qemu/target/ppc/mem_helper.c
<<
>>
Prefs
   1/*
   2 *  PowerPC memory access emulation helpers for QEMU.
   3 *
   4 *  Copyright (c) 2003-2007 Jocelyn Mayer
   5 *
   6 * This library is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU Lesser General Public
   8 * License as published by the Free Software Foundation; either
   9 * version 2 of the License, or (at your option) any later version.
  10 *
  11 * This library is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  14 * Lesser General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU Lesser General Public
  17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19#include "qemu/osdep.h"
  20#include "cpu.h"
  21#include "exec/exec-all.h"
  22#include "qemu/host-utils.h"
  23#include "exec/helper-proto.h"
  24#include "helper_regs.h"
  25#include "exec/cpu_ldst.h"
  26#include "tcg.h"
  27#include "internal.h"
  28#include "qemu/atomic128.h"
  29
  30//#define DEBUG_OP
  31
  32static inline bool needs_byteswap(const CPUPPCState *env)
  33{
  34#if defined(TARGET_WORDS_BIGENDIAN)
  35  return msr_le;
  36#else
  37  return !msr_le;
  38#endif
  39}
  40
  41/*****************************************************************************/
  42/* Memory load and stores */
  43
  44static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
  45                                    target_long arg)
  46{
  47#if defined(TARGET_PPC64)
  48    if (!msr_is_64bit(env, env->msr)) {
  49        return (uint32_t)(addr + arg);
  50    } else
  51#endif
  52    {
  53        return addr + arg;
  54    }
  55}
  56
  57void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
  58{
  59    for (; reg < 32; reg++) {
  60        if (needs_byteswap(env)) {
  61            env->gpr[reg] = bswap32(cpu_ldl_data_ra(env, addr, GETPC()));
  62        } else {
  63            env->gpr[reg] = cpu_ldl_data_ra(env, addr, GETPC());
  64        }
  65        addr = addr_add(env, addr, 4);
  66    }
  67}
  68
  69void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
  70{
  71    for (; reg < 32; reg++) {
  72        if (needs_byteswap(env)) {
  73            cpu_stl_data_ra(env, addr, bswap32((uint32_t)env->gpr[reg]),
  74                                                   GETPC());
  75        } else {
  76            cpu_stl_data_ra(env, addr, (uint32_t)env->gpr[reg], GETPC());
  77        }
  78        addr = addr_add(env, addr, 4);
  79    }
  80}
  81
  82static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
  83                   uint32_t reg, uintptr_t raddr)
  84{
  85    int sh;
  86
  87    for (; nb > 3; nb -= 4) {
  88        env->gpr[reg] = cpu_ldl_data_ra(env, addr, raddr);
  89        reg = (reg + 1) % 32;
  90        addr = addr_add(env, addr, 4);
  91    }
  92    if (unlikely(nb > 0)) {
  93        env->gpr[reg] = 0;
  94        for (sh = 24; nb > 0; nb--, sh -= 8) {
  95            env->gpr[reg] |= cpu_ldub_data_ra(env, addr, raddr) << sh;
  96            addr = addr_add(env, addr, 1);
  97        }
  98    }
  99}
 100
 101void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
 102{
 103    do_lsw(env, addr, nb, reg, GETPC());
 104}
 105
 106/* PPC32 specification says we must generate an exception if
 107 * rA is in the range of registers to be loaded.
 108 * In an other hand, IBM says this is valid, but rA won't be loaded.
 109 * For now, I'll follow the spec...
 110 */
 111void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
 112                 uint32_t ra, uint32_t rb)
 113{
 114    if (likely(xer_bc != 0)) {
 115        int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
 116        if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
 117                     lsw_reg_in_range(reg, num_used_regs, rb))) {
 118            raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 119                                   POWERPC_EXCP_INVAL |
 120                                   POWERPC_EXCP_INVAL_LSWX, GETPC());
 121        } else {
 122            do_lsw(env, addr, xer_bc, reg, GETPC());
 123        }
 124    }
 125}
 126
 127void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
 128                 uint32_t reg)
 129{
 130    int sh;
 131
 132    for (; nb > 3; nb -= 4) {
 133        cpu_stl_data_ra(env, addr, env->gpr[reg], GETPC());
 134        reg = (reg + 1) % 32;
 135        addr = addr_add(env, addr, 4);
 136    }
 137    if (unlikely(nb > 0)) {
 138        for (sh = 24; nb > 0; nb--, sh -= 8) {
 139            cpu_stb_data_ra(env, addr, (env->gpr[reg] >> sh) & 0xFF, GETPC());
 140            addr = addr_add(env, addr, 1);
 141        }
 142    }
 143}
 144
 145static void dcbz_common(CPUPPCState *env, target_ulong addr,
 146                        uint32_t opcode, bool epid, uintptr_t retaddr)
 147{
 148    target_ulong mask, dcbz_size = env->dcache_line_size;
 149    uint32_t i;
 150    void *haddr;
 151    int mmu_idx = epid ? PPC_TLB_EPID_STORE : env->dmmu_idx;
 152
 153#if defined(TARGET_PPC64)
 154    /* Check for dcbz vs dcbzl on 970 */
 155    if (env->excp_model == POWERPC_EXCP_970 &&
 156        !(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
 157        dcbz_size = 32;
 158    }
 159#endif
 160
 161    /* Align address */
 162    mask = ~(dcbz_size - 1);
 163    addr &= mask;
 164
 165    /* Check reservation */
 166    if ((env->reserve_addr & mask) == (addr & mask))  {
 167        env->reserve_addr = (target_ulong)-1ULL;
 168    }
 169
 170    /* Try fast path translate */
 171    haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, mmu_idx);
 172    if (haddr) {
 173        memset(haddr, 0, dcbz_size);
 174    } else {
 175        /* Slow path */
 176        for (i = 0; i < dcbz_size; i += 8) {
 177            if (epid) {
 178#if !defined(CONFIG_USER_ONLY)
 179                /* Does not make sense on USER_ONLY config */
 180                cpu_stq_eps_ra(env, addr + i, 0, retaddr);
 181#endif
 182            } else {
 183                cpu_stq_data_ra(env, addr + i, 0, retaddr);
 184            }
 185        }
 186    }
 187}
 188
 189void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
 190{
 191    dcbz_common(env, addr, opcode, false, GETPC());
 192}
 193
 194void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode)
 195{
 196    dcbz_common(env, addr, opcode, true, GETPC());
 197}
 198
 199void helper_icbi(CPUPPCState *env, target_ulong addr)
 200{
 201    addr &= ~(env->dcache_line_size - 1);
 202    /* Invalidate one cache line :
 203     * PowerPC specification says this is to be treated like a load
 204     * (not a fetch) by the MMU. To be sure it will be so,
 205     * do the load "by hand".
 206     */
 207    cpu_ldl_data_ra(env, addr, GETPC());
 208}
 209
 210void helper_icbiep(CPUPPCState *env, target_ulong addr)
 211{
 212#if !defined(CONFIG_USER_ONLY)
 213    /* See comments above */
 214    addr &= ~(env->dcache_line_size - 1);
 215    cpu_ldl_epl_ra(env, addr, GETPC());
 216#endif
 217}
 218
 219/* XXX: to be tested */
 220target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
 221                          uint32_t ra, uint32_t rb)
 222{
 223    int i, c, d;
 224
 225    d = 24;
 226    for (i = 0; i < xer_bc; i++) {
 227        c = cpu_ldub_data_ra(env, addr, GETPC());
 228        addr = addr_add(env, addr, 1);
 229        /* ra (if not 0) and rb are never modified */
 230        if (likely(reg != rb && (ra == 0 || reg != ra))) {
 231            env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
 232        }
 233        if (unlikely(c == xer_cmp)) {
 234            break;
 235        }
 236        if (likely(d != 0)) {
 237            d -= 8;
 238        } else {
 239            d = 24;
 240            reg++;
 241            reg = reg & 0x1F;
 242        }
 243    }
 244    return i;
 245}
 246
 247#ifdef TARGET_PPC64
 248uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
 249                               uint32_t opidx)
 250{
 251    Int128 ret;
 252
 253    /* We will have raised EXCP_ATOMIC from the translator.  */
 254    assert(HAVE_ATOMIC128);
 255    ret = helper_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
 256    env->retxh = int128_gethi(ret);
 257    return int128_getlo(ret);
 258}
 259
 260uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
 261                               uint32_t opidx)
 262{
 263    Int128 ret;
 264
 265    /* We will have raised EXCP_ATOMIC from the translator.  */
 266    assert(HAVE_ATOMIC128);
 267    ret = helper_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
 268    env->retxh = int128_gethi(ret);
 269    return int128_getlo(ret);
 270}
 271
 272void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
 273                            uint64_t lo, uint64_t hi, uint32_t opidx)
 274{
 275    Int128 val;
 276
 277    /* We will have raised EXCP_ATOMIC from the translator.  */
 278    assert(HAVE_ATOMIC128);
 279    val = int128_make128(lo, hi);
 280    helper_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
 281}
 282
 283void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
 284                            uint64_t lo, uint64_t hi, uint32_t opidx)
 285{
 286    Int128 val;
 287
 288    /* We will have raised EXCP_ATOMIC from the translator.  */
 289    assert(HAVE_ATOMIC128);
 290    val = int128_make128(lo, hi);
 291    helper_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
 292}
 293
 294uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
 295                                  uint64_t new_lo, uint64_t new_hi,
 296                                  uint32_t opidx)
 297{
 298    bool success = false;
 299
 300    /* We will have raised EXCP_ATOMIC from the translator.  */
 301    assert(HAVE_CMPXCHG128);
 302
 303    if (likely(addr == env->reserve_addr)) {
 304        Int128 oldv, cmpv, newv;
 305
 306        cmpv = int128_make128(env->reserve_val2, env->reserve_val);
 307        newv = int128_make128(new_lo, new_hi);
 308        oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
 309                                             opidx, GETPC());
 310        success = int128_eq(oldv, cmpv);
 311    }
 312    env->reserve_addr = -1;
 313    return env->so + success * CRF_EQ_BIT;
 314}
 315
 316uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
 317                                  uint64_t new_lo, uint64_t new_hi,
 318                                  uint32_t opidx)
 319{
 320    bool success = false;
 321
 322    /* We will have raised EXCP_ATOMIC from the translator.  */
 323    assert(HAVE_CMPXCHG128);
 324
 325    if (likely(addr == env->reserve_addr)) {
 326        Int128 oldv, cmpv, newv;
 327
 328        cmpv = int128_make128(env->reserve_val2, env->reserve_val);
 329        newv = int128_make128(new_lo, new_hi);
 330        oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
 331                                             opidx, GETPC());
 332        success = int128_eq(oldv, cmpv);
 333    }
 334    env->reserve_addr = -1;
 335    return env->so + success * CRF_EQ_BIT;
 336}
 337#endif
 338
 339/*****************************************************************************/
 340/* Altivec extension helpers */
 341#if defined(HOST_WORDS_BIGENDIAN)
 342#define HI_IDX 0
 343#define LO_IDX 1
 344#else
 345#define HI_IDX 1
 346#define LO_IDX 0
 347#endif
 348
 349/* We use msr_le to determine index ordering in a vector.  However,
 350   byteswapping is not simply controlled by msr_le.  We also need to take
 351   into account endianness of the target.  This is done for the little-endian
 352   PPC64 user-mode target. */
 353
 354#define LVE(name, access, swap, element)                        \
 355    void helper_##name(CPUPPCState *env, ppc_avr_t *r,          \
 356                       target_ulong addr)                       \
 357    {                                                           \
 358        size_t n_elems = ARRAY_SIZE(r->element);                \
 359        int adjust = HI_IDX*(n_elems - 1);                      \
 360        int sh = sizeof(r->element[0]) >> 1;                    \
 361        int index = (addr & 0xf) >> sh;                         \
 362        if (msr_le) {                                           \
 363            index = n_elems - index - 1;                        \
 364        }                                                       \
 365                                                                \
 366        if (needs_byteswap(env)) {                              \
 367            r->element[LO_IDX ? index : (adjust - index)] =     \
 368                swap(access(env, addr, GETPC()));               \
 369        } else {                                                \
 370            r->element[LO_IDX ? index : (adjust - index)] =     \
 371                access(env, addr, GETPC());                     \
 372        }                                                       \
 373    }
 374#define I(x) (x)
 375LVE(lvebx, cpu_ldub_data_ra, I, u8)
 376LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
 377LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
 378#undef I
 379#undef LVE
 380
 381#define STVE(name, access, swap, element)                               \
 382    void helper_##name(CPUPPCState *env, ppc_avr_t *r,                  \
 383                       target_ulong addr)                               \
 384    {                                                                   \
 385        size_t n_elems = ARRAY_SIZE(r->element);                        \
 386        int adjust = HI_IDX * (n_elems - 1);                            \
 387        int sh = sizeof(r->element[0]) >> 1;                            \
 388        int index = (addr & 0xf) >> sh;                                 \
 389        if (msr_le) {                                                   \
 390            index = n_elems - index - 1;                                \
 391        }                                                               \
 392                                                                        \
 393        if (needs_byteswap(env)) {                                      \
 394            access(env, addr, swap(r->element[LO_IDX ? index :          \
 395                                              (adjust - index)]),       \
 396                        GETPC());                                       \
 397        } else {                                                        \
 398            access(env, addr, r->element[LO_IDX ? index :               \
 399                                         (adjust - index)], GETPC());   \
 400        }                                                               \
 401    }
 402#define I(x) (x)
 403STVE(stvebx, cpu_stb_data_ra, I, u8)
 404STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
 405STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
 406#undef I
 407#undef LVE
 408
 409#ifdef TARGET_PPC64
 410#define GET_NB(rb) ((rb >> 56) & 0xFF)
 411
 412#define VSX_LXVL(name, lj)                                              \
 413void helper_##name(CPUPPCState *env, target_ulong addr,                 \
 414                   target_ulong xt_num, target_ulong rb)                \
 415{                                                                       \
 416    int i;                                                              \
 417    ppc_vsr_t xt;                                                       \
 418    uint64_t nb = GET_NB(rb);                                           \
 419                                                                        \
 420    xt.s128 = int128_zero();                                            \
 421    if (nb) {                                                           \
 422        nb = (nb >= 16) ? 16 : nb;                                      \
 423        if (msr_le && !lj) {                                            \
 424            for (i = 16; i > 16 - nb; i--) {                            \
 425                xt.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC());  \
 426                addr = addr_add(env, addr, 1);                          \
 427            }                                                           \
 428        } else {                                                        \
 429            for (i = 0; i < nb; i++) {                                  \
 430                xt.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC());      \
 431                addr = addr_add(env, addr, 1);                          \
 432            }                                                           \
 433        }                                                               \
 434    }                                                                   \
 435    putVSR(xt_num, &xt, env);                                           \
 436}
 437
 438VSX_LXVL(lxvl, 0)
 439VSX_LXVL(lxvll, 1)
 440#undef VSX_LXVL
 441
 442#define VSX_STXVL(name, lj)                                       \
 443void helper_##name(CPUPPCState *env, target_ulong addr,           \
 444                   target_ulong xt_num, target_ulong rb)          \
 445{                                                                 \
 446    int i;                                                        \
 447    ppc_vsr_t xt;                                                 \
 448    target_ulong nb = GET_NB(rb);                                 \
 449                                                                  \
 450    if (!nb) {                                                    \
 451        return;                                                   \
 452    }                                                             \
 453    getVSR(xt_num, &xt, env);                                     \
 454    nb = (nb >= 16) ? 16 : nb;                                    \
 455    if (msr_le && !lj) {                                          \
 456        for (i = 16; i > 16 - nb; i--) {                          \
 457            cpu_stb_data_ra(env, addr, xt.VsrB(i - 1), GETPC());  \
 458            addr = addr_add(env, addr, 1);                        \
 459        }                                                         \
 460    } else {                                                      \
 461        for (i = 0; i < nb; i++) {                                \
 462            cpu_stb_data_ra(env, addr, xt.VsrB(i), GETPC());      \
 463            addr = addr_add(env, addr, 1);                        \
 464        }                                                         \
 465    }                                                             \
 466}
 467
 468VSX_STXVL(stxvl, 0)
 469VSX_STXVL(stxvll, 1)
 470#undef VSX_STXVL
 471#undef GET_NB
 472#endif /* TARGET_PPC64 */
 473
 474#undef HI_IDX
 475#undef LO_IDX
 476
 477void helper_tbegin(CPUPPCState *env)
 478{
 479    /* As a degenerate implementation, always fail tbegin.  The reason
 480     * given is "Nesting overflow".  The "persistent" bit is set,
 481     * providing a hint to the error handler to not retry.  The TFIAR
 482     * captures the address of the failure, which is this tbegin
 483     * instruction.  Instruction execution will continue with the
 484     * next instruction in memory, which is precisely what we want.
 485     */
 486
 487    env->spr[SPR_TEXASR] =
 488        (1ULL << TEXASR_FAILURE_PERSISTENT) |
 489        (1ULL << TEXASR_NESTING_OVERFLOW) |
 490        (msr_hv << TEXASR_PRIVILEGE_HV) |
 491        (msr_pr << TEXASR_PRIVILEGE_PR) |
 492        (1ULL << TEXASR_FAILURE_SUMMARY) |
 493        (1ULL << TEXASR_TFIAR_EXACT);
 494    env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
 495    env->spr[SPR_TFHAR] = env->nip + 4;
 496    env->crf[0] = 0xB; /* 0b1010 = transaction failure */
 497}
 498