qemu/target/ppc/mmu-hash64.c
<<
>>
Prefs
   1/*
   2 *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
   3 *
   4 *  Copyright (c) 2003-2007 Jocelyn Mayer
   5 *  Copyright (c) 2013 David Gibson, IBM Corporation
   6 *
   7 * This library is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU Lesser General Public
   9 * License as published by the Free Software Foundation; either
  10 * version 2 of the License, or (at your option) any later version.
  11 *
  12 * This library is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * Lesser General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU Lesser General Public
  18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
  19 */
  20#include "qemu/osdep.h"
  21#include "cpu.h"
  22#include "exec/exec-all.h"
  23#include "exec/helper-proto.h"
  24#include "qemu/error-report.h"
  25#include "sysemu/hw_accel.h"
  26#include "kvm_ppc.h"
  27#include "mmu-hash64.h"
  28#include "exec/log.h"
  29#include "hw/hw.h"
  30#include "mmu-book3s-v3.h"
  31
  32//#define DEBUG_SLB
  33
  34#ifdef DEBUG_SLB
  35#  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
  36#else
  37#  define LOG_SLB(...) do { } while (0)
  38#endif
  39
  40/*
  41 * SLB handling
  42 */
  43
  44static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
  45{
  46    CPUPPCState *env = &cpu->env;
  47    uint64_t esid_256M, esid_1T;
  48    int n;
  49
  50    LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
  51
  52    esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
  53    esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
  54
  55    for (n = 0; n < cpu->hash64_opts->slb_size; n++) {
  56        ppc_slb_t *slb = &env->slb[n];
  57
  58        LOG_SLB("%s: slot %d %016" PRIx64 " %016"
  59                    PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
  60        /* We check for 1T matches on all MMUs here - if the MMU
  61         * doesn't have 1T segment support, we will have prevented 1T
  62         * entries from being inserted in the slbmte code. */
  63        if (((slb->esid == esid_256M) &&
  64             ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
  65            || ((slb->esid == esid_1T) &&
  66                ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
  67            return slb;
  68        }
  69    }
  70
  71    return NULL;
  72}
  73
  74void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
  75{
  76    CPUPPCState *env = &cpu->env;
  77    int i;
  78    uint64_t slbe, slbv;
  79
  80    cpu_synchronize_state(CPU(cpu));
  81
  82    cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
  83    for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
  84        slbe = env->slb[i].esid;
  85        slbv = env->slb[i].vsid;
  86        if (slbe == 0 && slbv == 0) {
  87            continue;
  88        }
  89        cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
  90                    i, slbe, slbv);
  91    }
  92}
  93
  94void helper_slbia(CPUPPCState *env)
  95{
  96    PowerPCCPU *cpu = ppc_env_get_cpu(env);
  97    int n;
  98
  99    /* XXX: Warning: slbia never invalidates the first segment */
 100    for (n = 1; n < cpu->hash64_opts->slb_size; n++) {
 101        ppc_slb_t *slb = &env->slb[n];
 102
 103        if (slb->esid & SLB_ESID_V) {
 104            slb->esid &= ~SLB_ESID_V;
 105            /* XXX: given the fact that segment size is 256 MB or 1TB,
 106             *      and we still don't have a tlb_flush_mask(env, n, mask)
 107             *      in QEMU, we just invalidate all TLBs
 108             */
 109            env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
 110        }
 111    }
 112}
 113
 114static void __helper_slbie(CPUPPCState *env, target_ulong addr,
 115                           target_ulong global)
 116{
 117    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 118    ppc_slb_t *slb;
 119
 120    slb = slb_lookup(cpu, addr);
 121    if (!slb) {
 122        return;
 123    }
 124
 125    if (slb->esid & SLB_ESID_V) {
 126        slb->esid &= ~SLB_ESID_V;
 127
 128        /* XXX: given the fact that segment size is 256 MB or 1TB,
 129         *      and we still don't have a tlb_flush_mask(env, n, mask)
 130         *      in QEMU, we just invalidate all TLBs
 131         */
 132        env->tlb_need_flush |=
 133            (global == false ? TLB_NEED_LOCAL_FLUSH : TLB_NEED_GLOBAL_FLUSH);
 134    }
 135}
 136
 137void helper_slbie(CPUPPCState *env, target_ulong addr)
 138{
 139    __helper_slbie(env, addr, false);
 140}
 141
 142void helper_slbieg(CPUPPCState *env, target_ulong addr)
 143{
 144    __helper_slbie(env, addr, true);
 145}
 146
 147int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
 148                  target_ulong esid, target_ulong vsid)
 149{
 150    CPUPPCState *env = &cpu->env;
 151    ppc_slb_t *slb = &env->slb[slot];
 152    const PPCHash64SegmentPageSizes *sps = NULL;
 153    int i;
 154
 155    if (slot >= cpu->hash64_opts->slb_size) {
 156        return -1; /* Bad slot number */
 157    }
 158    if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
 159        return -1; /* Reserved bits set */
 160    }
 161    if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
 162        return -1; /* Bad segment size */
 163    }
 164    if ((vsid & SLB_VSID_B) && !(ppc_hash64_has(cpu, PPC_HASH64_1TSEG))) {
 165        return -1; /* 1T segment on MMU that doesn't support it */
 166    }
 167
 168    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 169        const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
 170
 171        if (!sps1->page_shift) {
 172            break;
 173        }
 174
 175        if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
 176            sps = sps1;
 177            break;
 178        }
 179    }
 180
 181    if (!sps) {
 182        error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
 183                     " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
 184                     slot, esid, vsid);
 185        return -1;
 186    }
 187
 188    slb->esid = esid;
 189    slb->vsid = vsid;
 190    slb->sps = sps;
 191
 192    LOG_SLB("%s: " TARGET_FMT_lu " " TARGET_FMT_lx " - " TARGET_FMT_lx
 193            " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid,
 194            slb->esid, slb->vsid);
 195
 196    return 0;
 197}
 198
 199static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
 200                             target_ulong *rt)
 201{
 202    CPUPPCState *env = &cpu->env;
 203    int slot = rb & 0xfff;
 204    ppc_slb_t *slb = &env->slb[slot];
 205
 206    if (slot >= cpu->hash64_opts->slb_size) {
 207        return -1;
 208    }
 209
 210    *rt = slb->esid;
 211    return 0;
 212}
 213
 214static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
 215                             target_ulong *rt)
 216{
 217    CPUPPCState *env = &cpu->env;
 218    int slot = rb & 0xfff;
 219    ppc_slb_t *slb = &env->slb[slot];
 220
 221    if (slot >= cpu->hash64_opts->slb_size) {
 222        return -1;
 223    }
 224
 225    *rt = slb->vsid;
 226    return 0;
 227}
 228
 229static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
 230                             target_ulong *rt)
 231{
 232    CPUPPCState *env = &cpu->env;
 233    ppc_slb_t *slb;
 234
 235    if (!msr_is_64bit(env, env->msr)) {
 236        rb &= 0xffffffff;
 237    }
 238    slb = slb_lookup(cpu, rb);
 239    if (slb == NULL) {
 240        *rt = (target_ulong)-1ul;
 241    } else {
 242        *rt = slb->vsid;
 243    }
 244    return 0;
 245}
 246
 247void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
 248{
 249    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 250
 251    if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
 252        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 253                               POWERPC_EXCP_INVAL, GETPC());
 254    }
 255}
 256
 257target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
 258{
 259    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 260    target_ulong rt = 0;
 261
 262    if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
 263        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 264                               POWERPC_EXCP_INVAL, GETPC());
 265    }
 266    return rt;
 267}
 268
 269target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
 270{
 271    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 272    target_ulong rt = 0;
 273
 274    if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
 275        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 276                               POWERPC_EXCP_INVAL, GETPC());
 277    }
 278    return rt;
 279}
 280
 281target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
 282{
 283    PowerPCCPU *cpu = ppc_env_get_cpu(env);
 284    target_ulong rt = 0;
 285
 286    if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
 287        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
 288                               POWERPC_EXCP_INVAL, GETPC());
 289    }
 290    return rt;
 291}
 292
 293/* Check No-Execute or Guarded Storage */
 294static inline int ppc_hash64_pte_noexec_guard(PowerPCCPU *cpu,
 295                                              ppc_hash_pte64_t pte)
 296{
 297    /* Exec permissions CANNOT take away read or write permissions */
 298    return (pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) ?
 299            PAGE_READ | PAGE_WRITE : PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 300}
 301
 302/* Check Basic Storage Protection */
 303static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
 304                               ppc_slb_t *slb, ppc_hash_pte64_t pte)
 305{
 306    CPUPPCState *env = &cpu->env;
 307    unsigned pp, key;
 308    /* Some pp bit combinations have undefined behaviour, so default
 309     * to no access in those cases */
 310    int prot = 0;
 311
 312    key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
 313             : (slb->vsid & SLB_VSID_KS));
 314    pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
 315
 316    if (key == 0) {
 317        switch (pp) {
 318        case 0x0:
 319        case 0x1:
 320        case 0x2:
 321            prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 322            break;
 323
 324        case 0x3:
 325        case 0x6:
 326            prot = PAGE_READ | PAGE_EXEC;
 327            break;
 328        }
 329    } else {
 330        switch (pp) {
 331        case 0x0:
 332        case 0x6:
 333            break;
 334
 335        case 0x1:
 336        case 0x3:
 337            prot = PAGE_READ | PAGE_EXEC;
 338            break;
 339
 340        case 0x2:
 341            prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 342            break;
 343        }
 344    }
 345
 346    return prot;
 347}
 348
 349/* Check the instruction access permissions specified in the IAMR */
 350static int ppc_hash64_iamr_prot(PowerPCCPU *cpu, int key)
 351{
 352    CPUPPCState *env = &cpu->env;
 353    int iamr_bits = (env->spr[SPR_IAMR] >> 2 * (31 - key)) & 0x3;
 354
 355    /*
 356     * An instruction fetch is permitted if the IAMR bit is 0.
 357     * If the bit is set, return PAGE_READ | PAGE_WRITE because this bit
 358     * can only take away EXEC permissions not READ or WRITE permissions.
 359     * If bit is cleared return PAGE_READ | PAGE_WRITE | PAGE_EXEC since
 360     * EXEC permissions are allowed.
 361     */
 362    return (iamr_bits & 0x1) ? PAGE_READ | PAGE_WRITE :
 363                               PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 364}
 365
 366static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
 367{
 368    CPUPPCState *env = &cpu->env;
 369    int key, amrbits;
 370    int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 371
 372    /* Only recent MMUs implement Virtual Page Class Key Protection */
 373    if (!ppc_hash64_has(cpu, PPC_HASH64_AMR)) {
 374        return prot;
 375    }
 376
 377    key = HPTE64_R_KEY(pte.pte1);
 378    amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
 379
 380    /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
 381    /*         env->spr[SPR_AMR]); */
 382
 383    /*
 384     * A store is permitted if the AMR bit is 0. Remove write
 385     * protection if it is set.
 386     */
 387    if (amrbits & 0x2) {
 388        prot &= ~PAGE_WRITE;
 389    }
 390    /*
 391     * A load is permitted if the AMR bit is 0. Remove read
 392     * protection if it is set.
 393     */
 394    if (amrbits & 0x1) {
 395        prot &= ~PAGE_READ;
 396    }
 397
 398    switch (env->mmu_model) {
 399    /*
 400     * MMU version 2.07 and later support IAMR
 401     * Check if the IAMR allows the instruction access - it will return
 402     * PAGE_EXEC if it doesn't (and thus that bit will be cleared) or 0
 403     * if it does (and prot will be unchanged indicating execution support).
 404     */
 405    case POWERPC_MMU_2_07:
 406    case POWERPC_MMU_3_00:
 407        prot &= ppc_hash64_iamr_prot(cpu, key);
 408        break;
 409    default:
 410        break;
 411    }
 412
 413    return prot;
 414}
 415
 416const ppc_hash_pte64_t *ppc_hash64_map_hptes(PowerPCCPU *cpu,
 417                                             hwaddr ptex, int n)
 418{
 419    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
 420    hwaddr base;
 421    hwaddr plen = n * HASH_PTE_SIZE_64;
 422    const ppc_hash_pte64_t *hptes;
 423
 424    if (cpu->vhyp) {
 425        PPCVirtualHypervisorClass *vhc =
 426            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 427        return vhc->map_hptes(cpu->vhyp, ptex, n);
 428    }
 429    base = ppc_hash64_hpt_base(cpu);
 430
 431    if (!base) {
 432        return NULL;
 433    }
 434
 435    hptes = address_space_map(CPU(cpu)->as, base + pte_offset, &plen, false,
 436                              MEMTXATTRS_UNSPECIFIED);
 437    if (plen < (n * HASH_PTE_SIZE_64)) {
 438        hw_error("%s: Unable to map all requested HPTEs\n", __func__);
 439    }
 440    return hptes;
 441}
 442
 443void ppc_hash64_unmap_hptes(PowerPCCPU *cpu, const ppc_hash_pte64_t *hptes,
 444                            hwaddr ptex, int n)
 445{
 446    if (cpu->vhyp) {
 447        PPCVirtualHypervisorClass *vhc =
 448            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 449        vhc->unmap_hptes(cpu->vhyp, hptes, ptex, n);
 450        return;
 451    }
 452
 453    address_space_unmap(CPU(cpu)->as, (void *)hptes, n * HASH_PTE_SIZE_64,
 454                        false, n * HASH_PTE_SIZE_64);
 455}
 456
 457static unsigned hpte_page_shift(const PPCHash64SegmentPageSizes *sps,
 458                                uint64_t pte0, uint64_t pte1)
 459{
 460    int i;
 461
 462    if (!(pte0 & HPTE64_V_LARGE)) {
 463        if (sps->page_shift != 12) {
 464            /* 4kiB page in a non 4kiB segment */
 465            return 0;
 466        }
 467        /* Normal 4kiB page */
 468        return 12;
 469    }
 470
 471    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 472        const PPCHash64PageSize *ps = &sps->enc[i];
 473        uint64_t mask;
 474
 475        if (!ps->page_shift) {
 476            break;
 477        }
 478
 479        if (ps->page_shift == 12) {
 480            /* L bit is set so this can't be a 4kiB page */
 481            continue;
 482        }
 483
 484        mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
 485
 486        if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
 487            return ps->page_shift;
 488        }
 489    }
 490
 491    return 0; /* Bad page size encoding */
 492}
 493
 494static void ppc64_v3_new_to_old_hpte(target_ulong *pte0, target_ulong *pte1)
 495{
 496    /* Insert B into pte0 */
 497    *pte0 = (*pte0 & HPTE64_V_COMMON_BITS) |
 498            ((*pte1 & HPTE64_R_3_0_SSIZE_MASK) <<
 499             (HPTE64_V_SSIZE_SHIFT - HPTE64_R_3_0_SSIZE_SHIFT));
 500
 501    /* Remove B from pte1 */
 502    *pte1 = *pte1 & ~HPTE64_R_3_0_SSIZE_MASK;
 503}
 504
 505
 506static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
 507                                     const PPCHash64SegmentPageSizes *sps,
 508                                     target_ulong ptem,
 509                                     ppc_hash_pte64_t *pte, unsigned *pshift)
 510{
 511    int i;
 512    const ppc_hash_pte64_t *pteg;
 513    target_ulong pte0, pte1;
 514    target_ulong ptex;
 515
 516    ptex = (hash & ppc_hash64_hpt_mask(cpu)) * HPTES_PER_GROUP;
 517    pteg = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 518    if (!pteg) {
 519        return -1;
 520    }
 521    for (i = 0; i < HPTES_PER_GROUP; i++) {
 522        pte0 = ppc_hash64_hpte0(cpu, pteg, i);
 523        /*
 524         * pte0 contains the valid bit and must be read before pte1,
 525         * otherwise we might see an old pte1 with a new valid bit and
 526         * thus an inconsistent hpte value
 527         */
 528        smp_rmb();
 529        pte1 = ppc_hash64_hpte1(cpu, pteg, i);
 530
 531        /* Convert format if necessary */
 532        if (cpu->env.mmu_model == POWERPC_MMU_3_00 && !cpu->vhyp) {
 533            ppc64_v3_new_to_old_hpte(&pte0, &pte1);
 534        }
 535
 536        /* This compares V, B, H (secondary) and the AVPN */
 537        if (HPTE64_V_COMPARE(pte0, ptem)) {
 538            *pshift = hpte_page_shift(sps, pte0, pte1);
 539            /*
 540             * If there is no match, ignore the PTE, it could simply
 541             * be for a different segment size encoding and the
 542             * architecture specifies we should not match. Linux will
 543             * potentially leave behind PTEs for the wrong base page
 544             * size when demoting segments.
 545             */
 546            if (*pshift == 0) {
 547                continue;
 548            }
 549            /* We don't do anything with pshift yet as qemu TLB only deals
 550             * with 4K pages anyway
 551             */
 552            pte->pte0 = pte0;
 553            pte->pte1 = pte1;
 554            ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
 555            return ptex + i;
 556        }
 557    }
 558    ppc_hash64_unmap_hptes(cpu, pteg, ptex, HPTES_PER_GROUP);
 559    /*
 560     * We didn't find a valid entry.
 561     */
 562    return -1;
 563}
 564
 565static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
 566                                     ppc_slb_t *slb, target_ulong eaddr,
 567                                     ppc_hash_pte64_t *pte, unsigned *pshift)
 568{
 569    CPUPPCState *env = &cpu->env;
 570    hwaddr hash, ptex;
 571    uint64_t vsid, epnmask, epn, ptem;
 572    const PPCHash64SegmentPageSizes *sps = slb->sps;
 573
 574    /* The SLB store path should prevent any bad page size encodings
 575     * getting in there, so: */
 576    assert(sps);
 577
 578    /* If ISL is set in LPCR we need to clamp the page size to 4K */
 579    if (env->spr[SPR_LPCR] & LPCR_ISL) {
 580        /* We assume that when using TCG, 4k is first entry of SPS */
 581        sps = &cpu->hash64_opts->sps[0];
 582        assert(sps->page_shift == 12);
 583    }
 584
 585    epnmask = ~((1ULL << sps->page_shift) - 1);
 586
 587    if (slb->vsid & SLB_VSID_B) {
 588        /* 1TB segment */
 589        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
 590        epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
 591        hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
 592    } else {
 593        /* 256M segment */
 594        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
 595        epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
 596        hash = vsid ^ (epn >> sps->page_shift);
 597    }
 598    ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
 599    ptem |= HPTE64_V_VALID;
 600
 601    /* Page address translation */
 602    qemu_log_mask(CPU_LOG_MMU,
 603            "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
 604            " hash " TARGET_FMT_plx "\n",
 605            ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu), hash);
 606
 607    /* Primary PTEG lookup */
 608    qemu_log_mask(CPU_LOG_MMU,
 609            "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 610            " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
 611            " hash=" TARGET_FMT_plx "\n",
 612            ppc_hash64_hpt_base(cpu), ppc_hash64_hpt_mask(cpu),
 613            vsid, ptem,  hash);
 614    ptex = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
 615
 616    if (ptex == -1) {
 617        /* Secondary PTEG lookup */
 618        ptem |= HPTE64_V_SECONDARY;
 619        qemu_log_mask(CPU_LOG_MMU,
 620                "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 621                " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
 622                " hash=" TARGET_FMT_plx "\n", ppc_hash64_hpt_base(cpu),
 623                ppc_hash64_hpt_mask(cpu), vsid, ptem, ~hash);
 624
 625        ptex = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
 626    }
 627
 628    return ptex;
 629}
 630
 631unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
 632                                          uint64_t pte0, uint64_t pte1)
 633{
 634    int i;
 635
 636    if (!(pte0 & HPTE64_V_LARGE)) {
 637        return 12;
 638    }
 639
 640    /*
 641     * The encodings in env->sps need to be carefully chosen so that
 642     * this gives an unambiguous result.
 643     */
 644    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
 645        const PPCHash64SegmentPageSizes *sps = &cpu->hash64_opts->sps[i];
 646        unsigned shift;
 647
 648        if (!sps->page_shift) {
 649            break;
 650        }
 651
 652        shift = hpte_page_shift(sps, pte0, pte1);
 653        if (shift) {
 654            return shift;
 655        }
 656    }
 657
 658    return 0;
 659}
 660
 661static void ppc_hash64_set_isi(CPUState *cs, uint64_t error_code)
 662{
 663    CPUPPCState *env = &POWERPC_CPU(cs)->env;
 664    bool vpm;
 665
 666    if (msr_ir) {
 667        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
 668    } else {
 669        switch (env->mmu_model) {
 670        case POWERPC_MMU_3_00:
 671            /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
 672            vpm = true;
 673            break;
 674        default:
 675            vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
 676            break;
 677        }
 678    }
 679    if (vpm && !msr_hv) {
 680        cs->exception_index = POWERPC_EXCP_HISI;
 681    } else {
 682        cs->exception_index = POWERPC_EXCP_ISI;
 683    }
 684    env->error_code = error_code;
 685}
 686
 687static void ppc_hash64_set_dsi(CPUState *cs, uint64_t dar, uint64_t dsisr)
 688{
 689    CPUPPCState *env = &POWERPC_CPU(cs)->env;
 690    bool vpm;
 691
 692    if (msr_dr) {
 693        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
 694    } else {
 695        switch (env->mmu_model) {
 696        case POWERPC_MMU_3_00:
 697            /* Field deprecated in ISAv3.00 - interrupts always go to hyperv */
 698            vpm = true;
 699            break;
 700        default:
 701            vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
 702            break;
 703        }
 704    }
 705    if (vpm && !msr_hv) {
 706        cs->exception_index = POWERPC_EXCP_HDSI;
 707        env->spr[SPR_HDAR] = dar;
 708        env->spr[SPR_HDSISR] = dsisr;
 709    } else {
 710        cs->exception_index = POWERPC_EXCP_DSI;
 711        env->spr[SPR_DAR] = dar;
 712        env->spr[SPR_DSISR] = dsisr;
 713   }
 714    env->error_code = 0;
 715}
 716
 717
 718int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
 719                                int rwx, int mmu_idx)
 720{
 721    CPUState *cs = CPU(cpu);
 722    CPUPPCState *env = &cpu->env;
 723    ppc_slb_t *slb;
 724    unsigned apshift;
 725    hwaddr ptex;
 726    ppc_hash_pte64_t pte;
 727    int exec_prot, pp_prot, amr_prot, prot;
 728    uint64_t new_pte1;
 729    const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
 730    hwaddr raddr;
 731
 732    assert((rwx == 0) || (rwx == 1) || (rwx == 2));
 733
 734    /* Note on LPCR usage: 970 uses HID4, but our special variant
 735     * of store_spr copies relevant fields into env->spr[SPR_LPCR].
 736     * Similarily we filter unimplemented bits when storing into
 737     * LPCR depending on the MMU version. This code can thus just
 738     * use the LPCR "as-is".
 739     */
 740
 741    /* 1. Handle real mode accesses */
 742    if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
 743        /* Translation is supposedly "off"  */
 744        /* In real mode the top 4 effective address bits are (mostly) ignored */
 745        raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
 746
 747        /* In HV mode, add HRMOR if top EA bit is clear */
 748        if (msr_hv || !env->has_hv_mode) {
 749            if (!(eaddr >> 63)) {
 750                raddr |= env->spr[SPR_HRMOR];
 751            }
 752        } else {
 753            /* Otherwise, check VPM for RMA vs VRMA */
 754            if (env->spr[SPR_LPCR] & LPCR_VPM0) {
 755                slb = &env->vrma_slb;
 756                if (slb->sps) {
 757                    goto skip_slb_search;
 758                }
 759                /* Not much else to do here */
 760                cs->exception_index = POWERPC_EXCP_MCHECK;
 761                env->error_code = 0;
 762                return 1;
 763            } else if (raddr < env->rmls) {
 764                /* RMA. Check bounds in RMLS */
 765                raddr |= env->spr[SPR_RMOR];
 766            } else {
 767                /* The access failed, generate the approriate interrupt */
 768                if (rwx == 2) {
 769                    ppc_hash64_set_isi(cs, SRR1_PROTFAULT);
 770                } else {
 771                    int dsisr = DSISR_PROTFAULT;
 772                    if (rwx == 1) {
 773                        dsisr |= DSISR_ISSTORE;
 774                    }
 775                    ppc_hash64_set_dsi(cs, eaddr, dsisr);
 776                }
 777                return 1;
 778            }
 779        }
 780        tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
 781                     PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
 782                     TARGET_PAGE_SIZE);
 783        return 0;
 784    }
 785
 786    /* 2. Translation is on, so look up the SLB */
 787    slb = slb_lookup(cpu, eaddr);
 788    if (!slb) {
 789        /* No entry found, check if in-memory segment tables are in use */
 790        if (ppc64_use_proc_tbl(cpu)) {
 791            /* TODO - Unsupported */
 792            error_report("Segment Table Support Unimplemented");
 793            exit(1);
 794        }
 795        /* Segment still not found, generate the appropriate interrupt */
 796        if (rwx == 2) {
 797            cs->exception_index = POWERPC_EXCP_ISEG;
 798            env->error_code = 0;
 799        } else {
 800            cs->exception_index = POWERPC_EXCP_DSEG;
 801            env->error_code = 0;
 802            env->spr[SPR_DAR] = eaddr;
 803        }
 804        return 1;
 805    }
 806
 807skip_slb_search:
 808
 809    /* 3. Check for segment level no-execute violation */
 810    if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
 811        ppc_hash64_set_isi(cs, SRR1_NOEXEC_GUARD);
 812        return 1;
 813    }
 814
 815    /* 4. Locate the PTE in the hash table */
 816    ptex = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
 817    if (ptex == -1) {
 818        if (rwx == 2) {
 819            ppc_hash64_set_isi(cs, SRR1_NOPTE);
 820        } else {
 821            int dsisr = DSISR_NOPTE;
 822            if (rwx == 1) {
 823                dsisr |= DSISR_ISSTORE;
 824            }
 825            ppc_hash64_set_dsi(cs, eaddr, dsisr);
 826        }
 827        return 1;
 828    }
 829    qemu_log_mask(CPU_LOG_MMU,
 830                  "found PTE at index %08" HWADDR_PRIx "\n", ptex);
 831
 832    /* 5. Check access permissions */
 833
 834    exec_prot = ppc_hash64_pte_noexec_guard(cpu, pte);
 835    pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
 836    amr_prot = ppc_hash64_amr_prot(cpu, pte);
 837    prot = exec_prot & pp_prot & amr_prot;
 838
 839    if ((need_prot[rwx] & ~prot) != 0) {
 840        /* Access right violation */
 841        qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
 842        if (rwx == 2) {
 843            int srr1 = 0;
 844            if (PAGE_EXEC & ~exec_prot) {
 845                srr1 |= SRR1_NOEXEC_GUARD; /* Access violates noexec or guard */
 846            } else if (PAGE_EXEC & ~pp_prot) {
 847                srr1 |= SRR1_PROTFAULT; /* Access violates access authority */
 848            }
 849            if (PAGE_EXEC & ~amr_prot) {
 850                srr1 |= SRR1_IAMR; /* Access violates virt pg class key prot */
 851            }
 852            ppc_hash64_set_isi(cs, srr1);
 853        } else {
 854            int dsisr = 0;
 855            if (need_prot[rwx] & ~pp_prot) {
 856                dsisr |= DSISR_PROTFAULT;
 857            }
 858            if (rwx == 1) {
 859                dsisr |= DSISR_ISSTORE;
 860            }
 861            if (need_prot[rwx] & ~amr_prot) {
 862                dsisr |= DSISR_AMR;
 863            }
 864            ppc_hash64_set_dsi(cs, eaddr, dsisr);
 865        }
 866        return 1;
 867    }
 868
 869    qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
 870
 871    /* 6. Update PTE referenced and changed bits if necessary */
 872
 873    new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
 874    if (rwx == 1) {
 875        new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
 876    } else {
 877        /* Treat the page as read-only for now, so that a later write
 878         * will pass through this function again to set the C bit */
 879        prot &= ~PAGE_WRITE;
 880    }
 881
 882    if (new_pte1 != pte.pte1) {
 883        ppc_hash64_store_hpte(cpu, ptex, pte.pte0, new_pte1);
 884    }
 885
 886    /* 7. Determine the real address from the PTE */
 887
 888    raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
 889
 890    tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
 891                 prot, mmu_idx, 1ULL << apshift);
 892
 893    return 0;
 894}
 895
 896hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
 897{
 898    CPUPPCState *env = &cpu->env;
 899    ppc_slb_t *slb;
 900    hwaddr ptex, raddr;
 901    ppc_hash_pte64_t pte;
 902    unsigned apshift;
 903
 904    /* Handle real mode */
 905    if (msr_dr == 0) {
 906        /* In real mode the top 4 effective address bits are ignored */
 907        raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
 908
 909        /* In HV mode, add HRMOR if top EA bit is clear */
 910        if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
 911            return raddr | env->spr[SPR_HRMOR];
 912        }
 913
 914        /* Otherwise, check VPM for RMA vs VRMA */
 915        if (env->spr[SPR_LPCR] & LPCR_VPM0) {
 916            slb = &env->vrma_slb;
 917            if (!slb->sps) {
 918                return -1;
 919            }
 920        } else if (raddr < env->rmls) {
 921            /* RMA. Check bounds in RMLS */
 922            return raddr | env->spr[SPR_RMOR];
 923        } else {
 924            return -1;
 925        }
 926    } else {
 927        slb = slb_lookup(cpu, addr);
 928        if (!slb) {
 929            return -1;
 930        }
 931    }
 932
 933    ptex = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
 934    if (ptex == -1) {
 935        return -1;
 936    }
 937
 938    return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
 939        & TARGET_PAGE_MASK;
 940}
 941
 942void ppc_hash64_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
 943                           uint64_t pte0, uint64_t pte1)
 944{
 945    hwaddr base;
 946    hwaddr offset = ptex * HASH_PTE_SIZE_64;
 947
 948    if (cpu->vhyp) {
 949        PPCVirtualHypervisorClass *vhc =
 950            PPC_VIRTUAL_HYPERVISOR_GET_CLASS(cpu->vhyp);
 951        vhc->store_hpte(cpu->vhyp, ptex, pte0, pte1);
 952        return;
 953    }
 954    base = ppc_hash64_hpt_base(cpu);
 955
 956    stq_phys(CPU(cpu)->as, base + offset, pte0);
 957    stq_phys(CPU(cpu)->as, base + offset + HASH_PTE_SIZE_64 / 2, pte1);
 958}
 959
 960void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong ptex,
 961                               target_ulong pte0, target_ulong pte1)
 962{
 963    /*
 964     * XXX: given the fact that there are too many segments to
 965     * invalidate, and we still don't have a tlb_flush_mask(env, n,
 966     * mask) in QEMU, we just invalidate all TLBs
 967     */
 968    cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
 969}
 970
 971static void ppc_hash64_update_rmls(PowerPCCPU *cpu)
 972{
 973    CPUPPCState *env = &cpu->env;
 974    uint64_t lpcr = env->spr[SPR_LPCR];
 975
 976    /*
 977     * This is the full 4 bits encoding of POWER8. Previous
 978     * CPUs only support a subset of these but the filtering
 979     * is done when writing LPCR
 980     */
 981    switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
 982    case 0x8: /* 32MB */
 983        env->rmls = 0x2000000ull;
 984        break;
 985    case 0x3: /* 64MB */
 986        env->rmls = 0x4000000ull;
 987        break;
 988    case 0x7: /* 128MB */
 989        env->rmls = 0x8000000ull;
 990        break;
 991    case 0x4: /* 256MB */
 992        env->rmls = 0x10000000ull;
 993        break;
 994    case 0x2: /* 1GB */
 995        env->rmls = 0x40000000ull;
 996        break;
 997    case 0x1: /* 16GB */
 998        env->rmls = 0x400000000ull;
 999        break;
1000    default:
1001        /* What to do here ??? */
1002        env->rmls = 0;
1003    }
1004}
1005
1006static void ppc_hash64_update_vrma(PowerPCCPU *cpu)
1007{
1008    CPUPPCState *env = &cpu->env;
1009    const PPCHash64SegmentPageSizes *sps = NULL;
1010    target_ulong esid, vsid, lpcr;
1011    ppc_slb_t *slb = &env->vrma_slb;
1012    uint32_t vrmasd;
1013    int i;
1014
1015    /* First clear it */
1016    slb->esid = slb->vsid = 0;
1017    slb->sps = NULL;
1018
1019    /* Is VRMA enabled ? */
1020    lpcr = env->spr[SPR_LPCR];
1021    if (!(lpcr & LPCR_VPM0)) {
1022        return;
1023    }
1024
1025    /* Make one up. Mostly ignore the ESID which will not be
1026     * needed for translation
1027     */
1028    vsid = SLB_VSID_VRMA;
1029    vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
1030    vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
1031    esid = SLB_ESID_V;
1032
1033    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
1034        const PPCHash64SegmentPageSizes *sps1 = &cpu->hash64_opts->sps[i];
1035
1036        if (!sps1->page_shift) {
1037            break;
1038        }
1039
1040        if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
1041            sps = sps1;
1042            break;
1043        }
1044    }
1045
1046    if (!sps) {
1047        error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
1048                     " vsid 0x"TARGET_FMT_lx, esid, vsid);
1049        return;
1050    }
1051
1052    slb->vsid = vsid;
1053    slb->esid = esid;
1054    slb->sps = sps;
1055}
1056
1057void ppc_store_lpcr(PowerPCCPU *cpu, target_ulong val)
1058{
1059    CPUPPCState *env = &cpu->env;
1060    uint64_t lpcr = 0;
1061
1062    /* Filter out bits */
1063    switch (env->mmu_model) {
1064    case POWERPC_MMU_64B: /* 970 */
1065        if (val & 0x40) {
1066            lpcr |= LPCR_LPES0;
1067        }
1068        if (val & 0x8000000000000000ull) {
1069            lpcr |= LPCR_LPES1;
1070        }
1071        if (val & 0x20) {
1072            lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
1073        }
1074        if (val & 0x4000000000000000ull) {
1075            lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
1076        }
1077        if (val & 0x2000000000000000ull) {
1078            lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
1079        }
1080        env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
1081
1082        /* XXX We could also write LPID from HID4 here
1083         * but since we don't tag any translation on it
1084         * it doesn't actually matter
1085         */
1086        /* XXX For proper emulation of 970 we also need
1087         * to dig HRMOR out of HID5
1088         */
1089        break;
1090    case POWERPC_MMU_2_03: /* P5p */
1091        lpcr = val & (LPCR_RMLS | LPCR_ILE |
1092                      LPCR_LPES0 | LPCR_LPES1 |
1093                      LPCR_RMI | LPCR_HDICE);
1094        break;
1095    case POWERPC_MMU_2_06: /* P7 */
1096        lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
1097                      LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1098                      LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
1099                      LPCR_MER | LPCR_TC |
1100                      LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
1101        break;
1102    case POWERPC_MMU_2_07: /* P8 */
1103        lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
1104                      LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
1105                      LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
1106                      LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
1107                      LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
1108        break;
1109    case POWERPC_MMU_3_00: /* P9 */
1110        lpcr = val & (LPCR_VPM1 | LPCR_ISL | LPCR_KBV | LPCR_DPFD |
1111                      (LPCR_PECE_U_MASK & LPCR_HVEE) | LPCR_ILE | LPCR_AIL |
1112                      LPCR_UPRT | LPCR_EVIRT | LPCR_ONL | LPCR_HR | LPCR_LD |
1113                      (LPCR_PECE_L_MASK & (LPCR_PDEE | LPCR_HDEE | LPCR_EEE |
1114                      LPCR_DEE | LPCR_OEE)) | LPCR_MER | LPCR_GTSE | LPCR_TC |
1115                      LPCR_HEIC | LPCR_LPES0 | LPCR_HVICE | LPCR_HDICE);
1116        /*
1117         * If we have a virtual hypervisor, we need to bring back RMLS. It
1118         * doesn't exist on an actual P9 but that's all we know how to
1119         * configure with softmmu at the moment
1120         */
1121        if (cpu->vhyp) {
1122            lpcr |= (val & LPCR_RMLS);
1123        }
1124        break;
1125    default:
1126        ;
1127    }
1128    env->spr[SPR_LPCR] = lpcr;
1129    ppc_hash64_update_rmls(cpu);
1130    ppc_hash64_update_vrma(cpu);
1131}
1132
1133void helper_store_lpcr(CPUPPCState *env, target_ulong val)
1134{
1135    PowerPCCPU *cpu = ppc_env_get_cpu(env);
1136
1137    ppc_store_lpcr(cpu, val);
1138}
1139
1140void ppc_hash64_init(PowerPCCPU *cpu)
1141{
1142    CPUPPCState *env = &cpu->env;
1143    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1144
1145    if (!pcc->hash64_opts) {
1146        assert(!(env->mmu_model & POWERPC_MMU_64));
1147        return;
1148    }
1149
1150    cpu->hash64_opts = g_memdup(pcc->hash64_opts, sizeof(*cpu->hash64_opts));
1151}
1152
1153void ppc_hash64_finalize(PowerPCCPU *cpu)
1154{
1155    g_free(cpu->hash64_opts);
1156}
1157
1158const PPCHash64Options ppc_hash64_opts_basic = {
1159    .flags = 0,
1160    .slb_size = 64,
1161    .sps = {
1162        { .page_shift = 12, /* 4K */
1163          .slb_enc = 0,
1164          .enc = { { .page_shift = 12, .pte_enc = 0 } }
1165        },
1166        { .page_shift = 24, /* 16M */
1167          .slb_enc = 0x100,
1168          .enc = { { .page_shift = 24, .pte_enc = 0 } }
1169        },
1170    },
1171};
1172
1173const PPCHash64Options ppc_hash64_opts_POWER7 = {
1174    .flags = PPC_HASH64_1TSEG | PPC_HASH64_AMR | PPC_HASH64_CI_LARGEPAGE,
1175    .slb_size = 32,
1176    .sps = {
1177        {
1178            .page_shift = 12, /* 4K */
1179            .slb_enc = 0,
1180            .enc = { { .page_shift = 12, .pte_enc = 0 },
1181                     { .page_shift = 16, .pte_enc = 0x7 },
1182                     { .page_shift = 24, .pte_enc = 0x38 }, },
1183        },
1184        {
1185            .page_shift = 16, /* 64K */
1186            .slb_enc = SLB_VSID_64K,
1187            .enc = { { .page_shift = 16, .pte_enc = 0x1 },
1188                     { .page_shift = 24, .pte_enc = 0x8 }, },
1189        },
1190        {
1191            .page_shift = 24, /* 16M */
1192            .slb_enc = SLB_VSID_16M,
1193            .enc = { { .page_shift = 24, .pte_enc = 0 }, },
1194        },
1195        {
1196            .page_shift = 34, /* 16G */
1197            .slb_enc = SLB_VSID_16G,
1198            .enc = { { .page_shift = 34, .pte_enc = 0x3 }, },
1199        },
1200    }
1201};
1202
1203void ppc_hash64_filter_pagesizes(PowerPCCPU *cpu,
1204                                 bool (*cb)(void *, uint32_t, uint32_t),
1205                                 void *opaque)
1206{
1207    PPCHash64Options *opts = cpu->hash64_opts;
1208    int i;
1209    int n = 0;
1210    bool ci_largepage = false;
1211
1212    assert(opts);
1213
1214    n = 0;
1215    for (i = 0; i < ARRAY_SIZE(opts->sps); i++) {
1216        PPCHash64SegmentPageSizes *sps = &opts->sps[i];
1217        int j;
1218        int m = 0;
1219
1220        assert(n <= i);
1221
1222        if (!sps->page_shift) {
1223            break;
1224        }
1225
1226        for (j = 0; j < ARRAY_SIZE(sps->enc); j++) {
1227            PPCHash64PageSize *ps = &sps->enc[j];
1228
1229            assert(m <= j);
1230            if (!ps->page_shift) {
1231                break;
1232            }
1233
1234            if (cb(opaque, sps->page_shift, ps->page_shift)) {
1235                if (ps->page_shift >= 16) {
1236                    ci_largepage = true;
1237                }
1238                sps->enc[m++] = *ps;
1239            }
1240        }
1241
1242        /* Clear rest of the row */
1243        for (j = m; j < ARRAY_SIZE(sps->enc); j++) {
1244            memset(&sps->enc[j], 0, sizeof(sps->enc[j]));
1245        }
1246
1247        if (m) {
1248            n++;
1249        }
1250    }
1251
1252    /* Clear the rest of the table */
1253    for (i = n; i < ARRAY_SIZE(opts->sps); i++) {
1254        memset(&opts->sps[i], 0, sizeof(opts->sps[i]));
1255    }
1256
1257    if (!ci_largepage) {
1258        opts->flags &= ~PPC_HASH64_CI_LARGEPAGE;
1259    }
1260}
1261