006        return aa64_generate_debug_exceptions(env);
3007    } else {
3008        return aa32_generate_debug_exceptions(env);
3009    }
3010}
3011
3012/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
3013 * implicitly means this always returns false in pre-v8 CPUs.)
3014 */
3015static inline bool arm_singlestep_active(CPUARMState *env)
3016{
3017    return extract32(env->cp15.mdscr_el1, 0, 1)
3018        && arm_el_is_aa64(env, arm_debug_target_el(env))
3019        && arm_generate_debug_exceptions(env);
3020}
3021
3022static inline bool arm_sctlr_b(CPUARMState *env)
3023{
3024    return
3025        /* We need not implement SCTLR.ITD in user-mode emulation, so
3026         * let linux-user ignore the fact that it conflicts with SCTLR_B.
3027         * This lets people run BE32 binaries with "-cpu any".
3028         */
3029#ifndef CONFIG_USER_ONLY
3030        !arm_feature(env, ARM_FEATURE_V7) &&
3031#endif
3032        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
3033}
3034
3035static inline uint64_t arm_sctlr(CPUARMState *env, int el)
3036{
3037    if (el == 0) {
3038        /* FIXME: ARMv8.1-VHE S2 translation regime.  */
3039        return env->cp15.sctlr_el[1];
3040    } else {
3041        return env->cp15.sctlr_el[el];
3042    }
3043}
3044
3045
3046/* Return true if the processor is in big-endian mode. */
3047static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
3048{
3049    /* In 32bit endianness is determined by looking at CPSR's E bit */
3050    if (!is_a64(env)) {
3051        return
3052#ifdef CONFIG_USER_ONLY
3053            /* In system mode, BE32 is modelled in line with the
3054             * architecture (as word-invariant big-endianness), where loads
3055             * and stores are done little endian but from addresses which
3056             * are adjusted by XORing with the appropriate constant. So the
3057             * endianness to use for the raw data access is not affected by
3058             * SCTLR.B.
3059             * In user mode, however, we model BE32 as byte-invariant
3060             * big-endianness (because user-only code cannot tell the
3061             * difference), and so we need to use a data access endianness
3062             * that depends on SCTLR.B.
3063             */
3064            arm_sctlr_b(env) ||
3065#endif
3066                ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
3067    } else {
3068        int cur_el = arm_current_el(env);
3069        uint64_t sctlr = arm_sctlr(env, cur_el);
3070
3071        return (sctlr & (cur_el ? SCTLR_EE : SCTLR_E0E)) != 0;
3072    }
3073}
3074
3075#include "exec/cpu-all.h"
3076
3077/* Bit usage in the TB flags field: bit 31 indicates whether we are
3078 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
3079 * We put flags which are shared between 32 and 64 bit mode at the top
3080 * of the word, and flags which apply to only one mode at the bottom.
3081 */
3082FIELD(TBFLAG_ANY, AARCH64_STATE, 31, 1)
3083FIELD(TBFLAG_ANY, MMUIDX, 28, 3)
3084FIELD(TBFLAG_ANY, SS_ACTIVE, 27, 1)
3085FIELD(TBFLAG_ANY, PSTATE_SS, 26, 1)
3086/* Target EL if we take a floating-point-disabled exception */
3087FIELD(TBFLAG_ANY, FPEXC_EL, 24, 2)
3088FIELD(TBFLAG_ANY, BE_DATA, 23, 1)
3089
3090/* Bit usage when in AArch32 state: */
3091FIELD(TBFLAG_A32, THUMB, 0, 1)
3092FIELD(TBFLAG_A32, VECLEN, 1, 3)
3093FIELD(TBFLAG_A32, VECSTRIDE, 4, 2)
3094FIELD(TBFLAG_A32, VFPEN, 7, 1)
3095FIELD(TBFLAG_A32, CONDEXEC, 8, 8)
3096FIELD(TBFLAG_A32, SCTLR_B, 16, 1)
3097/* We store the bottom two bits of the CPAR as TB flags and handle
3098 * checks on the other bits at runtime
3099 */
3100FIELD(TBFLAG_A32, XSCALE_CPAR, 17, 2)
3101/* Indicates whether cp register reads and writes by guest code should access
3102 * the secure or nonsecure bank of banked registers; note that this is not
3103 * the same thing as the current security state of the processor!
3104 */
3105FIELD(TBFLAG_A32, NS, 19, 1)
3106/* For M profile only, Handler (ie not Thread) mode */
3107FIELD(TBFLAG_A32, HANDLER, 21, 1)
3108/* For M profile only, whether we should generate stack-limit checks */
3109FIELD(TBFLAG_A32, STACKCHECK, 22, 1)
3110
3111/* Bit usage when in AArch64 state */
3112FIELD(TBFLAG_A64, TBII, 0, 2)
3113FIELD(TBFLAG_A64, SVEEXC_EL, 2, 2)
3114FIELD(TBFLAG_A64, ZCR_LEN, 4, 4)
3115FIELD(TBFLAG_A64, PAUTH_ACTIVE, 8, 1)
3116FIELD(TBFLAG_A64, BT, 9, 1)
3117FIELD(TBFLAG_A64, BTYPE, 10, 2)
3118FIELD(TBFLAG_A64, TBID, 12, 2)
3119
3120static inline bool bswap_code(bool sctlr_b)
3121{
3122#ifdef CONFIG_USER_ONLY
3123    /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
3124     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
3125     * would also end up as a mixed-endian mode with BE code, LE data.
3126     */
3127    return
3128#ifdef TARGET_WORDS_BIGENDIAN
3129        1 ^
3130#endif
3131        sctlr_b;
3132#else
3133    /* All code access in ARM is little endian, and there are no loaders
3134     * doing swaps that need to be reversed
3135     */
3136    return 0;
3137#endif
3138}
3139
3140#ifdef CONFIG_USER_ONLY
3141static inline bool arm_cpu_bswap_data(CPUARMState *env)
3142{
3143    return
3144#ifdef TARGET_WORDS_BIGENDIAN
3145       1 ^
3146#endif
3147       arm_cpu_data_is_big_endian(env);
3148}
3149#endif
3150
3151void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
3152                          target_ulong *cs_base, uint32_t *flags);
3153
3154enum {
3155    QEMU_PSCI_CONDUIT_DISABLED = 0,
3156    QEMU_PSCI_CONDUIT_SMC = 1,
3157    QEMU_PSCI_CONDUIT_HVC = 2,
3158};
3159
3160#ifndef CONFIG_USER_ONLY
3161/* Return the address space index to use for a memory access */
3162static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
3163{
3164    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
3165}
3166
3167/* Return the AddressSpace to use for a memory access
3168 * (which depends on whether the access is S or NS, and whether
3169 * the board gave us a separate AddressSpace for S accesses).
3170 */
3171static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
3172{
3173    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
3174}
3175#endif
3176
3177/**
3178 * arm_register_pre_el_change_hook:
3179 * Register a hook function which will be called immediately before this
3180 * CPU changes exception level or mode. The hook function will be
3181 * passed a pointer to the ARMCPU and the opaque data pointer passed
3182 * to this function when the hook was registered.
3183 *
3184 * Note that if a pre-change hook is called, any registered post-change hooks
3185 * are guaranteed to subsequently be called.
3186 */
3187void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
3188                                 void *opaque);
3189/**
3190 * arm_register_el_change_hook:
3191 * Register a hook function which will be called immediately after this
3192 * CPU changes exception level or mode. The hook function will be
3193 * passed a pointer to the ARMCPU and the opaque data pointer passed
3194 * to this function when the hook was registered.
3195 *
3196 * Note that any registered hooks registered here are guaranteed to be called
3197 * if pre-change hooks have been.
3198 */
3199void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
3200        *opaque);
3201
3202/**
3203 * aa32_vfp_dreg:
3204 * Return a pointer to the Dn register within env in 32-bit mode.
3205 */
3206static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
3207{
3208    return &env->vfp.zregs[regno >> 1].d[regno & 1];
3209}
3210
3211/**
3212 * aa32_vfp_qreg:
3213 * Return a pointer to the Qn register within env in 32-bit mode.
3214 */
3215static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
3216{
3217    return &env->vfp.zregs[regno].d[0];
3218}
3219
3220/**
3221 * aa64_vfp_qreg:
3222 * Return a pointer to the Qn register within env in 64-bit mode.
3223 */
3224static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
3225{
3226    return &env->vfp.zregs[regno].d[0];
3227}
3228
3229/* Shared between translate-sve.c and sve_helper.c.  */
3230extern const uint64_t pred_esz_masks[4];
3231
3232/*
3233 * 32-bit feature tests via id registers.
3234 */
3235static inline bool isar_feature_thumb_div(const ARMISARegisters *id)
3236{
3237    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) != 0;
3238}
3239
3240static inline bool isar_feature_arm_div(const ARMISARegisters *id)
3241{
3242    return FIELD_EX32(id->id_isar0, ID_ISAR0, DIVIDE) > 1;
3243}
3244
3245static inline bool isar_feature_jazelle(const ARMISARegisters *id)
3246{
3247    return FIELD_EX32(id->id_isar1, ID_ISAR1, JAZELLE) != 0;
3248}
3249
3250static inline bool isar_feature_aa32_aes(const ARMISARegisters *id)
3251{
3252    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) != 0;
3253}
3254
3255static inline bool isar_feature_aa32_pmull(const ARMISARegisters *id)
3256{
3257    return FIELD_EX32(id->id_isar5, ID_ISAR5, AES) > 1;
3258}
3259
3260static inline bool isar_feature_aa32_sha1(const ARMISARegisters *id)
3261{
3262    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA1) != 0;
3263}
3264
3265static inline bool isar_feature_aa32_sha2(const ARMISARegisters *id)
3266{
3267    return FIELD_EX32(id->id_isar5, ID_ISAR5, SHA2) != 0;
3268}
3269
3270static inline bool isar_feature_aa32_crc32(const ARMISARegisters *id)
3271{
3272    return FIELD_EX32(id->id_isar5, ID_ISAR5, CRC32) != 0;
3273}
3274
3275static inline bool isar_feature_aa32_rdm(const ARMISARegisters *id)
3276{
3277    return FIELD_EX32(id->id_isar5, ID_ISAR5, RDM) != 0;
3278}
3279
3280static inline bool isar_feature_aa32_vcma(const ARMISARegisters *id)
3281{
3282    return FIELD_EX32(id->id_isar5, ID_ISAR5, VCMA) != 0;
3283}
3284
3285static inline bool isar_feature_aa32_jscvt(const ARMISARegisters *id)
3286{
3287    return FIELD_EX32(id->id_isar6, ID_ISAR6, JSCVT) != 0;
3288}
3289
3290static inline bool isar_feature_aa32_dp(const ARMISARegisters *id)
3291{
3292    return FIELD_EX32(id->id_isar6, ID_ISAR6, DP) != 0;
3293}
3294
3295static inline bool isar_feature_aa32_fhm(const ARMISARegisters *id)
3296{
3297    return FIELD_EX32(id->id_isar6, ID_ISAR6, FHM) != 0;
3298}
3299
3300static inline bool isar_feature_aa32_sb(const ARMISARegisters *id)
3301{
3302    return FIELD_EX32(id->id_isar6, ID_ISAR6, SB) != 0;
3303}
3304
3305static inline bool isar_feature_aa32_predinv(const ARMISARegisters *id)
3306{
3307    return FIELD_EX32(id->id_isar6, ID_ISAR6, SPECRES) != 0;
3308}
3309
3310static inline bool isar_feature_aa32_fp16_arith(const ARMISARegisters *id)
3311{
3312    /*
3313     * This is a placeholder for use by VCMA until the rest of
3314     * the ARMv8.2-FP16 extension is implemented for aa32 mode.
3315     * At which point we can properly set and check MVFR1.FPHP.
3316     */
3317    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3318}
3319
3320/*
3321 * We always set the FP and SIMD FP16 fields to indicate identical
3322 * levels of support (assuming SIMD is implemented at all), so
3323 * we only need one set of accessors.
3324 */
3325static inline bool isar_feature_aa32_fp16_spconv(const ARMISARegisters *id)
3326{
3327    return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 0;
3328}
3329
3330static inline bool isar_feature_aa32_fp16_dpconv(const ARMISARegisters *id)
3331{
3332    return FIELD_EX64(id->mvfr1, MVFR1, FPHP) > 1;
3333}
3334
3335static inline bool isar_feature_aa32_vsel(const ARMISARegisters *id)
3336{
3337    return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 1;
3338}
3339
3340static inline bool isar_feature_aa32_vcvt_dr(const ARMISARegisters *id)
3341{
3342    return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 2;
3343}
3344
3345static inline bool isar_feature_aa32_vrint(const ARMISARegisters *id)
3346{
3347    return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 3;
3348}
3349
3350static inline bool isar_feature_aa32_vminmaxnm(const ARMISARegisters *id)
3351{
3352    return FIELD_EX64(id->mvfr2, MVFR2, FPMISC) >= 4;
3353}
3354
3355/*
3356 * 64-bit feature tests via id registers.
3357 */
3358static inline bool isar_feature_aa64_aes(const ARMISARegisters *id)
3359{
3360    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) != 0;
3361}
3362
3363static inline bool isar_feature_aa64_pmull(const ARMISARegisters *id)
3364{
3365    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, AES) > 1;
3366}
3367
3368static inline bool isar_feature_aa64_sha1(const ARMISARegisters *id)
3369{
3370    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA1) != 0;
3371}
3372
3373static inline bool isar_feature_aa64_sha256(const ARMISARegisters *id)
3374{
3375    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) != 0;
3376}
3377
3378static inline bool isar_feature_aa64_sha512(const ARMISARegisters *id)
3379{
3380    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA2) > 1;
3381}
3382
3383static inline bool isar_feature_aa64_crc32(const ARMISARegisters *id)
3384{
3385    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, CRC32) != 0;
3386}
3387
3388static inline bool isar_feature_aa64_atomics(const ARMISARegisters *id)
3389{
3390    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, ATOMIC) != 0;
3391}
3392
3393static inline bool isar_feature_aa64_rdm(const ARMISARegisters *id)
3394{
3395    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, RDM) != 0;
3396}
3397
3398static inline bool isar_feature_aa64_sha3(const ARMISARegisters *id)
3399{
3400    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SHA3) != 0;
3401}
3402
3403static inline bool isar_feature_aa64_sm3(const ARMISARegisters *id)
3404{
3405    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM3) != 0;
3406}
3407
3408static inline bool isar_feature_aa64_sm4(const ARMISARegisters *id)
3409{
3410    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, SM4) != 0;
3411}
3412
3413static inline bool isar_feature_aa64_dp(const ARMISARegisters *id)
3414{
3415    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, DP) != 0;
3416}
3417
3418static inline bool isar_feature_aa64_fhm(const ARMISARegisters *id)
3419{
3420    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, FHM) != 0;
3421}
3422
3423static inline bool isar_feature_aa64_condm_4(const ARMISARegisters *id)
3424{
3425    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) != 0;
3426}
3427
3428static inline bool isar_feature_aa64_condm_5(const ARMISARegisters *id)
3429{
3430    return FIELD_EX64(id->id_aa64isar0, ID_AA64ISAR0, TS) >= 2;
3431}
3432
3433static inline bool isar_feature_aa64_jscvt(const ARMISARegisters *id)
3434{
3435    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, JSCVT) != 0;
3436}
3437
3438static inline bool isar_feature_aa64_fcma(const ARMISARegisters *id)
3439{
3440    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FCMA) != 0;
3441}
3442
3443static inline bool isar_feature_aa64_pauth(const ARMISARegisters *id)
3444{
3445    /*
3446     * Note that while QEMU will only implement the architected algorithm
3447     * QARMA, and thus APA+GPA, the host cpu for kvm may use implementation
3448     * defined algorithms, and thus API+GPI, and this predicate controls
3449     * migration of the 128-bit keys.
3450     */
3451    return (id->id_aa64isar1 &
3452            (FIELD_DP64(0, ID_AA64ISAR1, APA, 0xf) |
3453             FIELD_DP64(0, ID_AA64ISAR1, API, 0xf) |
3454             FIELD_DP64(0, ID_AA64ISAR1, GPA, 0xf) |
3455             FIELD_DP64(0, ID_AA64ISAR1, GPI, 0xf))) != 0;
3456}
3457
3458static inline bool isar_feature_aa64_sb(const ARMISARegisters *id)
3459{
3460    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SB) != 0;
3461}
3462
3463static inline bool isar_feature_aa64_predinv(const ARMISARegisters *id)
3464{
3465    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, SPECRES) != 0;
3466}
3467
3468static inline bool isar_feature_aa64_frint(const ARMISARegisters *id)
3469{
3470    return FIELD_EX64(id->id_aa64isar1, ID_AA64ISAR1, FRINTTS) != 0;
3471}
3472
3473static inline bool isar_feature_aa64_fp16(const ARMISARegisters *id)
3474{
3475    /* We always set the AdvSIMD and FP fields identically wrt FP16.  */
3476    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, FP) == 1;
3477}
3478
3479static inline bool isar_feature_aa64_aa32(const ARMISARegisters *id)
3480{
3481    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, EL0) >= 2;
3482}
3483
3484static inline bool isar_feature_aa64_sve(const ARMISARegisters *id)
3485{
3486    return FIELD_EX64(id->id_aa64pfr0, ID_AA64PFR0, SVE) != 0;
3487}
3488
3489static inline bool isar_feature_aa64_lor(const ARMISARegisters *id)
3490{
3491    return FIELD_EX64(id->id_aa64mmfr1, ID_AA64MMFR1, LO) != 0;
3492}
3493
3494static inline bool isar_feature_aa64_bti(const ARMISARegisters *id)
3495{
3496    return FIELD_EX64(id->id_aa64pfr1, ID_AA64PFR1, BT) != 0;
3497}
3498
3499/*
3500 * Forward to the above feature tests given an ARMCPU pointer.
3501 */
3502#define cpu_isar_feature(name, cpu) \
3503    ({ ARMCPU *cpu_ = (cpu); isar_feature_##name(&cpu_->isar); })
3504
3505#endif
3506