qemu/target/arm/kvm.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks
   3 *
   4 * Copyright Christoffer Dall 2009-2010
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include <sys/ioctl.h>
  13
  14#include <linux/kvm.h>
  15
  16#include "qemu-common.h"
  17#include "qemu/timer.h"
  18#include "qemu/error-report.h"
  19#include "sysemu/sysemu.h"
  20#include "sysemu/kvm.h"
  21#include "sysemu/kvm_int.h"
  22#include "kvm_arm.h"
  23#include "cpu.h"
  24#include "trace.h"
  25#include "internals.h"
  26#include "hw/arm/arm.h"
  27#include "hw/pci/pci.h"
  28#include "exec/memattrs.h"
  29#include "exec/address-spaces.h"
  30#include "hw/boards.h"
  31#include "qemu/log.h"
  32
  33const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  34    KVM_CAP_LAST_INFO
  35};
  36
  37static bool cap_has_mp_state;
  38static bool cap_has_inject_serror_esr;
  39
  40static ARMHostCPUFeatures arm_host_cpu_features;
  41
  42int kvm_arm_vcpu_init(CPUState *cs)
  43{
  44    ARMCPU *cpu = ARM_CPU(cs);
  45    struct kvm_vcpu_init init;
  46
  47    init.target = cpu->kvm_target;
  48    memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
  49
  50    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
  51}
  52
  53void kvm_arm_init_serror_injection(CPUState *cs)
  54{
  55    cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
  56                                    KVM_CAP_ARM_INJECT_SERROR_ESR);
  57}
  58
  59bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
  60                                      int *fdarray,
  61                                      struct kvm_vcpu_init *init)
  62{
  63    int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
  64
  65    kvmfd = qemu_open("/dev/kvm", O_RDWR);
  66    if (kvmfd < 0) {
  67        goto err;
  68    }
  69    vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
  70    if (vmfd < 0) {
  71        goto err;
  72    }
  73    cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
  74    if (cpufd < 0) {
  75        goto err;
  76    }
  77
  78    if (!init) {
  79        /* Caller doesn't want the VCPU to be initialized, so skip it */
  80        goto finish;
  81    }
  82
  83    ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
  84    if (ret >= 0) {
  85        ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
  86        if (ret < 0) {
  87            goto err;
  88        }
  89    } else if (cpus_to_try) {
  90        /* Old kernel which doesn't know about the
  91         * PREFERRED_TARGET ioctl: we know it will only support
  92         * creating one kind of guest CPU which is its preferred
  93         * CPU type.
  94         */
  95        while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
  96            init->target = *cpus_to_try++;
  97            memset(init->features, 0, sizeof(init->features));
  98            ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
  99            if (ret >= 0) {
 100                break;
 101            }
 102        }
 103        if (ret < 0) {
 104            goto err;
 105        }
 106    } else {
 107        /* Treat a NULL cpus_to_try argument the same as an empty
 108         * list, which means we will fail the call since this must
 109         * be an old kernel which doesn't support PREFERRED_TARGET.
 110         */
 111        goto err;
 112    }
 113
 114finish:
 115    fdarray[0] = kvmfd;
 116    fdarray[1] = vmfd;
 117    fdarray[2] = cpufd;
 118
 119    return true;
 120
 121err:
 122    if (cpufd >= 0) {
 123        close(cpufd);
 124    }
 125    if (vmfd >= 0) {
 126        close(vmfd);
 127    }
 128    if (kvmfd >= 0) {
 129        close(kvmfd);
 130    }
 131
 132    return false;
 133}
 134
 135void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
 136{
 137    int i;
 138
 139    for (i = 2; i >= 0; i--) {
 140        close(fdarray[i]);
 141    }
 142}
 143
 144void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
 145{
 146    CPUARMState *env = &cpu->env;
 147
 148    if (!arm_host_cpu_features.dtb_compatible) {
 149        if (!kvm_enabled() ||
 150            !kvm_arm_get_host_cpu_features(&arm_host_cpu_features)) {
 151            /* We can't report this error yet, so flag that we need to
 152             * in arm_cpu_realizefn().
 153             */
 154            cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
 155            cpu->host_cpu_probe_failed = true;
 156            return;
 157        }
 158    }
 159
 160    cpu->kvm_target = arm_host_cpu_features.target;
 161    cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
 162    cpu->isar = arm_host_cpu_features.isar;
 163    env->features = arm_host_cpu_features.features;
 164}
 165
 166int kvm_arm_get_max_vm_ipa_size(MachineState *ms)
 167{
 168    KVMState *s = KVM_STATE(ms->accelerator);
 169    int ret;
 170
 171    ret = kvm_check_extension(s, KVM_CAP_ARM_VM_IPA_SIZE);
 172    return ret > 0 ? ret : 40;
 173}
 174
 175int kvm_arch_init(MachineState *ms, KVMState *s)
 176{
 177    /* For ARM interrupt delivery is always asynchronous,
 178     * whether we are using an in-kernel VGIC or not.
 179     */
 180    kvm_async_interrupts_allowed = true;
 181
 182    /*
 183     * PSCI wakes up secondary cores, so we always need to
 184     * have vCPUs waiting in kernel space
 185     */
 186    kvm_halt_in_kernel_allowed = true;
 187
 188    cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
 189
 190    return 0;
 191}
 192
 193unsigned long kvm_arch_vcpu_id(CPUState *cpu)
 194{
 195    return cpu->cpu_index;
 196}
 197
 198/* We track all the KVM devices which need their memory addresses
 199 * passing to the kernel in a list of these structures.
 200 * When board init is complete we run through the list and
 201 * tell the kernel the base addresses of the memory regions.
 202 * We use a MemoryListener to track mapping and unmapping of
 203 * the regions during board creation, so the board models don't
 204 * need to do anything special for the KVM case.
 205 *
 206 * Sometimes the address must be OR'ed with some other fields
 207 * (for example for KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION).
 208 * @kda_addr_ormask aims at storing the value of those fields.
 209 */
 210typedef struct KVMDevice {
 211    struct kvm_arm_device_addr kda;
 212    struct kvm_device_attr kdattr;
 213    uint64_t kda_addr_ormask;
 214    MemoryRegion *mr;
 215    QSLIST_ENTRY(KVMDevice) entries;
 216    int dev_fd;
 217} KVMDevice;
 218
 219static QSLIST_HEAD(, KVMDevice) kvm_devices_head;
 220
 221static void kvm_arm_devlistener_add(MemoryListener *listener,
 222                                    MemoryRegionSection *section)
 223{
 224    KVMDevice *kd;
 225
 226    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 227        if (section->mr == kd->mr) {
 228            kd->kda.addr = section->offset_within_address_space;
 229        }
 230    }
 231}
 232
 233static void kvm_arm_devlistener_del(MemoryListener *listener,
 234                                    MemoryRegionSection *section)
 235{
 236    KVMDevice *kd;
 237
 238    QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
 239        if (section->mr == kd->mr) {
 240            kd->kda.addr = -1;
 241        }
 242    }
 243}
 244
 245static MemoryListener devlistener = {
 246    .region_add = kvm_arm_devlistener_add,
 247    .region_del = kvm_arm_devlistener_del,
 248};
 249
 250static void kvm_arm_set_device_addr(KVMDevice *kd)
 251{
 252    struct kvm_device_attr *attr = &kd->kdattr;
 253    int ret;
 254
 255    /* If the device control API is available and we have a device fd on the
 256     * KVMDevice struct, let's use the newer API
 257     */
 258    if (kd->dev_fd >= 0) {
 259        uint64_t addr = kd->kda.addr;
 260
 261        addr |= kd->kda_addr_ormask;
 262        attr->addr = (uintptr_t)&addr;
 263        ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
 264    } else {
 265        ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
 266    }
 267
 268    if (ret < 0) {
 269        fprintf(stderr, "Failed to set device address: %s\n",
 270                strerror(-ret));
 271        abort();
 272    }
 273}
 274
 275static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
 276{
 277    KVMDevice *kd, *tkd;
 278
 279    QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
 280        if (kd->kda.addr != -1) {
 281            kvm_arm_set_device_addr(kd);
 282        }
 283        memory_region_unref(kd->mr);
 284        QSLIST_REMOVE_HEAD(&kvm_devices_head, entries);
 285        g_free(kd);
 286    }
 287    memory_listener_unregister(&devlistener);
 288}
 289
 290static Notifier notify = {
 291    .notify = kvm_arm_machine_init_done,
 292};
 293
 294void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
 295                             uint64_t attr, int dev_fd, uint64_t addr_ormask)
 296{
 297    KVMDevice *kd;
 298
 299    if (!kvm_irqchip_in_kernel()) {
 300        return;
 301    }
 302
 303    if (QSLIST_EMPTY(&kvm_devices_head)) {
 304        memory_listener_register(&devlistener, &address_space_memory);
 305        qemu_add_machine_init_done_notifier(&notify);
 306    }
 307    kd = g_new0(KVMDevice, 1);
 308    kd->mr = mr;
 309    kd->kda.id = devid;
 310    kd->kda.addr = -1;
 311    kd->kdattr.flags = 0;
 312    kd->kdattr.group = group;
 313    kd->kdattr.attr = attr;
 314    kd->dev_fd = dev_fd;
 315    kd->kda_addr_ormask = addr_ormask;
 316    QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
 317    memory_region_ref(kd->mr);
 318}
 319
 320static int compare_u64(const void *a, const void *b)
 321{
 322    if (*(uint64_t *)a > *(uint64_t *)b) {
 323        return 1;
 324    }
 325    if (*(uint64_t *)a < *(uint64_t *)b) {
 326        return -1;
 327    }
 328    return 0;
 329}
 330
 331/* Initialize the ARMCPU cpreg list according to the kernel's
 332 * definition of what CPU registers it knows about (and throw away
 333 * the previous TCG-created cpreg list).
 334 */
 335int kvm_arm_init_cpreg_list(ARMCPU *cpu)
 336{
 337    struct kvm_reg_list rl;
 338    struct kvm_reg_list *rlp;
 339    int i, ret, arraylen;
 340    CPUState *cs = CPU(cpu);
 341
 342    rl.n = 0;
 343    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
 344    if (ret != -E2BIG) {
 345        return ret;
 346    }
 347    rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
 348    rlp->n = rl.n;
 349    ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
 350    if (ret) {
 351        goto out;
 352    }
 353    /* Sort the list we get back from the kernel, since cpreg_tuples
 354     * must be in strictly ascending order.
 355     */
 356    qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
 357
 358    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 359        if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
 360            continue;
 361        }
 362        switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
 363        case KVM_REG_SIZE_U32:
 364        case KVM_REG_SIZE_U64:
 365            break;
 366        default:
 367            fprintf(stderr, "Can't handle size of register in kernel list\n");
 368            ret = -EINVAL;
 369            goto out;
 370        }
 371
 372        arraylen++;
 373    }
 374
 375    cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
 376    cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
 377    cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
 378                                         arraylen);
 379    cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
 380                                        arraylen);
 381    cpu->cpreg_array_len = arraylen;
 382    cpu->cpreg_vmstate_array_len = arraylen;
 383
 384    for (i = 0, arraylen = 0; i < rlp->n; i++) {
 385        uint64_t regidx = rlp->reg[i];
 386        if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
 387            continue;
 388        }
 389        cpu->cpreg_indexes[arraylen] = regidx;
 390        arraylen++;
 391    }
 392    assert(cpu->cpreg_array_len == arraylen);
 393
 394    if (!write_kvmstate_to_list(cpu)) {
 395        /* Shouldn't happen unless kernel is inconsistent about
 396         * what registers exist.
 397         */
 398        fprintf(stderr, "Initial read of kernel register state failed\n");
 399        ret = -EINVAL;
 400        goto out;
 401    }
 402
 403out:
 404    g_free(rlp);
 405    return ret;
 406}
 407
 408bool write_kvmstate_to_list(ARMCPU *cpu)
 409{
 410    CPUState *cs = CPU(cpu);
 411    int i;
 412    bool ok = true;
 413
 414    for (i = 0; i < cpu->cpreg_array_len; i++) {
 415        struct kvm_one_reg r;
 416        uint64_t regidx = cpu->cpreg_indexes[i];
 417        uint32_t v32;
 418        int ret;
 419
 420        r.id = regidx;
 421
 422        switch (regidx & KVM_REG_SIZE_MASK) {
 423        case KVM_REG_SIZE_U32:
 424            r.addr = (uintptr_t)&v32;
 425            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 426            if (!ret) {
 427                cpu->cpreg_values[i] = v32;
 428            }
 429            break;
 430        case KVM_REG_SIZE_U64:
 431            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 432            ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 433            break;
 434        default:
 435            abort();
 436        }
 437        if (ret) {
 438            ok = false;
 439        }
 440    }
 441    return ok;
 442}
 443
 444bool write_list_to_kvmstate(ARMCPU *cpu, int level)
 445{
 446    CPUState *cs = CPU(cpu);
 447    int i;
 448    bool ok = true;
 449
 450    for (i = 0; i < cpu->cpreg_array_len; i++) {
 451        struct kvm_one_reg r;
 452        uint64_t regidx = cpu->cpreg_indexes[i];
 453        uint32_t v32;
 454        int ret;
 455
 456        if (kvm_arm_cpreg_level(regidx) > level) {
 457            continue;
 458        }
 459
 460        r.id = regidx;
 461        switch (regidx & KVM_REG_SIZE_MASK) {
 462        case KVM_REG_SIZE_U32:
 463            v32 = cpu->cpreg_values[i];
 464            r.addr = (uintptr_t)&v32;
 465            break;
 466        case KVM_REG_SIZE_U64:
 467            r.addr = (uintptr_t)(cpu->cpreg_values + i);
 468            break;
 469        default:
 470            abort();
 471        }
 472        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 473        if (ret) {
 474            /* We might fail for "unknown register" and also for
 475             * "you tried to set a register which is constant with
 476             * a different value from what it actually contains".
 477             */
 478            ok = false;
 479        }
 480    }
 481    return ok;
 482}
 483
 484void kvm_arm_reset_vcpu(ARMCPU *cpu)
 485{
 486    int ret;
 487
 488    /* Re-init VCPU so that all registers are set to
 489     * their respective reset values.
 490     */
 491    ret = kvm_arm_vcpu_init(CPU(cpu));
 492    if (ret < 0) {
 493        fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
 494        abort();
 495    }
 496    if (!write_kvmstate_to_list(cpu)) {
 497        fprintf(stderr, "write_kvmstate_to_list failed\n");
 498        abort();
 499    }
 500}
 501
 502/*
 503 * Update KVM's MP_STATE based on what QEMU thinks it is
 504 */
 505int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
 506{
 507    if (cap_has_mp_state) {
 508        struct kvm_mp_state mp_state = {
 509            .mp_state = (cpu->power_state == PSCI_OFF) ?
 510            KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
 511        };
 512        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
 513        if (ret) {
 514            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
 515                    __func__, ret, strerror(-ret));
 516            return -1;
 517        }
 518    }
 519
 520    return 0;
 521}
 522
 523/*
 524 * Sync the KVM MP_STATE into QEMU
 525 */
 526int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
 527{
 528    if (cap_has_mp_state) {
 529        struct kvm_mp_state mp_state;
 530        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
 531        if (ret) {
 532            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
 533                    __func__, ret, strerror(-ret));
 534            abort();
 535        }
 536        cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
 537            PSCI_OFF : PSCI_ON;
 538    }
 539
 540    return 0;
 541}
 542
 543int kvm_put_vcpu_events(ARMCPU *cpu)
 544{
 545    CPUARMState *env = &cpu->env;
 546    struct kvm_vcpu_events events;
 547    int ret;
 548
 549    if (!kvm_has_vcpu_events()) {
 550        return 0;
 551    }
 552
 553    memset(&events, 0, sizeof(events));
 554    events.exception.serror_pending = env->serror.pending;
 555
 556    /* Inject SError to guest with specified syndrome if host kernel
 557     * supports it, otherwise inject SError without syndrome.
 558     */
 559    if (cap_has_inject_serror_esr) {
 560        events.exception.serror_has_esr = env->serror.has_esr;
 561        events.exception.serror_esr = env->serror.esr;
 562    }
 563
 564    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
 565    if (ret) {
 566        error_report("failed to put vcpu events");
 567    }
 568
 569    return ret;
 570}
 571
 572int kvm_get_vcpu_events(ARMCPU *cpu)
 573{
 574    CPUARMState *env = &cpu->env;
 575    struct kvm_vcpu_events events;
 576    int ret;
 577
 578    if (!kvm_has_vcpu_events()) {
 579        return 0;
 580    }
 581
 582    memset(&events, 0, sizeof(events));
 583    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
 584    if (ret) {
 585        error_report("failed to get vcpu events");
 586        return ret;
 587    }
 588
 589    env->serror.pending = events.exception.serror_pending;
 590    env->serror.has_esr = events.exception.serror_has_esr;
 591    env->serror.esr = events.exception.serror_esr;
 592
 593    return 0;
 594}
 595
 596void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
 597{
 598}
 599
 600MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
 601{
 602    ARMCPU *cpu;
 603    uint32_t switched_level;
 604
 605    if (kvm_irqchip_in_kernel()) {
 606        /*
 607         * We only need to sync timer states with user-space interrupt
 608         * controllers, so return early and save cycles if we don't.
 609         */
 610        return MEMTXATTRS_UNSPECIFIED;
 611    }
 612
 613    cpu = ARM_CPU(cs);
 614
 615    /* Synchronize our shadowed in-kernel device irq lines with the kvm ones */
 616    if (run->s.regs.device_irq_level != cpu->device_irq_level) {
 617        switched_level = cpu->device_irq_level ^ run->s.regs.device_irq_level;
 618
 619        qemu_mutex_lock_iothread();
 620
 621        if (switched_level & KVM_ARM_DEV_EL1_VTIMER) {
 622            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_VIRT],
 623                         !!(run->s.regs.device_irq_level &
 624                            KVM_ARM_DEV_EL1_VTIMER));
 625            switched_level &= ~KVM_ARM_DEV_EL1_VTIMER;
 626        }
 627
 628        if (switched_level & KVM_ARM_DEV_EL1_PTIMER) {
 629            qemu_set_irq(cpu->gt_timer_outputs[GTIMER_PHYS],
 630                         !!(run->s.regs.device_irq_level &
 631                            KVM_ARM_DEV_EL1_PTIMER));
 632            switched_level &= ~KVM_ARM_DEV_EL1_PTIMER;
 633        }
 634
 635        if (switched_level & KVM_ARM_DEV_PMU) {
 636            qemu_set_irq(cpu->pmu_interrupt,
 637                         !!(run->s.regs.device_irq_level & KVM_ARM_DEV_PMU));
 638            switched_level &= ~KVM_ARM_DEV_PMU;
 639        }
 640
 641        if (switched_level) {
 642            qemu_log_mask(LOG_UNIMP, "%s: unhandled in-kernel device IRQ %x\n",
 643                          __func__, switched_level);
 644        }
 645
 646        /* We also mark unknown levels as processed to not waste cycles */
 647        cpu->device_irq_level = run->s.regs.device_irq_level;
 648        qemu_mutex_unlock_iothread();
 649    }
 650
 651    return MEMTXATTRS_UNSPECIFIED;
 652}
 653
 654
 655int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 656{
 657    int ret = 0;
 658
 659    switch (run->exit_reason) {
 660    case KVM_EXIT_DEBUG:
 661        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
 662            ret = EXCP_DEBUG;
 663        } /* otherwise return to guest */
 664        break;
 665    default:
 666        qemu_log_mask(LOG_UNIMP, "%s: un-handled exit reason %d\n",
 667                      __func__, run->exit_reason);
 668        break;
 669    }
 670    return ret;
 671}
 672
 673bool kvm_arch_stop_on_emulation_error(CPUState *cs)
 674{
 675    return true;
 676}
 677
 678int kvm_arch_process_async_events(CPUState *cs)
 679{
 680    return 0;
 681}
 682
 683/* The #ifdef protections are until 32bit headers are imported and can
 684 * be removed once both 32 and 64 bit reach feature parity.
 685 */
 686void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
 687{
 688#ifdef KVM_GUESTDBG_USE_SW_BP
 689    if (kvm_sw_breakpoints_active(cs)) {
 690        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
 691    }
 692#endif
 693#ifdef KVM_GUESTDBG_USE_HW
 694    if (kvm_arm_hw_debug_active(cs)) {
 695        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
 696        kvm_arm_copy_hw_debug_data(&dbg->arch);
 697    }
 698#endif
 699}
 700
 701void kvm_arch_init_irq_routing(KVMState *s)
 702{
 703}
 704
 705int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
 706{
 707     if (machine_kernel_irqchip_split(ms)) {
 708         perror("-machine kernel_irqchip=split is not supported on ARM.");
 709         exit(1);
 710    }
 711
 712    /* If we can create the VGIC using the newer device control API, we
 713     * let the device do this when it initializes itself, otherwise we
 714     * fall back to the old API */
 715    return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
 716}
 717
 718int kvm_arm_vgic_probe(void)
 719{
 720    if (kvm_create_device(kvm_state,
 721                          KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
 722        return 3;
 723    } else if (kvm_create_device(kvm_state,
 724                                 KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
 725        return 2;
 726    } else {
 727        return 0;
 728    }
 729}
 730
 731int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
 732                             uint64_t address, uint32_t data, PCIDevice *dev)
 733{
 734    AddressSpace *as = pci_device_iommu_address_space(dev);
 735    hwaddr xlat, len, doorbell_gpa;
 736    MemoryRegionSection mrs;
 737    MemoryRegion *mr;
 738    int ret = 1;
 739
 740    if (as == &address_space_memory) {
 741        return 0;
 742    }
 743
 744    /* MSI doorbell address is translated by an IOMMU */
 745
 746    rcu_read_lock();
 747    mr = address_space_translate(as, address, &xlat, &len, true,
 748                                 MEMTXATTRS_UNSPECIFIED);
 749    if (!mr) {
 750        goto unlock;
 751    }
 752    mrs = memory_region_find(mr, xlat, 1);
 753    if (!mrs.mr) {
 754        goto unlock;
 755    }
 756
 757    doorbell_gpa = mrs.offset_within_address_space;
 758    memory_region_unref(mrs.mr);
 759
 760    route->u.msi.address_lo = doorbell_gpa;
 761    route->u.msi.address_hi = doorbell_gpa >> 32;
 762
 763    trace_kvm_arm_fixup_msi_route(address, doorbell_gpa);
 764
 765    ret = 0;
 766
 767unlock:
 768    rcu_read_unlock();
 769    return ret;
 770}
 771
 772int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
 773                                int vector, PCIDevice *dev)
 774{
 775    return 0;
 776}
 777
 778int kvm_arch_release_virq_post(int virq)
 779{
 780    return 0;
 781}
 782
 783int kvm_arch_msi_data_to_gsi(uint32_t data)
 784{
 785    return (data - 32) & 0xffff;
 786}
 787