qemu/block/qcow2-cluster.c
<<
>>
Prefs
   1/*
   2 * Block driver for the QCOW version 2 format
   3 *
   4 * Copyright (c) 2004-2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include <zlib.h>
  27
  28#include "qapi/error.h"
  29#include "qemu-common.h"
  30#include "block/block_int.h"
  31#include "qcow2.h"
  32#include "qemu/bswap.h"
  33#include "trace.h"
  34
  35int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
  36{
  37    BDRVQcow2State *s = bs->opaque;
  38    int new_l1_size, i, ret;
  39
  40    if (exact_size >= s->l1_size) {
  41        return 0;
  42    }
  43
  44    new_l1_size = exact_size;
  45
  46#ifdef DEBUG_ALLOC2
  47    fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
  48#endif
  49
  50    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
  51    ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
  52                                       new_l1_size * sizeof(uint64_t),
  53                             (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
  54    if (ret < 0) {
  55        goto fail;
  56    }
  57
  58    ret = bdrv_flush(bs->file->bs);
  59    if (ret < 0) {
  60        goto fail;
  61    }
  62
  63    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
  64    for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
  65        if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
  66            continue;
  67        }
  68        qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
  69                            s->cluster_size, QCOW2_DISCARD_ALWAYS);
  70        s->l1_table[i] = 0;
  71    }
  72    return 0;
  73
  74fail:
  75    /*
  76     * If the write in the l1_table failed the image may contain a partially
  77     * overwritten l1_table. In this case it would be better to clear the
  78     * l1_table in memory to avoid possible image corruption.
  79     */
  80    memset(s->l1_table + new_l1_size, 0,
  81           (s->l1_size - new_l1_size) * sizeof(uint64_t));
  82    return ret;
  83}
  84
  85int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
  86                        bool exact_size)
  87{
  88    BDRVQcow2State *s = bs->opaque;
  89    int new_l1_size2, ret, i;
  90    uint64_t *new_l1_table;
  91    int64_t old_l1_table_offset, old_l1_size;
  92    int64_t new_l1_table_offset, new_l1_size;
  93    uint8_t data[12];
  94
  95    if (min_size <= s->l1_size)
  96        return 0;
  97
  98    /* Do a sanity check on min_size before trying to calculate new_l1_size
  99     * (this prevents overflows during the while loop for the calculation of
 100     * new_l1_size) */
 101    if (min_size > INT_MAX / sizeof(uint64_t)) {
 102        return -EFBIG;
 103    }
 104
 105    if (exact_size) {
 106        new_l1_size = min_size;
 107    } else {
 108        /* Bump size up to reduce the number of times we have to grow */
 109        new_l1_size = s->l1_size;
 110        if (new_l1_size == 0) {
 111            new_l1_size = 1;
 112        }
 113        while (min_size > new_l1_size) {
 114            new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
 115        }
 116    }
 117
 118    QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
 119    if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
 120        return -EFBIG;
 121    }
 122
 123#ifdef DEBUG_ALLOC2
 124    fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
 125            s->l1_size, new_l1_size);
 126#endif
 127
 128    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
 129    new_l1_table = qemu_try_blockalign(bs->file->bs,
 130                                       ROUND_UP(new_l1_size2, 512));
 131    if (new_l1_table == NULL) {
 132        return -ENOMEM;
 133    }
 134    memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
 135
 136    if (s->l1_size) {
 137        memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
 138    }
 139
 140    /* write new table (align to cluster) */
 141    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
 142    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
 143    if (new_l1_table_offset < 0) {
 144        qemu_vfree(new_l1_table);
 145        return new_l1_table_offset;
 146    }
 147
 148    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 149    if (ret < 0) {
 150        goto fail;
 151    }
 152
 153    /* the L1 position has not yet been updated, so these clusters must
 154     * indeed be completely free */
 155    ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
 156                                        new_l1_size2, false);
 157    if (ret < 0) {
 158        goto fail;
 159    }
 160
 161    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
 162    for(i = 0; i < s->l1_size; i++)
 163        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
 164    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
 165                           new_l1_table, new_l1_size2);
 166    if (ret < 0)
 167        goto fail;
 168    for(i = 0; i < s->l1_size; i++)
 169        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
 170
 171    /* set new table */
 172    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
 173    stl_be_p(data, new_l1_size);
 174    stq_be_p(data + 4, new_l1_table_offset);
 175    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
 176                           data, sizeof(data));
 177    if (ret < 0) {
 178        goto fail;
 179    }
 180    qemu_vfree(s->l1_table);
 181    old_l1_table_offset = s->l1_table_offset;
 182    s->l1_table_offset = new_l1_table_offset;
 183    s->l1_table = new_l1_table;
 184    old_l1_size = s->l1_size;
 185    s->l1_size = new_l1_size;
 186    qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
 187                        QCOW2_DISCARD_OTHER);
 188    return 0;
 189 fail:
 190    qemu_vfree(new_l1_table);
 191    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
 192                        QCOW2_DISCARD_OTHER);
 193    return ret;
 194}
 195
 196/*
 197 * l2_load
 198 *
 199 * @bs: The BlockDriverState
 200 * @offset: A guest offset, used to calculate what slice of the L2
 201 *          table to load.
 202 * @l2_offset: Offset to the L2 table in the image file.
 203 * @l2_slice: Location to store the pointer to the L2 slice.
 204 *
 205 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
 206 * that are loaded by the qcow2 cache). If the slice is in the cache,
 207 * the cache is used; otherwise the L2 slice is loaded from the image
 208 * file.
 209 */
 210static int l2_load(BlockDriverState *bs, uint64_t offset,
 211                   uint64_t l2_offset, uint64_t **l2_slice)
 212{
 213    BDRVQcow2State *s = bs->opaque;
 214    int start_of_slice = sizeof(uint64_t) *
 215        (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
 216
 217    return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
 218                           (void **)l2_slice);
 219}
 220
 221/*
 222 * Writes one sector of the L1 table to the disk (can't update single entries
 223 * and we really don't want bdrv_pread to perform a read-modify-write)
 224 */
 225#define L1_ENTRIES_PER_SECTOR (512 / 8)
 226int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
 227{
 228    BDRVQcow2State *s = bs->opaque;
 229    uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
 230    int l1_start_index;
 231    int i, ret;
 232
 233    l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
 234    for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
 235         i++)
 236    {
 237        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
 238    }
 239
 240    ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
 241            s->l1_table_offset + 8 * l1_start_index, sizeof(buf), false);
 242    if (ret < 0) {
 243        return ret;
 244    }
 245
 246    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
 247    ret = bdrv_pwrite_sync(bs->file,
 248                           s->l1_table_offset + 8 * l1_start_index,
 249                           buf, sizeof(buf));
 250    if (ret < 0) {
 251        return ret;
 252    }
 253
 254    return 0;
 255}
 256
 257/*
 258 * l2_allocate
 259 *
 260 * Allocate a new l2 entry in the file. If l1_index points to an already
 261 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
 262 * table) copy the contents of the old L2 table into the newly allocated one.
 263 * Otherwise the new table is initialized with zeros.
 264 *
 265 */
 266
 267static int l2_allocate(BlockDriverState *bs, int l1_index)
 268{
 269    BDRVQcow2State *s = bs->opaque;
 270    uint64_t old_l2_offset;
 271    uint64_t *l2_slice = NULL;
 272    unsigned slice, slice_size2, n_slices;
 273    int64_t l2_offset;
 274    int ret;
 275
 276    old_l2_offset = s->l1_table[l1_index];
 277
 278    trace_qcow2_l2_allocate(bs, l1_index);
 279
 280    /* allocate a new l2 entry */
 281
 282    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
 283    if (l2_offset < 0) {
 284        ret = l2_offset;
 285        goto fail;
 286    }
 287
 288    /* The offset must fit in the offset field of the L1 table entry */
 289    assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
 290
 291    /* If we're allocating the table at offset 0 then something is wrong */
 292    if (l2_offset == 0) {
 293        qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
 294                                "allocation of L2 table at offset 0");
 295        ret = -EIO;
 296        goto fail;
 297    }
 298
 299    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 300    if (ret < 0) {
 301        goto fail;
 302    }
 303
 304    /* allocate a new entry in the l2 cache */
 305
 306    slice_size2 = s->l2_slice_size * sizeof(uint64_t);
 307    n_slices = s->cluster_size / slice_size2;
 308
 309    trace_qcow2_l2_allocate_get_empty(bs, l1_index);
 310    for (slice = 0; slice < n_slices; slice++) {
 311        ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
 312                                    l2_offset + slice * slice_size2,
 313                                    (void **) &l2_slice);
 314        if (ret < 0) {
 315            goto fail;
 316        }
 317
 318        if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
 319            /* if there was no old l2 table, clear the new slice */
 320            memset(l2_slice, 0, slice_size2);
 321        } else {
 322            uint64_t *old_slice;
 323            uint64_t old_l2_slice_offset =
 324                (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
 325
 326            /* if there was an old l2 table, read a slice from the disk */
 327            BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
 328            ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
 329                                  (void **) &old_slice);
 330            if (ret < 0) {
 331                goto fail;
 332            }
 333
 334            memcpy(l2_slice, old_slice, slice_size2);
 335
 336            qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
 337        }
 338
 339        /* write the l2 slice to the file */
 340        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
 341
 342        trace_qcow2_l2_allocate_write_l2(bs, l1_index);
 343        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 344        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 345    }
 346
 347    ret = qcow2_cache_flush(bs, s->l2_table_cache);
 348    if (ret < 0) {
 349        goto fail;
 350    }
 351
 352    /* update the L1 entry */
 353    trace_qcow2_l2_allocate_write_l1(bs, l1_index);
 354    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
 355    ret = qcow2_write_l1_entry(bs, l1_index);
 356    if (ret < 0) {
 357        goto fail;
 358    }
 359
 360    trace_qcow2_l2_allocate_done(bs, l1_index, 0);
 361    return 0;
 362
 363fail:
 364    trace_qcow2_l2_allocate_done(bs, l1_index, ret);
 365    if (l2_slice != NULL) {
 366        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 367    }
 368    s->l1_table[l1_index] = old_l2_offset;
 369    if (l2_offset > 0) {
 370        qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
 371                            QCOW2_DISCARD_ALWAYS);
 372    }
 373    return ret;
 374}
 375
 376/*
 377 * Checks how many clusters in a given L2 slice are contiguous in the image
 378 * file. As soon as one of the flags in the bitmask stop_flags changes compared
 379 * to the first cluster, the search is stopped and the cluster is not counted
 380 * as contiguous. (This allows it, for example, to stop at the first compressed
 381 * cluster which may require a different handling)
 382 */
 383static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters,
 384        int cluster_size, uint64_t *l2_slice, uint64_t stop_flags)
 385{
 386    int i;
 387    QCow2ClusterType first_cluster_type;
 388    uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
 389    uint64_t first_entry = be64_to_cpu(l2_slice[0]);
 390    uint64_t offset = first_entry & mask;
 391
 392    first_cluster_type = qcow2_get_cluster_type(bs, first_entry);
 393    if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) {
 394        return 0;
 395    }
 396
 397    /* must be allocated */
 398    assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
 399           first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
 400
 401    for (i = 0; i < nb_clusters; i++) {
 402        uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
 403        if (offset + (uint64_t) i * cluster_size != l2_entry) {
 404            break;
 405        }
 406    }
 407
 408        return i;
 409}
 410
 411/*
 412 * Checks how many consecutive unallocated clusters in a given L2
 413 * slice have the same cluster type.
 414 */
 415static int count_contiguous_clusters_unallocated(BlockDriverState *bs,
 416                                                 int nb_clusters,
 417                                                 uint64_t *l2_slice,
 418                                                 QCow2ClusterType wanted_type)
 419{
 420    int i;
 421
 422    assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
 423           wanted_type == QCOW2_CLUSTER_UNALLOCATED);
 424    for (i = 0; i < nb_clusters; i++) {
 425        uint64_t entry = be64_to_cpu(l2_slice[i]);
 426        QCow2ClusterType type = qcow2_get_cluster_type(bs, entry);
 427
 428        if (type != wanted_type) {
 429            break;
 430        }
 431    }
 432
 433    return i;
 434}
 435
 436static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
 437                                            uint64_t src_cluster_offset,
 438                                            unsigned offset_in_cluster,
 439                                            QEMUIOVector *qiov)
 440{
 441    int ret;
 442
 443    if (qiov->size == 0) {
 444        return 0;
 445    }
 446
 447    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
 448
 449    if (!bs->drv) {
 450        return -ENOMEDIUM;
 451    }
 452
 453    /* Call .bdrv_co_readv() directly instead of using the public block-layer
 454     * interface.  This avoids double I/O throttling and request tracking,
 455     * which can lead to deadlock when block layer copy-on-read is enabled.
 456     */
 457    ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
 458                                  qiov->size, qiov, 0);
 459    if (ret < 0) {
 460        return ret;
 461    }
 462
 463    return 0;
 464}
 465
 466static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
 467                                                uint64_t src_cluster_offset,
 468                                                uint64_t cluster_offset,
 469                                                unsigned offset_in_cluster,
 470                                                uint8_t *buffer,
 471                                                unsigned bytes)
 472{
 473    if (bytes && bs->encrypted) {
 474        BDRVQcow2State *s = bs->opaque;
 475        int64_t offset = (s->crypt_physical_offset ?
 476                          (cluster_offset + offset_in_cluster) :
 477                          (src_cluster_offset + offset_in_cluster));
 478        assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
 479        assert((bytes & ~BDRV_SECTOR_MASK) == 0);
 480        assert(s->crypto);
 481        if (qcrypto_block_encrypt(s->crypto, offset, buffer, bytes, NULL) < 0) {
 482            return false;
 483        }
 484    }
 485    return true;
 486}
 487
 488static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
 489                                             uint64_t cluster_offset,
 490                                             unsigned offset_in_cluster,
 491                                             QEMUIOVector *qiov)
 492{
 493    BDRVQcow2State *s = bs->opaque;
 494    int ret;
 495
 496    if (qiov->size == 0) {
 497        return 0;
 498    }
 499
 500    ret = qcow2_pre_write_overlap_check(bs, 0,
 501            cluster_offset + offset_in_cluster, qiov->size, true);
 502    if (ret < 0) {
 503        return ret;
 504    }
 505
 506    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
 507    ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
 508                          qiov->size, qiov, 0);
 509    if (ret < 0) {
 510        return ret;
 511    }
 512
 513    return 0;
 514}
 515
 516
 517/*
 518 * get_cluster_offset
 519 *
 520 * For a given offset of the virtual disk, find the cluster type and offset in
 521 * the qcow2 file. The offset is stored in *cluster_offset.
 522 *
 523 * On entry, *bytes is the maximum number of contiguous bytes starting at
 524 * offset that we are interested in.
 525 *
 526 * On exit, *bytes is the number of bytes starting at offset that have the same
 527 * cluster type and (if applicable) are stored contiguously in the image file.
 528 * Compressed clusters are always returned one by one.
 529 *
 530 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
 531 * cases.
 532 */
 533int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
 534                             unsigned int *bytes, uint64_t *cluster_offset)
 535{
 536    BDRVQcow2State *s = bs->opaque;
 537    unsigned int l2_index;
 538    uint64_t l1_index, l2_offset, *l2_slice;
 539    int c;
 540    unsigned int offset_in_cluster;
 541    uint64_t bytes_available, bytes_needed, nb_clusters;
 542    QCow2ClusterType type;
 543    int ret;
 544
 545    offset_in_cluster = offset_into_cluster(s, offset);
 546    bytes_needed = (uint64_t) *bytes + offset_in_cluster;
 547
 548    /* compute how many bytes there are between the start of the cluster
 549     * containing offset and the end of the l2 slice that contains
 550     * the entry pointing to it */
 551    bytes_available =
 552        ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
 553        << s->cluster_bits;
 554
 555    if (bytes_needed > bytes_available) {
 556        bytes_needed = bytes_available;
 557    }
 558
 559    *cluster_offset = 0;
 560
 561    /* seek to the l2 offset in the l1 table */
 562
 563    l1_index = offset_to_l1_index(s, offset);
 564    if (l1_index >= s->l1_size) {
 565        type = QCOW2_CLUSTER_UNALLOCATED;
 566        goto out;
 567    }
 568
 569    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 570    if (!l2_offset) {
 571        type = QCOW2_CLUSTER_UNALLOCATED;
 572        goto out;
 573    }
 574
 575    if (offset_into_cluster(s, l2_offset)) {
 576        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 577                                " unaligned (L1 index: %#" PRIx64 ")",
 578                                l2_offset, l1_index);
 579        return -EIO;
 580    }
 581
 582    /* load the l2 slice in memory */
 583
 584    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 585    if (ret < 0) {
 586        return ret;
 587    }
 588
 589    /* find the cluster offset for the given disk offset */
 590
 591    l2_index = offset_to_l2_slice_index(s, offset);
 592    *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
 593
 594    nb_clusters = size_to_clusters(s, bytes_needed);
 595    /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
 596     * integers; the minimum cluster size is 512, so this assertion is always
 597     * true */
 598    assert(nb_clusters <= INT_MAX);
 599
 600    type = qcow2_get_cluster_type(bs, *cluster_offset);
 601    if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
 602                                type == QCOW2_CLUSTER_ZERO_ALLOC)) {
 603        qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
 604                                " in pre-v3 image (L2 offset: %#" PRIx64
 605                                ", L2 index: %#x)", l2_offset, l2_index);
 606        ret = -EIO;
 607        goto fail;
 608    }
 609    switch (type) {
 610    case QCOW2_CLUSTER_COMPRESSED:
 611        if (has_data_file(bs)) {
 612            qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
 613                                    "entry found in image with external data "
 614                                    "file (L2 offset: %#" PRIx64 ", L2 index: "
 615                                    "%#x)", l2_offset, l2_index);
 616            ret = -EIO;
 617            goto fail;
 618        }
 619        /* Compressed clusters can only be processed one by one */
 620        c = 1;
 621        *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
 622        break;
 623    case QCOW2_CLUSTER_ZERO_PLAIN:
 624    case QCOW2_CLUSTER_UNALLOCATED:
 625        /* how many empty clusters ? */
 626        c = count_contiguous_clusters_unallocated(bs, nb_clusters,
 627                                                  &l2_slice[l2_index], type);
 628        *cluster_offset = 0;
 629        break;
 630    case QCOW2_CLUSTER_ZERO_ALLOC:
 631    case QCOW2_CLUSTER_NORMAL:
 632        /* how many allocated clusters ? */
 633        c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
 634                                      &l2_slice[l2_index], QCOW_OFLAG_ZERO);
 635        *cluster_offset &= L2E_OFFSET_MASK;
 636        if (offset_into_cluster(s, *cluster_offset)) {
 637            qcow2_signal_corruption(bs, true, -1, -1,
 638                                    "Cluster allocation offset %#"
 639                                    PRIx64 " unaligned (L2 offset: %#" PRIx64
 640                                    ", L2 index: %#x)", *cluster_offset,
 641                                    l2_offset, l2_index);
 642            ret = -EIO;
 643            goto fail;
 644        }
 645        if (has_data_file(bs) && *cluster_offset != offset - offset_in_cluster)
 646        {
 647            qcow2_signal_corruption(bs, true, -1, -1,
 648                                    "External data file host cluster offset %#"
 649                                    PRIx64 " does not match guest cluster "
 650                                    "offset: %#" PRIx64
 651                                    ", L2 index: %#x)", *cluster_offset,
 652                                    offset - offset_in_cluster, l2_index);
 653            ret = -EIO;
 654            goto fail;
 655        }
 656        break;
 657    default:
 658        abort();
 659    }
 660
 661    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 662
 663    bytes_available = (int64_t)c * s->cluster_size;
 664
 665out:
 666    if (bytes_available > bytes_needed) {
 667        bytes_available = bytes_needed;
 668    }
 669
 670    /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
 671     * subtracting offset_in_cluster will therefore definitely yield something
 672     * not exceeding UINT_MAX */
 673    assert(bytes_available - offset_in_cluster <= UINT_MAX);
 674    *bytes = bytes_available - offset_in_cluster;
 675
 676    return type;
 677
 678fail:
 679    qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
 680    return ret;
 681}
 682
 683/*
 684 * get_cluster_table
 685 *
 686 * for a given disk offset, load (and allocate if needed)
 687 * the appropriate slice of its l2 table.
 688 *
 689 * the cluster index in the l2 slice is given to the caller.
 690 *
 691 * Returns 0 on success, -errno in failure case
 692 */
 693static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
 694                             uint64_t **new_l2_slice,
 695                             int *new_l2_index)
 696{
 697    BDRVQcow2State *s = bs->opaque;
 698    unsigned int l2_index;
 699    uint64_t l1_index, l2_offset;
 700    uint64_t *l2_slice = NULL;
 701    int ret;
 702
 703    /* seek to the l2 offset in the l1 table */
 704
 705    l1_index = offset_to_l1_index(s, offset);
 706    if (l1_index >= s->l1_size) {
 707        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
 708        if (ret < 0) {
 709            return ret;
 710        }
 711    }
 712
 713    assert(l1_index < s->l1_size);
 714    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 715    if (offset_into_cluster(s, l2_offset)) {
 716        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 717                                " unaligned (L1 index: %#" PRIx64 ")",
 718                                l2_offset, l1_index);
 719        return -EIO;
 720    }
 721
 722    if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
 723        /* First allocate a new L2 table (and do COW if needed) */
 724        ret = l2_allocate(bs, l1_index);
 725        if (ret < 0) {
 726            return ret;
 727        }
 728
 729        /* Then decrease the refcount of the old table */
 730        if (l2_offset) {
 731            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
 732                                QCOW2_DISCARD_OTHER);
 733        }
 734
 735        /* Get the offset of the newly-allocated l2 table */
 736        l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 737        assert(offset_into_cluster(s, l2_offset) == 0);
 738    }
 739
 740    /* load the l2 slice in memory */
 741    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 742    if (ret < 0) {
 743        return ret;
 744    }
 745
 746    /* find the cluster offset for the given disk offset */
 747
 748    l2_index = offset_to_l2_slice_index(s, offset);
 749
 750    *new_l2_slice = l2_slice;
 751    *new_l2_index = l2_index;
 752
 753    return 0;
 754}
 755
 756/*
 757 * alloc_compressed_cluster_offset
 758 *
 759 * For a given offset on the virtual disk, allocate a new compressed cluster
 760 * and put the host offset of the cluster into *host_offset. If a cluster is
 761 * already allocated at the offset, return an error.
 762 *
 763 * Return 0 on success and -errno in error cases
 764 */
 765int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
 766                                          uint64_t offset,
 767                                          int compressed_size,
 768                                          uint64_t *host_offset)
 769{
 770    BDRVQcow2State *s = bs->opaque;
 771    int l2_index, ret;
 772    uint64_t *l2_slice;
 773    int64_t cluster_offset;
 774    int nb_csectors;
 775
 776    if (has_data_file(bs)) {
 777        return 0;
 778    }
 779
 780    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
 781    if (ret < 0) {
 782        return ret;
 783    }
 784
 785    /* Compression can't overwrite anything. Fail if the cluster was already
 786     * allocated. */
 787    cluster_offset = be64_to_cpu(l2_slice[l2_index]);
 788    if (cluster_offset & L2E_OFFSET_MASK) {
 789        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 790        return -EIO;
 791    }
 792
 793    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
 794    if (cluster_offset < 0) {
 795        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 796        return cluster_offset;
 797    }
 798
 799    nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
 800                  (cluster_offset >> 9);
 801
 802    cluster_offset |= QCOW_OFLAG_COMPRESSED |
 803                      ((uint64_t)nb_csectors << s->csize_shift);
 804
 805    /* update L2 table */
 806
 807    /* compressed clusters never have the copied flag */
 808
 809    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
 810    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 811    l2_slice[l2_index] = cpu_to_be64(cluster_offset);
 812    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 813
 814    *host_offset = cluster_offset & s->cluster_offset_mask;
 815    return 0;
 816}
 817
 818static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
 819{
 820    BDRVQcow2State *s = bs->opaque;
 821    Qcow2COWRegion *start = &m->cow_start;
 822    Qcow2COWRegion *end = &m->cow_end;
 823    unsigned buffer_size;
 824    unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
 825    bool merge_reads;
 826    uint8_t *start_buffer, *end_buffer;
 827    QEMUIOVector qiov;
 828    int ret;
 829
 830    assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
 831    assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
 832    assert(start->offset + start->nb_bytes <= end->offset);
 833    assert(!m->data_qiov || m->data_qiov->size == data_bytes);
 834
 835    if (start->nb_bytes == 0 && end->nb_bytes == 0) {
 836        return 0;
 837    }
 838
 839    /* If we have to read both the start and end COW regions and the
 840     * middle region is not too large then perform just one read
 841     * operation */
 842    merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
 843    if (merge_reads) {
 844        buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
 845    } else {
 846        /* If we have to do two reads, add some padding in the middle
 847         * if necessary to make sure that the end region is optimally
 848         * aligned. */
 849        size_t align = bdrv_opt_mem_align(bs);
 850        assert(align > 0 && align <= UINT_MAX);
 851        assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
 852               UINT_MAX - end->nb_bytes);
 853        buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
 854    }
 855
 856    /* Reserve a buffer large enough to store all the data that we're
 857     * going to read */
 858    start_buffer = qemu_try_blockalign(bs, buffer_size);
 859    if (start_buffer == NULL) {
 860        return -ENOMEM;
 861    }
 862    /* The part of the buffer where the end region is located */
 863    end_buffer = start_buffer + buffer_size - end->nb_bytes;
 864
 865    qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
 866
 867    qemu_co_mutex_unlock(&s->lock);
 868    /* First we read the existing data from both COW regions. We
 869     * either read the whole region in one go, or the start and end
 870     * regions separately. */
 871    if (merge_reads) {
 872        qemu_iovec_add(&qiov, start_buffer, buffer_size);
 873        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 874    } else {
 875        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 876        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 877        if (ret < 0) {
 878            goto fail;
 879        }
 880
 881        qemu_iovec_reset(&qiov);
 882        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 883        ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
 884    }
 885    if (ret < 0) {
 886        goto fail;
 887    }
 888
 889    /* Encrypt the data if necessary before writing it */
 890    if (bs->encrypted) {
 891        if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
 892                                    start->offset, start_buffer,
 893                                    start->nb_bytes) ||
 894            !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
 895                                    end->offset, end_buffer, end->nb_bytes)) {
 896            ret = -EIO;
 897            goto fail;
 898        }
 899    }
 900
 901    /* And now we can write everything. If we have the guest data we
 902     * can write everything in one single operation */
 903    if (m->data_qiov) {
 904        qemu_iovec_reset(&qiov);
 905        if (start->nb_bytes) {
 906            qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 907        }
 908        qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
 909        if (end->nb_bytes) {
 910            qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 911        }
 912        /* NOTE: we have a write_aio blkdebug event here followed by
 913         * a cow_write one in do_perform_cow_write(), but there's only
 914         * one single I/O operation */
 915        BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
 916        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 917    } else {
 918        /* If there's no guest data then write both COW regions separately */
 919        qemu_iovec_reset(&qiov);
 920        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 921        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 922        if (ret < 0) {
 923            goto fail;
 924        }
 925
 926        qemu_iovec_reset(&qiov);
 927        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 928        ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
 929    }
 930
 931fail:
 932    qemu_co_mutex_lock(&s->lock);
 933
 934    /*
 935     * Before we update the L2 table to actually point to the new cluster, we
 936     * need to be sure that the refcounts have been increased and COW was
 937     * handled.
 938     */
 939    if (ret == 0) {
 940        qcow2_cache_depends_on_flush(s->l2_table_cache);
 941    }
 942
 943    qemu_vfree(start_buffer);
 944    qemu_iovec_destroy(&qiov);
 945    return ret;
 946}
 947
 948int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
 949{
 950    BDRVQcow2State *s = bs->opaque;
 951    int i, j = 0, l2_index, ret;
 952    uint64_t *old_cluster, *l2_slice;
 953    uint64_t cluster_offset = m->alloc_offset;
 954
 955    trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
 956    assert(m->nb_clusters > 0);
 957
 958    old_cluster = g_try_new(uint64_t, m->nb_clusters);
 959    if (old_cluster == NULL) {
 960        ret = -ENOMEM;
 961        goto err;
 962    }
 963
 964    /* copy content of unmodified sectors */
 965    ret = perform_cow(bs, m);
 966    if (ret < 0) {
 967        goto err;
 968    }
 969
 970    /* Update L2 table. */
 971    if (s->use_lazy_refcounts) {
 972        qcow2_mark_dirty(bs);
 973    }
 974    if (qcow2_need_accurate_refcounts(s)) {
 975        qcow2_cache_set_dependency(bs, s->l2_table_cache,
 976                                   s->refcount_block_cache);
 977    }
 978
 979    ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
 980    if (ret < 0) {
 981        goto err;
 982    }
 983    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 984
 985    assert(l2_index + m->nb_clusters <= s->l2_slice_size);
 986    for (i = 0; i < m->nb_clusters; i++) {
 987        /* if two concurrent writes happen to the same unallocated cluster
 988         * each write allocates separate cluster and writes data concurrently.
 989         * The first one to complete updates l2 table with pointer to its
 990         * cluster the second one has to do RMW (which is done above by
 991         * perform_cow()), update l2 table with its cluster pointer and free
 992         * old cluster. This is what this loop does */
 993        if (l2_slice[l2_index + i] != 0) {
 994            old_cluster[j++] = l2_slice[l2_index + i];
 995        }
 996
 997        l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
 998                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
 999     }
1000
1001
1002    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1003
1004    /*
1005     * If this was a COW, we need to decrease the refcount of the old cluster.
1006     *
1007     * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1008     * clusters), the next write will reuse them anyway.
1009     */
1010    if (!m->keep_old_clusters && j != 0) {
1011        for (i = 0; i < j; i++) {
1012            qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
1013                                    QCOW2_DISCARD_NEVER);
1014        }
1015    }
1016
1017    ret = 0;
1018err:
1019    g_free(old_cluster);
1020    return ret;
1021 }
1022
1023/**
1024 * Frees the allocated clusters because the request failed and they won't
1025 * actually be linked.
1026 */
1027void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1028{
1029    BDRVQcow2State *s = bs->opaque;
1030    qcow2_free_clusters(bs, m->alloc_offset, m->nb_clusters << s->cluster_bits,
1031                        QCOW2_DISCARD_NEVER);
1032}
1033
1034/*
1035 * Returns the number of contiguous clusters that can be used for an allocating
1036 * write, but require COW to be performed (this includes yet unallocated space,
1037 * which must copy from the backing file)
1038 */
1039static int count_cow_clusters(BlockDriverState *bs, int nb_clusters,
1040    uint64_t *l2_slice, int l2_index)
1041{
1042    int i;
1043
1044    for (i = 0; i < nb_clusters; i++) {
1045        uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1046        QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1047
1048        switch(cluster_type) {
1049        case QCOW2_CLUSTER_NORMAL:
1050            if (l2_entry & QCOW_OFLAG_COPIED) {
1051                goto out;
1052            }
1053            break;
1054        case QCOW2_CLUSTER_UNALLOCATED:
1055        case QCOW2_CLUSTER_COMPRESSED:
1056        case QCOW2_CLUSTER_ZERO_PLAIN:
1057        case QCOW2_CLUSTER_ZERO_ALLOC:
1058            break;
1059        default:
1060            abort();
1061        }
1062    }
1063
1064out:
1065    assert(i <= nb_clusters);
1066    return i;
1067}
1068
1069/*
1070 * Check if there already is an AIO write request in flight which allocates
1071 * the same cluster. In this case we need to wait until the previous
1072 * request has completed and updated the L2 table accordingly.
1073 *
1074 * Returns:
1075 *   0       if there was no dependency. *cur_bytes indicates the number of
1076 *           bytes from guest_offset that can be read before the next
1077 *           dependency must be processed (or the request is complete)
1078 *
1079 *   -EAGAIN if we had to wait for another request, previously gathered
1080 *           information on cluster allocation may be invalid now. The caller
1081 *           must start over anyway, so consider *cur_bytes undefined.
1082 */
1083static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1084    uint64_t *cur_bytes, QCowL2Meta **m)
1085{
1086    BDRVQcow2State *s = bs->opaque;
1087    QCowL2Meta *old_alloc;
1088    uint64_t bytes = *cur_bytes;
1089
1090    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1091
1092        uint64_t start = guest_offset;
1093        uint64_t end = start + bytes;
1094        uint64_t old_start = l2meta_cow_start(old_alloc);
1095        uint64_t old_end = l2meta_cow_end(old_alloc);
1096
1097        if (end <= old_start || start >= old_end) {
1098            /* No intersection */
1099        } else {
1100            if (start < old_start) {
1101                /* Stop at the start of a running allocation */
1102                bytes = old_start - start;
1103            } else {
1104                bytes = 0;
1105            }
1106
1107            /* Stop if already an l2meta exists. After yielding, it wouldn't
1108             * be valid any more, so we'd have to clean up the old L2Metas
1109             * and deal with requests depending on them before starting to
1110             * gather new ones. Not worth the trouble. */
1111            if (bytes == 0 && *m) {
1112                *cur_bytes = 0;
1113                return 0;
1114            }
1115
1116            if (bytes == 0) {
1117                /* Wait for the dependency to complete. We need to recheck
1118                 * the free/allocated clusters when we continue. */
1119                qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1120                return -EAGAIN;
1121            }
1122        }
1123    }
1124
1125    /* Make sure that existing clusters and new allocations are only used up to
1126     * the next dependency if we shortened the request above */
1127    *cur_bytes = bytes;
1128
1129    return 0;
1130}
1131
1132/*
1133 * Checks how many already allocated clusters that don't require a copy on
1134 * write there are at the given guest_offset (up to *bytes). If *host_offset is
1135 * not INV_OFFSET, only physically contiguous clusters beginning at this host
1136 * offset are counted.
1137 *
1138 * Note that guest_offset may not be cluster aligned. In this case, the
1139 * returned *host_offset points to exact byte referenced by guest_offset and
1140 * therefore isn't cluster aligned as well.
1141 *
1142 * Returns:
1143 *   0:     if no allocated clusters are available at the given offset.
1144 *          *bytes is normally unchanged. It is set to 0 if the cluster
1145 *          is allocated and doesn't need COW, but doesn't have the right
1146 *          physical offset.
1147 *
1148 *   1:     if allocated clusters that don't require a COW are available at
1149 *          the requested offset. *bytes may have decreased and describes
1150 *          the length of the area that can be written to.
1151 *
1152 *  -errno: in error cases
1153 */
1154static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1155    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1156{
1157    BDRVQcow2State *s = bs->opaque;
1158    int l2_index;
1159    uint64_t cluster_offset;
1160    uint64_t *l2_slice;
1161    uint64_t nb_clusters;
1162    unsigned int keep_clusters;
1163    int ret;
1164
1165    trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1166                              *bytes);
1167
1168    assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1169                                      == offset_into_cluster(s, *host_offset));
1170
1171    /*
1172     * Calculate the number of clusters to look for. We stop at L2 slice
1173     * boundaries to keep things simple.
1174     */
1175    nb_clusters =
1176        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1177
1178    l2_index = offset_to_l2_slice_index(s, guest_offset);
1179    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1180    assert(nb_clusters <= INT_MAX);
1181
1182    /* Find L2 entry for the first involved cluster */
1183    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1184    if (ret < 0) {
1185        return ret;
1186    }
1187
1188    cluster_offset = be64_to_cpu(l2_slice[l2_index]);
1189
1190    /* Check how many clusters are already allocated and don't need COW */
1191    if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL
1192        && (cluster_offset & QCOW_OFLAG_COPIED))
1193    {
1194        /* If a specific host_offset is required, check it */
1195        bool offset_matches =
1196            (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1197
1198        if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1199            qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1200                                    "%#llx unaligned (guest offset: %#" PRIx64
1201                                    ")", cluster_offset & L2E_OFFSET_MASK,
1202                                    guest_offset);
1203            ret = -EIO;
1204            goto out;
1205        }
1206
1207        if (*host_offset != INV_OFFSET && !offset_matches) {
1208            *bytes = 0;
1209            ret = 0;
1210            goto out;
1211        }
1212
1213        /* We keep all QCOW_OFLAG_COPIED clusters */
1214        keep_clusters =
1215            count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1216                                      &l2_slice[l2_index],
1217                                      QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1218        assert(keep_clusters <= nb_clusters);
1219
1220        *bytes = MIN(*bytes,
1221                 keep_clusters * s->cluster_size
1222                 - offset_into_cluster(s, guest_offset));
1223
1224        ret = 1;
1225    } else {
1226        ret = 0;
1227    }
1228
1229    /* Cleanup */
1230out:
1231    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1232
1233    /* Only return a host offset if we actually made progress. Otherwise we
1234     * would make requirements for handle_alloc() that it can't fulfill */
1235    if (ret > 0) {
1236        *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1237                     + offset_into_cluster(s, guest_offset);
1238    }
1239
1240    return ret;
1241}
1242
1243/*
1244 * Allocates new clusters for the given guest_offset.
1245 *
1246 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1247 * contain the number of clusters that have been allocated and are contiguous
1248 * in the image file.
1249 *
1250 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1251 * at which the new clusters must start. *nb_clusters can be 0 on return in
1252 * this case if the cluster at host_offset is already in use. If *host_offset
1253 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1254 *
1255 * *host_offset is updated to contain the offset into the image file at which
1256 * the first allocated cluster starts.
1257 *
1258 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1259 * function has been waiting for another request and the allocation must be
1260 * restarted, but the whole request should not be failed.
1261 */
1262static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1263                                   uint64_t *host_offset, uint64_t *nb_clusters)
1264{
1265    BDRVQcow2State *s = bs->opaque;
1266
1267    trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1268                                         *host_offset, *nb_clusters);
1269
1270    if (has_data_file(bs)) {
1271        assert(*host_offset == INV_OFFSET ||
1272               *host_offset == start_of_cluster(s, guest_offset));
1273        *host_offset = start_of_cluster(s, guest_offset);
1274        return 0;
1275    }
1276
1277    /* Allocate new clusters */
1278    trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1279    if (*host_offset == INV_OFFSET) {
1280        int64_t cluster_offset =
1281            qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1282        if (cluster_offset < 0) {
1283            return cluster_offset;
1284        }
1285        *host_offset = cluster_offset;
1286        return 0;
1287    } else {
1288        int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1289        if (ret < 0) {
1290            return ret;
1291        }
1292        *nb_clusters = ret;
1293        return 0;
1294    }
1295}
1296
1297/*
1298 * Allocates new clusters for an area that either is yet unallocated or needs a
1299 * copy on write. If *host_offset is not INV_OFFSET, clusters are only
1300 * allocated if the new allocation can match the specified host offset.
1301 *
1302 * Note that guest_offset may not be cluster aligned. In this case, the
1303 * returned *host_offset points to exact byte referenced by guest_offset and
1304 * therefore isn't cluster aligned as well.
1305 *
1306 * Returns:
1307 *   0:     if no clusters could be allocated. *bytes is set to 0,
1308 *          *host_offset is left unchanged.
1309 *
1310 *   1:     if new clusters were allocated. *bytes may be decreased if the
1311 *          new allocation doesn't cover all of the requested area.
1312 *          *host_offset is updated to contain the host offset of the first
1313 *          newly allocated cluster.
1314 *
1315 *  -errno: in error cases
1316 */
1317static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1318    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1319{
1320    BDRVQcow2State *s = bs->opaque;
1321    int l2_index;
1322    uint64_t *l2_slice;
1323    uint64_t entry;
1324    uint64_t nb_clusters;
1325    int ret;
1326    bool keep_old_clusters = false;
1327
1328    uint64_t alloc_cluster_offset = INV_OFFSET;
1329
1330    trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1331                             *bytes);
1332    assert(*bytes > 0);
1333
1334    /*
1335     * Calculate the number of clusters to look for. We stop at L2 slice
1336     * boundaries to keep things simple.
1337     */
1338    nb_clusters =
1339        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1340
1341    l2_index = offset_to_l2_slice_index(s, guest_offset);
1342    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1343    assert(nb_clusters <= INT_MAX);
1344
1345    /* Find L2 entry for the first involved cluster */
1346    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1347    if (ret < 0) {
1348        return ret;
1349    }
1350
1351    entry = be64_to_cpu(l2_slice[l2_index]);
1352
1353    /* For the moment, overwrite compressed clusters one by one */
1354    if (entry & QCOW_OFLAG_COMPRESSED) {
1355        nb_clusters = 1;
1356    } else {
1357        nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index);
1358    }
1359
1360    /* This function is only called when there were no non-COW clusters, so if
1361     * we can't find any unallocated or COW clusters either, something is
1362     * wrong with our code. */
1363    assert(nb_clusters > 0);
1364
1365    if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1366        (entry & QCOW_OFLAG_COPIED) &&
1367        (*host_offset == INV_OFFSET ||
1368         start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1369    {
1370        int preallocated_nb_clusters;
1371
1372        if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1373            qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1374                                    "cluster offset %#llx unaligned (guest "
1375                                    "offset: %#" PRIx64 ")",
1376                                    entry & L2E_OFFSET_MASK, guest_offset);
1377            ret = -EIO;
1378            goto fail;
1379        }
1380
1381        /* Try to reuse preallocated zero clusters; contiguous normal clusters
1382         * would be fine, too, but count_cow_clusters() above has limited
1383         * nb_clusters already to a range of COW clusters */
1384        preallocated_nb_clusters =
1385            count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1386                                      &l2_slice[l2_index], QCOW_OFLAG_COPIED);
1387        assert(preallocated_nb_clusters > 0);
1388
1389        nb_clusters = preallocated_nb_clusters;
1390        alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1391
1392        /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1393         * should not free them. */
1394        keep_old_clusters = true;
1395    }
1396
1397    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1398
1399    if (alloc_cluster_offset == INV_OFFSET) {
1400        /* Allocate, if necessary at a given offset in the image file */
1401        alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1402                               start_of_cluster(s, *host_offset);
1403        ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1404                                      &nb_clusters);
1405        if (ret < 0) {
1406            goto fail;
1407        }
1408
1409        /* Can't extend contiguous allocation */
1410        if (nb_clusters == 0) {
1411            *bytes = 0;
1412            return 0;
1413        }
1414
1415        assert(alloc_cluster_offset != INV_OFFSET);
1416    }
1417
1418    /*
1419     * Save info needed for meta data update.
1420     *
1421     * requested_bytes: Number of bytes from the start of the first
1422     * newly allocated cluster to the end of the (possibly shortened
1423     * before) write request.
1424     *
1425     * avail_bytes: Number of bytes from the start of the first
1426     * newly allocated to the end of the last newly allocated cluster.
1427     *
1428     * nb_bytes: The number of bytes from the start of the first
1429     * newly allocated cluster to the end of the area that the write
1430     * request actually writes to (excluding COW at the end)
1431     */
1432    uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1433    int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1434    int nb_bytes = MIN(requested_bytes, avail_bytes);
1435    QCowL2Meta *old_m = *m;
1436
1437    *m = g_malloc0(sizeof(**m));
1438
1439    **m = (QCowL2Meta) {
1440        .next           = old_m,
1441
1442        .alloc_offset   = alloc_cluster_offset,
1443        .offset         = start_of_cluster(s, guest_offset),
1444        .nb_clusters    = nb_clusters,
1445
1446        .keep_old_clusters  = keep_old_clusters,
1447
1448        .cow_start = {
1449            .offset     = 0,
1450            .nb_bytes   = offset_into_cluster(s, guest_offset),
1451        },
1452        .cow_end = {
1453            .offset     = nb_bytes,
1454            .nb_bytes   = avail_bytes - nb_bytes,
1455        },
1456    };
1457    qemu_co_queue_init(&(*m)->dependent_requests);
1458    QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1459
1460    *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1461    *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1462    assert(*bytes != 0);
1463
1464    return 1;
1465
1466fail:
1467    if (*m && (*m)->nb_clusters > 0) {
1468        QLIST_REMOVE(*m, next_in_flight);
1469    }
1470    return ret;
1471}
1472
1473/*
1474 * alloc_cluster_offset
1475 *
1476 * For a given offset on the virtual disk, find the cluster offset in qcow2
1477 * file. If the offset is not found, allocate a new cluster.
1478 *
1479 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1480 * other fields in m are meaningless.
1481 *
1482 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1483 * contiguous clusters that have been allocated. In this case, the other
1484 * fields of m are valid and contain information about the first allocated
1485 * cluster.
1486 *
1487 * If the request conflicts with another write request in flight, the coroutine
1488 * is queued and will be reentered when the dependency has completed.
1489 *
1490 * Return 0 on success and -errno in error cases
1491 */
1492int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1493                               unsigned int *bytes, uint64_t *host_offset,
1494                               QCowL2Meta **m)
1495{
1496    BDRVQcow2State *s = bs->opaque;
1497    uint64_t start, remaining;
1498    uint64_t cluster_offset;
1499    uint64_t cur_bytes;
1500    int ret;
1501
1502    trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1503
1504again:
1505    start = offset;
1506    remaining = *bytes;
1507    cluster_offset = INV_OFFSET;
1508    *host_offset = INV_OFFSET;
1509    cur_bytes = 0;
1510    *m = NULL;
1511
1512    while (true) {
1513
1514        if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1515            *host_offset = start_of_cluster(s, cluster_offset);
1516        }
1517
1518        assert(remaining >= cur_bytes);
1519
1520        start           += cur_bytes;
1521        remaining       -= cur_bytes;
1522
1523        if (cluster_offset != INV_OFFSET) {
1524            cluster_offset += cur_bytes;
1525        }
1526
1527        if (remaining == 0) {
1528            break;
1529        }
1530
1531        cur_bytes = remaining;
1532
1533        /*
1534         * Now start gathering as many contiguous clusters as possible:
1535         *
1536         * 1. Check for overlaps with in-flight allocations
1537         *
1538         *      a) Overlap not in the first cluster -> shorten this request and
1539         *         let the caller handle the rest in its next loop iteration.
1540         *
1541         *      b) Real overlaps of two requests. Yield and restart the search
1542         *         for contiguous clusters (the situation could have changed
1543         *         while we were sleeping)
1544         *
1545         *      c) TODO: Request starts in the same cluster as the in-flight
1546         *         allocation ends. Shorten the COW of the in-fight allocation,
1547         *         set cluster_offset to write to the same cluster and set up
1548         *         the right synchronisation between the in-flight request and
1549         *         the new one.
1550         */
1551        ret = handle_dependencies(bs, start, &cur_bytes, m);
1552        if (ret == -EAGAIN) {
1553            /* Currently handle_dependencies() doesn't yield if we already had
1554             * an allocation. If it did, we would have to clean up the L2Meta
1555             * structs before starting over. */
1556            assert(*m == NULL);
1557            goto again;
1558        } else if (ret < 0) {
1559            return ret;
1560        } else if (cur_bytes == 0) {
1561            break;
1562        } else {
1563            /* handle_dependencies() may have decreased cur_bytes (shortened
1564             * the allocations below) so that the next dependency is processed
1565             * correctly during the next loop iteration. */
1566        }
1567
1568        /*
1569         * 2. Count contiguous COPIED clusters.
1570         */
1571        ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1572        if (ret < 0) {
1573            return ret;
1574        } else if (ret) {
1575            continue;
1576        } else if (cur_bytes == 0) {
1577            break;
1578        }
1579
1580        /*
1581         * 3. If the request still hasn't completed, allocate new clusters,
1582         *    considering any cluster_offset of steps 1c or 2.
1583         */
1584        ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1585        if (ret < 0) {
1586            return ret;
1587        } else if (ret) {
1588            continue;
1589        } else {
1590            assert(cur_bytes == 0);
1591            break;
1592        }
1593    }
1594
1595    *bytes -= remaining;
1596    assert(*bytes > 0);
1597    assert(*host_offset != INV_OFFSET);
1598
1599    return 0;
1600}
1601
1602/*
1603 * This discards as many clusters of nb_clusters as possible at once (i.e.
1604 * all clusters in the same L2 slice) and returns the number of discarded
1605 * clusters.
1606 */
1607static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1608                               uint64_t nb_clusters,
1609                               enum qcow2_discard_type type, bool full_discard)
1610{
1611    BDRVQcow2State *s = bs->opaque;
1612    uint64_t *l2_slice;
1613    int l2_index;
1614    int ret;
1615    int i;
1616
1617    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1618    if (ret < 0) {
1619        return ret;
1620    }
1621
1622    /* Limit nb_clusters to one L2 slice */
1623    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1624    assert(nb_clusters <= INT_MAX);
1625
1626    for (i = 0; i < nb_clusters; i++) {
1627        uint64_t old_l2_entry;
1628
1629        old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1630
1631        /*
1632         * If full_discard is false, make sure that a discarded area reads back
1633         * as zeroes for v3 images (we cannot do it for v2 without actually
1634         * writing a zero-filled buffer). We can skip the operation if the
1635         * cluster is already marked as zero, or if it's unallocated and we
1636         * don't have a backing file.
1637         *
1638         * TODO We might want to use bdrv_block_status(bs) here, but we're
1639         * holding s->lock, so that doesn't work today.
1640         *
1641         * If full_discard is true, the sector should not read back as zeroes,
1642         * but rather fall through to the backing file.
1643         */
1644        switch (qcow2_get_cluster_type(bs, old_l2_entry)) {
1645        case QCOW2_CLUSTER_UNALLOCATED:
1646            if (full_discard || !bs->backing) {
1647                continue;
1648            }
1649            break;
1650
1651        case QCOW2_CLUSTER_ZERO_PLAIN:
1652            if (!full_discard) {
1653                continue;
1654            }
1655            break;
1656
1657        case QCOW2_CLUSTER_ZERO_ALLOC:
1658        case QCOW2_CLUSTER_NORMAL:
1659        case QCOW2_CLUSTER_COMPRESSED:
1660            break;
1661
1662        default:
1663            abort();
1664        }
1665
1666        /* First remove L2 entries */
1667        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1668        if (!full_discard && s->qcow_version >= 3) {
1669            l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1670        } else {
1671            l2_slice[l2_index + i] = cpu_to_be64(0);
1672        }
1673
1674        /* Then decrease the refcount */
1675        qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1676    }
1677
1678    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1679
1680    return nb_clusters;
1681}
1682
1683int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1684                          uint64_t bytes, enum qcow2_discard_type type,
1685                          bool full_discard)
1686{
1687    BDRVQcow2State *s = bs->opaque;
1688    uint64_t end_offset = offset + bytes;
1689    uint64_t nb_clusters;
1690    int64_t cleared;
1691    int ret;
1692
1693    /* Caller must pass aligned values, except at image end */
1694    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1695    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1696           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1697
1698    nb_clusters = size_to_clusters(s, bytes);
1699
1700    s->cache_discards = true;
1701
1702    /* Each L2 slice is handled by its own loop iteration */
1703    while (nb_clusters > 0) {
1704        cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1705                                      full_discard);
1706        if (cleared < 0) {
1707            ret = cleared;
1708            goto fail;
1709        }
1710
1711        nb_clusters -= cleared;
1712        offset += (cleared * s->cluster_size);
1713    }
1714
1715    ret = 0;
1716fail:
1717    s->cache_discards = false;
1718    qcow2_process_discards(bs, ret);
1719
1720    return ret;
1721}
1722
1723/*
1724 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1725 * all clusters in the same L2 slice) and returns the number of zeroed
1726 * clusters.
1727 */
1728static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1729                            uint64_t nb_clusters, int flags)
1730{
1731    BDRVQcow2State *s = bs->opaque;
1732    uint64_t *l2_slice;
1733    int l2_index;
1734    int ret;
1735    int i;
1736    bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1737
1738    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1739    if (ret < 0) {
1740        return ret;
1741    }
1742
1743    /* Limit nb_clusters to one L2 slice */
1744    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1745    assert(nb_clusters <= INT_MAX);
1746
1747    for (i = 0; i < nb_clusters; i++) {
1748        uint64_t old_offset;
1749        QCow2ClusterType cluster_type;
1750
1751        old_offset = be64_to_cpu(l2_slice[l2_index + i]);
1752
1753        /*
1754         * Minimize L2 changes if the cluster already reads back as
1755         * zeroes with correct allocation.
1756         */
1757        cluster_type = qcow2_get_cluster_type(bs, old_offset);
1758        if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1759            (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1760            continue;
1761        }
1762
1763        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1764        if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1765            l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1766            qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1767        } else {
1768            l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1769        }
1770    }
1771
1772    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1773
1774    return nb_clusters;
1775}
1776
1777int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1778                          uint64_t bytes, int flags)
1779{
1780    BDRVQcow2State *s = bs->opaque;
1781    uint64_t end_offset = offset + bytes;
1782    uint64_t nb_clusters;
1783    int64_t cleared;
1784    int ret;
1785
1786    /* If we have to stay in sync with an external data file, zero out
1787     * s->data_file first. */
1788    if (data_file_is_raw(bs)) {
1789        assert(has_data_file(bs));
1790        ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
1791        if (ret < 0) {
1792            return ret;
1793        }
1794    }
1795
1796    /* Caller must pass aligned values, except at image end */
1797    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1798    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1799           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1800
1801    /* The zero flag is only supported by version 3 and newer */
1802    if (s->qcow_version < 3) {
1803        return -ENOTSUP;
1804    }
1805
1806    /* Each L2 slice is handled by its own loop iteration */
1807    nb_clusters = size_to_clusters(s, bytes);
1808
1809    s->cache_discards = true;
1810
1811    while (nb_clusters > 0) {
1812        cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
1813        if (cleared < 0) {
1814            ret = cleared;
1815            goto fail;
1816        }
1817
1818        nb_clusters -= cleared;
1819        offset += (cleared * s->cluster_size);
1820    }
1821
1822    ret = 0;
1823fail:
1824    s->cache_discards = false;
1825    qcow2_process_discards(bs, ret);
1826
1827    return ret;
1828}
1829
1830/*
1831 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1832 * non-backed non-pre-allocated zero clusters).
1833 *
1834 * l1_entries and *visited_l1_entries are used to keep track of progress for
1835 * status_cb(). l1_entries contains the total number of L1 entries and
1836 * *visited_l1_entries counts all visited L1 entries.
1837 */
1838static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1839                                      int l1_size, int64_t *visited_l1_entries,
1840                                      int64_t l1_entries,
1841                                      BlockDriverAmendStatusCB *status_cb,
1842                                      void *cb_opaque)
1843{
1844    BDRVQcow2State *s = bs->opaque;
1845    bool is_active_l1 = (l1_table == s->l1_table);
1846    uint64_t *l2_slice = NULL;
1847    unsigned slice, slice_size2, n_slices;
1848    int ret;
1849    int i, j;
1850
1851    slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1852    n_slices = s->cluster_size / slice_size2;
1853
1854    if (!is_active_l1) {
1855        /* inactive L2 tables require a buffer to be stored in when loading
1856         * them from disk */
1857        l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1858        if (l2_slice == NULL) {
1859            return -ENOMEM;
1860        }
1861    }
1862
1863    for (i = 0; i < l1_size; i++) {
1864        uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1865        uint64_t l2_refcount;
1866
1867        if (!l2_offset) {
1868            /* unallocated */
1869            (*visited_l1_entries)++;
1870            if (status_cb) {
1871                status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1872            }
1873            continue;
1874        }
1875
1876        if (offset_into_cluster(s, l2_offset)) {
1877            qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1878                                    PRIx64 " unaligned (L1 index: %#x)",
1879                                    l2_offset, i);
1880            ret = -EIO;
1881            goto fail;
1882        }
1883
1884        ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1885                                 &l2_refcount);
1886        if (ret < 0) {
1887            goto fail;
1888        }
1889
1890        for (slice = 0; slice < n_slices; slice++) {
1891            uint64_t slice_offset = l2_offset + slice * slice_size2;
1892            bool l2_dirty = false;
1893            if (is_active_l1) {
1894                /* get active L2 tables from cache */
1895                ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1896                                      (void **)&l2_slice);
1897            } else {
1898                /* load inactive L2 tables from disk */
1899                ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
1900            }
1901            if (ret < 0) {
1902                goto fail;
1903            }
1904
1905            for (j = 0; j < s->l2_slice_size; j++) {
1906                uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
1907                int64_t offset = l2_entry & L2E_OFFSET_MASK;
1908                QCow2ClusterType cluster_type =
1909                    qcow2_get_cluster_type(bs, l2_entry);
1910
1911                if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1912                    cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1913                    continue;
1914                }
1915
1916                if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1917                    if (!bs->backing) {
1918                        /* not backed; therefore we can simply deallocate the
1919                         * cluster */
1920                        l2_slice[j] = 0;
1921                        l2_dirty = true;
1922                        continue;
1923                    }
1924
1925                    offset = qcow2_alloc_clusters(bs, s->cluster_size);
1926                    if (offset < 0) {
1927                        ret = offset;
1928                        goto fail;
1929                    }
1930
1931                    if (l2_refcount > 1) {
1932                        /* For shared L2 tables, set the refcount accordingly
1933                         * (it is already 1 and needs to be l2_refcount) */
1934                        ret = qcow2_update_cluster_refcount(
1935                            bs, offset >> s->cluster_bits,
1936                            refcount_diff(1, l2_refcount), false,
1937                            QCOW2_DISCARD_OTHER);
1938                        if (ret < 0) {
1939                            qcow2_free_clusters(bs, offset, s->cluster_size,
1940                                                QCOW2_DISCARD_OTHER);
1941                            goto fail;
1942                        }
1943                    }
1944                }
1945
1946                if (offset_into_cluster(s, offset)) {
1947                    int l2_index = slice * s->l2_slice_size + j;
1948                    qcow2_signal_corruption(
1949                        bs, true, -1, -1,
1950                        "Cluster allocation offset "
1951                        "%#" PRIx64 " unaligned (L2 offset: %#"
1952                        PRIx64 ", L2 index: %#x)", offset,
1953                        l2_offset, l2_index);
1954                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1955                        qcow2_free_clusters(bs, offset, s->cluster_size,
1956                                            QCOW2_DISCARD_ALWAYS);
1957                    }
1958                    ret = -EIO;
1959                    goto fail;
1960                }
1961
1962                ret = qcow2_pre_write_overlap_check(bs, 0, offset,
1963                                                    s->cluster_size, true);
1964                if (ret < 0) {
1965                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1966                        qcow2_free_clusters(bs, offset, s->cluster_size,
1967                                            QCOW2_DISCARD_ALWAYS);
1968                    }
1969                    goto fail;
1970                }
1971
1972                ret = bdrv_pwrite_zeroes(s->data_file, offset,
1973                                         s->cluster_size, 0);
1974                if (ret < 0) {
1975                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1976                        qcow2_free_clusters(bs, offset, s->cluster_size,
1977                                            QCOW2_DISCARD_ALWAYS);
1978                    }
1979                    goto fail;
1980                }
1981
1982                if (l2_refcount == 1) {
1983                    l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1984                } else {
1985                    l2_slice[j] = cpu_to_be64(offset);
1986                }
1987                l2_dirty = true;
1988            }
1989
1990            if (is_active_l1) {
1991                if (l2_dirty) {
1992                    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1993                    qcow2_cache_depends_on_flush(s->l2_table_cache);
1994                }
1995                qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1996            } else {
1997                if (l2_dirty) {
1998                    ret = qcow2_pre_write_overlap_check(
1999                        bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
2000                        slice_offset, slice_size2, false);
2001                    if (ret < 0) {
2002                        goto fail;
2003                    }
2004
2005                    ret = bdrv_pwrite(bs->file, slice_offset,
2006                                      l2_slice, slice_size2);
2007                    if (ret < 0) {
2008                        goto fail;
2009                    }
2010                }
2011            }
2012        }
2013
2014        (*visited_l1_entries)++;
2015        if (status_cb) {
2016            status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2017        }
2018    }
2019
2020    ret = 0;
2021
2022fail:
2023    if (l2_slice) {
2024        if (!is_active_l1) {
2025            qemu_vfree(l2_slice);
2026        } else {
2027            qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2028        }
2029    }
2030    return ret;
2031}
2032
2033/*
2034 * For backed images, expands all zero clusters on the image. For non-backed
2035 * images, deallocates all non-pre-allocated zero clusters (and claims the
2036 * allocation for pre-allocated ones). This is important for downgrading to a
2037 * qcow2 version which doesn't yet support metadata zero clusters.
2038 */
2039int qcow2_expand_zero_clusters(BlockDriverState *bs,
2040                               BlockDriverAmendStatusCB *status_cb,
2041                               void *cb_opaque)
2042{
2043    BDRVQcow2State *s = bs->opaque;
2044    uint64_t *l1_table = NULL;
2045    int64_t l1_entries = 0, visited_l1_entries = 0;
2046    int ret;
2047    int i, j;
2048
2049    if (status_cb) {
2050        l1_entries = s->l1_size;
2051        for (i = 0; i < s->nb_snapshots; i++) {
2052            l1_entries += s->snapshots[i].l1_size;
2053        }
2054    }
2055
2056    ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2057                                     &visited_l1_entries, l1_entries,
2058                                     status_cb, cb_opaque);
2059    if (ret < 0) {
2060        goto fail;
2061    }
2062
2063    /* Inactive L1 tables may point to active L2 tables - therefore it is
2064     * necessary to flush the L2 table cache before trying to access the L2
2065     * tables pointed to by inactive L1 entries (else we might try to expand
2066     * zero clusters that have already been expanded); furthermore, it is also
2067     * necessary to empty the L2 table cache, since it may contain tables which
2068     * are now going to be modified directly on disk, bypassing the cache.
2069     * qcow2_cache_empty() does both for us. */
2070    ret = qcow2_cache_empty(bs, s->l2_table_cache);
2071    if (ret < 0) {
2072        goto fail;
2073    }
2074
2075    for (i = 0; i < s->nb_snapshots; i++) {
2076        int l1_size2;
2077        uint64_t *new_l1_table;
2078        Error *local_err = NULL;
2079
2080        ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2081                                   s->snapshots[i].l1_size, sizeof(uint64_t),
2082                                   QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2083                                   &local_err);
2084        if (ret < 0) {
2085            error_report_err(local_err);
2086            goto fail;
2087        }
2088
2089        l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2090        new_l1_table = g_try_realloc(l1_table, l1_size2);
2091
2092        if (!new_l1_table) {
2093            ret = -ENOMEM;
2094            goto fail;
2095        }
2096
2097        l1_table = new_l1_table;
2098
2099        ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2100                         l1_table, l1_size2);
2101        if (ret < 0) {
2102            goto fail;
2103        }
2104
2105        for (j = 0; j < s->snapshots[i].l1_size; j++) {
2106            be64_to_cpus(&l1_table[j]);
2107        }
2108
2109        ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2110                                         &visited_l1_entries, l1_entries,
2111                                         status_cb, cb_opaque);
2112        if (ret < 0) {
2113            goto fail;
2114        }
2115    }
2116
2117    ret = 0;
2118
2119fail:
2120    g_free(l1_table);
2121    return ret;
2122}
2123