qemu/hw/arm/armsse.c
<<
>>
Prefs
   1/*
   2 * Arm SSE (Subsystems for Embedded): IoTKit
   3 *
   4 * Copyright (c) 2018 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 or
   9 * (at your option) any later version.
  10 */
  11
  12#include "qemu/osdep.h"
  13#include "qemu/log.h"
  14#include "qemu/bitops.h"
  15#include "qapi/error.h"
  16#include "trace.h"
  17#include "hw/sysbus.h"
  18#include "hw/registerfields.h"
  19#include "hw/arm/armsse.h"
  20#include "hw/arm/arm.h"
  21
  22/* Format of the System Information block SYS_CONFIG register */
  23typedef enum SysConfigFormat {
  24    IoTKitFormat,
  25    SSE200Format,
  26} SysConfigFormat;
  27
  28struct ARMSSEInfo {
  29    const char *name;
  30    int sram_banks;
  31    int num_cpus;
  32    uint32_t sys_version;
  33    uint32_t cpuwait_rst;
  34    SysConfigFormat sys_config_format;
  35    bool has_mhus;
  36    bool has_ppus;
  37    bool has_cachectrl;
  38    bool has_cpusecctrl;
  39    bool has_cpuid;
  40};
  41
  42static const ARMSSEInfo armsse_variants[] = {
  43    {
  44        .name = TYPE_IOTKIT,
  45        .sram_banks = 1,
  46        .num_cpus = 1,
  47        .sys_version = 0x41743,
  48        .cpuwait_rst = 0,
  49        .sys_config_format = IoTKitFormat,
  50        .has_mhus = false,
  51        .has_ppus = false,
  52        .has_cachectrl = false,
  53        .has_cpusecctrl = false,
  54        .has_cpuid = false,
  55    },
  56    {
  57        .name = TYPE_SSE200,
  58        .sram_banks = 4,
  59        .num_cpus = 2,
  60        .sys_version = 0x22041743,
  61        .cpuwait_rst = 2,
  62        .sys_config_format = SSE200Format,
  63        .has_mhus = true,
  64        .has_ppus = true,
  65        .has_cachectrl = true,
  66        .has_cpusecctrl = true,
  67        .has_cpuid = true,
  68    },
  69};
  70
  71static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
  72{
  73    /* Return the SYS_CONFIG value for this SSE */
  74    uint32_t sys_config;
  75
  76    switch (info->sys_config_format) {
  77    case IoTKitFormat:
  78        sys_config = 0;
  79        sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
  80        sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
  81        break;
  82    case SSE200Format:
  83        sys_config = 0;
  84        sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
  85        sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
  86        sys_config = deposit32(sys_config, 24, 4, 2);
  87        if (info->num_cpus > 1) {
  88            sys_config = deposit32(sys_config, 10, 1, 1);
  89            sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
  90            sys_config = deposit32(sys_config, 28, 4, 2);
  91        }
  92        break;
  93    default:
  94        g_assert_not_reached();
  95    }
  96    return sys_config;
  97}
  98
  99/* Clock frequency in HZ of the 32KHz "slow clock" */
 100#define S32KCLK (32 * 1000)
 101
 102/* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
 103static bool irq_is_common[32] = {
 104    [0 ... 5] = true,
 105    /* 6, 7: per-CPU MHU interrupts */
 106    [8 ... 12] = true,
 107    /* 13: per-CPU icache interrupt */
 108    /* 14: reserved */
 109    [15 ... 20] = true,
 110    /* 21: reserved */
 111    [22 ... 26] = true,
 112    /* 27: reserved */
 113    /* 28, 29: per-CPU CTI interrupts */
 114    /* 30, 31: reserved */
 115};
 116
 117/*
 118 * Create an alias region in @container of @size bytes starting at @base
 119 * which mirrors the memory starting at @orig.
 120 */
 121static void make_alias(ARMSSE *s, MemoryRegion *mr, MemoryRegion *container,
 122                       const char *name, hwaddr base, hwaddr size, hwaddr orig)
 123{
 124    memory_region_init_alias(mr, NULL, name, container, orig, size);
 125    /* The alias is even lower priority than unimplemented_device regions */
 126    memory_region_add_subregion_overlap(container, base, mr, -1500);
 127}
 128
 129static void irq_status_forwarder(void *opaque, int n, int level)
 130{
 131    qemu_irq destirq = opaque;
 132
 133    qemu_set_irq(destirq, level);
 134}
 135
 136static void nsccfg_handler(void *opaque, int n, int level)
 137{
 138    ARMSSE *s = ARMSSE(opaque);
 139
 140    s->nsccfg = level;
 141}
 142
 143static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
 144{
 145    /* Each of the 4 AHB and 4 APB PPCs that might be present in a
 146     * system using the ARMSSE has a collection of control lines which
 147     * are provided by the security controller and which we want to
 148     * expose as control lines on the ARMSSE device itself, so the
 149     * code using the ARMSSE can wire them up to the PPCs.
 150     */
 151    SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
 152    DeviceState *armssedev = DEVICE(s);
 153    DeviceState *dev_secctl = DEVICE(&s->secctl);
 154    DeviceState *dev_splitter = DEVICE(splitter);
 155    char *name;
 156
 157    name = g_strdup_printf("%s_nonsec", ppcname);
 158    qdev_pass_gpios(dev_secctl, armssedev, name);
 159    g_free(name);
 160    name = g_strdup_printf("%s_ap", ppcname);
 161    qdev_pass_gpios(dev_secctl, armssedev, name);
 162    g_free(name);
 163    name = g_strdup_printf("%s_irq_enable", ppcname);
 164    qdev_pass_gpios(dev_secctl, armssedev, name);
 165    g_free(name);
 166    name = g_strdup_printf("%s_irq_clear", ppcname);
 167    qdev_pass_gpios(dev_secctl, armssedev, name);
 168    g_free(name);
 169
 170    /* irq_status is a little more tricky, because we need to
 171     * split it so we can send it both to the security controller
 172     * and to our OR gate for the NVIC interrupt line.
 173     * Connect up the splitter's outputs, and create a GPIO input
 174     * which will pass the line state to the input splitter.
 175     */
 176    name = g_strdup_printf("%s_irq_status", ppcname);
 177    qdev_connect_gpio_out(dev_splitter, 0,
 178                          qdev_get_gpio_in_named(dev_secctl,
 179                                                 name, 0));
 180    qdev_connect_gpio_out(dev_splitter, 1,
 181                          qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
 182    s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
 183    qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
 184                                        s->irq_status_in[ppcnum], name, 1);
 185    g_free(name);
 186}
 187
 188static void armsse_forward_sec_resp_cfg(ARMSSE *s)
 189{
 190    /* Forward the 3rd output from the splitter device as a
 191     * named GPIO output of the armsse object.
 192     */
 193    DeviceState *dev = DEVICE(s);
 194    DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
 195
 196    qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
 197    s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
 198                                           s->sec_resp_cfg, 1);
 199    qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
 200}
 201
 202static void armsse_init(Object *obj)
 203{
 204    ARMSSE *s = ARMSSE(obj);
 205    ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
 206    const ARMSSEInfo *info = asc->info;
 207    int i;
 208
 209    assert(info->sram_banks <= MAX_SRAM_BANKS);
 210    assert(info->num_cpus <= SSE_MAX_CPUS);
 211
 212    memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
 213
 214    for (i = 0; i < info->num_cpus; i++) {
 215        /*
 216         * We put each CPU in its own cluster as they are logically
 217         * distinct and may be configured differently.
 218         */
 219        char *name;
 220
 221        name = g_strdup_printf("cluster%d", i);
 222        object_initialize_child(obj, name, &s->cluster[i],
 223                                sizeof(s->cluster[i]), TYPE_CPU_CLUSTER,
 224                                &error_abort, NULL);
 225        qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
 226        g_free(name);
 227
 228        name = g_strdup_printf("armv7m%d", i);
 229        sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
 230                              &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M);
 231        qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
 232                             ARM_CPU_TYPE_NAME("cortex-m33"));
 233        g_free(name);
 234        name = g_strdup_printf("arm-sse-cpu-container%d", i);
 235        memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
 236        g_free(name);
 237        if (i > 0) {
 238            name = g_strdup_printf("arm-sse-container-alias%d", i);
 239            memory_region_init_alias(&s->container_alias[i - 1], obj,
 240                                     name, &s->container, 0, UINT64_MAX);
 241            g_free(name);
 242        }
 243    }
 244
 245    sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
 246                          TYPE_IOTKIT_SECCTL);
 247    sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
 248                          TYPE_TZ_PPC);
 249    sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
 250                          TYPE_TZ_PPC);
 251    for (i = 0; i < info->sram_banks; i++) {
 252        char *name = g_strdup_printf("mpc%d", i);
 253        sysbus_init_child_obj(obj, name, &s->mpc[i],
 254                              sizeof(s->mpc[i]), TYPE_TZ_MPC);
 255        g_free(name);
 256    }
 257    object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
 258                            sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
 259                            &error_abort, NULL);
 260
 261    for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
 262        char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
 263        SplitIRQ *splitter = &s->mpc_irq_splitter[i];
 264
 265        object_initialize_child(obj, name, splitter, sizeof(*splitter),
 266                                TYPE_SPLIT_IRQ, &error_abort, NULL);
 267        g_free(name);
 268    }
 269    sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
 270                          TYPE_CMSDK_APB_TIMER);
 271    sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
 272                          TYPE_CMSDK_APB_TIMER);
 273    sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
 274                          TYPE_CMSDK_APB_TIMER);
 275    sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
 276                          TYPE_CMSDK_APB_DUALTIMER);
 277    sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
 278                          sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
 279    sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
 280                          sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
 281    sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
 282                          sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
 283    sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
 284                          sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
 285    sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
 286                          sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
 287    if (info->has_mhus) {
 288        sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
 289                              TYPE_ARMSSE_MHU);
 290        sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
 291                              TYPE_ARMSSE_MHU);
 292    }
 293    if (info->has_ppus) {
 294        for (i = 0; i < info->num_cpus; i++) {
 295            char *name = g_strdup_printf("CPU%dCORE_PPU", i);
 296            int ppuidx = CPU0CORE_PPU + i;
 297
 298            sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
 299                                  sizeof(s->ppu[ppuidx]),
 300                                  TYPE_UNIMPLEMENTED_DEVICE);
 301            g_free(name);
 302        }
 303        sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
 304                              sizeof(s->ppu[DBG_PPU]),
 305                              TYPE_UNIMPLEMENTED_DEVICE);
 306        for (i = 0; i < info->sram_banks; i++) {
 307            char *name = g_strdup_printf("RAM%d_PPU", i);
 308            int ppuidx = RAM0_PPU + i;
 309
 310            sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
 311                                  sizeof(s->ppu[ppuidx]),
 312                                  TYPE_UNIMPLEMENTED_DEVICE);
 313            g_free(name);
 314        }
 315    }
 316    if (info->has_cachectrl) {
 317        for (i = 0; i < info->num_cpus; i++) {
 318            char *name = g_strdup_printf("cachectrl%d", i);
 319
 320            sysbus_init_child_obj(obj, name, &s->cachectrl[i],
 321                                  sizeof(s->cachectrl[i]),
 322                                  TYPE_UNIMPLEMENTED_DEVICE);
 323            g_free(name);
 324        }
 325    }
 326    if (info->has_cpusecctrl) {
 327        for (i = 0; i < info->num_cpus; i++) {
 328            char *name = g_strdup_printf("cpusecctrl%d", i);
 329
 330            sysbus_init_child_obj(obj, name, &s->cpusecctrl[i],
 331                                  sizeof(s->cpusecctrl[i]),
 332                                  TYPE_UNIMPLEMENTED_DEVICE);
 333            g_free(name);
 334        }
 335    }
 336    if (info->has_cpuid) {
 337        for (i = 0; i < info->num_cpus; i++) {
 338            char *name = g_strdup_printf("cpuid%d", i);
 339
 340            sysbus_init_child_obj(obj, name, &s->cpuid[i],
 341                                  sizeof(s->cpuid[i]),
 342                                  TYPE_ARMSSE_CPUID);
 343            g_free(name);
 344        }
 345    }
 346    object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
 347                            sizeof(s->nmi_orgate), TYPE_OR_IRQ,
 348                            &error_abort, NULL);
 349    object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
 350                            sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
 351                            &error_abort, NULL);
 352    object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
 353                            sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
 354                            &error_abort, NULL);
 355    for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
 356        char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
 357        SplitIRQ *splitter = &s->ppc_irq_splitter[i];
 358
 359        object_initialize_child(obj, name, splitter, sizeof(*splitter),
 360                                TYPE_SPLIT_IRQ, &error_abort, NULL);
 361        g_free(name);
 362    }
 363    if (info->num_cpus > 1) {
 364        for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
 365            if (irq_is_common[i]) {
 366                char *name = g_strdup_printf("cpu-irq-splitter%d", i);
 367                SplitIRQ *splitter = &s->cpu_irq_splitter[i];
 368
 369                object_initialize_child(obj, name, splitter, sizeof(*splitter),
 370                                        TYPE_SPLIT_IRQ, &error_abort, NULL);
 371                g_free(name);
 372            }
 373        }
 374    }
 375}
 376
 377static void armsse_exp_irq(void *opaque, int n, int level)
 378{
 379    qemu_irq *irqarray = opaque;
 380
 381    qemu_set_irq(irqarray[n], level);
 382}
 383
 384static void armsse_mpcexp_status(void *opaque, int n, int level)
 385{
 386    ARMSSE *s = ARMSSE(opaque);
 387    qemu_set_irq(s->mpcexp_status_in[n], level);
 388}
 389
 390static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
 391{
 392    /*
 393     * Return a qemu_irq which can be used to signal IRQ n to
 394     * all CPUs in the SSE.
 395     */
 396    ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
 397    const ARMSSEInfo *info = asc->info;
 398
 399    assert(irq_is_common[irqno]);
 400
 401    if (info->num_cpus == 1) {
 402        /* Only one CPU -- just connect directly to it */
 403        return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
 404    } else {
 405        /* Connect to the splitter which feeds all CPUs */
 406        return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
 407    }
 408}
 409
 410static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
 411{
 412    /* Map a PPU unimplemented device stub */
 413    DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
 414
 415    qdev_prop_set_string(dev, "name", name);
 416    qdev_prop_set_uint64(dev, "size", 0x1000);
 417    qdev_init_nofail(dev);
 418    sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
 419}
 420
 421static void armsse_realize(DeviceState *dev, Error **errp)
 422{
 423    ARMSSE *s = ARMSSE(dev);
 424    ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
 425    const ARMSSEInfo *info = asc->info;
 426    int i;
 427    MemoryRegion *mr;
 428    Error *err = NULL;
 429    SysBusDevice *sbd_apb_ppc0;
 430    SysBusDevice *sbd_secctl;
 431    DeviceState *dev_apb_ppc0;
 432    DeviceState *dev_apb_ppc1;
 433    DeviceState *dev_secctl;
 434    DeviceState *dev_splitter;
 435    uint32_t addr_width_max;
 436
 437    if (!s->board_memory) {
 438        error_setg(errp, "memory property was not set");
 439        return;
 440    }
 441
 442    if (!s->mainclk_frq) {
 443        error_setg(errp, "MAINCLK property was not set");
 444        return;
 445    }
 446
 447    /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
 448    assert(is_power_of_2(info->sram_banks));
 449    addr_width_max = 24 - ctz32(info->sram_banks);
 450    if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
 451        error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
 452                   addr_width_max);
 453        return;
 454    }
 455
 456    /* Handling of which devices should be available only to secure
 457     * code is usually done differently for M profile than for A profile.
 458     * Instead of putting some devices only into the secure address space,
 459     * devices exist in both address spaces but with hard-wired security
 460     * permissions that will cause the CPU to fault for non-secure accesses.
 461     *
 462     * The ARMSSE has an IDAU (Implementation Defined Access Unit),
 463     * which specifies hard-wired security permissions for different
 464     * areas of the physical address space. For the ARMSSE IDAU, the
 465     * top 4 bits of the physical address are the IDAU region ID, and
 466     * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
 467     * region, otherwise it is an S region.
 468     *
 469     * The various devices and RAMs are generally all mapped twice,
 470     * once into a region that the IDAU defines as secure and once
 471     * into a non-secure region. They sit behind either a Memory
 472     * Protection Controller (for RAM) or a Peripheral Protection
 473     * Controller (for devices), which allow a more fine grained
 474     * configuration of whether non-secure accesses are permitted.
 475     *
 476     * (The other place that guest software can configure security
 477     * permissions is in the architected SAU (Security Attribution
 478     * Unit), which is entirely inside the CPU. The IDAU can upgrade
 479     * the security attributes for a region to more restrictive than
 480     * the SAU specifies, but cannot downgrade them.)
 481     *
 482     * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
 483     * 0x20000000..0x2007ffff  32KB FPGA block RAM
 484     * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
 485     * 0x40000000..0x4000ffff  base peripheral region 1
 486     * 0x40010000..0x4001ffff  CPU peripherals (none for ARMSSE)
 487     * 0x40020000..0x4002ffff  system control element peripherals
 488     * 0x40080000..0x400fffff  base peripheral region 2
 489     * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
 490     */
 491
 492    memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
 493
 494    for (i = 0; i < info->num_cpus; i++) {
 495        DeviceState *cpudev = DEVICE(&s->armv7m[i]);
 496        Object *cpuobj = OBJECT(&s->armv7m[i]);
 497        int j;
 498        char *gpioname;
 499
 500        qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
 501        /*
 502         * In real hardware the initial Secure VTOR is set from the INITSVTOR*
 503         * registers in the IoT Kit System Control Register block. In QEMU
 504         * we set the initial value here, and also the reset value of the
 505         * sysctl register, from this object's QOM init-svtor property.
 506         * If the guest changes the INITSVTOR* registers at runtime then the
 507         * code in iotkit-sysctl.c will update the CPU init-svtor property
 508         * (which will then take effect on the next CPU warm-reset).
 509         *
 510         * Note that typically a board using the SSE-200 will have a system
 511         * control processor whose boot firmware initializes the INITSVTOR*
 512         * registers before powering up the CPUs. QEMU doesn't emulate
 513         * the control processor, so instead we behave in the way that the
 514         * firmware does: the initial value should be set by the board code
 515         * (using the init-svtor property on the ARMSSE object) to match
 516         * whatever its firmware does.
 517         */
 518        qdev_prop_set_uint32(cpudev, "init-svtor", s->init_svtor);
 519        /*
 520         * CPUs start powered down if the corresponding bit in the CPUWAIT
 521         * register is 1. In real hardware the CPUWAIT register reset value is
 522         * a configurable property of the SSE-200 (via the CPUWAIT0_RST and
 523         * CPUWAIT1_RST parameters), but since all the boards we care about
 524         * start CPU0 and leave CPU1 powered off, we hard-code that in
 525         * info->cpuwait_rst for now. We can add QOM properties for this
 526         * later if necessary.
 527         */
 528        if (extract32(info->cpuwait_rst, i, 1)) {
 529            object_property_set_bool(cpuobj, true, "start-powered-off", &err);
 530            if (err) {
 531                error_propagate(errp, err);
 532                return;
 533            }
 534        }
 535
 536        if (i > 0) {
 537            memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
 538                                                &s->container_alias[i - 1], -1);
 539        } else {
 540            memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
 541                                                &s->container, -1);
 542        }
 543        object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
 544                                 "memory", &err);
 545        if (err) {
 546            error_propagate(errp, err);
 547            return;
 548        }
 549        object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
 550        if (err) {
 551            error_propagate(errp, err);
 552            return;
 553        }
 554        object_property_set_bool(cpuobj, true, "realized", &err);
 555        if (err) {
 556            error_propagate(errp, err);
 557            return;
 558        }
 559        /*
 560         * The cluster must be realized after the armv7m container, as
 561         * the container's CPU object is only created on realize, and the
 562         * CPU must exist and have been parented into the cluster before
 563         * the cluster is realized.
 564         */
 565        object_property_set_bool(OBJECT(&s->cluster[i]),
 566                                 true, "realized", &err);
 567        if (err) {
 568            error_propagate(errp, err);
 569            return;
 570        }
 571
 572        /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
 573        s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
 574        for (j = 0; j < s->exp_numirq; j++) {
 575            s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, j + 32);
 576        }
 577        if (i == 0) {
 578            gpioname = g_strdup("EXP_IRQ");
 579        } else {
 580            gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
 581        }
 582        qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
 583                                            s->exp_irqs[i],
 584                                            gpioname, s->exp_numirq);
 585        g_free(gpioname);
 586    }
 587
 588    /* Wire up the splitters that connect common IRQs to all CPUs */
 589    if (info->num_cpus > 1) {
 590        for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
 591            if (irq_is_common[i]) {
 592                Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
 593                DeviceState *devs = DEVICE(splitter);
 594                int cpunum;
 595
 596                object_property_set_int(splitter, info->num_cpus,
 597                                        "num-lines", &err);
 598                if (err) {
 599                    error_propagate(errp, err);
 600                    return;
 601                }
 602                object_property_set_bool(splitter, true, "realized", &err);
 603                if (err) {
 604                    error_propagate(errp, err);
 605                    return;
 606                }
 607                for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
 608                    DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
 609
 610                    qdev_connect_gpio_out(devs, cpunum,
 611                                          qdev_get_gpio_in(cpudev, i));
 612                }
 613            }
 614        }
 615    }
 616
 617    /* Set up the big aliases first */
 618    make_alias(s, &s->alias1, &s->container, "alias 1",
 619               0x10000000, 0x10000000, 0x00000000);
 620    make_alias(s, &s->alias2, &s->container,
 621               "alias 2", 0x30000000, 0x10000000, 0x20000000);
 622    /* The 0x50000000..0x5fffffff region is not a pure alias: it has
 623     * a few extra devices that only appear there (generally the
 624     * control interfaces for the protection controllers).
 625     * We implement this by mapping those devices over the top of this
 626     * alias MR at a higher priority. Some of the devices in this range
 627     * are per-CPU, so we must put this alias in the per-cpu containers.
 628     */
 629    for (i = 0; i < info->num_cpus; i++) {
 630        make_alias(s, &s->alias3[i], &s->cpu_container[i],
 631                   "alias 3", 0x50000000, 0x10000000, 0x40000000);
 632    }
 633
 634    /* Security controller */
 635    object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
 636    if (err) {
 637        error_propagate(errp, err);
 638        return;
 639    }
 640    sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
 641    dev_secctl = DEVICE(&s->secctl);
 642    sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
 643    sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
 644
 645    s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
 646    qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
 647
 648    /* The sec_resp_cfg output from the security controller must be split into
 649     * multiple lines, one for each of the PPCs within the ARMSSE and one
 650     * that will be an output from the ARMSSE to the system.
 651     */
 652    object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
 653                            "num-lines", &err);
 654    if (err) {
 655        error_propagate(errp, err);
 656        return;
 657    }
 658    object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
 659                             "realized", &err);
 660    if (err) {
 661        error_propagate(errp, err);
 662        return;
 663    }
 664    dev_splitter = DEVICE(&s->sec_resp_splitter);
 665    qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
 666                                qdev_get_gpio_in(dev_splitter, 0));
 667
 668    /* Each SRAM bank lives behind its own Memory Protection Controller */
 669    for (i = 0; i < info->sram_banks; i++) {
 670        char *ramname = g_strdup_printf("armsse.sram%d", i);
 671        SysBusDevice *sbd_mpc;
 672        uint32_t sram_bank_size = 1 << s->sram_addr_width;
 673
 674        memory_region_init_ram(&s->sram[i], NULL, ramname,
 675                               sram_bank_size, &err);
 676        g_free(ramname);
 677        if (err) {
 678            error_propagate(errp, err);
 679            return;
 680        }
 681        object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
 682                                 "downstream", &err);
 683        if (err) {
 684            error_propagate(errp, err);
 685            return;
 686        }
 687        object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
 688        if (err) {
 689            error_propagate(errp, err);
 690            return;
 691        }
 692        /* Map the upstream end of the MPC into the right place... */
 693        sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
 694        memory_region_add_subregion(&s->container,
 695                                    0x20000000 + i * sram_bank_size,
 696                                    sysbus_mmio_get_region(sbd_mpc, 1));
 697        /* ...and its register interface */
 698        memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
 699                                    sysbus_mmio_get_region(sbd_mpc, 0));
 700    }
 701
 702    /* We must OR together lines from the MPC splitters to go to the NVIC */
 703    object_property_set_int(OBJECT(&s->mpc_irq_orgate),
 704                            IOTS_NUM_EXP_MPC + info->sram_banks,
 705                            "num-lines", &err);
 706    if (err) {
 707        error_propagate(errp, err);
 708        return;
 709    }
 710    object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
 711                             "realized", &err);
 712    if (err) {
 713        error_propagate(errp, err);
 714        return;
 715    }
 716    qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
 717                          armsse_get_common_irq_in(s, 9));
 718
 719    /* Devices behind APB PPC0:
 720     *   0x40000000: timer0
 721     *   0x40001000: timer1
 722     *   0x40002000: dual timer
 723     *   0x40003000: MHU0 (SSE-200 only)
 724     *   0x40004000: MHU1 (SSE-200 only)
 725     * We must configure and realize each downstream device and connect
 726     * it to the appropriate PPC port; then we can realize the PPC and
 727     * map its upstream ends to the right place in the container.
 728     */
 729    qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
 730    object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
 731    if (err) {
 732        error_propagate(errp, err);
 733        return;
 734    }
 735    sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
 736                       armsse_get_common_irq_in(s, 3));
 737    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
 738    object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
 739    if (err) {
 740        error_propagate(errp, err);
 741        return;
 742    }
 743
 744    qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
 745    object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
 746    if (err) {
 747        error_propagate(errp, err);
 748        return;
 749    }
 750    sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
 751                       armsse_get_common_irq_in(s, 4));
 752    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
 753    object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
 754    if (err) {
 755        error_propagate(errp, err);
 756        return;
 757    }
 758
 759
 760    qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
 761    object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
 762    if (err) {
 763        error_propagate(errp, err);
 764        return;
 765    }
 766    sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
 767                       armsse_get_common_irq_in(s, 5));
 768    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
 769    object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
 770    if (err) {
 771        error_propagate(errp, err);
 772        return;
 773    }
 774
 775    if (info->has_mhus) {
 776        /*
 777         * An SSE-200 with only one CPU should have only one MHU created,
 778         * with the region where the second MHU usually is being RAZ/WI.
 779         * We don't implement that SSE-200 config; if we want to support
 780         * it then this code needs to be enhanced to handle creating the
 781         * RAZ/WI region instead of the second MHU.
 782         */
 783        assert(info->num_cpus == ARRAY_SIZE(s->mhu));
 784
 785        for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
 786            char *port;
 787            int cpunum;
 788            SysBusDevice *mhu_sbd = SYS_BUS_DEVICE(&s->mhu[i]);
 789
 790            object_property_set_bool(OBJECT(&s->mhu[i]), true,
 791                                     "realized", &err);
 792            if (err) {
 793                error_propagate(errp, err);
 794                return;
 795            }
 796            port = g_strdup_printf("port[%d]", i + 3);
 797            mr = sysbus_mmio_get_region(mhu_sbd, 0);
 798            object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
 799                                     port, &err);
 800            g_free(port);
 801            if (err) {
 802                error_propagate(errp, err);
 803                return;
 804            }
 805
 806            /*
 807             * Each MHU has an irq line for each CPU:
 808             *  MHU 0 irq line 0 -> CPU 0 IRQ 6
 809             *  MHU 0 irq line 1 -> CPU 1 IRQ 6
 810             *  MHU 1 irq line 0 -> CPU 0 IRQ 7
 811             *  MHU 1 irq line 1 -> CPU 1 IRQ 7
 812             */
 813            for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
 814                DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
 815
 816                sysbus_connect_irq(mhu_sbd, cpunum,
 817                                   qdev_get_gpio_in(cpudev, 6 + i));
 818            }
 819        }
 820    }
 821
 822    object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
 823    if (err) {
 824        error_propagate(errp, err);
 825        return;
 826    }
 827
 828    sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
 829    dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
 830
 831    mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
 832    memory_region_add_subregion(&s->container, 0x40000000, mr);
 833    mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
 834    memory_region_add_subregion(&s->container, 0x40001000, mr);
 835    mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
 836    memory_region_add_subregion(&s->container, 0x40002000, mr);
 837    if (info->has_mhus) {
 838        mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
 839        memory_region_add_subregion(&s->container, 0x40003000, mr);
 840        mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
 841        memory_region_add_subregion(&s->container, 0x40004000, mr);
 842    }
 843    for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
 844        qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
 845                                    qdev_get_gpio_in_named(dev_apb_ppc0,
 846                                                           "cfg_nonsec", i));
 847        qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
 848                                    qdev_get_gpio_in_named(dev_apb_ppc0,
 849                                                           "cfg_ap", i));
 850    }
 851    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
 852                                qdev_get_gpio_in_named(dev_apb_ppc0,
 853                                                       "irq_enable", 0));
 854    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
 855                                qdev_get_gpio_in_named(dev_apb_ppc0,
 856                                                       "irq_clear", 0));
 857    qdev_connect_gpio_out(dev_splitter, 0,
 858                          qdev_get_gpio_in_named(dev_apb_ppc0,
 859                                                 "cfg_sec_resp", 0));
 860
 861    /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
 862     * ones) are sent individually to the security controller, and also
 863     * ORed together to give a single combined PPC interrupt to the NVIC.
 864     */
 865    object_property_set_int(OBJECT(&s->ppc_irq_orgate),
 866                            NUM_PPCS, "num-lines", &err);
 867    if (err) {
 868        error_propagate(errp, err);
 869        return;
 870    }
 871    object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
 872                             "realized", &err);
 873    if (err) {
 874        error_propagate(errp, err);
 875        return;
 876    }
 877    qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
 878                          armsse_get_common_irq_in(s, 10));
 879
 880    /*
 881     * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
 882     * private per-CPU region (all these devices are SSE-200 only):
 883     *  0x50010000: L1 icache control registers
 884     *  0x50011000: CPUSECCTRL (CPU local security control registers)
 885     *  0x4001f000 and 0x5001f000: CPU_IDENTITY register block
 886     */
 887    if (info->has_cachectrl) {
 888        for (i = 0; i < info->num_cpus; i++) {
 889            char *name = g_strdup_printf("cachectrl%d", i);
 890            MemoryRegion *mr;
 891
 892            qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
 893            g_free(name);
 894            qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
 895            object_property_set_bool(OBJECT(&s->cachectrl[i]), true,
 896                                     "realized", &err);
 897            if (err) {
 898                error_propagate(errp, err);
 899                return;
 900            }
 901
 902            mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
 903            memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
 904        }
 905    }
 906    if (info->has_cpusecctrl) {
 907        for (i = 0; i < info->num_cpus; i++) {
 908            char *name = g_strdup_printf("CPUSECCTRL%d", i);
 909            MemoryRegion *mr;
 910
 911            qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
 912            g_free(name);
 913            qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
 914            object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true,
 915                                     "realized", &err);
 916            if (err) {
 917                error_propagate(errp, err);
 918                return;
 919            }
 920
 921            mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
 922            memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
 923        }
 924    }
 925    if (info->has_cpuid) {
 926        for (i = 0; i < info->num_cpus; i++) {
 927            MemoryRegion *mr;
 928
 929            qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
 930            object_property_set_bool(OBJECT(&s->cpuid[i]), true,
 931                                     "realized", &err);
 932            if (err) {
 933                error_propagate(errp, err);
 934                return;
 935            }
 936
 937            mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
 938            memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
 939        }
 940    }
 941
 942    /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
 943    /* Devices behind APB PPC1:
 944     *   0x4002f000: S32K timer
 945     */
 946    qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
 947    object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
 948    if (err) {
 949        error_propagate(errp, err);
 950        return;
 951    }
 952    sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
 953                       armsse_get_common_irq_in(s, 2));
 954    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
 955    object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
 956    if (err) {
 957        error_propagate(errp, err);
 958        return;
 959    }
 960
 961    object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
 962    if (err) {
 963        error_propagate(errp, err);
 964        return;
 965    }
 966    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
 967    memory_region_add_subregion(&s->container, 0x4002f000, mr);
 968
 969    dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
 970    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
 971                                qdev_get_gpio_in_named(dev_apb_ppc1,
 972                                                       "cfg_nonsec", 0));
 973    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
 974                                qdev_get_gpio_in_named(dev_apb_ppc1,
 975                                                       "cfg_ap", 0));
 976    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
 977                                qdev_get_gpio_in_named(dev_apb_ppc1,
 978                                                       "irq_enable", 0));
 979    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
 980                                qdev_get_gpio_in_named(dev_apb_ppc1,
 981                                                       "irq_clear", 0));
 982    qdev_connect_gpio_out(dev_splitter, 1,
 983                          qdev_get_gpio_in_named(dev_apb_ppc1,
 984                                                 "cfg_sec_resp", 0));
 985
 986    object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
 987                            "SYS_VERSION", &err);
 988    if (err) {
 989        error_propagate(errp, err);
 990        return;
 991    }
 992    object_property_set_int(OBJECT(&s->sysinfo),
 993                            armsse_sys_config_value(s, info),
 994                            "SYS_CONFIG", &err);
 995    if (err) {
 996        error_propagate(errp, err);
 997        return;
 998    }
 999    object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
1000    if (err) {
1001        error_propagate(errp, err);
1002        return;
1003    }
1004    /* System information registers */
1005    sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
1006    /* System control registers */
1007    object_property_set_int(OBJECT(&s->sysctl), info->sys_version,
1008                            "SYS_VERSION", &err);
1009    object_property_set_int(OBJECT(&s->sysctl), info->cpuwait_rst,
1010                            "CPUWAIT_RST", &err);
1011    object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1012                            "INITSVTOR0_RST", &err);
1013    object_property_set_int(OBJECT(&s->sysctl), s->init_svtor,
1014                            "INITSVTOR1_RST", &err);
1015    object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
1016    if (err) {
1017        error_propagate(errp, err);
1018        return;
1019    }
1020    sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
1021
1022    if (info->has_ppus) {
1023        /* CPUnCORE_PPU for each CPU */
1024        for (i = 0; i < info->num_cpus; i++) {
1025            char *name = g_strdup_printf("CPU%dCORE_PPU", i);
1026
1027            map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
1028            /*
1029             * We don't support CPU debug so don't create the
1030             * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
1031             */
1032            g_free(name);
1033        }
1034        map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
1035
1036        for (i = 0; i < info->sram_banks; i++) {
1037            char *name = g_strdup_printf("RAM%d_PPU", i);
1038
1039            map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
1040            g_free(name);
1041        }
1042    }
1043
1044    /* This OR gate wires together outputs from the secure watchdogs to NMI */
1045    object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
1046    if (err) {
1047        error_propagate(errp, err);
1048        return;
1049    }
1050    object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
1051    if (err) {
1052        error_propagate(errp, err);
1053        return;
1054    }
1055    qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1056                          qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1057
1058    qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1059    object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
1060    if (err) {
1061        error_propagate(errp, err);
1062        return;
1063    }
1064    sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1065                       qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1066    sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1067
1068    /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1069
1070    qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1071    object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
1072    if (err) {
1073        error_propagate(errp, err);
1074        return;
1075    }
1076    sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1077                       armsse_get_common_irq_in(s, 1));
1078    sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1079
1080    qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1081    object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
1082    if (err) {
1083        error_propagate(errp, err);
1084        return;
1085    }
1086    sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1087                       qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1088    sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1089
1090    for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1091        Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1092
1093        object_property_set_int(splitter, 2, "num-lines", &err);
1094        if (err) {
1095            error_propagate(errp, err);
1096            return;
1097        }
1098        object_property_set_bool(splitter, true, "realized", &err);
1099        if (err) {
1100            error_propagate(errp, err);
1101            return;
1102        }
1103    }
1104
1105    for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1106        char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1107
1108        armsse_forward_ppc(s, ppcname, i);
1109        g_free(ppcname);
1110    }
1111
1112    for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1113        char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1114
1115        armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1116        g_free(ppcname);
1117    }
1118
1119    for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1120        /* Wire up IRQ splitter for internal PPCs */
1121        DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1122        char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1123                                         i - NUM_EXTERNAL_PPCS);
1124        TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1125
1126        qdev_connect_gpio_out(devs, 0,
1127                              qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1128        qdev_connect_gpio_out(devs, 1,
1129                              qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1130        qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1131                                    qdev_get_gpio_in(devs, 0));
1132        g_free(gpioname);
1133    }
1134
1135    /* Wire up the splitters for the MPC IRQs */
1136    for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1137        SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1138        DeviceState *dev_splitter = DEVICE(splitter);
1139
1140        object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
1141        if (err) {
1142            error_propagate(errp, err);
1143            return;
1144        }
1145        object_property_set_bool(OBJECT(splitter), true, "realized", &err);
1146        if (err) {
1147            error_propagate(errp, err);
1148            return;
1149        }
1150
1151        if (i < IOTS_NUM_EXP_MPC) {
1152            /* Splitter input is from GPIO input line */
1153            s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1154            qdev_connect_gpio_out(dev_splitter, 0,
1155                                  qdev_get_gpio_in_named(dev_secctl,
1156                                                         "mpcexp_status", i));
1157        } else {
1158            /* Splitter input is from our own MPC */
1159            qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1160                                        "irq", 0,
1161                                        qdev_get_gpio_in(dev_splitter, 0));
1162            qdev_connect_gpio_out(dev_splitter, 0,
1163                                  qdev_get_gpio_in_named(dev_secctl,
1164                                                         "mpc_status", 0));
1165        }
1166
1167        qdev_connect_gpio_out(dev_splitter, 1,
1168                              qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1169    }
1170    /* Create GPIO inputs which will pass the line state for our
1171     * mpcexp_irq inputs to the correct splitter devices.
1172     */
1173    qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1174                            IOTS_NUM_EXP_MPC);
1175
1176    armsse_forward_sec_resp_cfg(s);
1177
1178    /* Forward the MSC related signals */
1179    qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1180    qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1181    qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1182    qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1183                                armsse_get_common_irq_in(s, 11));
1184
1185    /*
1186     * Expose our container region to the board model; this corresponds
1187     * to the AHB Slave Expansion ports which allow bus master devices
1188     * (eg DMA controllers) in the board model to make transactions into
1189     * devices in the ARMSSE.
1190     */
1191    sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1192
1193    system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1194}
1195
1196static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1197                              int *iregion, bool *exempt, bool *ns, bool *nsc)
1198{
1199    /*
1200     * For ARMSSE systems the IDAU responses are simple logical functions
1201     * of the address bits. The NSC attribute is guest-adjustable via the
1202     * NSCCFG register in the security controller.
1203     */
1204    ARMSSE *s = ARMSSE(ii);
1205    int region = extract32(address, 28, 4);
1206
1207    *ns = !(region & 1);
1208    *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1209    /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1210    *exempt = (address & 0xeff00000) == 0xe0000000;
1211    *iregion = region;
1212}
1213
1214static const VMStateDescription armsse_vmstate = {
1215    .name = "iotkit",
1216    .version_id = 1,
1217    .minimum_version_id = 1,
1218    .fields = (VMStateField[]) {
1219        VMSTATE_UINT32(nsccfg, ARMSSE),
1220        VMSTATE_END_OF_LIST()
1221    }
1222};
1223
1224static Property armsse_properties[] = {
1225    DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
1226                     MemoryRegion *),
1227    DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
1228    DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
1229    DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
1230    DEFINE_PROP_UINT32("init-svtor", ARMSSE, init_svtor, 0x10000000),
1231    DEFINE_PROP_END_OF_LIST()
1232};
1233
1234static void armsse_reset(DeviceState *dev)
1235{
1236    ARMSSE *s = ARMSSE(dev);
1237
1238    s->nsccfg = 0;
1239}
1240
1241static void armsse_class_init(ObjectClass *klass, void *data)
1242{
1243    DeviceClass *dc = DEVICE_CLASS(klass);
1244    IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1245    ARMSSEClass *asc = ARMSSE_CLASS(klass);
1246
1247    dc->realize = armsse_realize;
1248    dc->vmsd = &armsse_vmstate;
1249    dc->props = armsse_properties;
1250    dc->reset = armsse_reset;
1251    iic->check = armsse_idau_check;
1252    asc->info = data;
1253}
1254
1255static const TypeInfo armsse_info = {
1256    .name = TYPE_ARMSSE,
1257    .parent = TYPE_SYS_BUS_DEVICE,
1258    .instance_size = sizeof(ARMSSE),
1259    .instance_init = armsse_init,
1260    .abstract = true,
1261    .interfaces = (InterfaceInfo[]) {
1262        { TYPE_IDAU_INTERFACE },
1263        { }
1264    }
1265};
1266
1267static void armsse_register_types(void)
1268{
1269    int i;
1270
1271    type_register_static(&armsse_info);
1272
1273    for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1274        TypeInfo ti = {
1275            .name = armsse_variants[i].name,
1276            .parent = TYPE_ARMSSE,
1277            .class_init = armsse_class_init,
1278            .class_data = (void *)&armsse_variants[i],
1279        };
1280        type_register(&ti);
1281    }
1282}
1283
1284type_init(armsse_register_types);
1285