qemu/hw/i386/pc.c
<<
>>
Prefs
   1/*
   2 * QEMU PC System Emulator
   3 *
   4 * Copyright (c) 2003-2004 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include "qemu/units.h"
  27#include "hw/hw.h"
  28#include "hw/i386/pc.h"
  29#include "hw/char/serial.h"
  30#include "hw/char/parallel.h"
  31#include "hw/i386/apic.h"
  32#include "hw/i386/topology.h"
  33#include "sysemu/cpus.h"
  34#include "hw/block/fdc.h"
  35#include "hw/ide.h"
  36#include "hw/pci/pci.h"
  37#include "hw/pci/pci_bus.h"
  38#include "hw/nvram/fw_cfg.h"
  39#include "hw/timer/hpet.h"
  40#include "hw/firmware/smbios.h"
  41#include "hw/loader.h"
  42#include "elf.h"
  43#include "multiboot.h"
  44#include "hw/timer/mc146818rtc.h"
  45#include "hw/dma/i8257.h"
  46#include "hw/timer/i8254.h"
  47#include "hw/input/i8042.h"
  48#include "hw/audio/pcspk.h"
  49#include "hw/pci/msi.h"
  50#include "hw/sysbus.h"
  51#include "sysemu/sysemu.h"
  52#include "sysemu/numa.h"
  53#include "sysemu/kvm.h"
  54#include "sysemu/qtest.h"
  55#include "kvm_i386.h"
  56#include "hw/xen/xen.h"
  57#include "hw/xen/start_info.h"
  58#include "ui/qemu-spice.h"
  59#include "exec/memory.h"
  60#include "exec/address-spaces.h"
  61#include "sysemu/arch_init.h"
  62#include "qemu/bitmap.h"
  63#include "qemu/config-file.h"
  64#include "qemu/error-report.h"
  65#include "qemu/option.h"
  66#include "hw/acpi/acpi.h"
  67#include "hw/acpi/cpu_hotplug.h"
  68#include "hw/boards.h"
  69#include "acpi-build.h"
  70#include "hw/mem/pc-dimm.h"
  71#include "qapi/error.h"
  72#include "qapi/qapi-visit-common.h"
  73#include "qapi/visitor.h"
  74#include "qom/cpu.h"
  75#include "hw/nmi.h"
  76#include "hw/usb.h"
  77#include "hw/i386/intel_iommu.h"
  78#include "hw/net/ne2000-isa.h"
  79#include "standard-headers/asm-x86/bootparam.h"
  80
  81/* debug PC/ISA interrupts */
  82//#define DEBUG_IRQ
  83
  84#ifdef DEBUG_IRQ
  85#define DPRINTF(fmt, ...)                                       \
  86    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
  87#else
  88#define DPRINTF(fmt, ...)
  89#endif
  90
  91#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
  92#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
  93#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
  94#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
  95#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
  96
  97#define E820_NR_ENTRIES         16
  98
  99struct e820_entry {
 100    uint64_t address;
 101    uint64_t length;
 102    uint32_t type;
 103} QEMU_PACKED __attribute((__aligned__(4)));
 104
 105struct e820_table {
 106    uint32_t count;
 107    struct e820_entry entry[E820_NR_ENTRIES];
 108} QEMU_PACKED __attribute((__aligned__(4)));
 109
 110static struct e820_table e820_reserve;
 111static struct e820_entry *e820_table;
 112static unsigned e820_entries;
 113struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
 114
 115/* Physical Address of PVH entry point read from kernel ELF NOTE */
 116static size_t pvh_start_addr;
 117
 118GlobalProperty pc_compat_4_0[] = {};
 119const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
 120
 121GlobalProperty pc_compat_3_1[] = {
 122    { "intel-iommu", "dma-drain", "off" },
 123    { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
 124    { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
 125    { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
 126    { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
 127    { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
 128    { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
 129    { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
 130    { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
 131    { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
 132    { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
 133    { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
 134    { "Skylake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
 135    { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
 136    { "Skylake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
 137    { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
 138    { "Cascadelake-Server" "-" TYPE_X86_CPU,  "mpx", "on" },
 139    { "Icelake-Client" "-" TYPE_X86_CPU,      "mpx", "on" },
 140    { "Icelake-Server" "-" TYPE_X86_CPU,      "mpx", "on" },
 141    { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
 142    { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
 143};
 144const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
 145
 146GlobalProperty pc_compat_3_0[] = {
 147    { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
 148    { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
 149    { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
 150};
 151const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
 152
 153GlobalProperty pc_compat_2_12[] = {
 154    { TYPE_X86_CPU, "legacy-cache", "on" },
 155    { TYPE_X86_CPU, "topoext", "off" },
 156    { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
 157    { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
 158};
 159const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
 160
 161GlobalProperty pc_compat_2_11[] = {
 162    { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
 163    { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
 164};
 165const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
 166
 167GlobalProperty pc_compat_2_10[] = {
 168    { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
 169    { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
 170    { "q35-pcihost", "x-pci-hole64-fix", "off" },
 171};
 172const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
 173
 174GlobalProperty pc_compat_2_9[] = {
 175    { "mch", "extended-tseg-mbytes", "0" },
 176};
 177const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
 178
 179GlobalProperty pc_compat_2_8[] = {
 180    { TYPE_X86_CPU, "tcg-cpuid", "off" },
 181    { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
 182    { "ICH9-LPC", "x-smi-broadcast", "off" },
 183    { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
 184    { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
 185};
 186const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
 187
 188GlobalProperty pc_compat_2_7[] = {
 189    { TYPE_X86_CPU, "l3-cache", "off" },
 190    { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
 191    { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
 192    { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
 193    { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
 194    { "isa-pcspk", "migrate", "off" },
 195};
 196const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
 197
 198GlobalProperty pc_compat_2_6[] = {
 199    { TYPE_X86_CPU, "cpuid-0xb", "off" },
 200    { "vmxnet3", "romfile", "" },
 201    { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
 202    { "apic-common", "legacy-instance-id", "on", }
 203};
 204const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
 205
 206GlobalProperty pc_compat_2_5[] = {};
 207const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
 208
 209GlobalProperty pc_compat_2_4[] = {
 210    PC_CPU_MODEL_IDS("2.4.0")
 211    { "Haswell-" TYPE_X86_CPU, "abm", "off" },
 212    { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
 213    { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
 214    { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
 215    { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
 216    { TYPE_X86_CPU, "check", "off" },
 217    { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
 218    { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
 219    { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
 220    { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
 221    { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
 222    { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
 223    { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
 224    { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
 225};
 226const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
 227
 228GlobalProperty pc_compat_2_3[] = {
 229    PC_CPU_MODEL_IDS("2.3.0")
 230    { TYPE_X86_CPU, "arat", "off" },
 231    { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
 232    { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
 233    { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
 234    { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
 235    { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
 236    { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
 237    { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
 238    { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 239    { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 240    { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 241    { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 242    { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 243    { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 244    { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 245    { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 246    { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 247    { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 248    { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
 249    { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
 250};
 251const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
 252
 253GlobalProperty pc_compat_2_2[] = {
 254    PC_CPU_MODEL_IDS("2.2.0")
 255    { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
 256    { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
 257    { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
 258    { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
 259    { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
 260    { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
 261    { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
 262    { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
 263    { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
 264    { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
 265    { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
 266    { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
 267    { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
 268    { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
 269    { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
 270    { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
 271    { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
 272    { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
 273};
 274const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
 275
 276GlobalProperty pc_compat_2_1[] = {
 277    PC_CPU_MODEL_IDS("2.1.0")
 278    { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
 279    { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
 280};
 281const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
 282
 283GlobalProperty pc_compat_2_0[] = {
 284    PC_CPU_MODEL_IDS("2.0.0")
 285    { "virtio-scsi-pci", "any_layout", "off" },
 286    { "PIIX4_PM", "memory-hotplug-support", "off" },
 287    { "apic", "version", "0x11" },
 288    { "nec-usb-xhci", "superspeed-ports-first", "off" },
 289    { "nec-usb-xhci", "force-pcie-endcap", "on" },
 290    { "pci-serial", "prog_if", "0" },
 291    { "pci-serial-2x", "prog_if", "0" },
 292    { "pci-serial-4x", "prog_if", "0" },
 293    { "virtio-net-pci", "guest_announce", "off" },
 294    { "ICH9-LPC", "memory-hotplug-support", "off" },
 295    { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
 296    { "ioh3420", COMPAT_PROP_PCP, "off" },
 297};
 298const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
 299
 300GlobalProperty pc_compat_1_7[] = {
 301    PC_CPU_MODEL_IDS("1.7.0")
 302    { TYPE_USB_DEVICE, "msos-desc", "no" },
 303    { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
 304    { "hpet", HPET_INTCAP, "4" },
 305};
 306const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
 307
 308GlobalProperty pc_compat_1_6[] = {
 309    PC_CPU_MODEL_IDS("1.6.0")
 310    { "e1000", "mitigation", "off" },
 311    { "qemu64-" TYPE_X86_CPU, "model", "2" },
 312    { "qemu32-" TYPE_X86_CPU, "model", "3" },
 313    { "i440FX-pcihost", "short_root_bus", "1" },
 314    { "q35-pcihost", "short_root_bus", "1" },
 315};
 316const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
 317
 318GlobalProperty pc_compat_1_5[] = {
 319    PC_CPU_MODEL_IDS("1.5.0")
 320    { "Conroe-" TYPE_X86_CPU, "model", "2" },
 321    { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
 322    { "Penryn-" TYPE_X86_CPU, "model", "2" },
 323    { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
 324    { "Nehalem-" TYPE_X86_CPU, "model", "2" },
 325    { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
 326    { "virtio-net-pci", "any_layout", "off" },
 327    { TYPE_X86_CPU, "pmu", "on" },
 328    { "i440FX-pcihost", "short_root_bus", "0" },
 329    { "q35-pcihost", "short_root_bus", "0" },
 330};
 331const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
 332
 333GlobalProperty pc_compat_1_4[] = {
 334    PC_CPU_MODEL_IDS("1.4.0")
 335    { "scsi-hd", "discard_granularity", "0" },
 336    { "scsi-cd", "discard_granularity", "0" },
 337    { "scsi-disk", "discard_granularity", "0" },
 338    { "ide-hd", "discard_granularity", "0" },
 339    { "ide-cd", "discard_granularity", "0" },
 340    { "ide-drive", "discard_granularity", "0" },
 341    { "virtio-blk-pci", "discard_granularity", "0" },
 342    /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
 343    { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
 344    { "virtio-net-pci", "ctrl_guest_offloads", "off" },
 345    { "e1000", "romfile", "pxe-e1000.rom" },
 346    { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
 347    { "pcnet", "romfile", "pxe-pcnet.rom" },
 348    { "rtl8139", "romfile", "pxe-rtl8139.rom" },
 349    { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
 350    { "486-" TYPE_X86_CPU, "model", "0" },
 351    { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
 352    { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
 353};
 354const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
 355
 356void gsi_handler(void *opaque, int n, int level)
 357{
 358    GSIState *s = opaque;
 359
 360    DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
 361    if (n < ISA_NUM_IRQS) {
 362        qemu_set_irq(s->i8259_irq[n], level);
 363    }
 364    qemu_set_irq(s->ioapic_irq[n], level);
 365}
 366
 367static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
 368                           unsigned size)
 369{
 370}
 371
 372static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
 373{
 374    return 0xffffffffffffffffULL;
 375}
 376
 377/* MSDOS compatibility mode FPU exception support */
 378static qemu_irq ferr_irq;
 379
 380void pc_register_ferr_irq(qemu_irq irq)
 381{
 382    ferr_irq = irq;
 383}
 384
 385/* XXX: add IGNNE support */
 386void cpu_set_ferr(CPUX86State *s)
 387{
 388    qemu_irq_raise(ferr_irq);
 389}
 390
 391static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
 392                           unsigned size)
 393{
 394    qemu_irq_lower(ferr_irq);
 395}
 396
 397static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
 398{
 399    return 0xffffffffffffffffULL;
 400}
 401
 402/* TSC handling */
 403uint64_t cpu_get_tsc(CPUX86State *env)
 404{
 405    return cpu_get_ticks();
 406}
 407
 408/* IRQ handling */
 409int cpu_get_pic_interrupt(CPUX86State *env)
 410{
 411    X86CPU *cpu = x86_env_get_cpu(env);
 412    int intno;
 413
 414    if (!kvm_irqchip_in_kernel()) {
 415        intno = apic_get_interrupt(cpu->apic_state);
 416        if (intno >= 0) {
 417            return intno;
 418        }
 419        /* read the irq from the PIC */
 420        if (!apic_accept_pic_intr(cpu->apic_state)) {
 421            return -1;
 422        }
 423    }
 424
 425    intno = pic_read_irq(isa_pic);
 426    return intno;
 427}
 428
 429static void pic_irq_request(void *opaque, int irq, int level)
 430{
 431    CPUState *cs = first_cpu;
 432    X86CPU *cpu = X86_CPU(cs);
 433
 434    DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
 435    if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
 436        CPU_FOREACH(cs) {
 437            cpu = X86_CPU(cs);
 438            if (apic_accept_pic_intr(cpu->apic_state)) {
 439                apic_deliver_pic_intr(cpu->apic_state, level);
 440            }
 441        }
 442    } else {
 443        if (level) {
 444            cpu_interrupt(cs, CPU_INTERRUPT_HARD);
 445        } else {
 446            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
 447        }
 448    }
 449}
 450
 451/* PC cmos mappings */
 452
 453#define REG_EQUIPMENT_BYTE          0x14
 454
 455int cmos_get_fd_drive_type(FloppyDriveType fd0)
 456{
 457    int val;
 458
 459    switch (fd0) {
 460    case FLOPPY_DRIVE_TYPE_144:
 461        /* 1.44 Mb 3"5 drive */
 462        val = 4;
 463        break;
 464    case FLOPPY_DRIVE_TYPE_288:
 465        /* 2.88 Mb 3"5 drive */
 466        val = 5;
 467        break;
 468    case FLOPPY_DRIVE_TYPE_120:
 469        /* 1.2 Mb 5"5 drive */
 470        val = 2;
 471        break;
 472    case FLOPPY_DRIVE_TYPE_NONE:
 473    default:
 474        val = 0;
 475        break;
 476    }
 477    return val;
 478}
 479
 480static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
 481                         int16_t cylinders, int8_t heads, int8_t sectors)
 482{
 483    rtc_set_memory(s, type_ofs, 47);
 484    rtc_set_memory(s, info_ofs, cylinders);
 485    rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
 486    rtc_set_memory(s, info_ofs + 2, heads);
 487    rtc_set_memory(s, info_ofs + 3, 0xff);
 488    rtc_set_memory(s, info_ofs + 4, 0xff);
 489    rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
 490    rtc_set_memory(s, info_ofs + 6, cylinders);
 491    rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
 492    rtc_set_memory(s, info_ofs + 8, sectors);
 493}
 494
 495/* convert boot_device letter to something recognizable by the bios */
 496static int boot_device2nibble(char boot_device)
 497{
 498    switch(boot_device) {
 499    case 'a':
 500    case 'b':
 501        return 0x01; /* floppy boot */
 502    case 'c':
 503        return 0x02; /* hard drive boot */
 504    case 'd':
 505        return 0x03; /* CD-ROM boot */
 506    case 'n':
 507        return 0x04; /* Network boot */
 508    }
 509    return 0;
 510}
 511
 512static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
 513{
 514#define PC_MAX_BOOT_DEVICES 3
 515    int nbds, bds[3] = { 0, };
 516    int i;
 517
 518    nbds = strlen(boot_device);
 519    if (nbds > PC_MAX_BOOT_DEVICES) {
 520        error_setg(errp, "Too many boot devices for PC");
 521        return;
 522    }
 523    for (i = 0; i < nbds; i++) {
 524        bds[i] = boot_device2nibble(boot_device[i]);
 525        if (bds[i] == 0) {
 526            error_setg(errp, "Invalid boot device for PC: '%c'",
 527                       boot_device[i]);
 528            return;
 529        }
 530    }
 531    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
 532    rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
 533}
 534
 535static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
 536{
 537    set_boot_dev(opaque, boot_device, errp);
 538}
 539
 540static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
 541{
 542    int val, nb, i;
 543    FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
 544                                   FLOPPY_DRIVE_TYPE_NONE };
 545
 546    /* floppy type */
 547    if (floppy) {
 548        for (i = 0; i < 2; i++) {
 549            fd_type[i] = isa_fdc_get_drive_type(floppy, i);
 550        }
 551    }
 552    val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
 553        cmos_get_fd_drive_type(fd_type[1]);
 554    rtc_set_memory(rtc_state, 0x10, val);
 555
 556    val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
 557    nb = 0;
 558    if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
 559        nb++;
 560    }
 561    if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
 562        nb++;
 563    }
 564    switch (nb) {
 565    case 0:
 566        break;
 567    case 1:
 568        val |= 0x01; /* 1 drive, ready for boot */
 569        break;
 570    case 2:
 571        val |= 0x41; /* 2 drives, ready for boot */
 572        break;
 573    }
 574    rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
 575}
 576
 577typedef struct pc_cmos_init_late_arg {
 578    ISADevice *rtc_state;
 579    BusState *idebus[2];
 580} pc_cmos_init_late_arg;
 581
 582typedef struct check_fdc_state {
 583    ISADevice *floppy;
 584    bool multiple;
 585} CheckFdcState;
 586
 587static int check_fdc(Object *obj, void *opaque)
 588{
 589    CheckFdcState *state = opaque;
 590    Object *fdc;
 591    uint32_t iobase;
 592    Error *local_err = NULL;
 593
 594    fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
 595    if (!fdc) {
 596        return 0;
 597    }
 598
 599    iobase = object_property_get_uint(obj, "iobase", &local_err);
 600    if (local_err || iobase != 0x3f0) {
 601        error_free(local_err);
 602        return 0;
 603    }
 604
 605    if (state->floppy) {
 606        state->multiple = true;
 607    } else {
 608        state->floppy = ISA_DEVICE(obj);
 609    }
 610    return 0;
 611}
 612
 613static const char * const fdc_container_path[] = {
 614    "/unattached", "/peripheral", "/peripheral-anon"
 615};
 616
 617/*
 618 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
 619 * and ACPI objects.
 620 */
 621ISADevice *pc_find_fdc0(void)
 622{
 623    int i;
 624    Object *container;
 625    CheckFdcState state = { 0 };
 626
 627    for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
 628        container = container_get(qdev_get_machine(), fdc_container_path[i]);
 629        object_child_foreach(container, check_fdc, &state);
 630    }
 631
 632    if (state.multiple) {
 633        warn_report("multiple floppy disk controllers with "
 634                    "iobase=0x3f0 have been found");
 635        error_printf("the one being picked for CMOS setup might not reflect "
 636                     "your intent");
 637    }
 638
 639    return state.floppy;
 640}
 641
 642static void pc_cmos_init_late(void *opaque)
 643{
 644    pc_cmos_init_late_arg *arg = opaque;
 645    ISADevice *s = arg->rtc_state;
 646    int16_t cylinders;
 647    int8_t heads, sectors;
 648    int val;
 649    int i, trans;
 650
 651    val = 0;
 652    if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
 653                                           &cylinders, &heads, &sectors) >= 0) {
 654        cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
 655        val |= 0xf0;
 656    }
 657    if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
 658                                           &cylinders, &heads, &sectors) >= 0) {
 659        cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
 660        val |= 0x0f;
 661    }
 662    rtc_set_memory(s, 0x12, val);
 663
 664    val = 0;
 665    for (i = 0; i < 4; i++) {
 666        /* NOTE: ide_get_geometry() returns the physical
 667           geometry.  It is always such that: 1 <= sects <= 63, 1
 668           <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
 669           geometry can be different if a translation is done. */
 670        if (arg->idebus[i / 2] &&
 671            ide_get_geometry(arg->idebus[i / 2], i % 2,
 672                             &cylinders, &heads, &sectors) >= 0) {
 673            trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
 674            assert((trans & ~3) == 0);
 675            val |= trans << (i * 2);
 676        }
 677    }
 678    rtc_set_memory(s, 0x39, val);
 679
 680    pc_cmos_init_floppy(s, pc_find_fdc0());
 681
 682    qemu_unregister_reset(pc_cmos_init_late, opaque);
 683}
 684
 685void pc_cmos_init(PCMachineState *pcms,
 686                  BusState *idebus0, BusState *idebus1,
 687                  ISADevice *s)
 688{
 689    int val;
 690    static pc_cmos_init_late_arg arg;
 691
 692    /* various important CMOS locations needed by PC/Bochs bios */
 693
 694    /* memory size */
 695    /* base memory (first MiB) */
 696    val = MIN(pcms->below_4g_mem_size / KiB, 640);
 697    rtc_set_memory(s, 0x15, val);
 698    rtc_set_memory(s, 0x16, val >> 8);
 699    /* extended memory (next 64MiB) */
 700    if (pcms->below_4g_mem_size > 1 * MiB) {
 701        val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
 702    } else {
 703        val = 0;
 704    }
 705    if (val > 65535)
 706        val = 65535;
 707    rtc_set_memory(s, 0x17, val);
 708    rtc_set_memory(s, 0x18, val >> 8);
 709    rtc_set_memory(s, 0x30, val);
 710    rtc_set_memory(s, 0x31, val >> 8);
 711    /* memory between 16MiB and 4GiB */
 712    if (pcms->below_4g_mem_size > 16 * MiB) {
 713        val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
 714    } else {
 715        val = 0;
 716    }
 717    if (val > 65535)
 718        val = 65535;
 719    rtc_set_memory(s, 0x34, val);
 720    rtc_set_memory(s, 0x35, val >> 8);
 721    /* memory above 4GiB */
 722    val = pcms->above_4g_mem_size / 65536;
 723    rtc_set_memory(s, 0x5b, val);
 724    rtc_set_memory(s, 0x5c, val >> 8);
 725    rtc_set_memory(s, 0x5d, val >> 16);
 726
 727    object_property_add_link(OBJECT(pcms), "rtc_state",
 728                             TYPE_ISA_DEVICE,
 729                             (Object **)&pcms->rtc,
 730                             object_property_allow_set_link,
 731                             OBJ_PROP_LINK_STRONG, &error_abort);
 732    object_property_set_link(OBJECT(pcms), OBJECT(s),
 733                             "rtc_state", &error_abort);
 734
 735    set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
 736
 737    val = 0;
 738    val |= 0x02; /* FPU is there */
 739    val |= 0x04; /* PS/2 mouse installed */
 740    rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
 741
 742    /* hard drives and FDC */
 743    arg.rtc_state = s;
 744    arg.idebus[0] = idebus0;
 745    arg.idebus[1] = idebus1;
 746    qemu_register_reset(pc_cmos_init_late, &arg);
 747}
 748
 749#define TYPE_PORT92 "port92"
 750#define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
 751
 752/* port 92 stuff: could be split off */
 753typedef struct Port92State {
 754    ISADevice parent_obj;
 755
 756    MemoryRegion io;
 757    uint8_t outport;
 758    qemu_irq a20_out;
 759} Port92State;
 760
 761static void port92_write(void *opaque, hwaddr addr, uint64_t val,
 762                         unsigned size)
 763{
 764    Port92State *s = opaque;
 765    int oldval = s->outport;
 766
 767    DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
 768    s->outport = val;
 769    qemu_set_irq(s->a20_out, (val >> 1) & 1);
 770    if ((val & 1) && !(oldval & 1)) {
 771        qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 772    }
 773}
 774
 775static uint64_t port92_read(void *opaque, hwaddr addr,
 776                            unsigned size)
 777{
 778    Port92State *s = opaque;
 779    uint32_t ret;
 780
 781    ret = s->outport;
 782    DPRINTF("port92: read 0x%02x\n", ret);
 783    return ret;
 784}
 785
 786static void port92_init(ISADevice *dev, qemu_irq a20_out)
 787{
 788    qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
 789}
 790
 791static const VMStateDescription vmstate_port92_isa = {
 792    .name = "port92",
 793    .version_id = 1,
 794    .minimum_version_id = 1,
 795    .fields = (VMStateField[]) {
 796        VMSTATE_UINT8(outport, Port92State),
 797        VMSTATE_END_OF_LIST()
 798    }
 799};
 800
 801static void port92_reset(DeviceState *d)
 802{
 803    Port92State *s = PORT92(d);
 804
 805    s->outport &= ~1;
 806}
 807
 808static const MemoryRegionOps port92_ops = {
 809    .read = port92_read,
 810    .write = port92_write,
 811    .impl = {
 812        .min_access_size = 1,
 813        .max_access_size = 1,
 814    },
 815    .endianness = DEVICE_LITTLE_ENDIAN,
 816};
 817
 818static void port92_initfn(Object *obj)
 819{
 820    Port92State *s = PORT92(obj);
 821
 822    memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
 823
 824    s->outport = 0;
 825
 826    qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
 827}
 828
 829static void port92_realizefn(DeviceState *dev, Error **errp)
 830{
 831    ISADevice *isadev = ISA_DEVICE(dev);
 832    Port92State *s = PORT92(dev);
 833
 834    isa_register_ioport(isadev, &s->io, 0x92);
 835}
 836
 837static void port92_class_initfn(ObjectClass *klass, void *data)
 838{
 839    DeviceClass *dc = DEVICE_CLASS(klass);
 840
 841    dc->realize = port92_realizefn;
 842    dc->reset = port92_reset;
 843    dc->vmsd = &vmstate_port92_isa;
 844    /*
 845     * Reason: unlike ordinary ISA devices, this one needs additional
 846     * wiring: its A20 output line needs to be wired up by
 847     * port92_init().
 848     */
 849    dc->user_creatable = false;
 850}
 851
 852static const TypeInfo port92_info = {
 853    .name          = TYPE_PORT92,
 854    .parent        = TYPE_ISA_DEVICE,
 855    .instance_size = sizeof(Port92State),
 856    .instance_init = port92_initfn,
 857    .class_init    = port92_class_initfn,
 858};
 859
 860static void port92_register_types(void)
 861{
 862    type_register_static(&port92_info);
 863}
 864
 865type_init(port92_register_types)
 866
 867static void handle_a20_line_change(void *opaque, int irq, int level)
 868{
 869    X86CPU *cpu = opaque;
 870
 871    /* XXX: send to all CPUs ? */
 872    /* XXX: add logic to handle multiple A20 line sources */
 873    x86_cpu_set_a20(cpu, level);
 874}
 875
 876int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
 877{
 878    int index = le32_to_cpu(e820_reserve.count);
 879    struct e820_entry *entry;
 880
 881    if (type != E820_RAM) {
 882        /* old FW_CFG_E820_TABLE entry -- reservations only */
 883        if (index >= E820_NR_ENTRIES) {
 884            return -EBUSY;
 885        }
 886        entry = &e820_reserve.entry[index++];
 887
 888        entry->address = cpu_to_le64(address);
 889        entry->length = cpu_to_le64(length);
 890        entry->type = cpu_to_le32(type);
 891
 892        e820_reserve.count = cpu_to_le32(index);
 893    }
 894
 895    /* new "etc/e820" file -- include ram too */
 896    e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
 897    e820_table[e820_entries].address = cpu_to_le64(address);
 898    e820_table[e820_entries].length = cpu_to_le64(length);
 899    e820_table[e820_entries].type = cpu_to_le32(type);
 900    e820_entries++;
 901
 902    return e820_entries;
 903}
 904
 905int e820_get_num_entries(void)
 906{
 907    return e820_entries;
 908}
 909
 910bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
 911{
 912    if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
 913        *address = le64_to_cpu(e820_table[idx].address);
 914        *length = le64_to_cpu(e820_table[idx].length);
 915        return true;
 916    }
 917    return false;
 918}
 919
 920/* Enables contiguous-apic-ID mode, for compatibility */
 921static bool compat_apic_id_mode;
 922
 923void enable_compat_apic_id_mode(void)
 924{
 925    compat_apic_id_mode = true;
 926}
 927
 928/* Calculates initial APIC ID for a specific CPU index
 929 *
 930 * Currently we need to be able to calculate the APIC ID from the CPU index
 931 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
 932 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
 933 * all CPUs up to max_cpus.
 934 */
 935static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
 936{
 937    uint32_t correct_id;
 938    static bool warned;
 939
 940    correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
 941    if (compat_apic_id_mode) {
 942        if (cpu_index != correct_id && !warned && !qtest_enabled()) {
 943            error_report("APIC IDs set in compatibility mode, "
 944                         "CPU topology won't match the configuration");
 945            warned = true;
 946        }
 947        return cpu_index;
 948    } else {
 949        return correct_id;
 950    }
 951}
 952
 953static void pc_build_smbios(PCMachineState *pcms)
 954{
 955    uint8_t *smbios_tables, *smbios_anchor;
 956    size_t smbios_tables_len, smbios_anchor_len;
 957    struct smbios_phys_mem_area *mem_array;
 958    unsigned i, array_count;
 959    MachineState *ms = MACHINE(pcms);
 960    X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
 961
 962    /* tell smbios about cpuid version and features */
 963    smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
 964
 965    smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
 966    if (smbios_tables) {
 967        fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
 968                         smbios_tables, smbios_tables_len);
 969    }
 970
 971    /* build the array of physical mem area from e820 table */
 972    mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
 973    for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
 974        uint64_t addr, len;
 975
 976        if (e820_get_entry(i, E820_RAM, &addr, &len)) {
 977            mem_array[array_count].address = addr;
 978            mem_array[array_count].length = len;
 979            array_count++;
 980        }
 981    }
 982    smbios_get_tables(mem_array, array_count,
 983                      &smbios_tables, &smbios_tables_len,
 984                      &smbios_anchor, &smbios_anchor_len);
 985    g_free(mem_array);
 986
 987    if (smbios_anchor) {
 988        fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
 989                        smbios_tables, smbios_tables_len);
 990        fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
 991                        smbios_anchor, smbios_anchor_len);
 992    }
 993}
 994
 995static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
 996{
 997    FWCfgState *fw_cfg;
 998    uint64_t *numa_fw_cfg;
 999    int i;
1000    const CPUArchIdList *cpus;
1001    MachineClass *mc = MACHINE_GET_CLASS(pcms);
1002
1003    fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
1004    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1005
1006    /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1007     *
1008     * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1009     * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1010     * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1011     * for CPU hotplug also uses APIC ID and not "CPU index".
1012     * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1013     * but the "limit to the APIC ID values SeaBIOS may see".
1014     *
1015     * So for compatibility reasons with old BIOSes we are stuck with
1016     * "etc/max-cpus" actually being apic_id_limit
1017     */
1018    fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1019    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1020    fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1021                     acpi_tables, acpi_tables_len);
1022    fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1023
1024    fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1025                     &e820_reserve, sizeof(e820_reserve));
1026    fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1027                    sizeof(struct e820_entry) * e820_entries);
1028
1029    fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1030    /* allocate memory for the NUMA channel: one (64bit) word for the number
1031     * of nodes, one word for each VCPU->node and one word for each node to
1032     * hold the amount of memory.
1033     */
1034    numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1035    numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1036    cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1037    for (i = 0; i < cpus->len; i++) {
1038        unsigned int apic_id = cpus->cpus[i].arch_id;
1039        assert(apic_id < pcms->apic_id_limit);
1040        numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1041    }
1042    for (i = 0; i < nb_numa_nodes; i++) {
1043        numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1044            cpu_to_le64(numa_info[i].node_mem);
1045    }
1046    fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1047                     (1 + pcms->apic_id_limit + nb_numa_nodes) *
1048                     sizeof(*numa_fw_cfg));
1049
1050    return fw_cfg;
1051}
1052
1053static long get_file_size(FILE *f)
1054{
1055    long where, size;
1056
1057    /* XXX: on Unix systems, using fstat() probably makes more sense */
1058
1059    where = ftell(f);
1060    fseek(f, 0, SEEK_END);
1061    size = ftell(f);
1062    fseek(f, where, SEEK_SET);
1063
1064    return size;
1065}
1066
1067struct setup_data {
1068    uint64_t next;
1069    uint32_t type;
1070    uint32_t len;
1071    uint8_t data[0];
1072} __attribute__((packed));
1073
1074
1075/*
1076 * The entry point into the kernel for PVH boot is different from
1077 * the native entry point.  The PVH entry is defined by the x86/HVM
1078 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1079 *
1080 * This function is passed to load_elf() when it is called from
1081 * load_elfboot() which then additionally checks for an ELF Note of
1082 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1083 * parse the PVH entry address from the ELF Note.
1084 *
1085 * Due to trickery in elf_opts.h, load_elf() is actually available as
1086 * load_elf32() or load_elf64() and this routine needs to be able
1087 * to deal with being called as 32 or 64 bit.
1088 *
1089 * The address of the PVH entry point is saved to the 'pvh_start_addr'
1090 * global variable.  (although the entry point is 32-bit, the kernel
1091 * binary can be either 32-bit or 64-bit).
1092 */
1093static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1094{
1095    size_t *elf_note_data_addr;
1096
1097    /* Check if ELF Note header passed in is valid */
1098    if (arg1 == NULL) {
1099        return 0;
1100    }
1101
1102    if (is64) {
1103        struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1104        uint64_t nhdr_size64 = sizeof(struct elf64_note);
1105        uint64_t phdr_align = *(uint64_t *)arg2;
1106        uint64_t nhdr_namesz = nhdr64->n_namesz;
1107
1108        elf_note_data_addr =
1109            ((void *)nhdr64) + nhdr_size64 +
1110            QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1111    } else {
1112        struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1113        uint32_t nhdr_size32 = sizeof(struct elf32_note);
1114        uint32_t phdr_align = *(uint32_t *)arg2;
1115        uint32_t nhdr_namesz = nhdr32->n_namesz;
1116
1117        elf_note_data_addr =
1118            ((void *)nhdr32) + nhdr_size32 +
1119            QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1120    }
1121
1122    pvh_start_addr = *elf_note_data_addr;
1123
1124    return pvh_start_addr;
1125}
1126
1127static bool load_elfboot(const char *kernel_filename,
1128                   int kernel_file_size,
1129                   uint8_t *header,
1130                   size_t pvh_xen_start_addr,
1131                   FWCfgState *fw_cfg)
1132{
1133    uint32_t flags = 0;
1134    uint32_t mh_load_addr = 0;
1135    uint32_t elf_kernel_size = 0;
1136    uint64_t elf_entry;
1137    uint64_t elf_low, elf_high;
1138    int kernel_size;
1139
1140    if (ldl_p(header) != 0x464c457f) {
1141        return false; /* no elfboot */
1142    }
1143
1144    bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1145    flags = elf_is64 ?
1146        ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1147
1148    if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1149        error_report("elfboot unsupported flags = %x", flags);
1150        exit(1);
1151    }
1152
1153    uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1154    kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1155                           NULL, &elf_note_type, &elf_entry,
1156                           &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1157                           0, 0);
1158
1159    if (kernel_size < 0) {
1160        error_report("Error while loading elf kernel");
1161        exit(1);
1162    }
1163    mh_load_addr = elf_low;
1164    elf_kernel_size = elf_high - elf_low;
1165
1166    if (pvh_start_addr == 0) {
1167        error_report("Error loading uncompressed kernel without PVH ELF Note");
1168        exit(1);
1169    }
1170    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1171    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1172    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1173
1174    return true;
1175}
1176
1177static void load_linux(PCMachineState *pcms,
1178                       FWCfgState *fw_cfg)
1179{
1180    uint16_t protocol;
1181    int setup_size, kernel_size, cmdline_size;
1182    int dtb_size, setup_data_offset;
1183    uint32_t initrd_max;
1184    uint8_t header[8192], *setup, *kernel;
1185    hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1186    FILE *f;
1187    char *vmode;
1188    MachineState *machine = MACHINE(pcms);
1189    PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1190    struct setup_data *setup_data;
1191    const char *kernel_filename = machine->kernel_filename;
1192    const char *initrd_filename = machine->initrd_filename;
1193    const char *dtb_filename = machine->dtb;
1194    const char *kernel_cmdline = machine->kernel_cmdline;
1195
1196    /* Align to 16 bytes as a paranoia measure */
1197    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1198
1199    /* load the kernel header */
1200    f = fopen(kernel_filename, "rb");
1201    if (!f || !(kernel_size = get_file_size(f)) ||
1202        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1203        MIN(ARRAY_SIZE(header), kernel_size)) {
1204        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1205                kernel_filename, strerror(errno));
1206        exit(1);
1207    }
1208
1209    /* kernel protocol version */
1210#if 0
1211    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1212#endif
1213    if (ldl_p(header+0x202) == 0x53726448) {
1214        protocol = lduw_p(header+0x206);
1215    } else {
1216        /*
1217         * This could be a multiboot kernel. If it is, let's stop treating it
1218         * like a Linux kernel.
1219         * Note: some multiboot images could be in the ELF format (the same of
1220         * PVH), so we try multiboot first since we check the multiboot magic
1221         * header before to load it.
1222         */
1223        if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1224                           kernel_cmdline, kernel_size, header)) {
1225            return;
1226        }
1227        /*
1228         * Check if the file is an uncompressed kernel file (ELF) and load it,
1229         * saving the PVH entry point used by the x86/HVM direct boot ABI.
1230         * If load_elfboot() is successful, populate the fw_cfg info.
1231         */
1232        if (pcmc->pvh_enabled &&
1233            load_elfboot(kernel_filename, kernel_size,
1234                         header, pvh_start_addr, fw_cfg)) {
1235            fclose(f);
1236
1237            fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1238                strlen(kernel_cmdline) + 1);
1239            fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1240
1241            fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1242            fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1243                             header, sizeof(header));
1244
1245            /* load initrd */
1246            if (initrd_filename) {
1247                gsize initrd_size;
1248                gchar *initrd_data;
1249                GError *gerr = NULL;
1250
1251                if (!g_file_get_contents(initrd_filename, &initrd_data,
1252                            &initrd_size, &gerr)) {
1253                    fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1254                            initrd_filename, gerr->message);
1255                    exit(1);
1256                }
1257
1258                initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1259                if (initrd_size >= initrd_max) {
1260                    fprintf(stderr, "qemu: initrd is too large, cannot support."
1261                            "(max: %"PRIu32", need %"PRId64")\n",
1262                            initrd_max, (uint64_t)initrd_size);
1263                    exit(1);
1264                }
1265
1266                initrd_addr = (initrd_max - initrd_size) & ~4095;
1267
1268                fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1269                fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1270                fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1271                                 initrd_size);
1272            }
1273
1274            option_rom[nb_option_roms].bootindex = 0;
1275            option_rom[nb_option_roms].name = "pvh.bin";
1276            nb_option_roms++;
1277
1278            return;
1279        }
1280        protocol = 0;
1281    }
1282
1283    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1284        /* Low kernel */
1285        real_addr    = 0x90000;
1286        cmdline_addr = 0x9a000 - cmdline_size;
1287        prot_addr    = 0x10000;
1288    } else if (protocol < 0x202) {
1289        /* High but ancient kernel */
1290        real_addr    = 0x90000;
1291        cmdline_addr = 0x9a000 - cmdline_size;
1292        prot_addr    = 0x100000;
1293    } else {
1294        /* High and recent kernel */
1295        real_addr    = 0x10000;
1296        cmdline_addr = 0x20000;
1297        prot_addr    = 0x100000;
1298    }
1299
1300#if 0
1301    fprintf(stderr,
1302            "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
1303            "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
1304            "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
1305            real_addr,
1306            cmdline_addr,
1307            prot_addr);
1308#endif
1309
1310    /* highest address for loading the initrd */
1311    if (protocol >= 0x20c &&
1312        lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1313        /*
1314         * Linux has supported initrd up to 4 GB for a very long time (2007,
1315         * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1316         * though it only sets initrd_max to 2 GB to "work around bootloader
1317         * bugs". Luckily, QEMU firmware(which does something like bootloader)
1318         * has supported this.
1319         *
1320         * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1321         * be loaded into any address.
1322         *
1323         * In addition, initrd_max is uint32_t simply because QEMU doesn't
1324         * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1325         * field).
1326         *
1327         * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1328         */
1329        initrd_max = UINT32_MAX;
1330    } else if (protocol >= 0x203) {
1331        initrd_max = ldl_p(header+0x22c);
1332    } else {
1333        initrd_max = 0x37ffffff;
1334    }
1335
1336    if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1337        initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1338    }
1339
1340    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1341    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1342    fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1343
1344    if (protocol >= 0x202) {
1345        stl_p(header+0x228, cmdline_addr);
1346    } else {
1347        stw_p(header+0x20, 0xA33F);
1348        stw_p(header+0x22, cmdline_addr-real_addr);
1349    }
1350
1351    /* handle vga= parameter */
1352    vmode = strstr(kernel_cmdline, "vga=");
1353    if (vmode) {
1354        unsigned int video_mode;
1355        /* skip "vga=" */
1356        vmode += 4;
1357        if (!strncmp(vmode, "normal", 6)) {
1358            video_mode = 0xffff;
1359        } else if (!strncmp(vmode, "ext", 3)) {
1360            video_mode = 0xfffe;
1361        } else if (!strncmp(vmode, "ask", 3)) {
1362            video_mode = 0xfffd;
1363        } else {
1364            video_mode = strtol(vmode, NULL, 0);
1365        }
1366        stw_p(header+0x1fa, video_mode);
1367    }
1368
1369    /* loader type */
1370    /* High nybble = B reserved for QEMU; low nybble is revision number.
1371       If this code is substantially changed, you may want to consider
1372       incrementing the revision. */
1373    if (protocol >= 0x200) {
1374        header[0x210] = 0xB0;
1375    }
1376    /* heap */
1377    if (protocol >= 0x201) {
1378        header[0x211] |= 0x80;  /* CAN_USE_HEAP */
1379        stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1380    }
1381
1382    /* load initrd */
1383    if (initrd_filename) {
1384        gsize initrd_size;
1385        gchar *initrd_data;
1386        GError *gerr = NULL;
1387
1388        if (protocol < 0x200) {
1389            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1390            exit(1);
1391        }
1392
1393        if (!g_file_get_contents(initrd_filename, &initrd_data,
1394                                 &initrd_size, &gerr)) {
1395            fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1396                    initrd_filename, gerr->message);
1397            exit(1);
1398        }
1399        if (initrd_size >= initrd_max) {
1400            fprintf(stderr, "qemu: initrd is too large, cannot support."
1401                    "(max: %"PRIu32", need %"PRId64")\n",
1402                    initrd_max, (uint64_t)initrd_size);
1403            exit(1);
1404        }
1405
1406        initrd_addr = (initrd_max-initrd_size) & ~4095;
1407
1408        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1409        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1410        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1411
1412        stl_p(header+0x218, initrd_addr);
1413        stl_p(header+0x21c, initrd_size);
1414    }
1415
1416    /* load kernel and setup */
1417    setup_size = header[0x1f1];
1418    if (setup_size == 0) {
1419        setup_size = 4;
1420    }
1421    setup_size = (setup_size+1)*512;
1422    if (setup_size > kernel_size) {
1423        fprintf(stderr, "qemu: invalid kernel header\n");
1424        exit(1);
1425    }
1426    kernel_size -= setup_size;
1427
1428    setup  = g_malloc(setup_size);
1429    kernel = g_malloc(kernel_size);
1430    fseek(f, 0, SEEK_SET);
1431    if (fread(setup, 1, setup_size, f) != setup_size) {
1432        fprintf(stderr, "fread() failed\n");
1433        exit(1);
1434    }
1435    if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1436        fprintf(stderr, "fread() failed\n");
1437        exit(1);
1438    }
1439    fclose(f);
1440
1441    /* append dtb to kernel */
1442    if (dtb_filename) {
1443        if (protocol < 0x209) {
1444            fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1445            exit(1);
1446        }
1447
1448        dtb_size = get_image_size(dtb_filename);
1449        if (dtb_size <= 0) {
1450            fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1451                    dtb_filename, strerror(errno));
1452            exit(1);
1453        }
1454
1455        setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1456        kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1457        kernel = g_realloc(kernel, kernel_size);
1458
1459        stq_p(header+0x250, prot_addr + setup_data_offset);
1460
1461        setup_data = (struct setup_data *)(kernel + setup_data_offset);
1462        setup_data->next = 0;
1463        setup_data->type = cpu_to_le32(SETUP_DTB);
1464        setup_data->len = cpu_to_le32(dtb_size);
1465
1466        load_image_size(dtb_filename, setup_data->data, dtb_size);
1467    }
1468
1469    memcpy(setup, header, MIN(sizeof(header), setup_size));
1470
1471    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1472    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1473    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1474
1475    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1476    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1477    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1478
1479    option_rom[nb_option_roms].bootindex = 0;
1480    option_rom[nb_option_roms].name = "linuxboot.bin";
1481    if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1482        option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1483    }
1484    nb_option_roms++;
1485}
1486
1487#define NE2000_NB_MAX 6
1488
1489static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1490                                              0x280, 0x380 };
1491static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1492
1493void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1494{
1495    static int nb_ne2k = 0;
1496
1497    if (nb_ne2k == NE2000_NB_MAX)
1498        return;
1499    isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1500                    ne2000_irq[nb_ne2k], nd);
1501    nb_ne2k++;
1502}
1503
1504DeviceState *cpu_get_current_apic(void)
1505{
1506    if (current_cpu) {
1507        X86CPU *cpu = X86_CPU(current_cpu);
1508        return cpu->apic_state;
1509    } else {
1510        return NULL;
1511    }
1512}
1513
1514void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1515{
1516    X86CPU *cpu = opaque;
1517
1518    if (level) {
1519        cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1520    }
1521}
1522
1523static void pc_new_cpu(const char *typename, int64_t apic_id, Error **errp)
1524{
1525    Object *cpu = NULL;
1526    Error *local_err = NULL;
1527
1528    cpu = object_new(typename);
1529
1530    object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1531    object_property_set_bool(cpu, true, "realized", &local_err);
1532
1533    object_unref(cpu);
1534    error_propagate(errp, local_err);
1535}
1536
1537void pc_hot_add_cpu(const int64_t id, Error **errp)
1538{
1539    MachineState *ms = MACHINE(qdev_get_machine());
1540    int64_t apic_id = x86_cpu_apic_id_from_index(id);
1541    Error *local_err = NULL;
1542
1543    if (id < 0) {
1544        error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1545        return;
1546    }
1547
1548    if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1549        error_setg(errp, "Unable to add CPU: %" PRIi64
1550                   ", resulting APIC ID (%" PRIi64 ") is too large",
1551                   id, apic_id);
1552        return;
1553    }
1554
1555    pc_new_cpu(ms->cpu_type, apic_id, &local_err);
1556    if (local_err) {
1557        error_propagate(errp, local_err);
1558        return;
1559    }
1560}
1561
1562void pc_cpus_init(PCMachineState *pcms)
1563{
1564    int i;
1565    const CPUArchIdList *possible_cpus;
1566    MachineState *ms = MACHINE(pcms);
1567    MachineClass *mc = MACHINE_GET_CLASS(pcms);
1568
1569    /* Calculates the limit to CPU APIC ID values
1570     *
1571     * Limit for the APIC ID value, so that all
1572     * CPU APIC IDs are < pcms->apic_id_limit.
1573     *
1574     * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1575     */
1576    pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1577    possible_cpus = mc->possible_cpu_arch_ids(ms);
1578    for (i = 0; i < smp_cpus; i++) {
1579        pc_new_cpu(possible_cpus->cpus[i].type, possible_cpus->cpus[i].arch_id,
1580                   &error_fatal);
1581    }
1582}
1583
1584static void pc_build_feature_control_file(PCMachineState *pcms)
1585{
1586    MachineState *ms = MACHINE(pcms);
1587    X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1588    CPUX86State *env = &cpu->env;
1589    uint32_t unused, ecx, edx;
1590    uint64_t feature_control_bits = 0;
1591    uint64_t *val;
1592
1593    cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1594    if (ecx & CPUID_EXT_VMX) {
1595        feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1596    }
1597
1598    if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1599        (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1600        (env->mcg_cap & MCG_LMCE_P)) {
1601        feature_control_bits |= FEATURE_CONTROL_LMCE;
1602    }
1603
1604    if (!feature_control_bits) {
1605        return;
1606    }
1607
1608    val = g_malloc(sizeof(*val));
1609    *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1610    fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1611}
1612
1613static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1614{
1615    if (cpus_count > 0xff) {
1616        /* If the number of CPUs can't be represented in 8 bits, the
1617         * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1618         * to make old BIOSes fail more predictably.
1619         */
1620        rtc_set_memory(rtc, 0x5f, 0);
1621    } else {
1622        rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1623    }
1624}
1625
1626static
1627void pc_machine_done(Notifier *notifier, void *data)
1628{
1629    PCMachineState *pcms = container_of(notifier,
1630                                        PCMachineState, machine_done);
1631    PCIBus *bus = pcms->bus;
1632
1633    /* set the number of CPUs */
1634    rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1635
1636    if (bus) {
1637        int extra_hosts = 0;
1638
1639        QLIST_FOREACH(bus, &bus->child, sibling) {
1640            /* look for expander root buses */
1641            if (pci_bus_is_root(bus)) {
1642                extra_hosts++;
1643            }
1644        }
1645        if (extra_hosts && pcms->fw_cfg) {
1646            uint64_t *val = g_malloc(sizeof(*val));
1647            *val = cpu_to_le64(extra_hosts);
1648            fw_cfg_add_file(pcms->fw_cfg,
1649                    "etc/extra-pci-roots", val, sizeof(*val));
1650        }
1651    }
1652
1653    acpi_setup();
1654    if (pcms->fw_cfg) {
1655        pc_build_smbios(pcms);
1656        pc_build_feature_control_file(pcms);
1657        /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1658        fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1659    }
1660
1661    if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1662        IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1663
1664        if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1665            iommu->intr_eim != ON_OFF_AUTO_ON) {
1666            error_report("current -smp configuration requires "
1667                         "Extended Interrupt Mode enabled. "
1668                         "You can add an IOMMU using: "
1669                         "-device intel-iommu,intremap=on,eim=on");
1670            exit(EXIT_FAILURE);
1671        }
1672    }
1673}
1674
1675void pc_guest_info_init(PCMachineState *pcms)
1676{
1677    int i;
1678
1679    pcms->apic_xrupt_override = kvm_allows_irq0_override();
1680    pcms->numa_nodes = nb_numa_nodes;
1681    pcms->node_mem = g_malloc0(pcms->numa_nodes *
1682                                    sizeof *pcms->node_mem);
1683    for (i = 0; i < nb_numa_nodes; i++) {
1684        pcms->node_mem[i] = numa_info[i].node_mem;
1685    }
1686
1687    pcms->machine_done.notify = pc_machine_done;
1688    qemu_add_machine_init_done_notifier(&pcms->machine_done);
1689}
1690
1691/* setup pci memory address space mapping into system address space */
1692void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1693                            MemoryRegion *pci_address_space)
1694{
1695    /* Set to lower priority than RAM */
1696    memory_region_add_subregion_overlap(system_memory, 0x0,
1697                                        pci_address_space, -1);
1698}
1699
1700void xen_load_linux(PCMachineState *pcms)
1701{
1702    int i;
1703    FWCfgState *fw_cfg;
1704
1705    assert(MACHINE(pcms)->kernel_filename != NULL);
1706
1707    fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1708    fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1709    rom_set_fw(fw_cfg);
1710
1711    load_linux(pcms, fw_cfg);
1712    for (i = 0; i < nb_option_roms; i++) {
1713        assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1714               !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1715               !strcmp(option_rom[i].name, "pvh.bin") ||
1716               !strcmp(option_rom[i].name, "multiboot.bin"));
1717        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1718    }
1719    pcms->fw_cfg = fw_cfg;
1720}
1721
1722void pc_memory_init(PCMachineState *pcms,
1723                    MemoryRegion *system_memory,
1724                    MemoryRegion *rom_memory,
1725                    MemoryRegion **ram_memory)
1726{
1727    int linux_boot, i;
1728    MemoryRegion *ram, *option_rom_mr;
1729    MemoryRegion *ram_below_4g, *ram_above_4g;
1730    FWCfgState *fw_cfg;
1731    MachineState *machine = MACHINE(pcms);
1732    PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1733
1734    assert(machine->ram_size == pcms->below_4g_mem_size +
1735                                pcms->above_4g_mem_size);
1736
1737    linux_boot = (machine->kernel_filename != NULL);
1738
1739    /* Allocate RAM.  We allocate it as a single memory region and use
1740     * aliases to address portions of it, mostly for backwards compatibility
1741     * with older qemus that used qemu_ram_alloc().
1742     */
1743    ram = g_malloc(sizeof(*ram));
1744    memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1745                                         machine->ram_size);
1746    *ram_memory = ram;
1747    ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1748    memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1749                             0, pcms->below_4g_mem_size);
1750    memory_region_add_subregion(system_memory, 0, ram_below_4g);
1751    e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1752    if (pcms->above_4g_mem_size > 0) {
1753        ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1754        memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1755                                 pcms->below_4g_mem_size,
1756                                 pcms->above_4g_mem_size);
1757        memory_region_add_subregion(system_memory, 0x100000000ULL,
1758                                    ram_above_4g);
1759        e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1760    }
1761
1762    if (!pcmc->has_reserved_memory &&
1763        (machine->ram_slots ||
1764         (machine->maxram_size > machine->ram_size))) {
1765        MachineClass *mc = MACHINE_GET_CLASS(machine);
1766
1767        error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1768                     mc->name);
1769        exit(EXIT_FAILURE);
1770    }
1771
1772    /* always allocate the device memory information */
1773    machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1774
1775    /* initialize device memory address space */
1776    if (pcmc->has_reserved_memory &&
1777        (machine->ram_size < machine->maxram_size)) {
1778        ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1779
1780        if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1781            error_report("unsupported amount of memory slots: %"PRIu64,
1782                         machine->ram_slots);
1783            exit(EXIT_FAILURE);
1784        }
1785
1786        if (QEMU_ALIGN_UP(machine->maxram_size,
1787                          TARGET_PAGE_SIZE) != machine->maxram_size) {
1788            error_report("maximum memory size must by aligned to multiple of "
1789                         "%d bytes", TARGET_PAGE_SIZE);
1790            exit(EXIT_FAILURE);
1791        }
1792
1793        machine->device_memory->base =
1794            ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1795
1796        if (pcmc->enforce_aligned_dimm) {
1797            /* size device region assuming 1G page max alignment per slot */
1798            device_mem_size += (1 * GiB) * machine->ram_slots;
1799        }
1800
1801        if ((machine->device_memory->base + device_mem_size) <
1802            device_mem_size) {
1803            error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1804                         machine->maxram_size);
1805            exit(EXIT_FAILURE);
1806        }
1807
1808        memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1809                           "device-memory", device_mem_size);
1810        memory_region_add_subregion(system_memory, machine->device_memory->base,
1811                                    &machine->device_memory->mr);
1812    }
1813
1814    /* Initialize PC system firmware */
1815    pc_system_firmware_init(pcms, rom_memory);
1816
1817    option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1818    memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1819                           &error_fatal);
1820    if (pcmc->pci_enabled) {
1821        memory_region_set_readonly(option_rom_mr, true);
1822    }
1823    memory_region_add_subregion_overlap(rom_memory,
1824                                        PC_ROM_MIN_VGA,
1825                                        option_rom_mr,
1826                                        1);
1827
1828    fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1829
1830    rom_set_fw(fw_cfg);
1831
1832    if (pcmc->has_reserved_memory && machine->device_memory->base) {
1833        uint64_t *val = g_malloc(sizeof(*val));
1834        PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1835        uint64_t res_mem_end = machine->device_memory->base;
1836
1837        if (!pcmc->broken_reserved_end) {
1838            res_mem_end += memory_region_size(&machine->device_memory->mr);
1839        }
1840        *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1841        fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1842    }
1843
1844    if (linux_boot) {
1845        load_linux(pcms, fw_cfg);
1846    }
1847
1848    for (i = 0; i < nb_option_roms; i++) {
1849        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1850    }
1851    pcms->fw_cfg = fw_cfg;
1852
1853    /* Init default IOAPIC address space */
1854    pcms->ioapic_as = &address_space_memory;
1855}
1856
1857/*
1858 * The 64bit pci hole starts after "above 4G RAM" and
1859 * potentially the space reserved for memory hotplug.
1860 */
1861uint64_t pc_pci_hole64_start(void)
1862{
1863    PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1864    PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1865    MachineState *ms = MACHINE(pcms);
1866    uint64_t hole64_start = 0;
1867
1868    if (pcmc->has_reserved_memory && ms->device_memory->base) {
1869        hole64_start = ms->device_memory->base;
1870        if (!pcmc->broken_reserved_end) {
1871            hole64_start += memory_region_size(&ms->device_memory->mr);
1872        }
1873    } else {
1874        hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1875    }
1876
1877    return ROUND_UP(hole64_start, 1 * GiB);
1878}
1879
1880qemu_irq pc_allocate_cpu_irq(void)
1881{
1882    return qemu_allocate_irq(pic_irq_request, NULL, 0);
1883}
1884
1885DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1886{
1887    DeviceState *dev = NULL;
1888
1889    rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1890    if (pci_bus) {
1891        PCIDevice *pcidev = pci_vga_init(pci_bus);
1892        dev = pcidev ? &pcidev->qdev : NULL;
1893    } else if (isa_bus) {
1894        ISADevice *isadev = isa_vga_init(isa_bus);
1895        dev = isadev ? DEVICE(isadev) : NULL;
1896    }
1897    rom_reset_order_override();
1898    return dev;
1899}
1900
1901static const MemoryRegionOps ioport80_io_ops = {
1902    .write = ioport80_write,
1903    .read = ioport80_read,
1904    .endianness = DEVICE_NATIVE_ENDIAN,
1905    .impl = {
1906        .min_access_size = 1,
1907        .max_access_size = 1,
1908    },
1909};
1910
1911static const MemoryRegionOps ioportF0_io_ops = {
1912    .write = ioportF0_write,
1913    .read = ioportF0_read,
1914    .endianness = DEVICE_NATIVE_ENDIAN,
1915    .impl = {
1916        .min_access_size = 1,
1917        .max_access_size = 1,
1918    },
1919};
1920
1921static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
1922{
1923    int i;
1924    DriveInfo *fd[MAX_FD];
1925    qemu_irq *a20_line;
1926    ISADevice *i8042, *port92, *vmmouse;
1927
1928    serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1929    parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1930
1931    for (i = 0; i < MAX_FD; i++) {
1932        fd[i] = drive_get(IF_FLOPPY, 0, i);
1933        create_fdctrl |= !!fd[i];
1934    }
1935    if (create_fdctrl) {
1936        fdctrl_init_isa(isa_bus, fd);
1937    }
1938
1939    i8042 = isa_create_simple(isa_bus, "i8042");
1940    if (!no_vmport) {
1941        vmport_init(isa_bus);
1942        vmmouse = isa_try_create(isa_bus, "vmmouse");
1943    } else {
1944        vmmouse = NULL;
1945    }
1946    if (vmmouse) {
1947        DeviceState *dev = DEVICE(vmmouse);
1948        qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1949        qdev_init_nofail(dev);
1950    }
1951    port92 = isa_create_simple(isa_bus, "port92");
1952
1953    a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1954    i8042_setup_a20_line(i8042, a20_line[0]);
1955    port92_init(port92, a20_line[1]);
1956    g_free(a20_line);
1957}
1958
1959void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1960                          ISADevice **rtc_state,
1961                          bool create_fdctrl,
1962                          bool no_vmport,
1963                          bool has_pit,
1964                          uint32_t hpet_irqs)
1965{
1966    int i;
1967    DeviceState *hpet = NULL;
1968    int pit_isa_irq = 0;
1969    qemu_irq pit_alt_irq = NULL;
1970    qemu_irq rtc_irq = NULL;
1971    ISADevice *pit = NULL;
1972    MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1973    MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1974
1975    memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1976    memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1977
1978    memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1979    memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1980
1981    /*
1982     * Check if an HPET shall be created.
1983     *
1984     * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1985     * when the HPET wants to take over. Thus we have to disable the latter.
1986     */
1987    if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1988        /* In order to set property, here not using sysbus_try_create_simple */
1989        hpet = qdev_try_create(NULL, TYPE_HPET);
1990        if (hpet) {
1991            /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1992             * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1993             * IRQ8 and IRQ2.
1994             */
1995            uint8_t compat = object_property_get_uint(OBJECT(hpet),
1996                    HPET_INTCAP, NULL);
1997            if (!compat) {
1998                qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1999            }
2000            qdev_init_nofail(hpet);
2001            sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
2002
2003            for (i = 0; i < GSI_NUM_PINS; i++) {
2004                sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
2005            }
2006            pit_isa_irq = -1;
2007            pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2008            rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2009        }
2010    }
2011    *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2012
2013    qemu_register_boot_set(pc_boot_set, *rtc_state);
2014
2015    if (!xen_enabled() && has_pit) {
2016        if (kvm_pit_in_kernel()) {
2017            pit = kvm_pit_init(isa_bus, 0x40);
2018        } else {
2019            pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2020        }
2021        if (hpet) {
2022            /* connect PIT to output control line of the HPET */
2023            qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2024        }
2025        pcspk_init(isa_bus, pit);
2026    }
2027
2028    i8257_dma_init(isa_bus, 0);
2029
2030    /* Super I/O */
2031    pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2032}
2033
2034void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2035{
2036    int i;
2037
2038    rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2039    for (i = 0; i < nb_nics; i++) {
2040        NICInfo *nd = &nd_table[i];
2041        const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2042
2043        if (g_str_equal(model, "ne2k_isa")) {
2044            pc_init_ne2k_isa(isa_bus, nd);
2045        } else {
2046            pci_nic_init_nofail(nd, pci_bus, model, NULL);
2047        }
2048    }
2049    rom_reset_order_override();
2050}
2051
2052void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2053{
2054    DeviceState *dev;
2055    SysBusDevice *d;
2056    unsigned int i;
2057
2058    if (kvm_ioapic_in_kernel()) {
2059        dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2060    } else {
2061        dev = qdev_create(NULL, TYPE_IOAPIC);
2062    }
2063    if (parent_name) {
2064        object_property_add_child(object_resolve_path(parent_name, NULL),
2065                                  "ioapic", OBJECT(dev), NULL);
2066    }
2067    qdev_init_nofail(dev);
2068    d = SYS_BUS_DEVICE(dev);
2069    sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2070
2071    for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2072        gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2073    }
2074}
2075
2076static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2077                               Error **errp)
2078{
2079    const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2080    const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2081    const MachineState *ms = MACHINE(hotplug_dev);
2082    const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2083    const uint64_t legacy_align = TARGET_PAGE_SIZE;
2084    Error *local_err = NULL;
2085
2086    /*
2087     * When -no-acpi is used with Q35 machine type, no ACPI is built,
2088     * but pcms->acpi_dev is still created. Check !acpi_enabled in
2089     * addition to cover this case.
2090     */
2091    if (!pcms->acpi_dev || !acpi_enabled) {
2092        error_setg(errp,
2093                   "memory hotplug is not enabled: missing acpi device or acpi disabled");
2094        return;
2095    }
2096
2097    if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2098        error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2099        return;
2100    }
2101
2102    hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
2103    if (local_err) {
2104        error_propagate(errp, local_err);
2105        return;
2106    }
2107
2108    pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2109                     pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2110}
2111
2112static void pc_memory_plug(HotplugHandler *hotplug_dev,
2113                           DeviceState *dev, Error **errp)
2114{
2115    Error *local_err = NULL;
2116    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2117    MachineState *ms = MACHINE(hotplug_dev);
2118    bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2119
2120    pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2121    if (local_err) {
2122        goto out;
2123    }
2124
2125    if (is_nvdimm) {
2126        nvdimm_plug(ms->nvdimms_state);
2127    }
2128
2129    hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2130out:
2131    error_propagate(errp, local_err);
2132}
2133
2134static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2135                                     DeviceState *dev, Error **errp)
2136{
2137    Error *local_err = NULL;
2138    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2139
2140    /*
2141     * When -no-acpi is used with Q35 machine type, no ACPI is built,
2142     * but pcms->acpi_dev is still created. Check !acpi_enabled in
2143     * addition to cover this case.
2144     */
2145    if (!pcms->acpi_dev || !acpi_enabled) {
2146        error_setg(&local_err,
2147                   "memory hotplug is not enabled: missing acpi device or acpi disabled");
2148        goto out;
2149    }
2150
2151    if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2152        error_setg(&local_err,
2153                   "nvdimm device hot unplug is not supported yet.");
2154        goto out;
2155    }
2156
2157    hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2158                                   &local_err);
2159out:
2160    error_propagate(errp, local_err);
2161}
2162
2163static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2164                             DeviceState *dev, Error **errp)
2165{
2166    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2167    Error *local_err = NULL;
2168
2169    hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2170    if (local_err) {
2171        goto out;
2172    }
2173
2174    pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2175    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2176 out:
2177    error_propagate(errp, local_err);
2178}
2179
2180static int pc_apic_cmp(const void *a, const void *b)
2181{
2182   CPUArchId *apic_a = (CPUArchId *)a;
2183   CPUArchId *apic_b = (CPUArchId *)b;
2184
2185   return apic_a->arch_id - apic_b->arch_id;
2186}
2187
2188/* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2189 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2190 * entry corresponding to CPU's apic_id returns NULL.
2191 */
2192static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2193{
2194    CPUArchId apic_id, *found_cpu;
2195
2196    apic_id.arch_id = id;
2197    found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2198        ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2199        pc_apic_cmp);
2200    if (found_cpu && idx) {
2201        *idx = found_cpu - ms->possible_cpus->cpus;
2202    }
2203    return found_cpu;
2204}
2205
2206static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2207                        DeviceState *dev, Error **errp)
2208{
2209    CPUArchId *found_cpu;
2210    Error *local_err = NULL;
2211    X86CPU *cpu = X86_CPU(dev);
2212    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2213
2214    if (pcms->acpi_dev) {
2215        hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2216        if (local_err) {
2217            goto out;
2218        }
2219    }
2220
2221    /* increment the number of CPUs */
2222    pcms->boot_cpus++;
2223    if (pcms->rtc) {
2224        rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2225    }
2226    if (pcms->fw_cfg) {
2227        fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2228    }
2229
2230    found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2231    found_cpu->cpu = OBJECT(dev);
2232out:
2233    error_propagate(errp, local_err);
2234}
2235static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2236                                     DeviceState *dev, Error **errp)
2237{
2238    int idx = -1;
2239    Error *local_err = NULL;
2240    X86CPU *cpu = X86_CPU(dev);
2241    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2242
2243    if (!pcms->acpi_dev) {
2244        error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2245        goto out;
2246    }
2247
2248    pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2249    assert(idx != -1);
2250    if (idx == 0) {
2251        error_setg(&local_err, "Boot CPU is unpluggable");
2252        goto out;
2253    }
2254
2255    hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2256                                   &local_err);
2257    if (local_err) {
2258        goto out;
2259    }
2260
2261 out:
2262    error_propagate(errp, local_err);
2263
2264}
2265
2266static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2267                             DeviceState *dev, Error **errp)
2268{
2269    CPUArchId *found_cpu;
2270    Error *local_err = NULL;
2271    X86CPU *cpu = X86_CPU(dev);
2272    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2273
2274    hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2275    if (local_err) {
2276        goto out;
2277    }
2278
2279    found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2280    found_cpu->cpu = NULL;
2281    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2282
2283    /* decrement the number of CPUs */
2284    pcms->boot_cpus--;
2285    /* Update the number of CPUs in CMOS */
2286    rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2287    fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2288 out:
2289    error_propagate(errp, local_err);
2290}
2291
2292static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2293                            DeviceState *dev, Error **errp)
2294{
2295    int idx;
2296    CPUState *cs;
2297    CPUArchId *cpu_slot;
2298    X86CPUTopoInfo topo;
2299    X86CPU *cpu = X86_CPU(dev);
2300    MachineState *ms = MACHINE(hotplug_dev);
2301    PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2302
2303    if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2304        error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2305                   ms->cpu_type);
2306        return;
2307    }
2308
2309    /* if APIC ID is not set, set it based on socket/core/thread properties */
2310    if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2311        int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
2312
2313        if (cpu->socket_id < 0) {
2314            error_setg(errp, "CPU socket-id is not set");
2315            return;
2316        } else if (cpu->socket_id > max_socket) {
2317            error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2318                       cpu->socket_id, max_socket);
2319            return;
2320        }
2321        if (cpu->core_id < 0) {
2322            error_setg(errp, "CPU core-id is not set");
2323            return;
2324        } else if (cpu->core_id > (smp_cores - 1)) {
2325            error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2326                       cpu->core_id, smp_cores - 1);
2327            return;
2328        }
2329        if (cpu->thread_id < 0) {
2330            error_setg(errp, "CPU thread-id is not set");
2331            return;
2332        } else if (cpu->thread_id > (smp_threads - 1)) {
2333            error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2334                       cpu->thread_id, smp_threads - 1);
2335            return;
2336        }
2337
2338        topo.pkg_id = cpu->socket_id;
2339        topo.core_id = cpu->core_id;
2340        topo.smt_id = cpu->thread_id;
2341        cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
2342    }
2343
2344    cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2345    if (!cpu_slot) {
2346        MachineState *ms = MACHINE(pcms);
2347
2348        x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2349        error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
2350                  " APIC ID %" PRIu32 ", valid index range 0:%d",
2351                   topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
2352                   ms->possible_cpus->len - 1);
2353        return;
2354    }
2355
2356    if (cpu_slot->cpu) {
2357        error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2358                   idx, cpu->apic_id);
2359        return;
2360    }
2361
2362    /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2363     * so that machine_query_hotpluggable_cpus would show correct values
2364     */
2365    /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2366     * once -smp refactoring is complete and there will be CPU private
2367     * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2368    x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
2369    if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2370        error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2371            " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2372        return;
2373    }
2374    cpu->socket_id = topo.pkg_id;
2375
2376    if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2377        error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2378            " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2379        return;
2380    }
2381    cpu->core_id = topo.core_id;
2382
2383    if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2384        error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2385            " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2386        return;
2387    }
2388    cpu->thread_id = topo.smt_id;
2389
2390    if (cpu->hyperv_vpindex && !kvm_hv_vpindex_settable()) {
2391        error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2392        return;
2393    }
2394
2395    cs = CPU(cpu);
2396    cs->cpu_index = idx;
2397
2398    numa_cpu_pre_plug(cpu_slot, dev, errp);
2399}
2400
2401static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2402                                          DeviceState *dev, Error **errp)
2403{
2404    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2405        pc_memory_pre_plug(hotplug_dev, dev, errp);
2406    } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2407        pc_cpu_pre_plug(hotplug_dev, dev, errp);
2408    }
2409}
2410
2411static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2412                                      DeviceState *dev, Error **errp)
2413{
2414    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2415        pc_memory_plug(hotplug_dev, dev, errp);
2416    } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2417        pc_cpu_plug(hotplug_dev, dev, errp);
2418    }
2419}
2420
2421static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2422                                                DeviceState *dev, Error **errp)
2423{
2424    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2425        pc_memory_unplug_request(hotplug_dev, dev, errp);
2426    } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2427        pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2428    } else {
2429        error_setg(errp, "acpi: device unplug request for not supported device"
2430                   " type: %s", object_get_typename(OBJECT(dev)));
2431    }
2432}
2433
2434static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2435                                        DeviceState *dev, Error **errp)
2436{
2437    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2438        pc_memory_unplug(hotplug_dev, dev, errp);
2439    } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2440        pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2441    } else {
2442        error_setg(errp, "acpi: device unplug for not supported device"
2443                   " type: %s", object_get_typename(OBJECT(dev)));
2444    }
2445}
2446
2447static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2448                                             DeviceState *dev)
2449{
2450    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2451        object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2452        return HOTPLUG_HANDLER(machine);
2453    }
2454
2455    return NULL;
2456}
2457
2458static void
2459pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2460                                         const char *name, void *opaque,
2461                                         Error **errp)
2462{
2463    MachineState *ms = MACHINE(obj);
2464    int64_t value = memory_region_size(&ms->device_memory->mr);
2465
2466    visit_type_int(v, name, &value, errp);
2467}
2468
2469static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2470                                            const char *name, void *opaque,
2471                                            Error **errp)
2472{
2473    PCMachineState *pcms = PC_MACHINE(obj);
2474    uint64_t value = pcms->max_ram_below_4g;
2475
2476    visit_type_size(v, name, &value, errp);
2477}
2478
2479static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2480                                            const char *name, void *opaque,
2481                                            Error **errp)
2482{
2483    PCMachineState *pcms = PC_MACHINE(obj);
2484    Error *error = NULL;
2485    uint64_t value;
2486
2487    visit_type_size(v, name, &value, &error);
2488    if (error) {
2489        error_propagate(errp, error);
2490        return;
2491    }
2492    if (value > 4 * GiB) {
2493        error_setg(&error,
2494                   "Machine option 'max-ram-below-4g=%"PRIu64
2495                   "' expects size less than or equal to 4G", value);
2496        error_propagate(errp, error);
2497        return;
2498    }
2499
2500    if (value < 1 * MiB) {
2501        warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2502                    "BIOS may not work with less than 1MiB", value);
2503    }
2504
2505    pcms->max_ram_below_4g = value;
2506}
2507
2508static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2509                                  void *opaque, Error **errp)
2510{
2511    PCMachineState *pcms = PC_MACHINE(obj);
2512    OnOffAuto vmport = pcms->vmport;
2513
2514    visit_type_OnOffAuto(v, name, &vmport, errp);
2515}
2516
2517static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2518                                  void *opaque, Error **errp)
2519{
2520    PCMachineState *pcms = PC_MACHINE(obj);
2521
2522    visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2523}
2524
2525bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2526{
2527    bool smm_available = false;
2528
2529    if (pcms->smm == ON_OFF_AUTO_OFF) {
2530        return false;
2531    }
2532
2533    if (tcg_enabled() || qtest_enabled()) {
2534        smm_available = true;
2535    } else if (kvm_enabled()) {
2536        smm_available = kvm_has_smm();
2537    }
2538
2539    if (smm_available) {
2540        return true;
2541    }
2542
2543    if (pcms->smm == ON_OFF_AUTO_ON) {
2544        error_report("System Management Mode not supported by this hypervisor.");
2545        exit(1);
2546    }
2547    return false;
2548}
2549
2550static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2551                               void *opaque, Error **errp)
2552{
2553    PCMachineState *pcms = PC_MACHINE(obj);
2554    OnOffAuto smm = pcms->smm;
2555
2556    visit_type_OnOffAuto(v, name, &smm, errp);
2557}
2558
2559static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2560                               void *opaque, Error **errp)
2561{
2562    PCMachineState *pcms = PC_MACHINE(obj);
2563
2564    visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2565}
2566
2567static bool pc_machine_get_smbus(Object *obj, Error **errp)
2568{
2569    PCMachineState *pcms = PC_MACHINE(obj);
2570
2571    return pcms->smbus_enabled;
2572}
2573
2574static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2575{
2576    PCMachineState *pcms = PC_MACHINE(obj);
2577
2578    pcms->smbus_enabled = value;
2579}
2580
2581static bool pc_machine_get_sata(Object *obj, Error **errp)
2582{
2583    PCMachineState *pcms = PC_MACHINE(obj);
2584
2585    return pcms->sata_enabled;
2586}
2587
2588static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2589{
2590    PCMachineState *pcms = PC_MACHINE(obj);
2591
2592    pcms->sata_enabled = value;
2593}
2594
2595static bool pc_machine_get_pit(Object *obj, Error **errp)
2596{
2597    PCMachineState *pcms = PC_MACHINE(obj);
2598
2599    return pcms->pit_enabled;
2600}
2601
2602static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2603{
2604    PCMachineState *pcms = PC_MACHINE(obj);
2605
2606    pcms->pit_enabled = value;
2607}
2608
2609static void pc_machine_initfn(Object *obj)
2610{
2611    PCMachineState *pcms = PC_MACHINE(obj);
2612
2613    pcms->max_ram_below_4g = 0; /* use default */
2614    pcms->smm = ON_OFF_AUTO_AUTO;
2615    pcms->vmport = ON_OFF_AUTO_AUTO;
2616    /* acpi build is enabled by default if machine supports it */
2617    pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2618    pcms->smbus_enabled = true;
2619    pcms->sata_enabled = true;
2620    pcms->pit_enabled = true;
2621
2622    pc_system_flash_create(pcms);
2623}
2624
2625static void pc_machine_reset(void)
2626{
2627    CPUState *cs;
2628    X86CPU *cpu;
2629
2630    qemu_devices_reset();
2631
2632    /* Reset APIC after devices have been reset to cancel
2633     * any changes that qemu_devices_reset() might have done.
2634     */
2635    CPU_FOREACH(cs) {
2636        cpu = X86_CPU(cs);
2637
2638        if (cpu->apic_state) {
2639            device_reset(cpu->apic_state);
2640        }
2641    }
2642}
2643
2644static CpuInstanceProperties
2645pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2646{
2647    MachineClass *mc = MACHINE_GET_CLASS(ms);
2648    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2649
2650    assert(cpu_index < possible_cpus->len);
2651    return possible_cpus->cpus[cpu_index].props;
2652}
2653
2654static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2655{
2656   X86CPUTopoInfo topo;
2657
2658   assert(idx < ms->possible_cpus->len);
2659   x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2660                            smp_cores, smp_threads, &topo);
2661   return topo.pkg_id % nb_numa_nodes;
2662}
2663
2664static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2665{
2666    int i;
2667
2668    if (ms->possible_cpus) {
2669        /*
2670         * make sure that max_cpus hasn't changed since the first use, i.e.
2671         * -smp hasn't been parsed after it
2672        */
2673        assert(ms->possible_cpus->len == max_cpus);
2674        return ms->possible_cpus;
2675    }
2676
2677    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2678                                  sizeof(CPUArchId) * max_cpus);
2679    ms->possible_cpus->len = max_cpus;
2680    for (i = 0; i < ms->possible_cpus->len; i++) {
2681        X86CPUTopoInfo topo;
2682
2683        ms->possible_cpus->cpus[i].type = ms->cpu_type;
2684        ms->possible_cpus->cpus[i].vcpus_count = 1;
2685        ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
2686        x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2687                                 smp_cores, smp_threads, &topo);
2688        ms->possible_cpus->cpus[i].props.has_socket_id = true;
2689        ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2690        ms->possible_cpus->cpus[i].props.has_core_id = true;
2691        ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2692        ms->possible_cpus->cpus[i].props.has_thread_id = true;
2693        ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2694    }
2695    return ms->possible_cpus;
2696}
2697
2698static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2699{
2700    /* cpu index isn't used */
2701    CPUState *cs;
2702
2703    CPU_FOREACH(cs) {
2704        X86CPU *cpu = X86_CPU(cs);
2705
2706        if (!cpu->apic_state) {
2707            cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2708        } else {
2709            apic_deliver_nmi(cpu->apic_state);
2710        }
2711    }
2712}
2713
2714static void pc_machine_class_init(ObjectClass *oc, void *data)
2715{
2716    MachineClass *mc = MACHINE_CLASS(oc);
2717    PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2718    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2719    NMIClass *nc = NMI_CLASS(oc);
2720
2721    pcmc->pci_enabled = true;
2722    pcmc->has_acpi_build = true;
2723    pcmc->rsdp_in_ram = true;
2724    pcmc->smbios_defaults = true;
2725    pcmc->smbios_uuid_encoded = true;
2726    pcmc->gigabyte_align = true;
2727    pcmc->has_reserved_memory = true;
2728    pcmc->kvmclock_enabled = true;
2729    pcmc->enforce_aligned_dimm = true;
2730    /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2731     * to be used at the moment, 32K should be enough for a while.  */
2732    pcmc->acpi_data_size = 0x20000 + 0x8000;
2733    pcmc->save_tsc_khz = true;
2734    pcmc->linuxboot_dma_enabled = true;
2735    pcmc->pvh_enabled = true;
2736    assert(!mc->get_hotplug_handler);
2737    mc->get_hotplug_handler = pc_get_hotplug_handler;
2738    mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2739    mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2740    mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2741    mc->auto_enable_numa_with_memhp = true;
2742    mc->has_hotpluggable_cpus = true;
2743    mc->default_boot_order = "cad";
2744    mc->hot_add_cpu = pc_hot_add_cpu;
2745    mc->block_default_type = IF_IDE;
2746    mc->max_cpus = 255;
2747    mc->reset = pc_machine_reset;
2748    hc->pre_plug = pc_machine_device_pre_plug_cb;
2749    hc->plug = pc_machine_device_plug_cb;
2750    hc->unplug_request = pc_machine_device_unplug_request_cb;
2751    hc->unplug = pc_machine_device_unplug_cb;
2752    nc->nmi_monitor_handler = x86_nmi;
2753    mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2754    mc->nvdimm_supported = true;
2755
2756    object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2757        pc_machine_get_device_memory_region_size, NULL,
2758        NULL, NULL, &error_abort);
2759
2760    object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2761        pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2762        NULL, NULL, &error_abort);
2763
2764    object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2765        "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2766
2767    object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2768        pc_machine_get_smm, pc_machine_set_smm,
2769        NULL, NULL, &error_abort);
2770    object_class_property_set_description(oc, PC_MACHINE_SMM,
2771        "Enable SMM (pc & q35)", &error_abort);
2772
2773    object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2774        pc_machine_get_vmport, pc_machine_set_vmport,
2775        NULL, NULL, &error_abort);
2776    object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2777        "Enable vmport (pc & q35)", &error_abort);
2778
2779    object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2780        pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2781
2782    object_class_property_add_bool(oc, PC_MACHINE_SATA,
2783        pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2784
2785    object_class_property_add_bool(oc, PC_MACHINE_PIT,
2786        pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2787}
2788
2789static const TypeInfo pc_machine_info = {
2790    .name = TYPE_PC_MACHINE,
2791    .parent = TYPE_MACHINE,
2792    .abstract = true,
2793    .instance_size = sizeof(PCMachineState),
2794    .instance_init = pc_machine_initfn,
2795    .class_size = sizeof(PCMachineClass),
2796    .class_init = pc_machine_class_init,
2797    .interfaces = (InterfaceInfo[]) {
2798         { TYPE_HOTPLUG_HANDLER },
2799         { TYPE_NMI },
2800         { }
2801    },
2802};
2803
2804static void pc_machine_register_types(void)
2805{
2806    type_register_static(&pc_machine_info);
2807}
2808
2809type_init(pc_machine_register_types)
2810