qemu/target/arm/kvm64.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks, 64 bit specific code
   3 *
   4 * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
   5 * Copyright Alex Bennée 2014, Linaro
   6 *
   7 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   8 * See the COPYING file in the top-level directory.
   9 *
  10 */
  11
  12#include "qemu/osdep.h"
  13#include <sys/ioctl.h>
  14#include <sys/ptrace.h>
  15
  16#include <linux/elf.h>
  17#include <linux/kvm.h>
  18
  19#include "qemu-common.h"
  20#include "cpu.h"
  21#include "qemu/timer.h"
  22#include "qemu/error-report.h"
  23#include "qemu/host-utils.h"
  24#include "exec/gdbstub.h"
  25#include "sysemu/sysemu.h"
  26#include "sysemu/kvm.h"
  27#include "kvm_arm.h"
  28#include "internals.h"
  29#include "hw/arm/arm.h"
  30
  31static bool have_guest_debug;
  32
  33/*
  34 * Although the ARM implementation of hardware assisted debugging
  35 * allows for different breakpoints per-core, the current GDB
  36 * interface treats them as a global pool of registers (which seems to
  37 * be the case for x86, ppc and s390). As a result we store one copy
  38 * of registers which is used for all active cores.
  39 *
  40 * Write access is serialised by virtue of the GDB protocol which
  41 * updates things. Read access (i.e. when the values are copied to the
  42 * vCPU) is also gated by GDB's run control.
  43 *
  44 * This is not unreasonable as most of the time debugging kernels you
  45 * never know which core will eventually execute your function.
  46 */
  47
  48typedef struct {
  49    uint64_t bcr;
  50    uint64_t bvr;
  51} HWBreakpoint;
  52
  53/* The watchpoint registers can cover more area than the requested
  54 * watchpoint so we need to store the additional information
  55 * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
  56 * when the watchpoint is hit.
  57 */
  58typedef struct {
  59    uint64_t wcr;
  60    uint64_t wvr;
  61    CPUWatchpoint details;
  62} HWWatchpoint;
  63
  64/* Maximum and current break/watch point counts */
  65int max_hw_bps, max_hw_wps;
  66GArray *hw_breakpoints, *hw_watchpoints;
  67
  68#define cur_hw_wps      (hw_watchpoints->len)
  69#define cur_hw_bps      (hw_breakpoints->len)
  70#define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
  71#define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
  72
  73/**
  74 * kvm_arm_init_debug() - check for guest debug capabilities
  75 * @cs: CPUState
  76 *
  77 * kvm_check_extension returns the number of debug registers we have
  78 * or 0 if we have none.
  79 *
  80 */
  81static void kvm_arm_init_debug(CPUState *cs)
  82{
  83    have_guest_debug = kvm_check_extension(cs->kvm_state,
  84                                           KVM_CAP_SET_GUEST_DEBUG);
  85
  86    max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
  87    hw_watchpoints = g_array_sized_new(true, true,
  88                                       sizeof(HWWatchpoint), max_hw_wps);
  89
  90    max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
  91    hw_breakpoints = g_array_sized_new(true, true,
  92                                       sizeof(HWBreakpoint), max_hw_bps);
  93    return;
  94}
  95
  96/**
  97 * insert_hw_breakpoint()
  98 * @addr: address of breakpoint
  99 *
 100 * See ARM ARM D2.9.1 for details but here we are only going to create
 101 * simple un-linked breakpoints (i.e. we don't chain breakpoints
 102 * together to match address and context or vmid). The hardware is
 103 * capable of fancier matching but that will require exposing that
 104 * fanciness to GDB's interface
 105 *
 106 * DBGBCR<n>_EL1, Debug Breakpoint Control Registers
 107 *
 108 *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
 109 * +------+------+-------+-----+----+------+-----+------+-----+---+
 110 * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
 111 * +------+------+-------+-----+----+------+-----+------+-----+---+
 112 *
 113 * BT: Breakpoint type (0 = unlinked address match)
 114 * LBN: Linked BP number (0 = unused)
 115 * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
 116 * BAS: Byte Address Select (RES1 for AArch64)
 117 * E: Enable bit
 118 *
 119 * DBGBVR<n>_EL1, Debug Breakpoint Value Registers
 120 *
 121 *  63  53 52       49 48       2  1 0
 122 * +------+-----------+----------+-----+
 123 * | RESS | VA[52:49] | VA[48:2] | 0 0 |
 124 * +------+-----------+----------+-----+
 125 *
 126 * Depending on the addressing mode bits the top bits of the register
 127 * are a sign extension of the highest applicable VA bit. Some
 128 * versions of GDB don't do it correctly so we ensure they are correct
 129 * here so future PC comparisons will work properly.
 130 */
 131
 132static int insert_hw_breakpoint(target_ulong addr)
 133{
 134    HWBreakpoint brk = {
 135        .bcr = 0x1,                             /* BCR E=1, enable */
 136        .bvr = sextract64(addr, 0, 53)
 137    };
 138
 139    if (cur_hw_bps >= max_hw_bps) {
 140        return -ENOBUFS;
 141    }
 142
 143    brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
 144    brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */
 145
 146    g_array_append_val(hw_breakpoints, brk);
 147
 148    return 0;
 149}
 150
 151/**
 152 * delete_hw_breakpoint()
 153 * @pc: address of breakpoint
 154 *
 155 * Delete a breakpoint and shuffle any above down
 156 */
 157
 158static int delete_hw_breakpoint(target_ulong pc)
 159{
 160    int i;
 161    for (i = 0; i < hw_breakpoints->len; i++) {
 162        HWBreakpoint *brk = get_hw_bp(i);
 163        if (brk->bvr == pc) {
 164            g_array_remove_index(hw_breakpoints, i);
 165            return 0;
 166        }
 167    }
 168    return -ENOENT;
 169}
 170
 171/**
 172 * insert_hw_watchpoint()
 173 * @addr: address of watch point
 174 * @len: size of area
 175 * @type: type of watch point
 176 *
 177 * See ARM ARM D2.10. As with the breakpoints we can do some advanced
 178 * stuff if we want to. The watch points can be linked with the break
 179 * points above to make them context aware. However for simplicity
 180 * currently we only deal with simple read/write watch points.
 181 *
 182 * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
 183 *
 184 *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
 185 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 186 * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
 187 * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 188 *
 189 * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
 190 * WT: 0 - unlinked, 1 - linked (not currently used)
 191 * LBN: Linked BP number (not currently used)
 192 * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
 193 * BAS: Byte Address Select
 194 * LSC: Load/Store control (01: load, 10: store, 11: both)
 195 * E: Enable
 196 *
 197 * The bottom 2 bits of the value register are masked. Therefore to
 198 * break on any sizes smaller than an unaligned word you need to set
 199 * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
 200 * need to ensure you mask the address as required and set BAS=0xff
 201 */
 202
 203static int insert_hw_watchpoint(target_ulong addr,
 204                                target_ulong len, int type)
 205{
 206    HWWatchpoint wp = {
 207        .wcr = 1, /* E=1, enable */
 208        .wvr = addr & (~0x7ULL),
 209        .details = { .vaddr = addr, .len = len }
 210    };
 211
 212    if (cur_hw_wps >= max_hw_wps) {
 213        return -ENOBUFS;
 214    }
 215
 216    /*
 217     * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
 218     * valid whether EL3 is implemented or not
 219     */
 220    wp.wcr = deposit32(wp.wcr, 1, 2, 3);
 221
 222    switch (type) {
 223    case GDB_WATCHPOINT_READ:
 224        wp.wcr = deposit32(wp.wcr, 3, 2, 1);
 225        wp.details.flags = BP_MEM_READ;
 226        break;
 227    case GDB_WATCHPOINT_WRITE:
 228        wp.wcr = deposit32(wp.wcr, 3, 2, 2);
 229        wp.details.flags = BP_MEM_WRITE;
 230        break;
 231    case GDB_WATCHPOINT_ACCESS:
 232        wp.wcr = deposit32(wp.wcr, 3, 2, 3);
 233        wp.details.flags = BP_MEM_ACCESS;
 234        break;
 235    default:
 236        g_assert_not_reached();
 237        break;
 238    }
 239    if (len <= 8) {
 240        /* we align the address and set the bits in BAS */
 241        int off = addr & 0x7;
 242        int bas = (1 << len) - 1;
 243
 244        wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
 245    } else {
 246        /* For ranges above 8 bytes we need to be a power of 2 */
 247        if (is_power_of_2(len)) {
 248            int bits = ctz64(len);
 249
 250            wp.wvr &= ~((1 << bits) - 1);
 251            wp.wcr = deposit32(wp.wcr, 24, 4, bits);
 252            wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
 253        } else {
 254            return -ENOBUFS;
 255        }
 256    }
 257
 258    g_array_append_val(hw_watchpoints, wp);
 259    return 0;
 260}
 261
 262
 263static bool check_watchpoint_in_range(int i, target_ulong addr)
 264{
 265    HWWatchpoint *wp = get_hw_wp(i);
 266    uint64_t addr_top, addr_bottom = wp->wvr;
 267    int bas = extract32(wp->wcr, 5, 8);
 268    int mask = extract32(wp->wcr, 24, 4);
 269
 270    if (mask) {
 271        addr_top = addr_bottom + (1 << mask);
 272    } else {
 273        /* BAS must be contiguous but can offset against the base
 274         * address in DBGWVR */
 275        addr_bottom = addr_bottom + ctz32(bas);
 276        addr_top = addr_bottom + clo32(bas);
 277    }
 278
 279    if (addr >= addr_bottom && addr <= addr_top) {
 280        return true;
 281    }
 282
 283    return false;
 284}
 285
 286/**
 287 * delete_hw_watchpoint()
 288 * @addr: address of breakpoint
 289 *
 290 * Delete a breakpoint and shuffle any above down
 291 */
 292
 293static int delete_hw_watchpoint(target_ulong addr,
 294                                target_ulong len, int type)
 295{
 296    int i;
 297    for (i = 0; i < cur_hw_wps; i++) {
 298        if (check_watchpoint_in_range(i, addr)) {
 299            g_array_remove_index(hw_watchpoints, i);
 300            return 0;
 301        }
 302    }
 303    return -ENOENT;
 304}
 305
 306
 307int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 308                                  target_ulong len, int type)
 309{
 310    switch (type) {
 311    case GDB_BREAKPOINT_HW:
 312        return insert_hw_breakpoint(addr);
 313        break;
 314    case GDB_WATCHPOINT_READ:
 315    case GDB_WATCHPOINT_WRITE:
 316    case GDB_WATCHPOINT_ACCESS:
 317        return insert_hw_watchpoint(addr, len, type);
 318    default:
 319        return -ENOSYS;
 320    }
 321}
 322
 323int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 324                                  target_ulong len, int type)
 325{
 326    switch (type) {
 327    case GDB_BREAKPOINT_HW:
 328        return delete_hw_breakpoint(addr);
 329        break;
 330    case GDB_WATCHPOINT_READ:
 331    case GDB_WATCHPOINT_WRITE:
 332    case GDB_WATCHPOINT_ACCESS:
 333        return delete_hw_watchpoint(addr, len, type);
 334    default:
 335        return -ENOSYS;
 336    }
 337}
 338
 339
 340void kvm_arch_remove_all_hw_breakpoints(void)
 341{
 342    if (cur_hw_wps > 0) {
 343        g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
 344    }
 345    if (cur_hw_bps > 0) {
 346        g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
 347    }
 348}
 349
 350void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
 351{
 352    int i;
 353    memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
 354
 355    for (i = 0; i < max_hw_wps; i++) {
 356        HWWatchpoint *wp = get_hw_wp(i);
 357        ptr->dbg_wcr[i] = wp->wcr;
 358        ptr->dbg_wvr[i] = wp->wvr;
 359    }
 360    for (i = 0; i < max_hw_bps; i++) {
 361        HWBreakpoint *bp = get_hw_bp(i);
 362        ptr->dbg_bcr[i] = bp->bcr;
 363        ptr->dbg_bvr[i] = bp->bvr;
 364    }
 365}
 366
 367bool kvm_arm_hw_debug_active(CPUState *cs)
 368{
 369    return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
 370}
 371
 372static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
 373{
 374    int i;
 375
 376    for (i = 0; i < cur_hw_bps; i++) {
 377        HWBreakpoint *bp = get_hw_bp(i);
 378        if (bp->bvr == pc) {
 379            return true;
 380        }
 381    }
 382    return false;
 383}
 384
 385static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
 386{
 387    int i;
 388
 389    for (i = 0; i < cur_hw_wps; i++) {
 390        if (check_watchpoint_in_range(i, addr)) {
 391            return &get_hw_wp(i)->details;
 392        }
 393    }
 394    return NULL;
 395}
 396
 397static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr)
 398{
 399    int err;
 400
 401    err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
 402    if (err != 0) {
 403        error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err));
 404        return false;
 405    }
 406
 407    err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
 408    if (err != 0) {
 409        error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err));
 410        return false;
 411    }
 412
 413    return true;
 414}
 415
 416void kvm_arm_pmu_init(CPUState *cs)
 417{
 418    struct kvm_device_attr attr = {
 419        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
 420        .attr = KVM_ARM_VCPU_PMU_V3_INIT,
 421    };
 422
 423    if (!ARM_CPU(cs)->has_pmu) {
 424        return;
 425    }
 426    if (!kvm_arm_pmu_set_attr(cs, &attr)) {
 427        error_report("failed to init PMU");
 428        abort();
 429    }
 430}
 431
 432void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
 433{
 434    struct kvm_device_attr attr = {
 435        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
 436        .addr = (intptr_t)&irq,
 437        .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
 438    };
 439
 440    if (!ARM_CPU(cs)->has_pmu) {
 441        return;
 442    }
 443    if (!kvm_arm_pmu_set_attr(cs, &attr)) {
 444        error_report("failed to set irq for PMU");
 445        abort();
 446    }
 447}
 448
 449static inline void set_feature(uint64_t *features, int feature)
 450{
 451    *features |= 1ULL << feature;
 452}
 453
 454static inline void unset_feature(uint64_t *features, int feature)
 455{
 456    *features &= ~(1ULL << feature);
 457}
 458
 459static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
 460{
 461    uint64_t ret;
 462    struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
 463    int err;
 464
 465    assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
 466    err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
 467    if (err < 0) {
 468        return -1;
 469    }
 470    *pret = ret;
 471    return 0;
 472}
 473
 474static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
 475{
 476    struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
 477
 478    assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
 479    return ioctl(fd, KVM_GET_ONE_REG, &idreg);
 480}
 481
 482bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
 483{
 484    /* Identify the feature bits corresponding to the host CPU, and
 485     * fill out the ARMHostCPUClass fields accordingly. To do this
 486     * we have to create a scratch VM, create a single CPU inside it,
 487     * and then query that CPU for the relevant ID registers.
 488     */
 489    int fdarray[3];
 490    uint64_t features = 0;
 491    int err;
 492
 493    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
 494     * we know these will only support creating one kind of guest CPU,
 495     * which is its preferred CPU type. Fortunately these old kernels
 496     * support only a very limited number of CPUs.
 497     */
 498    static const uint32_t cpus_to_try[] = {
 499        KVM_ARM_TARGET_AEM_V8,
 500        KVM_ARM_TARGET_FOUNDATION_V8,
 501        KVM_ARM_TARGET_CORTEX_A57,
 502        QEMU_KVM_ARM_TARGET_NONE
 503    };
 504    struct kvm_vcpu_init init;
 505
 506    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
 507        return false;
 508    }
 509
 510    ahcf->target = init.target;
 511    ahcf->dtb_compatible = "arm,arm-v8";
 512
 513    err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
 514                         ARM64_SYS_REG(3, 0, 0, 4, 0));
 515    if (unlikely(err < 0)) {
 516        /*
 517         * Before v4.15, the kernel only exposed a limited number of system
 518         * registers, not including any of the interesting AArch64 ID regs.
 519         * For the most part we could leave these fields as zero with minimal
 520         * effect, since this does not affect the values seen by the guest.
 521         *
 522         * However, it could cause problems down the line for QEMU,
 523         * so provide a minimal v8.0 default.
 524         *
 525         * ??? Could read MIDR and use knowledge from cpu64.c.
 526         * ??? Could map a page of memory into our temp guest and
 527         *     run the tiniest of hand-crafted kernels to extract
 528         *     the values seen by the guest.
 529         * ??? Either of these sounds like too much effort just
 530         *     to work around running a modern host kernel.
 531         */
 532        ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
 533        err = 0;
 534    } else {
 535        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
 536                              ARM64_SYS_REG(3, 0, 0, 4, 1));
 537        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
 538                              ARM64_SYS_REG(3, 0, 0, 6, 0));
 539        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
 540                              ARM64_SYS_REG(3, 0, 0, 6, 1));
 541        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
 542                              ARM64_SYS_REG(3, 0, 0, 7, 0));
 543        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
 544                              ARM64_SYS_REG(3, 0, 0, 7, 1));
 545
 546        /*
 547         * Note that if AArch32 support is not present in the host,
 548         * the AArch32 sysregs are present to be read, but will
 549         * return UNKNOWN values.  This is neither better nor worse
 550         * than skipping the reads and leaving 0, as we must avoid
 551         * considering the values in every case.
 552         */
 553        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
 554                              ARM64_SYS_REG(3, 0, 0, 2, 0));
 555        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
 556                              ARM64_SYS_REG(3, 0, 0, 2, 1));
 557        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
 558                              ARM64_SYS_REG(3, 0, 0, 2, 2));
 559        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
 560                              ARM64_SYS_REG(3, 0, 0, 2, 3));
 561        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
 562                              ARM64_SYS_REG(3, 0, 0, 2, 4));
 563        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
 564                              ARM64_SYS_REG(3, 0, 0, 2, 5));
 565        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
 566                              ARM64_SYS_REG(3, 0, 0, 2, 7));
 567
 568        err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
 569                              ARM64_SYS_REG(3, 0, 0, 3, 0));
 570        err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
 571                              ARM64_SYS_REG(3, 0, 0, 3, 1));
 572        err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
 573                              ARM64_SYS_REG(3, 0, 0, 3, 2));
 574    }
 575
 576    kvm_arm_destroy_scratch_host_vcpu(fdarray);
 577
 578    if (err < 0) {
 579        return false;
 580    }
 581
 582   /* We can assume any KVM supporting CPU is at least a v8
 583     * with VFPv4+Neon; this in turn implies most of the other
 584     * feature bits.
 585     */
 586    set_feature(&features, ARM_FEATURE_V8);
 587    set_feature(&features, ARM_FEATURE_VFP4);
 588    set_feature(&features, ARM_FEATURE_NEON);
 589    set_feature(&features, ARM_FEATURE_AARCH64);
 590    set_feature(&features, ARM_FEATURE_PMU);
 591
 592    ahcf->features = features;
 593
 594    return true;
 595}
 596
 597#define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
 598
 599int kvm_arch_init_vcpu(CPUState *cs)
 600{
 601    int ret;
 602    uint64_t mpidr;
 603    ARMCPU *cpu = ARM_CPU(cs);
 604    CPUARMState *env = &cpu->env;
 605
 606    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
 607        !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
 608        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
 609        return -EINVAL;
 610    }
 611
 612    /* Determine init features for this CPU */
 613    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
 614    if (cpu->start_powered_off) {
 615        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
 616    }
 617    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
 618        cpu->psci_version = 2;
 619        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
 620    }
 621    if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 622        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
 623    }
 624    if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
 625            cpu->has_pmu = false;
 626    }
 627    if (cpu->has_pmu) {
 628        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
 629    } else {
 630        unset_feature(&env->features, ARM_FEATURE_PMU);
 631    }
 632
 633    /* Do KVM_ARM_VCPU_INIT ioctl */
 634    ret = kvm_arm_vcpu_init(cs);
 635    if (ret) {
 636        return ret;
 637    }
 638
 639    /*
 640     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
 641     * Currently KVM has its own idea about MPIDR assignment, so we
 642     * override our defaults with what we get from KVM.
 643     */
 644    ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
 645    if (ret) {
 646        return ret;
 647    }
 648    cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
 649
 650    kvm_arm_init_debug(cs);
 651
 652    /* Check whether user space can specify guest syndrome value */
 653    kvm_arm_init_serror_injection(cs);
 654
 655    return kvm_arm_init_cpreg_list(cpu);
 656}
 657
 658bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
 659{
 660    /* Return true if the regidx is a register we should synchronize
 661     * via the cpreg_tuples array (ie is not a core reg we sync by
 662     * hand in kvm_arch_get/put_registers())
 663     */
 664    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
 665    case KVM_REG_ARM_CORE:
 666        return false;
 667    default:
 668        return true;
 669    }
 670}
 671
 672typedef struct CPRegStateLevel {
 673    uint64_t regidx;
 674    int level;
 675} CPRegStateLevel;
 676
 677/* All system registers not listed in the following table are assumed to be
 678 * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
 679 * often, you must add it to this table with a state of either
 680 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
 681 */
 682static const CPRegStateLevel non_runtime_cpregs[] = {
 683    { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
 684};
 685
 686int kvm_arm_cpreg_level(uint64_t regidx)
 687{
 688    int i;
 689
 690    for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
 691        const CPRegStateLevel *l = &non_runtime_cpregs[i];
 692        if (l->regidx == regidx) {
 693            return l->level;
 694        }
 695    }
 696
 697    return KVM_PUT_RUNTIME_STATE;
 698}
 699
 700#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
 701                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 702
 703#define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
 704                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 705
 706#define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
 707                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 708
 709int kvm_arch_put_registers(CPUState *cs, int level)
 710{
 711    struct kvm_one_reg reg;
 712    uint32_t fpr;
 713    uint64_t val;
 714    int i;
 715    int ret;
 716    unsigned int el;
 717
 718    ARMCPU *cpu = ARM_CPU(cs);
 719    CPUARMState *env = &cpu->env;
 720
 721    /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
 722     * AArch64 registers before pushing them out to 64-bit KVM.
 723     */
 724    if (!is_a64(env)) {
 725        aarch64_sync_32_to_64(env);
 726    }
 727
 728    for (i = 0; i < 31; i++) {
 729        reg.id = AARCH64_CORE_REG(regs.regs[i]);
 730        reg.addr = (uintptr_t) &env->xregs[i];
 731        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 732        if (ret) {
 733            return ret;
 734        }
 735    }
 736
 737    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 738     * QEMU side we keep the current SP in xregs[31] as well.
 739     */
 740    aarch64_save_sp(env, 1);
 741
 742    reg.id = AARCH64_CORE_REG(regs.sp);
 743    reg.addr = (uintptr_t) &env->sp_el[0];
 744    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 745    if (ret) {
 746        return ret;
 747    }
 748
 749    reg.id = AARCH64_CORE_REG(sp_el1);
 750    reg.addr = (uintptr_t) &env->sp_el[1];
 751    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 752    if (ret) {
 753        return ret;
 754    }
 755
 756    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
 757    if (is_a64(env)) {
 758        val = pstate_read(env);
 759    } else {
 760        val = cpsr_read(env);
 761    }
 762    reg.id = AARCH64_CORE_REG(regs.pstate);
 763    reg.addr = (uintptr_t) &val;
 764    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 765    if (ret) {
 766        return ret;
 767    }
 768
 769    reg.id = AARCH64_CORE_REG(regs.pc);
 770    reg.addr = (uintptr_t) &env->pc;
 771    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 772    if (ret) {
 773        return ret;
 774    }
 775
 776    reg.id = AARCH64_CORE_REG(elr_el1);
 777    reg.addr = (uintptr_t) &env->elr_el[1];
 778    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 779    if (ret) {
 780        return ret;
 781    }
 782
 783    /* Saved Program State Registers
 784     *
 785     * Before we restore from the banked_spsr[] array we need to
 786     * ensure that any modifications to env->spsr are correctly
 787     * reflected in the banks.
 788     */
 789    el = arm_current_el(env);
 790    if (el > 0 && !is_a64(env)) {
 791        i = bank_number(env->uncached_cpsr & CPSR_M);
 792        env->banked_spsr[i] = env->spsr;
 793    }
 794
 795    /* KVM 0-4 map to QEMU banks 1-5 */
 796    for (i = 0; i < KVM_NR_SPSR; i++) {
 797        reg.id = AARCH64_CORE_REG(spsr[i]);
 798        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
 799        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 800        if (ret) {
 801            return ret;
 802        }
 803    }
 804
 805    /* Advanced SIMD and FP registers. */
 806    for (i = 0; i < 32; i++) {
 807        uint64_t *q = aa64_vfp_qreg(env, i);
 808#ifdef HOST_WORDS_BIGENDIAN
 809        uint64_t fp_val[2] = { q[1], q[0] };
 810        reg.addr = (uintptr_t)fp_val;
 811#else
 812        reg.addr = (uintptr_t)q;
 813#endif
 814        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
 815        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 816        if (ret) {
 817            return ret;
 818        }
 819    }
 820
 821    reg.addr = (uintptr_t)(&fpr);
 822    fpr = vfp_get_fpsr(env);
 823    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
 824    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 825    if (ret) {
 826        return ret;
 827    }
 828
 829    fpr = vfp_get_fpcr(env);
 830    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
 831    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
 832    if (ret) {
 833        return ret;
 834    }
 835
 836    ret = kvm_put_vcpu_events(cpu);
 837    if (ret) {
 838        return ret;
 839    }
 840
 841    if (!write_list_to_kvmstate(cpu, level)) {
 842        return EINVAL;
 843    }
 844
 845    kvm_arm_sync_mpstate_to_kvm(cpu);
 846
 847    return ret;
 848}
 849
 850int kvm_arch_get_registers(CPUState *cs)
 851{
 852    struct kvm_one_reg reg;
 853    uint64_t val;
 854    uint32_t fpr;
 855    unsigned int el;
 856    int i;
 857    int ret;
 858
 859    ARMCPU *cpu = ARM_CPU(cs);
 860    CPUARMState *env = &cpu->env;
 861
 862    for (i = 0; i < 31; i++) {
 863        reg.id = AARCH64_CORE_REG(regs.regs[i]);
 864        reg.addr = (uintptr_t) &env->xregs[i];
 865        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 866        if (ret) {
 867            return ret;
 868        }
 869    }
 870
 871    reg.id = AARCH64_CORE_REG(regs.sp);
 872    reg.addr = (uintptr_t) &env->sp_el[0];
 873    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 874    if (ret) {
 875        return ret;
 876    }
 877
 878    reg.id = AARCH64_CORE_REG(sp_el1);
 879    reg.addr = (uintptr_t) &env->sp_el[1];
 880    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 881    if (ret) {
 882        return ret;
 883    }
 884
 885    reg.id = AARCH64_CORE_REG(regs.pstate);
 886    reg.addr = (uintptr_t) &val;
 887    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 888    if (ret) {
 889        return ret;
 890    }
 891
 892    env->aarch64 = ((val & PSTATE_nRW) == 0);
 893    if (is_a64(env)) {
 894        pstate_write(env, val);
 895    } else {
 896        cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
 897    }
 898
 899    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 900     * QEMU side we keep the current SP in xregs[31] as well.
 901     */
 902    aarch64_restore_sp(env, 1);
 903
 904    reg.id = AARCH64_CORE_REG(regs.pc);
 905    reg.addr = (uintptr_t) &env->pc;
 906    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 907    if (ret) {
 908        return ret;
 909    }
 910
 911    /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
 912     * incoming AArch64 regs received from 64-bit KVM.
 913     * We must perform this after all of the registers have been acquired from
 914     * the kernel.
 915     */
 916    if (!is_a64(env)) {
 917        aarch64_sync_64_to_32(env);
 918    }
 919
 920    reg.id = AARCH64_CORE_REG(elr_el1);
 921    reg.addr = (uintptr_t) &env->elr_el[1];
 922    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 923    if (ret) {
 924        return ret;
 925    }
 926
 927    /* Fetch the SPSR registers
 928     *
 929     * KVM SPSRs 0-4 map to QEMU banks 1-5
 930     */
 931    for (i = 0; i < KVM_NR_SPSR; i++) {
 932        reg.id = AARCH64_CORE_REG(spsr[i]);
 933        reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
 934        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 935        if (ret) {
 936            return ret;
 937        }
 938    }
 939
 940    el = arm_current_el(env);
 941    if (el > 0 && !is_a64(env)) {
 942        i = bank_number(env->uncached_cpsr & CPSR_M);
 943        env->spsr = env->banked_spsr[i];
 944    }
 945
 946    /* Advanced SIMD and FP registers */
 947    for (i = 0; i < 32; i++) {
 948        uint64_t *q = aa64_vfp_qreg(env, i);
 949        reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
 950        reg.addr = (uintptr_t)q;
 951        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 952        if (ret) {
 953            return ret;
 954        } else {
 955#ifdef HOST_WORDS_BIGENDIAN
 956            uint64_t t;
 957            t = q[0], q[0] = q[1], q[1] = t;
 958#endif
 959        }
 960    }
 961
 962    reg.addr = (uintptr_t)(&fpr);
 963    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
 964    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 965    if (ret) {
 966        return ret;
 967    }
 968    vfp_set_fpsr(env, fpr);
 969
 970    reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
 971    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
 972    if (ret) {
 973        return ret;
 974    }
 975    vfp_set_fpcr(env, fpr);
 976
 977    ret = kvm_get_vcpu_events(cpu);
 978    if (ret) {
 979        return ret;
 980    }
 981
 982    if (!write_kvmstate_to_list(cpu)) {
 983        return EINVAL;
 984    }
 985    /* Note that it's OK to have registers which aren't in CPUState,
 986     * so we can ignore a failure return here.
 987     */
 988    write_list_to_cpustate(cpu);
 989
 990    kvm_arm_sync_mpstate_to_qemu(cpu);
 991
 992    /* TODO: other registers */
 993    return ret;
 994}
 995
 996/* C6.6.29 BRK instruction */
 997static const uint32_t brk_insn = 0xd4200000;
 998
 999int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1000{
1001    if (have_guest_debug) {
1002        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
1003            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
1004            return -EINVAL;
1005        }
1006        return 0;
1007    } else {
1008        error_report("guest debug not supported on this kernel");
1009        return -EINVAL;
1010    }
1011}
1012
1013int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
1014{
1015    static uint32_t brk;
1016
1017    if (have_guest_debug) {
1018        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
1019            brk != brk_insn ||
1020            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
1021            return -EINVAL;
1022        }
1023        return 0;
1024    } else {
1025        error_report("guest debug not supported on this kernel");
1026        return -EINVAL;
1027    }
1028}
1029
1030/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
1031 *
1032 * To minimise translating between kernel and user-space the kernel
1033 * ABI just provides user-space with the full exception syndrome
1034 * register value to be decoded in QEMU.
1035 */
1036
1037bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
1038{
1039    int hsr_ec = syn_get_ec(debug_exit->hsr);
1040    ARMCPU *cpu = ARM_CPU(cs);
1041    CPUClass *cc = CPU_GET_CLASS(cs);
1042    CPUARMState *env = &cpu->env;
1043
1044    /* Ensure PC is synchronised */
1045    kvm_cpu_synchronize_state(cs);
1046
1047    switch (hsr_ec) {
1048    case EC_SOFTWARESTEP:
1049        if (cs->singlestep_enabled) {
1050            return true;
1051        } else {
1052            /*
1053             * The kernel should have suppressed the guest's ability to
1054             * single step at this point so something has gone wrong.
1055             */
1056            error_report("%s: guest single-step while debugging unsupported"
1057                         " (%"PRIx64", %"PRIx32")",
1058                         __func__, env->pc, debug_exit->hsr);
1059            return false;
1060        }
1061        break;
1062    case EC_AA64_BKPT:
1063        if (kvm_find_sw_breakpoint(cs, env->pc)) {
1064            return true;
1065        }
1066        break;
1067    case EC_BREAKPOINT:
1068        if (find_hw_breakpoint(cs, env->pc)) {
1069            return true;
1070        }
1071        break;
1072    case EC_WATCHPOINT:
1073    {
1074        CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
1075        if (wp) {
1076            cs->watchpoint_hit = wp;
1077            return true;
1078        }
1079        break;
1080    }
1081    default:
1082        error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
1083                     __func__, debug_exit->hsr, env->pc);
1084    }
1085
1086    /* If we are not handling the debug exception it must belong to
1087     * the guest. Let's re-use the existing TCG interrupt code to set
1088     * everything up properly.
1089     */
1090    cs->exception_index = EXCP_BKPT;
1091    env->exception.syndrome = debug_exit->hsr;
1092    env->exception.vaddress = debug_exit->far;
1093    env->exception.target_el = 1;
1094    qemu_mutex_lock_iothread();
1095    cc->do_interrupt(cs);
1096    qemu_mutex_unlock_iothread();
1097
1098    return false;
1099}
1100