qemu/target/hppa/op_helper.c
<<
>>
Prefs
   1/*
   2 * Helpers for HPPA instructions.
   3 *
   4 * Copyright (c) 2016 Richard Henderson <rth@twiddle.net>
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "exec/exec-all.h"
  23#include "exec/helper-proto.h"
  24#include "exec/cpu_ldst.h"
  25#include "sysemu/sysemu.h"
  26#include "qemu/timer.h"
  27#include "fpu/softfloat.h"
  28#include "trace.h"
  29
  30void QEMU_NORETURN HELPER(excp)(CPUHPPAState *env, int excp)
  31{
  32    HPPACPU *cpu = hppa_env_get_cpu(env);
  33    CPUState *cs = CPU(cpu);
  34
  35    cs->exception_index = excp;
  36    cpu_loop_exit(cs);
  37}
  38
  39void QEMU_NORETURN hppa_dynamic_excp(CPUHPPAState *env, int excp, uintptr_t ra)
  40{
  41    HPPACPU *cpu = hppa_env_get_cpu(env);
  42    CPUState *cs = CPU(cpu);
  43
  44    cs->exception_index = excp;
  45    cpu_loop_exit_restore(cs, ra);
  46}
  47
  48void HELPER(tsv)(CPUHPPAState *env, target_ureg cond)
  49{
  50    if (unlikely((target_sreg)cond < 0)) {
  51        hppa_dynamic_excp(env, EXCP_OVERFLOW, GETPC());
  52    }
  53}
  54
  55void HELPER(tcond)(CPUHPPAState *env, target_ureg cond)
  56{
  57    if (unlikely(cond)) {
  58        hppa_dynamic_excp(env, EXCP_COND, GETPC());
  59    }
  60}
  61
  62static void atomic_store_3(CPUHPPAState *env, target_ulong addr, uint32_t val,
  63                           uint32_t mask, uintptr_t ra)
  64{
  65#ifdef CONFIG_USER_ONLY
  66    uint32_t old, new, cmp;
  67
  68    uint32_t *haddr = g2h(addr - 1);
  69    old = *haddr;
  70    while (1) {
  71        new = (old & ~mask) | (val & mask);
  72        cmp = atomic_cmpxchg(haddr, old, new);
  73        if (cmp == old) {
  74            return;
  75        }
  76        old = cmp;
  77    }
  78#else
  79    /* FIXME -- we can do better.  */
  80    cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
  81#endif
  82}
  83
  84static void do_stby_b(CPUHPPAState *env, target_ulong addr, target_ureg val,
  85                      bool parallel, uintptr_t ra)
  86{
  87    switch (addr & 3) {
  88    case 3:
  89        cpu_stb_data_ra(env, addr, val, ra);
  90        break;
  91    case 2:
  92        cpu_stw_data_ra(env, addr, val, ra);
  93        break;
  94    case 1:
  95        /* The 3 byte store must appear atomic.  */
  96        if (parallel) {
  97            atomic_store_3(env, addr, val, 0x00ffffffu, ra);
  98        } else {
  99            cpu_stb_data_ra(env, addr, val >> 16, ra);
 100            cpu_stw_data_ra(env, addr + 1, val, ra);
 101        }
 102        break;
 103    default:
 104        cpu_stl_data_ra(env, addr, val, ra);
 105        break;
 106    }
 107}
 108
 109void HELPER(stby_b)(CPUHPPAState *env, target_ulong addr, target_ureg val)
 110{
 111    do_stby_b(env, addr, val, false, GETPC());
 112}
 113
 114void HELPER(stby_b_parallel)(CPUHPPAState *env, target_ulong addr,
 115                             target_ureg val)
 116{
 117    do_stby_b(env, addr, val, true, GETPC());
 118}
 119
 120static void do_stby_e(CPUHPPAState *env, target_ulong addr, target_ureg val,
 121                      bool parallel, uintptr_t ra)
 122{
 123    switch (addr & 3) {
 124    case 3:
 125        /* The 3 byte store must appear atomic.  */
 126        if (parallel) {
 127            atomic_store_3(env, addr - 3, val, 0xffffff00u, ra);
 128        } else {
 129            cpu_stw_data_ra(env, addr - 3, val >> 16, ra);
 130            cpu_stb_data_ra(env, addr - 1, val >> 8, ra);
 131        }
 132        break;
 133    case 2:
 134        cpu_stw_data_ra(env, addr - 2, val >> 16, ra);
 135        break;
 136    case 1:
 137        cpu_stb_data_ra(env, addr - 1, val >> 24, ra);
 138        break;
 139    default:
 140        /* Nothing is stored, but protection is checked and the
 141           cacheline is marked dirty.  */
 142#ifndef CONFIG_USER_ONLY
 143        probe_write(env, addr, 0, cpu_mmu_index(env, 0), ra);
 144#endif
 145        break;
 146    }
 147}
 148
 149void HELPER(stby_e)(CPUHPPAState *env, target_ulong addr, target_ureg val)
 150{
 151    do_stby_e(env, addr, val, false, GETPC());
 152}
 153
 154void HELPER(stby_e_parallel)(CPUHPPAState *env, target_ulong addr,
 155                             target_ureg val)
 156{
 157    do_stby_e(env, addr, val, true, GETPC());
 158}
 159
 160target_ureg HELPER(probe)(CPUHPPAState *env, target_ulong addr,
 161                          uint32_t level, uint32_t want)
 162{
 163#ifdef CONFIG_USER_ONLY
 164    return page_check_range(addr, 1, want);
 165#else
 166    int prot, excp;
 167    hwaddr phys;
 168
 169    trace_hppa_tlb_probe(addr, level, want);
 170    /* Fail if the requested privilege level is higher than current.  */
 171    if (level < (env->iaoq_f & 3)) {
 172        return 0;
 173    }
 174
 175    excp = hppa_get_physical_address(env, addr, level, 0, &phys, &prot);
 176    if (excp >= 0) {
 177        if (env->psw & PSW_Q) {
 178            /* ??? Needs tweaking for hppa64.  */
 179            env->cr[CR_IOR] = addr;
 180            env->cr[CR_ISR] = addr >> 32;
 181        }
 182        if (excp == EXCP_DTLB_MISS) {
 183            excp = EXCP_NA_DTLB_MISS;
 184        }
 185        hppa_dynamic_excp(env, excp, GETPC());
 186    }
 187    return (want & prot) != 0;
 188#endif
 189}
 190
 191void HELPER(loaded_fr0)(CPUHPPAState *env)
 192{
 193    uint32_t shadow = env->fr[0] >> 32;
 194    int rm, d;
 195
 196    env->fr0_shadow = shadow;
 197
 198    switch (extract32(shadow, 9, 2)) {
 199    default:
 200        rm = float_round_nearest_even;
 201        break;
 202    case 1:
 203        rm = float_round_to_zero;
 204        break;
 205    case 2:
 206        rm = float_round_up;
 207        break;
 208    case 3:
 209        rm = float_round_down;
 210        break;
 211    }
 212    set_float_rounding_mode(rm, &env->fp_status);
 213
 214    d = extract32(shadow, 5, 1);
 215    set_flush_to_zero(d, &env->fp_status);
 216    set_flush_inputs_to_zero(d, &env->fp_status);
 217}
 218
 219void cpu_hppa_loaded_fr0(CPUHPPAState *env)
 220{
 221    helper_loaded_fr0(env);
 222}
 223
 224#define CONVERT_BIT(X, SRC, DST)        \
 225    ((SRC) > (DST)                      \
 226     ? (X) / ((SRC) / (DST)) & (DST)    \
 227     : ((X) & (SRC)) * ((DST) / (SRC)))
 228
 229static void update_fr0_op(CPUHPPAState *env, uintptr_t ra)
 230{
 231    uint32_t soft_exp = get_float_exception_flags(&env->fp_status);
 232    uint32_t hard_exp = 0;
 233    uint32_t shadow = env->fr0_shadow;
 234
 235    if (likely(soft_exp == 0)) {
 236        env->fr[0] = (uint64_t)shadow << 32;
 237        return;
 238    }
 239    set_float_exception_flags(0, &env->fp_status);
 240
 241    hard_exp |= CONVERT_BIT(soft_exp, float_flag_inexact,   1u << 0);
 242    hard_exp |= CONVERT_BIT(soft_exp, float_flag_underflow, 1u << 1);
 243    hard_exp |= CONVERT_BIT(soft_exp, float_flag_overflow,  1u << 2);
 244    hard_exp |= CONVERT_BIT(soft_exp, float_flag_divbyzero, 1u << 3);
 245    hard_exp |= CONVERT_BIT(soft_exp, float_flag_invalid,   1u << 4);
 246    shadow |= hard_exp << (32 - 5);
 247    env->fr0_shadow = shadow;
 248    env->fr[0] = (uint64_t)shadow << 32;
 249
 250    if (hard_exp & shadow) {
 251        hppa_dynamic_excp(env, EXCP_ASSIST, ra);
 252    }
 253}
 254
 255float32 HELPER(fsqrt_s)(CPUHPPAState *env, float32 arg)
 256{
 257    float32 ret = float32_sqrt(arg, &env->fp_status);
 258    update_fr0_op(env, GETPC());
 259    return ret;
 260}
 261
 262float32 HELPER(frnd_s)(CPUHPPAState *env, float32 arg)
 263{
 264    float32 ret = float32_round_to_int(arg, &env->fp_status);
 265    update_fr0_op(env, GETPC());
 266    return ret;
 267}
 268
 269float32 HELPER(fadd_s)(CPUHPPAState *env, float32 a, float32 b)
 270{
 271    float32 ret = float32_add(a, b, &env->fp_status);
 272    update_fr0_op(env, GETPC());
 273    return ret;
 274}
 275
 276float32 HELPER(fsub_s)(CPUHPPAState *env, float32 a, float32 b)
 277{
 278    float32 ret = float32_sub(a, b, &env->fp_status);
 279    update_fr0_op(env, GETPC());
 280    return ret;
 281}
 282
 283float32 HELPER(fmpy_s)(CPUHPPAState *env, float32 a, float32 b)
 284{
 285    float32 ret = float32_mul(a, b, &env->fp_status);
 286    update_fr0_op(env, GETPC());
 287    return ret;
 288}
 289
 290float32 HELPER(fdiv_s)(CPUHPPAState *env, float32 a, float32 b)
 291{
 292    float32 ret = float32_div(a, b, &env->fp_status);
 293    update_fr0_op(env, GETPC());
 294    return ret;
 295}
 296
 297float64 HELPER(fsqrt_d)(CPUHPPAState *env, float64 arg)
 298{
 299    float64 ret = float64_sqrt(arg, &env->fp_status);
 300    update_fr0_op(env, GETPC());
 301    return ret;
 302}
 303
 304float64 HELPER(frnd_d)(CPUHPPAState *env, float64 arg)
 305{
 306    float64 ret = float64_round_to_int(arg, &env->fp_status);
 307    update_fr0_op(env, GETPC());
 308    return ret;
 309}
 310
 311float64 HELPER(fadd_d)(CPUHPPAState *env, float64 a, float64 b)
 312{
 313    float64 ret = float64_add(a, b, &env->fp_status);
 314    update_fr0_op(env, GETPC());
 315    return ret;
 316}
 317
 318float64 HELPER(fsub_d)(CPUHPPAState *env, float64 a, float64 b)
 319{
 320    float64 ret = float64_sub(a, b, &env->fp_status);
 321    update_fr0_op(env, GETPC());
 322    return ret;
 323}
 324
 325float64 HELPER(fmpy_d)(CPUHPPAState *env, float64 a, float64 b)
 326{
 327    float64 ret = float64_mul(a, b, &env->fp_status);
 328    update_fr0_op(env, GETPC());
 329    return ret;
 330}
 331
 332float64 HELPER(fdiv_d)(CPUHPPAState *env, float64 a, float64 b)
 333{
 334    float64 ret = float64_div(a, b, &env->fp_status);
 335    update_fr0_op(env, GETPC());
 336    return ret;
 337}
 338
 339float64 HELPER(fcnv_s_d)(CPUHPPAState *env, float32 arg)
 340{
 341    float64 ret = float32_to_float64(arg, &env->fp_status);
 342    update_fr0_op(env, GETPC());
 343    return ret;
 344}
 345
 346float32 HELPER(fcnv_d_s)(CPUHPPAState *env, float64 arg)
 347{
 348    float32 ret = float64_to_float32(arg, &env->fp_status);
 349    update_fr0_op(env, GETPC());
 350    return ret;
 351}
 352
 353float32 HELPER(fcnv_w_s)(CPUHPPAState *env, int32_t arg)
 354{
 355    float32 ret = int32_to_float32(arg, &env->fp_status);
 356    update_fr0_op(env, GETPC());
 357    return ret;
 358}
 359
 360float32 HELPER(fcnv_dw_s)(CPUHPPAState *env, int64_t arg)
 361{
 362    float32 ret = int64_to_float32(arg, &env->fp_status);
 363    update_fr0_op(env, GETPC());
 364    return ret;
 365}
 366
 367float64 HELPER(fcnv_w_d)(CPUHPPAState *env, int32_t arg)
 368{
 369    float64 ret = int32_to_float64(arg, &env->fp_status);
 370    update_fr0_op(env, GETPC());
 371    return ret;
 372}
 373
 374float64 HELPER(fcnv_dw_d)(CPUHPPAState *env, int64_t arg)
 375{
 376    float64 ret = int64_to_float64(arg, &env->fp_status);
 377    update_fr0_op(env, GETPC());
 378    return ret;
 379}
 380
 381int32_t HELPER(fcnv_s_w)(CPUHPPAState *env, float32 arg)
 382{
 383    int32_t ret = float32_to_int32(arg, &env->fp_status);
 384    update_fr0_op(env, GETPC());
 385    return ret;
 386}
 387
 388int32_t HELPER(fcnv_d_w)(CPUHPPAState *env, float64 arg)
 389{
 390    int32_t ret = float64_to_int32(arg, &env->fp_status);
 391    update_fr0_op(env, GETPC());
 392    return ret;
 393}
 394
 395int64_t HELPER(fcnv_s_dw)(CPUHPPAState *env, float32 arg)
 396{
 397    int64_t ret = float32_to_int64(arg, &env->fp_status);
 398    update_fr0_op(env, GETPC());
 399    return ret;
 400}
 401
 402int64_t HELPER(fcnv_d_dw)(CPUHPPAState *env, float64 arg)
 403{
 404    int64_t ret = float64_to_int64(arg, &env->fp_status);
 405    update_fr0_op(env, GETPC());
 406    return ret;
 407}
 408
 409int32_t HELPER(fcnv_t_s_w)(CPUHPPAState *env, float32 arg)
 410{
 411    int32_t ret = float32_to_int32_round_to_zero(arg, &env->fp_status);
 412    update_fr0_op(env, GETPC());
 413    return ret;
 414}
 415
 416int32_t HELPER(fcnv_t_d_w)(CPUHPPAState *env, float64 arg)
 417{
 418    int32_t ret = float64_to_int32_round_to_zero(arg, &env->fp_status);
 419    update_fr0_op(env, GETPC());
 420    return ret;
 421}
 422
 423int64_t HELPER(fcnv_t_s_dw)(CPUHPPAState *env, float32 arg)
 424{
 425    int64_t ret = float32_to_int64_round_to_zero(arg, &env->fp_status);
 426    update_fr0_op(env, GETPC());
 427    return ret;
 428}
 429
 430int64_t HELPER(fcnv_t_d_dw)(CPUHPPAState *env, float64 arg)
 431{
 432    int64_t ret = float64_to_int64_round_to_zero(arg, &env->fp_status);
 433    update_fr0_op(env, GETPC());
 434    return ret;
 435}
 436
 437float32 HELPER(fcnv_uw_s)(CPUHPPAState *env, uint32_t arg)
 438{
 439    float32 ret = uint32_to_float32(arg, &env->fp_status);
 440    update_fr0_op(env, GETPC());
 441    return ret;
 442}
 443
 444float32 HELPER(fcnv_udw_s)(CPUHPPAState *env, uint64_t arg)
 445{
 446    float32 ret = uint64_to_float32(arg, &env->fp_status);
 447    update_fr0_op(env, GETPC());
 448    return ret;
 449}
 450
 451float64 HELPER(fcnv_uw_d)(CPUHPPAState *env, uint32_t arg)
 452{
 453    float64 ret = uint32_to_float64(arg, &env->fp_status);
 454    update_fr0_op(env, GETPC());
 455    return ret;
 456}
 457
 458float64 HELPER(fcnv_udw_d)(CPUHPPAState *env, uint64_t arg)
 459{
 460    float64 ret = uint64_to_float64(arg, &env->fp_status);
 461    update_fr0_op(env, GETPC());
 462    return ret;
 463}
 464
 465uint32_t HELPER(fcnv_s_uw)(CPUHPPAState *env, float32 arg)
 466{
 467    uint32_t ret = float32_to_uint32(arg, &env->fp_status);
 468    update_fr0_op(env, GETPC());
 469    return ret;
 470}
 471
 472uint32_t HELPER(fcnv_d_uw)(CPUHPPAState *env, float64 arg)
 473{
 474    uint32_t ret = float64_to_uint32(arg, &env->fp_status);
 475    update_fr0_op(env, GETPC());
 476    return ret;
 477}
 478
 479uint64_t HELPER(fcnv_s_udw)(CPUHPPAState *env, float32 arg)
 480{
 481    uint64_t ret = float32_to_uint64(arg, &env->fp_status);
 482    update_fr0_op(env, GETPC());
 483    return ret;
 484}
 485
 486uint64_t HELPER(fcnv_d_udw)(CPUHPPAState *env, float64 arg)
 487{
 488    uint64_t ret = float64_to_uint64(arg, &env->fp_status);
 489    update_fr0_op(env, GETPC());
 490    return ret;
 491}
 492
 493uint32_t HELPER(fcnv_t_s_uw)(CPUHPPAState *env, float32 arg)
 494{
 495    uint32_t ret = float32_to_uint32_round_to_zero(arg, &env->fp_status);
 496    update_fr0_op(env, GETPC());
 497    return ret;
 498}
 499
 500uint32_t HELPER(fcnv_t_d_uw)(CPUHPPAState *env, float64 arg)
 501{
 502    uint32_t ret = float64_to_uint32_round_to_zero(arg, &env->fp_status);
 503    update_fr0_op(env, GETPC());
 504    return ret;
 505}
 506
 507uint64_t HELPER(fcnv_t_s_udw)(CPUHPPAState *env, float32 arg)
 508{
 509    uint64_t ret = float32_to_uint64_round_to_zero(arg, &env->fp_status);
 510    update_fr0_op(env, GETPC());
 511    return ret;
 512}
 513
 514uint64_t HELPER(fcnv_t_d_udw)(CPUHPPAState *env, float64 arg)
 515{
 516    uint64_t ret = float64_to_uint64_round_to_zero(arg, &env->fp_status);
 517    update_fr0_op(env, GETPC());
 518    return ret;
 519}
 520
 521static void update_fr0_cmp(CPUHPPAState *env, uint32_t y, uint32_t c, int r)
 522{
 523    uint32_t shadow = env->fr0_shadow;
 524
 525    switch (r) {
 526    case float_relation_greater:
 527        c = extract32(c, 4, 1);
 528        break;
 529    case float_relation_less:
 530        c = extract32(c, 3, 1);
 531        break;
 532    case float_relation_equal:
 533        c = extract32(c, 2, 1);
 534        break;
 535    case float_relation_unordered:
 536        c = extract32(c, 1, 1);
 537        break;
 538    default:
 539        g_assert_not_reached();
 540    }
 541
 542    if (y) {
 543        /* targeted comparison */
 544        /* set fpsr[ca[y - 1]] to current compare */
 545        shadow = deposit32(shadow, 21 - (y - 1), 1, c);
 546    } else {
 547        /* queued comparison */
 548        /* shift cq right by one place */
 549        shadow = deposit32(shadow, 11, 10, extract32(shadow, 12, 10));
 550        /* move fpsr[c] to fpsr[cq[0]] */
 551        shadow = deposit32(shadow, 21, 1, extract32(shadow, 26, 1));
 552        /* set fpsr[c] to current compare */
 553        shadow = deposit32(shadow, 26, 1, c);
 554    }
 555
 556    env->fr0_shadow = shadow;
 557    env->fr[0] = (uint64_t)shadow << 32;
 558}
 559
 560void HELPER(fcmp_s)(CPUHPPAState *env, float32 a, float32 b,
 561                    uint32_t y, uint32_t c)
 562{
 563    int r;
 564    if (c & 1) {
 565        r = float32_compare(a, b, &env->fp_status);
 566    } else {
 567        r = float32_compare_quiet(a, b, &env->fp_status);
 568    }
 569    update_fr0_op(env, GETPC());
 570    update_fr0_cmp(env, y, c, r);
 571}
 572
 573void HELPER(fcmp_d)(CPUHPPAState *env, float64 a, float64 b,
 574                    uint32_t y, uint32_t c)
 575{
 576    int r;
 577    if (c & 1) {
 578        r = float64_compare(a, b, &env->fp_status);
 579    } else {
 580        r = float64_compare_quiet(a, b, &env->fp_status);
 581    }
 582    update_fr0_op(env, GETPC());
 583    update_fr0_cmp(env, y, c, r);
 584}
 585
 586float32 HELPER(fmpyfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
 587{
 588    float32 ret = float32_muladd(a, b, c, 0, &env->fp_status);
 589    update_fr0_op(env, GETPC());
 590    return ret;
 591}
 592
 593float32 HELPER(fmpynfadd_s)(CPUHPPAState *env, float32 a, float32 b, float32 c)
 594{
 595    float32 ret = float32_muladd(a, b, c, float_muladd_negate_product,
 596                                 &env->fp_status);
 597    update_fr0_op(env, GETPC());
 598    return ret;
 599}
 600
 601float64 HELPER(fmpyfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
 602{
 603    float64 ret = float64_muladd(a, b, c, 0, &env->fp_status);
 604    update_fr0_op(env, GETPC());
 605    return ret;
 606}
 607
 608float64 HELPER(fmpynfadd_d)(CPUHPPAState *env, float64 a, float64 b, float64 c)
 609{
 610    float64 ret = float64_muladd(a, b, c, float_muladd_negate_product,
 611                                 &env->fp_status);
 612    update_fr0_op(env, GETPC());
 613    return ret;
 614}
 615
 616target_ureg HELPER(read_interval_timer)(void)
 617{
 618#ifdef CONFIG_USER_ONLY
 619    /* In user-mode, QEMU_CLOCK_VIRTUAL doesn't exist.
 620       Just pass through the host cpu clock ticks.  */
 621    return cpu_get_host_ticks();
 622#else
 623    /* In system mode we have access to a decent high-resolution clock.
 624       In order to make OS-level time accounting work with the cr16,
 625       present it with a well-timed clock fixed at 250MHz.  */
 626    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) >> 2;
 627#endif
 628}
 629
 630#ifndef CONFIG_USER_ONLY
 631void HELPER(write_interval_timer)(CPUHPPAState *env, target_ureg val)
 632{
 633    HPPACPU *cpu = hppa_env_get_cpu(env);
 634    uint64_t current = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 635    uint64_t timeout;
 636
 637    /* Even in 64-bit mode, the comparator is always 32-bit.  But the
 638       value we expose to the guest is 1/4 of the speed of the clock,
 639       so moosh in 34 bits.  */
 640    timeout = deposit64(current, 0, 34, (uint64_t)val << 2);
 641
 642    /* If the mooshing puts the clock in the past, advance to next round.  */
 643    if (timeout < current + 1000) {
 644        timeout += 1ULL << 34;
 645    }
 646
 647    cpu->env.cr[CR_IT] = timeout;
 648    timer_mod(cpu->alarm_timer, timeout);
 649}
 650
 651void HELPER(halt)(CPUHPPAState *env)
 652{
 653    qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
 654    helper_excp(env, EXCP_HLT);
 655}
 656
 657void HELPER(reset)(CPUHPPAState *env)
 658{
 659    qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 660    helper_excp(env, EXCP_HLT);
 661}
 662
 663target_ureg HELPER(swap_system_mask)(CPUHPPAState *env, target_ureg nsm)
 664{
 665    target_ulong psw = env->psw;
 666    /*
 667     * Setting the PSW Q bit to 1, if it was not already 1, is an
 668     * undefined operation.
 669     *
 670     * However, HP-UX 10.20 does this with the SSM instruction.
 671     * Tested this on HP9000/712 and HP9000/785/C3750 and both
 672     * machines set the Q bit from 0 to 1 without an exception,
 673     * so let this go without comment.
 674     */
 675    env->psw = (psw & ~PSW_SM) | (nsm & PSW_SM);
 676    return psw & PSW_SM;
 677}
 678
 679void HELPER(rfi)(CPUHPPAState *env)
 680{
 681    env->iasq_f = (uint64_t)env->cr[CR_IIASQ] << 32;
 682    env->iasq_b = (uint64_t)env->cr_back[0] << 32;
 683    env->iaoq_f = env->cr[CR_IIAOQ];
 684    env->iaoq_b = env->cr_back[1];
 685    cpu_hppa_put_psw(env, env->cr[CR_IPSW]);
 686}
 687
 688void HELPER(rfi_r)(CPUHPPAState *env)
 689{
 690    env->gr[1] = env->shadow[0];
 691    env->gr[8] = env->shadow[1];
 692    env->gr[9] = env->shadow[2];
 693    env->gr[16] = env->shadow[3];
 694    env->gr[17] = env->shadow[4];
 695    env->gr[24] = env->shadow[5];
 696    env->gr[25] = env->shadow[6];
 697    helper_rfi(env);
 698}
 699#endif
 700