qemu/util/hbitmap.c
<<
>>
Prefs
   1/*
   2 * Hierarchical Bitmap Data Type
   3 *
   4 * Copyright Red Hat, Inc., 2012
   5 *
   6 * Author: Paolo Bonzini <pbonzini@redhat.com>
   7 *
   8 * This work is licensed under the terms of the GNU GPL, version 2 or
   9 * later.  See the COPYING file in the top-level directory.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "qemu/hbitmap.h"
  14#include "qemu/host-utils.h"
  15#include "trace.h"
  16#include "crypto/hash.h"
  17
  18/* HBitmaps provides an array of bits.  The bits are stored as usual in an
  19 * array of unsigned longs, but HBitmap is also optimized to provide fast
  20 * iteration over set bits; going from one bit to the next is O(logB n)
  21 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
  22 * that the number of levels is in fact fixed.
  23 *
  24 * In order to do this, it stacks multiple bitmaps with progressively coarser
  25 * granularity; in all levels except the last, bit N is set iff the N-th
  26 * unsigned long is nonzero in the immediately next level.  When iteration
  27 * completes on the last level it can examine the 2nd-last level to quickly
  28 * skip entire words, and even do so recursively to skip blocks of 64 words or
  29 * powers thereof (32 on 32-bit machines).
  30 *
  31 * Given an index in the bitmap, it can be split in group of bits like
  32 * this (for the 64-bit case):
  33 *
  34 *   bits 0-57 => word in the last bitmap     | bits 58-63 => bit in the word
  35 *   bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
  36 *   bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
  37 *
  38 * So it is easy to move up simply by shifting the index right by
  39 * log2(BITS_PER_LONG) bits.  To move down, you shift the index left
  40 * similarly, and add the word index within the group.  Iteration uses
  41 * ffs (find first set bit) to find the next word to examine; this
  42 * operation can be done in constant time in most current architectures.
  43 *
  44 * Setting or clearing a range of m bits on all levels, the work to perform
  45 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
  46 *
  47 * When iterating on a bitmap, each bit (on any level) is only visited
  48 * once.  Hence, The total cost of visiting a bitmap with m bits in it is
  49 * the number of bits that are set in all bitmaps.  Unless the bitmap is
  50 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
  51 * cost of advancing from one bit to the next is usually constant (worst case
  52 * O(logB n) as in the non-amortized complexity).
  53 */
  54
  55struct HBitmap {
  56    /* Size of the bitmap, as requested in hbitmap_alloc. */
  57    uint64_t orig_size;
  58
  59    /* Number of total bits in the bottom level.  */
  60    uint64_t size;
  61
  62    /* Number of set bits in the bottom level.  */
  63    uint64_t count;
  64
  65    /* A scaling factor.  Given a granularity of G, each bit in the bitmap will
  66     * will actually represent a group of 2^G elements.  Each operation on a
  67     * range of bits first rounds the bits to determine which group they land
  68     * in, and then affect the entire page; iteration will only visit the first
  69     * bit of each group.  Here is an example of operations in a size-16,
  70     * granularity-1 HBitmap:
  71     *
  72     *    initial state            00000000
  73     *    set(start=0, count=9)    11111000 (iter: 0, 2, 4, 6, 8)
  74     *    reset(start=1, count=3)  00111000 (iter: 4, 6, 8)
  75     *    set(start=9, count=2)    00111100 (iter: 4, 6, 8, 10)
  76     *    reset(start=5, count=5)  00000000
  77     *
  78     * From an implementation point of view, when setting or resetting bits,
  79     * the bitmap will scale bit numbers right by this amount of bits.  When
  80     * iterating, the bitmap will scale bit numbers left by this amount of
  81     * bits.
  82     */
  83    int granularity;
  84
  85    /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
  86    HBitmap *meta;
  87
  88    /* A number of progressively less coarse bitmaps (i.e. level 0 is the
  89     * coarsest).  Each bit in level N represents a word in level N+1 that
  90     * has a set bit, except the last level where each bit represents the
  91     * actual bitmap.
  92     *
  93     * Note that all bitmaps have the same number of levels.  Even a 1-bit
  94     * bitmap will still allocate HBITMAP_LEVELS arrays.
  95     */
  96    unsigned long *levels[HBITMAP_LEVELS];
  97
  98    /* The length of each levels[] array. */
  99    uint64_t sizes[HBITMAP_LEVELS];
 100};
 101
 102/* Advance hbi to the next nonzero word and return it.  hbi->pos
 103 * is updated.  Returns zero if we reach the end of the bitmap.
 104 */
 105unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
 106{
 107    size_t pos = hbi->pos;
 108    const HBitmap *hb = hbi->hb;
 109    unsigned i = HBITMAP_LEVELS - 1;
 110
 111    unsigned long cur;
 112    do {
 113        i--;
 114        pos >>= BITS_PER_LEVEL;
 115        cur = hbi->cur[i] & hb->levels[i][pos];
 116    } while (cur == 0);
 117
 118    /* Check for end of iteration.  We always use fewer than BITS_PER_LONG
 119     * bits in the level 0 bitmap; thus we can repurpose the most significant
 120     * bit as a sentinel.  The sentinel is set in hbitmap_alloc and ensures
 121     * that the above loop ends even without an explicit check on i.
 122     */
 123
 124    if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
 125        return 0;
 126    }
 127    for (; i < HBITMAP_LEVELS - 1; i++) {
 128        /* Shift back pos to the left, matching the right shifts above.
 129         * The index of this word's least significant set bit provides
 130         * the low-order bits.
 131         */
 132        assert(cur);
 133        pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
 134        hbi->cur[i] = cur & (cur - 1);
 135
 136        /* Set up next level for iteration.  */
 137        cur = hb->levels[i + 1][pos];
 138    }
 139
 140    hbi->pos = pos;
 141    trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
 142
 143    assert(cur);
 144    return cur;
 145}
 146
 147int64_t hbitmap_iter_next(HBitmapIter *hbi)
 148{
 149    unsigned long cur = hbi->cur[HBITMAP_LEVELS - 1] &
 150            hbi->hb->levels[HBITMAP_LEVELS - 1][hbi->pos];
 151    int64_t item;
 152
 153    if (cur == 0) {
 154        cur = hbitmap_iter_skip_words(hbi);
 155        if (cur == 0) {
 156            return -1;
 157        }
 158    }
 159
 160    /* The next call will resume work from the next bit.  */
 161    hbi->cur[HBITMAP_LEVELS - 1] = cur & (cur - 1);
 162    item = ((uint64_t)hbi->pos << BITS_PER_LEVEL) + ctzl(cur);
 163
 164    return item << hbi->granularity;
 165}
 166
 167void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
 168{
 169    unsigned i, bit;
 170    uint64_t pos;
 171
 172    hbi->hb = hb;
 173    pos = first >> hb->granularity;
 174    assert(pos < hb->size);
 175    hbi->pos = pos >> BITS_PER_LEVEL;
 176    hbi->granularity = hb->granularity;
 177
 178    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 179        bit = pos & (BITS_PER_LONG - 1);
 180        pos >>= BITS_PER_LEVEL;
 181
 182        /* Drop bits representing items before first.  */
 183        hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
 184
 185        /* We have already added level i+1, so the lowest set bit has
 186         * been processed.  Clear it.
 187         */
 188        if (i != HBITMAP_LEVELS - 1) {
 189            hbi->cur[i] &= ~(1UL << bit);
 190        }
 191    }
 192}
 193
 194int64_t hbitmap_next_zero(const HBitmap *hb, uint64_t start, uint64_t count)
 195{
 196    size_t pos = (start >> hb->granularity) >> BITS_PER_LEVEL;
 197    unsigned long *last_lev = hb->levels[HBITMAP_LEVELS - 1];
 198    unsigned long cur = last_lev[pos];
 199    unsigned start_bit_offset;
 200    uint64_t end_bit, sz;
 201    int64_t res;
 202
 203    if (start >= hb->orig_size || count == 0) {
 204        return -1;
 205    }
 206
 207    end_bit = count > hb->orig_size - start ?
 208                hb->size :
 209                ((start + count - 1) >> hb->granularity) + 1;
 210    sz = (end_bit + BITS_PER_LONG - 1) >> BITS_PER_LEVEL;
 211
 212    /* There may be some zero bits in @cur before @start. We are not interested
 213     * in them, let's set them.
 214     */
 215    start_bit_offset = (start >> hb->granularity) & (BITS_PER_LONG - 1);
 216    cur |= (1UL << start_bit_offset) - 1;
 217    assert((start >> hb->granularity) < hb->size);
 218
 219    if (cur == (unsigned long)-1) {
 220        do {
 221            pos++;
 222        } while (pos < sz && last_lev[pos] == (unsigned long)-1);
 223
 224        if (pos >= sz) {
 225            return -1;
 226        }
 227
 228        cur = last_lev[pos];
 229    }
 230
 231    res = (pos << BITS_PER_LEVEL) + ctol(cur);
 232    if (res >= end_bit) {
 233        return -1;
 234    }
 235
 236    res = res << hb->granularity;
 237    if (res < start) {
 238        assert(((start - res) >> hb->granularity) == 0);
 239        return start;
 240    }
 241
 242    return res;
 243}
 244
 245bool hbitmap_next_dirty_area(const HBitmap *hb, uint64_t *start,
 246                             uint64_t *count)
 247{
 248    HBitmapIter hbi;
 249    int64_t firt_dirty_off, area_end;
 250    uint32_t granularity = 1UL << hb->granularity;
 251    uint64_t end;
 252
 253    if (*start >= hb->orig_size || *count == 0) {
 254        return false;
 255    }
 256
 257    end = *count > hb->orig_size - *start ? hb->orig_size : *start + *count;
 258
 259    hbitmap_iter_init(&hbi, hb, *start);
 260    firt_dirty_off = hbitmap_iter_next(&hbi);
 261
 262    if (firt_dirty_off < 0 || firt_dirty_off >= end) {
 263        return false;
 264    }
 265
 266    if (firt_dirty_off + granularity >= end) {
 267        area_end = end;
 268    } else {
 269        area_end = hbitmap_next_zero(hb, firt_dirty_off + granularity,
 270                                     end - firt_dirty_off - granularity);
 271        if (area_end < 0) {
 272            area_end = end;
 273        }
 274    }
 275
 276    if (firt_dirty_off > *start) {
 277        *start = firt_dirty_off;
 278    }
 279    *count = area_end - *start;
 280
 281    return true;
 282}
 283
 284bool hbitmap_empty(const HBitmap *hb)
 285{
 286    return hb->count == 0;
 287}
 288
 289int hbitmap_granularity(const HBitmap *hb)
 290{
 291    return hb->granularity;
 292}
 293
 294uint64_t hbitmap_count(const HBitmap *hb)
 295{
 296    return hb->count << hb->granularity;
 297}
 298
 299/* Count the number of set bits between start and end, not accounting for
 300 * the granularity.  Also an example of how to use hbitmap_iter_next_word.
 301 */
 302static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
 303{
 304    HBitmapIter hbi;
 305    uint64_t count = 0;
 306    uint64_t end = last + 1;
 307    unsigned long cur;
 308    size_t pos;
 309
 310    hbitmap_iter_init(&hbi, hb, start << hb->granularity);
 311    for (;;) {
 312        pos = hbitmap_iter_next_word(&hbi, &cur);
 313        if (pos >= (end >> BITS_PER_LEVEL)) {
 314            break;
 315        }
 316        count += ctpopl(cur);
 317    }
 318
 319    if (pos == (end >> BITS_PER_LEVEL)) {
 320        /* Drop bits representing the END-th and subsequent items.  */
 321        int bit = end & (BITS_PER_LONG - 1);
 322        cur &= (1UL << bit) - 1;
 323        count += ctpopl(cur);
 324    }
 325
 326    return count;
 327}
 328
 329/* Setting starts at the last layer and propagates up if an element
 330 * changes.
 331 */
 332static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
 333{
 334    unsigned long mask;
 335    unsigned long old;
 336
 337    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
 338    assert(start <= last);
 339
 340    mask = 2UL << (last & (BITS_PER_LONG - 1));
 341    mask -= 1UL << (start & (BITS_PER_LONG - 1));
 342    old = *elem;
 343    *elem |= mask;
 344    return old != *elem;
 345}
 346
 347/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
 348 * Returns true if at least one bit is changed. */
 349static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
 350                           uint64_t last)
 351{
 352    size_t pos = start >> BITS_PER_LEVEL;
 353    size_t lastpos = last >> BITS_PER_LEVEL;
 354    bool changed = false;
 355    size_t i;
 356
 357    i = pos;
 358    if (i < lastpos) {
 359        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
 360        changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
 361        for (;;) {
 362            start = next;
 363            next += BITS_PER_LONG;
 364            if (++i == lastpos) {
 365                break;
 366            }
 367            changed |= (hb->levels[level][i] == 0);
 368            hb->levels[level][i] = ~0UL;
 369        }
 370    }
 371    changed |= hb_set_elem(&hb->levels[level][i], start, last);
 372
 373    /* If there was any change in this layer, we may have to update
 374     * the one above.
 375     */
 376    if (level > 0 && changed) {
 377        hb_set_between(hb, level - 1, pos, lastpos);
 378    }
 379    return changed;
 380}
 381
 382void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
 383{
 384    /* Compute range in the last layer.  */
 385    uint64_t first, n;
 386    uint64_t last = start + count - 1;
 387
 388    trace_hbitmap_set(hb, start, count,
 389                      start >> hb->granularity, last >> hb->granularity);
 390
 391    first = start >> hb->granularity;
 392    last >>= hb->granularity;
 393    assert(last < hb->size);
 394    n = last - first + 1;
 395
 396    hb->count += n - hb_count_between(hb, first, last);
 397    if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
 398        hb->meta) {
 399        hbitmap_set(hb->meta, start, count);
 400    }
 401}
 402
 403/* Resetting works the other way round: propagate up if the new
 404 * value is zero.
 405 */
 406static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
 407{
 408    unsigned long mask;
 409    bool blanked;
 410
 411    assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
 412    assert(start <= last);
 413
 414    mask = 2UL << (last & (BITS_PER_LONG - 1));
 415    mask -= 1UL << (start & (BITS_PER_LONG - 1));
 416    blanked = *elem != 0 && ((*elem & ~mask) == 0);
 417    *elem &= ~mask;
 418    return blanked;
 419}
 420
 421/* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
 422 * Returns true if at least one bit is changed. */
 423static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
 424                             uint64_t last)
 425{
 426    size_t pos = start >> BITS_PER_LEVEL;
 427    size_t lastpos = last >> BITS_PER_LEVEL;
 428    bool changed = false;
 429    size_t i;
 430
 431    i = pos;
 432    if (i < lastpos) {
 433        uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
 434
 435        /* Here we need a more complex test than when setting bits.  Even if
 436         * something was changed, we must not blank bits in the upper level
 437         * unless the lower-level word became entirely zero.  So, remove pos
 438         * from the upper-level range if bits remain set.
 439         */
 440        if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
 441            changed = true;
 442        } else {
 443            pos++;
 444        }
 445
 446        for (;;) {
 447            start = next;
 448            next += BITS_PER_LONG;
 449            if (++i == lastpos) {
 450                break;
 451            }
 452            changed |= (hb->levels[level][i] != 0);
 453            hb->levels[level][i] = 0UL;
 454        }
 455    }
 456
 457    /* Same as above, this time for lastpos.  */
 458    if (hb_reset_elem(&hb->levels[level][i], start, last)) {
 459        changed = true;
 460    } else {
 461        lastpos--;
 462    }
 463
 464    if (level > 0 && changed) {
 465        hb_reset_between(hb, level - 1, pos, lastpos);
 466    }
 467
 468    return changed;
 469
 470}
 471
 472void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
 473{
 474    /* Compute range in the last layer.  */
 475    uint64_t first;
 476    uint64_t last = start + count - 1;
 477
 478    trace_hbitmap_reset(hb, start, count,
 479                        start >> hb->granularity, last >> hb->granularity);
 480
 481    first = start >> hb->granularity;
 482    last >>= hb->granularity;
 483    assert(last < hb->size);
 484
 485    hb->count -= hb_count_between(hb, first, last);
 486    if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
 487        hb->meta) {
 488        hbitmap_set(hb->meta, start, count);
 489    }
 490}
 491
 492void hbitmap_reset_all(HBitmap *hb)
 493{
 494    unsigned int i;
 495
 496    /* Same as hbitmap_alloc() except for memset() instead of malloc() */
 497    for (i = HBITMAP_LEVELS; --i >= 1; ) {
 498        memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
 499    }
 500
 501    hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
 502    hb->count = 0;
 503}
 504
 505bool hbitmap_is_serializable(const HBitmap *hb)
 506{
 507    /* Every serialized chunk must be aligned to 64 bits so that endianness
 508     * requirements can be fulfilled on both 64 bit and 32 bit hosts.
 509     * We have hbitmap_serialization_align() which converts this
 510     * alignment requirement from bitmap bits to items covered (e.g. sectors).
 511     * That value is:
 512     *    64 << hb->granularity
 513     * Since this value must not exceed UINT64_MAX, hb->granularity must be
 514     * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
 515     *
 516     * In order for hbitmap_serialization_align() to always return a
 517     * meaningful value, bitmaps that are to be serialized must have a
 518     * granularity of less than 58. */
 519
 520    return hb->granularity < 58;
 521}
 522
 523bool hbitmap_get(const HBitmap *hb, uint64_t item)
 524{
 525    /* Compute position and bit in the last layer.  */
 526    uint64_t pos = item >> hb->granularity;
 527    unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
 528    assert(pos < hb->size);
 529
 530    return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
 531}
 532
 533uint64_t hbitmap_serialization_align(const HBitmap *hb)
 534{
 535    assert(hbitmap_is_serializable(hb));
 536
 537    /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
 538     * hosts. */
 539    return UINT64_C(64) << hb->granularity;
 540}
 541
 542/* Start should be aligned to serialization granularity, chunk size should be
 543 * aligned to serialization granularity too, except for last chunk.
 544 */
 545static void serialization_chunk(const HBitmap *hb,
 546                                uint64_t start, uint64_t count,
 547                                unsigned long **first_el, uint64_t *el_count)
 548{
 549    uint64_t last = start + count - 1;
 550    uint64_t gran = hbitmap_serialization_align(hb);
 551
 552    assert((start & (gran - 1)) == 0);
 553    assert((last >> hb->granularity) < hb->size);
 554    if ((last >> hb->granularity) != hb->size - 1) {
 555        assert((count & (gran - 1)) == 0);
 556    }
 557
 558    start = (start >> hb->granularity) >> BITS_PER_LEVEL;
 559    last = (last >> hb->granularity) >> BITS_PER_LEVEL;
 560
 561    *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
 562    *el_count = last - start + 1;
 563}
 564
 565uint64_t hbitmap_serialization_size(const HBitmap *hb,
 566                                    uint64_t start, uint64_t count)
 567{
 568    uint64_t el_count;
 569    unsigned long *cur;
 570
 571    if (!count) {
 572        return 0;
 573    }
 574    serialization_chunk(hb, start, count, &cur, &el_count);
 575
 576    return el_count * sizeof(unsigned long);
 577}
 578
 579void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
 580                            uint64_t start, uint64_t count)
 581{
 582    uint64_t el_count;
 583    unsigned long *cur, *end;
 584
 585    if (!count) {
 586        return;
 587    }
 588    serialization_chunk(hb, start, count, &cur, &el_count);
 589    end = cur + el_count;
 590
 591    while (cur != end) {
 592        unsigned long el =
 593            (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
 594
 595        memcpy(buf, &el, sizeof(el));
 596        buf += sizeof(el);
 597        cur++;
 598    }
 599}
 600
 601void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
 602                              uint64_t start, uint64_t count,
 603                              bool finish)
 604{
 605    uint64_t el_count;
 606    unsigned long *cur, *end;
 607
 608    if (!count) {
 609        return;
 610    }
 611    serialization_chunk(hb, start, count, &cur, &el_count);
 612    end = cur + el_count;
 613
 614    while (cur != end) {
 615        memcpy(cur, buf, sizeof(*cur));
 616
 617        if (BITS_PER_LONG == 32) {
 618            le32_to_cpus((uint32_t *)cur);
 619        } else {
 620            le64_to_cpus((uint64_t *)cur);
 621        }
 622
 623        buf += sizeof(unsigned long);
 624        cur++;
 625    }
 626    if (finish) {
 627        hbitmap_deserialize_finish(hb);
 628    }
 629}
 630
 631void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
 632                                bool finish)
 633{
 634    uint64_t el_count;
 635    unsigned long *first;
 636
 637    if (!count) {
 638        return;
 639    }
 640    serialization_chunk(hb, start, count, &first, &el_count);
 641
 642    memset(first, 0, el_count * sizeof(unsigned long));
 643    if (finish) {
 644        hbitmap_deserialize_finish(hb);
 645    }
 646}
 647
 648void hbitmap_deserialize_ones(HBitmap *hb, uint64_t start, uint64_t count,
 649                              bool finish)
 650{
 651    uint64_t el_count;
 652    unsigned long *first;
 653
 654    if (!count) {
 655        return;
 656    }
 657    serialization_chunk(hb, start, count, &first, &el_count);
 658
 659    memset(first, 0xff, el_count * sizeof(unsigned long));
 660    if (finish) {
 661        hbitmap_deserialize_finish(hb);
 662    }
 663}
 664
 665void hbitmap_deserialize_finish(HBitmap *bitmap)
 666{
 667    int64_t i, size, prev_size;
 668    int lev;
 669
 670    /* restore levels starting from penultimate to zero level, assuming
 671     * that the last level is ok */
 672    size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 673    for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
 674        prev_size = size;
 675        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 676        memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
 677
 678        for (i = 0; i < prev_size; ++i) {
 679            if (bitmap->levels[lev + 1][i]) {
 680                bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
 681                    1UL << (i & (BITS_PER_LONG - 1));
 682            }
 683        }
 684    }
 685
 686    bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
 687    bitmap->count = hb_count_between(bitmap, 0, bitmap->size - 1);
 688}
 689
 690void hbitmap_free(HBitmap *hb)
 691{
 692    unsigned i;
 693    assert(!hb->meta);
 694    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 695        g_free(hb->levels[i]);
 696    }
 697    g_free(hb);
 698}
 699
 700HBitmap *hbitmap_alloc(uint64_t size, int granularity)
 701{
 702    HBitmap *hb = g_new0(struct HBitmap, 1);
 703    unsigned i;
 704
 705    hb->orig_size = size;
 706
 707    assert(granularity >= 0 && granularity < 64);
 708    size = (size + (1ULL << granularity) - 1) >> granularity;
 709    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
 710
 711    hb->size = size;
 712    hb->granularity = granularity;
 713    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 714        size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
 715        hb->sizes[i] = size;
 716        hb->levels[i] = g_new0(unsigned long, size);
 717    }
 718
 719    /* We necessarily have free bits in level 0 due to the definition
 720     * of HBITMAP_LEVELS, so use one for a sentinel.  This speeds up
 721     * hbitmap_iter_skip_words.
 722     */
 723    assert(size == 1);
 724    hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
 725    return hb;
 726}
 727
 728void hbitmap_truncate(HBitmap *hb, uint64_t size)
 729{
 730    bool shrink;
 731    unsigned i;
 732    uint64_t num_elements = size;
 733    uint64_t old;
 734
 735    /* Size comes in as logical elements, adjust for granularity. */
 736    size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
 737    assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
 738    shrink = size < hb->size;
 739
 740    /* bit sizes are identical; nothing to do. */
 741    if (size == hb->size) {
 742        return;
 743    }
 744
 745    /* If we're losing bits, let's clear those bits before we invalidate all of
 746     * our invariants. This helps keep the bitcount consistent, and will prevent
 747     * us from carrying around garbage bits beyond the end of the map.
 748     */
 749    if (shrink) {
 750        /* Don't clear partial granularity groups;
 751         * start at the first full one. */
 752        uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
 753        uint64_t fix_count = (hb->size << hb->granularity) - start;
 754
 755        assert(fix_count);
 756        hbitmap_reset(hb, start, fix_count);
 757    }
 758
 759    hb->size = size;
 760    for (i = HBITMAP_LEVELS; i-- > 0; ) {
 761        size = MAX(BITS_TO_LONGS(size), 1);
 762        if (hb->sizes[i] == size) {
 763            break;
 764        }
 765        old = hb->sizes[i];
 766        hb->sizes[i] = size;
 767        hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
 768        if (!shrink) {
 769            memset(&hb->levels[i][old], 0x00,
 770                   (size - old) * sizeof(*hb->levels[i]));
 771        }
 772    }
 773    if (hb->meta) {
 774        hbitmap_truncate(hb->meta, hb->size << hb->granularity);
 775    }
 776}
 777
 778bool hbitmap_can_merge(const HBitmap *a, const HBitmap *b)
 779{
 780    return (a->size == b->size) && (a->granularity == b->granularity);
 781}
 782
 783/**
 784 * Given HBitmaps A and B, let A := A (BITOR) B.
 785 * Bitmap B will not be modified.
 786 *
 787 * @return true if the merge was successful,
 788 *         false if it was not attempted.
 789 */
 790bool hbitmap_merge(const HBitmap *a, const HBitmap *b, HBitmap *result)
 791{
 792    int i;
 793    uint64_t j;
 794
 795    if (!hbitmap_can_merge(a, b) || !hbitmap_can_merge(a, result)) {
 796        return false;
 797    }
 798    assert(hbitmap_can_merge(b, result));
 799
 800    if (hbitmap_count(b) == 0) {
 801        return true;
 802    }
 803
 804    /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
 805     * It may be possible to improve running times for sparsely populated maps
 806     * by using hbitmap_iter_next, but this is suboptimal for dense maps.
 807     */
 808    for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
 809        for (j = 0; j < a->sizes[i]; j++) {
 810            result->levels[i][j] = a->levels[i][j] | b->levels[i][j];
 811        }
 812    }
 813
 814    /* Recompute the dirty count */
 815    result->count = hb_count_between(result, 0, result->size - 1);
 816
 817    return true;
 818}
 819
 820HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size)
 821{
 822    assert(!(chunk_size & (chunk_size - 1)));
 823    assert(!hb->meta);
 824    hb->meta = hbitmap_alloc(hb->size << hb->granularity,
 825                             hb->granularity + ctz32(chunk_size));
 826    return hb->meta;
 827}
 828
 829void hbitmap_free_meta(HBitmap *hb)
 830{
 831    assert(hb->meta);
 832    hbitmap_free(hb->meta);
 833    hb->meta = NULL;
 834}
 835
 836char *hbitmap_sha256(const HBitmap *bitmap, Error **errp)
 837{
 838    size_t size = bitmap->sizes[HBITMAP_LEVELS - 1] * sizeof(unsigned long);
 839    char *data = (char *)bitmap->levels[HBITMAP_LEVELS - 1];
 840    char *hash = NULL;
 841    qcrypto_hash_digest(QCRYPTO_HASH_ALG_SHA256, data, size, &hash, errp);
 842
 843    return hash;
 844}
 845