qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 *
  26 */
  27#include "qemu/osdep.h"
  28#include "qapi/error.h"
  29#include "qapi/visitor.h"
  30#include "sysemu/sysemu.h"
  31#include "sysemu/numa.h"
  32#include "sysemu/qtest.h"
  33#include "hw/hw.h"
  34#include "qemu/log.h"
  35#include "hw/fw-path-provider.h"
  36#include "elf.h"
  37#include "net/net.h"
  38#include "sysemu/device_tree.h"
  39#include "sysemu/cpus.h"
  40#include "sysemu/hw_accel.h"
  41#include "kvm_ppc.h"
  42#include "migration/misc.h"
  43#include "migration/global_state.h"
  44#include "migration/register.h"
  45#include "mmu-hash64.h"
  46#include "mmu-book3s-v3.h"
  47#include "cpu-models.h"
  48#include "qom/cpu.h"
  49
  50#include "hw/boards.h"
  51#include "hw/ppc/ppc.h"
  52#include "hw/loader.h"
  53
  54#include "hw/ppc/fdt.h"
  55#include "hw/ppc/spapr.h"
  56#include "hw/ppc/spapr_vio.h"
  57#include "hw/pci-host/spapr.h"
  58#include "hw/pci/msi.h"
  59
  60#include "hw/pci/pci.h"
  61#include "hw/scsi/scsi.h"
  62#include "hw/virtio/virtio-scsi.h"
  63#include "hw/virtio/vhost-scsi-common.h"
  64
  65#include "exec/address-spaces.h"
  66#include "exec/ram_addr.h"
  67#include "hw/usb.h"
  68#include "qemu/config-file.h"
  69#include "qemu/error-report.h"
  70#include "trace.h"
  71#include "hw/nmi.h"
  72#include "hw/intc/intc.h"
  73
  74#include "qemu/cutils.h"
  75#include "hw/ppc/spapr_cpu_core.h"
  76#include "hw/mem/memory-device.h"
  77
  78#include <libfdt.h>
  79
  80/* SLOF memory layout:
  81 *
  82 * SLOF raw image loaded at 0, copies its romfs right below the flat
  83 * device-tree, then position SLOF itself 31M below that
  84 *
  85 * So we set FW_OVERHEAD to 40MB which should account for all of that
  86 * and more
  87 *
  88 * We load our kernel at 4M, leaving space for SLOF initial image
  89 */
  90#define FDT_MAX_SIZE            0x100000
  91#define RTAS_MAX_SIZE           0x10000
  92#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
  93#define FW_MAX_SIZE             0x400000
  94#define FW_FILE_NAME            "slof.bin"
  95#define FW_OVERHEAD             0x2800000
  96#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
  97
  98#define MIN_RMA_SLOF            128UL
  99
 100#define PHANDLE_INTC            0x00001111
 101
 102/* These two functions implement the VCPU id numbering: one to compute them
 103 * all and one to identify thread 0 of a VCORE. Any change to the first one
 104 * is likely to have an impact on the second one, so let's keep them close.
 105 */
 106static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
 107{
 108    assert(spapr->vsmt);
 109    return
 110        (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
 111}
 112static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
 113                                      PowerPCCPU *cpu)
 114{
 115    assert(spapr->vsmt);
 116    return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
 117}
 118
 119static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
 120{
 121    /* Dummy entries correspond to unused ICPState objects in older QEMUs,
 122     * and newer QEMUs don't even have them. In both cases, we don't want
 123     * to send anything on the wire.
 124     */
 125    return false;
 126}
 127
 128static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
 129    .name = "icp/server",
 130    .version_id = 1,
 131    .minimum_version_id = 1,
 132    .needed = pre_2_10_vmstate_dummy_icp_needed,
 133    .fields = (VMStateField[]) {
 134        VMSTATE_UNUSED(4), /* uint32_t xirr */
 135        VMSTATE_UNUSED(1), /* uint8_t pending_priority */
 136        VMSTATE_UNUSED(1), /* uint8_t mfrr */
 137        VMSTATE_END_OF_LIST()
 138    },
 139};
 140
 141static void pre_2_10_vmstate_register_dummy_icp(int i)
 142{
 143    vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
 144                     (void *)(uintptr_t) i);
 145}
 146
 147static void pre_2_10_vmstate_unregister_dummy_icp(int i)
 148{
 149    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
 150                       (void *)(uintptr_t) i);
 151}
 152
 153int spapr_max_server_number(SpaprMachineState *spapr)
 154{
 155    assert(spapr->vsmt);
 156    return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
 157}
 158
 159static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 160                                  int smt_threads)
 161{
 162    int i, ret = 0;
 163    uint32_t servers_prop[smt_threads];
 164    uint32_t gservers_prop[smt_threads * 2];
 165    int index = spapr_get_vcpu_id(cpu);
 166
 167    if (cpu->compat_pvr) {
 168        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
 169        if (ret < 0) {
 170            return ret;
 171        }
 172    }
 173
 174    /* Build interrupt servers and gservers properties */
 175    for (i = 0; i < smt_threads; i++) {
 176        servers_prop[i] = cpu_to_be32(index + i);
 177        /* Hack, direct the group queues back to cpu 0 */
 178        gservers_prop[i*2] = cpu_to_be32(index + i);
 179        gservers_prop[i*2 + 1] = 0;
 180    }
 181    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 182                      servers_prop, sizeof(servers_prop));
 183    if (ret < 0) {
 184        return ret;
 185    }
 186    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 187                      gservers_prop, sizeof(gservers_prop));
 188
 189    return ret;
 190}
 191
 192static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
 193{
 194    int index = spapr_get_vcpu_id(cpu);
 195    uint32_t associativity[] = {cpu_to_be32(0x5),
 196                                cpu_to_be32(0x0),
 197                                cpu_to_be32(0x0),
 198                                cpu_to_be32(0x0),
 199                                cpu_to_be32(cpu->node_id),
 200                                cpu_to_be32(index)};
 201
 202    /* Advertise NUMA via ibm,associativity */
 203    return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 204                          sizeof(associativity));
 205}
 206
 207/* Populate the "ibm,pa-features" property */
 208static void spapr_populate_pa_features(SpaprMachineState *spapr,
 209                                       PowerPCCPU *cpu,
 210                                       void *fdt, int offset,
 211                                       bool legacy_guest)
 212{
 213    uint8_t pa_features_206[] = { 6, 0,
 214        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 215    uint8_t pa_features_207[] = { 24, 0,
 216        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 217        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 218        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 219        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 220    uint8_t pa_features_300[] = { 66, 0,
 221        /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
 222        /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
 223        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
 224        /* 6: DS207 */
 225        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
 226        /* 16: Vector */
 227        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
 228        /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
 229        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
 230        /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
 231        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
 232        /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
 233        0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
 234        /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
 235        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
 236        /* 42: PM, 44: PC RA, 46: SC vec'd */
 237        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
 238        /* 48: SIMD, 50: QP BFP, 52: String */
 239        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
 240        /* 54: DecFP, 56: DecI, 58: SHA */
 241        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
 242        /* 60: NM atomic, 62: RNG */
 243        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
 244    };
 245    uint8_t *pa_features = NULL;
 246    size_t pa_size;
 247
 248    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
 249        pa_features = pa_features_206;
 250        pa_size = sizeof(pa_features_206);
 251    }
 252    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
 253        pa_features = pa_features_207;
 254        pa_size = sizeof(pa_features_207);
 255    }
 256    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
 257        pa_features = pa_features_300;
 258        pa_size = sizeof(pa_features_300);
 259    }
 260    if (!pa_features) {
 261        return;
 262    }
 263
 264    if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
 265        /*
 266         * Note: we keep CI large pages off by default because a 64K capable
 267         * guest provisioned with large pages might otherwise try to map a qemu
 268         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 269         * even if that qemu runs on a 4k host.
 270         * We dd this bit back here if we are confident this is not an issue
 271         */
 272        pa_features[3] |= 0x20;
 273    }
 274    if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
 275        pa_features[24] |= 0x80;    /* Transactional memory support */
 276    }
 277    if (legacy_guest && pa_size > 40) {
 278        /* Workaround for broken kernels that attempt (guest) radix
 279         * mode when they can't handle it, if they see the radix bit set
 280         * in pa-features. So hide it from them. */
 281        pa_features[40 + 2] &= ~0x80; /* Radix MMU */
 282    }
 283
 284    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 285}
 286
 287static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
 288{
 289    int ret = 0, offset, cpus_offset;
 290    CPUState *cs;
 291    char cpu_model[32];
 292    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 293
 294    CPU_FOREACH(cs) {
 295        PowerPCCPU *cpu = POWERPC_CPU(cs);
 296        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 297        int index = spapr_get_vcpu_id(cpu);
 298        int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
 299
 300        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 301            continue;
 302        }
 303
 304        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
 305
 306        cpus_offset = fdt_path_offset(fdt, "/cpus");
 307        if (cpus_offset < 0) {
 308            cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 309            if (cpus_offset < 0) {
 310                return cpus_offset;
 311            }
 312        }
 313        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
 314        if (offset < 0) {
 315            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
 316            if (offset < 0) {
 317                return offset;
 318            }
 319        }
 320
 321        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
 322                          pft_size_prop, sizeof(pft_size_prop));
 323        if (ret < 0) {
 324            return ret;
 325        }
 326
 327        if (nb_numa_nodes > 1) {
 328            ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
 329            if (ret < 0) {
 330                return ret;
 331            }
 332        }
 333
 334        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
 335        if (ret < 0) {
 336            return ret;
 337        }
 338
 339        spapr_populate_pa_features(spapr, cpu, fdt, offset,
 340                                   spapr->cas_legacy_guest_workaround);
 341    }
 342    return ret;
 343}
 344
 345static hwaddr spapr_node0_size(MachineState *machine)
 346{
 347    if (nb_numa_nodes) {
 348        int i;
 349        for (i = 0; i < nb_numa_nodes; ++i) {
 350            if (numa_info[i].node_mem) {
 351                return MIN(pow2floor(numa_info[i].node_mem),
 352                           machine->ram_size);
 353            }
 354        }
 355    }
 356    return machine->ram_size;
 357}
 358
 359static void add_str(GString *s, const gchar *s1)
 360{
 361    g_string_append_len(s, s1, strlen(s1) + 1);
 362}
 363
 364static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
 365                                       hwaddr size)
 366{
 367    uint32_t associativity[] = {
 368        cpu_to_be32(0x4), /* length */
 369        cpu_to_be32(0x0), cpu_to_be32(0x0),
 370        cpu_to_be32(0x0), cpu_to_be32(nodeid)
 371    };
 372    char mem_name[32];
 373    uint64_t mem_reg_property[2];
 374    int off;
 375
 376    mem_reg_property[0] = cpu_to_be64(start);
 377    mem_reg_property[1] = cpu_to_be64(size);
 378
 379    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
 380    off = fdt_add_subnode(fdt, 0, mem_name);
 381    _FDT(off);
 382    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 383    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 384                      sizeof(mem_reg_property))));
 385    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 386                      sizeof(associativity))));
 387    return off;
 388}
 389
 390static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
 391{
 392    MachineState *machine = MACHINE(spapr);
 393    hwaddr mem_start, node_size;
 394    int i, nb_nodes = nb_numa_nodes;
 395    NodeInfo *nodes = numa_info;
 396    NodeInfo ramnode;
 397
 398    /* No NUMA nodes, assume there is just one node with whole RAM */
 399    if (!nb_numa_nodes) {
 400        nb_nodes = 1;
 401        ramnode.node_mem = machine->ram_size;
 402        nodes = &ramnode;
 403    }
 404
 405    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 406        if (!nodes[i].node_mem) {
 407            continue;
 408        }
 409        if (mem_start >= machine->ram_size) {
 410            node_size = 0;
 411        } else {
 412            node_size = nodes[i].node_mem;
 413            if (node_size > machine->ram_size - mem_start) {
 414                node_size = machine->ram_size - mem_start;
 415            }
 416        }
 417        if (!mem_start) {
 418            /* spapr_machine_init() checks for rma_size <= node0_size
 419             * already */
 420            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
 421            mem_start += spapr->rma_size;
 422            node_size -= spapr->rma_size;
 423        }
 424        for ( ; node_size; ) {
 425            hwaddr sizetmp = pow2floor(node_size);
 426
 427            /* mem_start != 0 here */
 428            if (ctzl(mem_start) < ctzl(sizetmp)) {
 429                sizetmp = 1ULL << ctzl(mem_start);
 430            }
 431
 432            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
 433            node_size -= sizetmp;
 434            mem_start += sizetmp;
 435        }
 436    }
 437
 438    return 0;
 439}
 440
 441static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
 442                                  SpaprMachineState *spapr)
 443{
 444    PowerPCCPU *cpu = POWERPC_CPU(cs);
 445    CPUPPCState *env = &cpu->env;
 446    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 447    int index = spapr_get_vcpu_id(cpu);
 448    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 449                       0xffffffff, 0xffffffff};
 450    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 451        : SPAPR_TIMEBASE_FREQ;
 452    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 453    uint32_t page_sizes_prop[64];
 454    size_t page_sizes_prop_size;
 455    uint32_t vcpus_per_socket = smp_threads * smp_cores;
 456    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 457    int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
 458    SpaprDrc *drc;
 459    int drc_index;
 460    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
 461    int i;
 462
 463    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
 464    if (drc) {
 465        drc_index = spapr_drc_index(drc);
 466        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 467    }
 468
 469    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 470    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 471
 472    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 473    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 474                           env->dcache_line_size)));
 475    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 476                           env->dcache_line_size)));
 477    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 478                           env->icache_line_size)));
 479    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 480                           env->icache_line_size)));
 481
 482    if (pcc->l1_dcache_size) {
 483        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 484                               pcc->l1_dcache_size)));
 485    } else {
 486        warn_report("Unknown L1 dcache size for cpu");
 487    }
 488    if (pcc->l1_icache_size) {
 489        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 490                               pcc->l1_icache_size)));
 491    } else {
 492        warn_report("Unknown L1 icache size for cpu");
 493    }
 494
 495    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 496    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 497    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
 498    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
 499    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 500    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 501
 502    if (env->spr_cb[SPR_PURR].oea_read) {
 503        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
 504    }
 505
 506    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
 507        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 508                          segs, sizeof(segs))));
 509    }
 510
 511    /* Advertise VSX (vector extensions) if available
 512     *   1               == VMX / Altivec available
 513     *   2               == VSX available
 514     *
 515     * Only CPUs for which we create core types in spapr_cpu_core.c
 516     * are possible, and all of those have VMX */
 517    if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
 518        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
 519    } else {
 520        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
 521    }
 522
 523    /* Advertise DFP (Decimal Floating Point) if available
 524     *   0 / no property == no DFP
 525     *   1               == DFP available */
 526    if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
 527        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 528    }
 529
 530    page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
 531                                                      sizeof(page_sizes_prop));
 532    if (page_sizes_prop_size) {
 533        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 534                          page_sizes_prop, page_sizes_prop_size)));
 535    }
 536
 537    spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
 538
 539    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 540                           cs->cpu_index / vcpus_per_socket)));
 541
 542    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 543                      pft_size_prop, sizeof(pft_size_prop))));
 544
 545    if (nb_numa_nodes > 1) {
 546        _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
 547    }
 548
 549    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
 550
 551    if (pcc->radix_page_info) {
 552        for (i = 0; i < pcc->radix_page_info->count; i++) {
 553            radix_AP_encodings[i] =
 554                cpu_to_be32(pcc->radix_page_info->entries[i]);
 555        }
 556        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
 557                          radix_AP_encodings,
 558                          pcc->radix_page_info->count *
 559                          sizeof(radix_AP_encodings[0]))));
 560    }
 561
 562    /*
 563     * We set this property to let the guest know that it can use the large
 564     * decrementer and its width in bits.
 565     */
 566    if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
 567        _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
 568                              pcc->lrg_decr_bits)));
 569}
 570
 571static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
 572{
 573    CPUState **rev;
 574    CPUState *cs;
 575    int n_cpus;
 576    int cpus_offset;
 577    char *nodename;
 578    int i;
 579
 580    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 581    _FDT(cpus_offset);
 582    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 583    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 584
 585    /*
 586     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 587     * created by fdt_add_subnode() end up in the right order in FDT
 588     * for the guest kernel the enumerate the CPUs correctly.
 589     *
 590     * The CPU list cannot be traversed in reverse order, so we need
 591     * to do extra work.
 592     */
 593    n_cpus = 0;
 594    rev = NULL;
 595    CPU_FOREACH(cs) {
 596        rev = g_renew(CPUState *, rev, n_cpus + 1);
 597        rev[n_cpus++] = cs;
 598    }
 599
 600    for (i = n_cpus - 1; i >= 0; i--) {
 601        CPUState *cs = rev[i];
 602        PowerPCCPU *cpu = POWERPC_CPU(cs);
 603        int index = spapr_get_vcpu_id(cpu);
 604        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 605        int offset;
 606
 607        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 608            continue;
 609        }
 610
 611        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 612        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 613        g_free(nodename);
 614        _FDT(offset);
 615        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
 616    }
 617
 618    g_free(rev);
 619}
 620
 621static int spapr_rng_populate_dt(void *fdt)
 622{
 623    int node;
 624    int ret;
 625
 626    node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
 627    if (node <= 0) {
 628        return -1;
 629    }
 630    ret = fdt_setprop_string(fdt, node, "device_type",
 631                             "ibm,platform-facilities");
 632    ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
 633    ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
 634
 635    node = fdt_add_subnode(fdt, node, "ibm,random-v1");
 636    if (node <= 0) {
 637        return -1;
 638    }
 639    ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
 640
 641    return ret ? -1 : 0;
 642}
 643
 644static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
 645{
 646    MemoryDeviceInfoList *info;
 647
 648    for (info = list; info; info = info->next) {
 649        MemoryDeviceInfo *value = info->value;
 650
 651        if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
 652            PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
 653
 654            if (addr >= pcdimm_info->addr &&
 655                addr < (pcdimm_info->addr + pcdimm_info->size)) {
 656                return pcdimm_info->node;
 657            }
 658        }
 659    }
 660
 661    return -1;
 662}
 663
 664struct sPAPRDrconfCellV2 {
 665     uint32_t seq_lmbs;
 666     uint64_t base_addr;
 667     uint32_t drc_index;
 668     uint32_t aa_index;
 669     uint32_t flags;
 670} QEMU_PACKED;
 671
 672typedef struct DrconfCellQueue {
 673    struct sPAPRDrconfCellV2 cell;
 674    QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
 675} DrconfCellQueue;
 676
 677static DrconfCellQueue *
 678spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
 679                      uint32_t drc_index, uint32_t aa_index,
 680                      uint32_t flags)
 681{
 682    DrconfCellQueue *elem;
 683
 684    elem = g_malloc0(sizeof(*elem));
 685    elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
 686    elem->cell.base_addr = cpu_to_be64(base_addr);
 687    elem->cell.drc_index = cpu_to_be32(drc_index);
 688    elem->cell.aa_index = cpu_to_be32(aa_index);
 689    elem->cell.flags = cpu_to_be32(flags);
 690
 691    return elem;
 692}
 693
 694/* ibm,dynamic-memory-v2 */
 695static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
 696                                   int offset, MemoryDeviceInfoList *dimms)
 697{
 698    MachineState *machine = MACHINE(spapr);
 699    uint8_t *int_buf, *cur_index;
 700    int ret;
 701    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 702    uint64_t addr, cur_addr, size;
 703    uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
 704    uint64_t mem_end = machine->device_memory->base +
 705                       memory_region_size(&machine->device_memory->mr);
 706    uint32_t node, buf_len, nr_entries = 0;
 707    SpaprDrc *drc;
 708    DrconfCellQueue *elem, *next;
 709    MemoryDeviceInfoList *info;
 710    QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
 711        = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
 712
 713    /* Entry to cover RAM and the gap area */
 714    elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
 715                                 SPAPR_LMB_FLAGS_RESERVED |
 716                                 SPAPR_LMB_FLAGS_DRC_INVALID);
 717    QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 718    nr_entries++;
 719
 720    cur_addr = machine->device_memory->base;
 721    for (info = dimms; info; info = info->next) {
 722        PCDIMMDeviceInfo *di = info->value->u.dimm.data;
 723
 724        addr = di->addr;
 725        size = di->size;
 726        node = di->node;
 727
 728        /* Entry for hot-pluggable area */
 729        if (cur_addr < addr) {
 730            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 731            g_assert(drc);
 732            elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
 733                                         cur_addr, spapr_drc_index(drc), -1, 0);
 734            QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 735            nr_entries++;
 736        }
 737
 738        /* Entry for DIMM */
 739        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
 740        g_assert(drc);
 741        elem = spapr_get_drconf_cell(size / lmb_size, addr,
 742                                     spapr_drc_index(drc), node,
 743                                     SPAPR_LMB_FLAGS_ASSIGNED);
 744        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 745        nr_entries++;
 746        cur_addr = addr + size;
 747    }
 748
 749    /* Entry for remaining hotpluggable area */
 750    if (cur_addr < mem_end) {
 751        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 752        g_assert(drc);
 753        elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
 754                                     cur_addr, spapr_drc_index(drc), -1, 0);
 755        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 756        nr_entries++;
 757    }
 758
 759    buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
 760    int_buf = cur_index = g_malloc0(buf_len);
 761    *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
 762    cur_index += sizeof(nr_entries);
 763
 764    QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
 765        memcpy(cur_index, &elem->cell, sizeof(elem->cell));
 766        cur_index += sizeof(elem->cell);
 767        QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
 768        g_free(elem);
 769    }
 770
 771    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
 772    g_free(int_buf);
 773    if (ret < 0) {
 774        return -1;
 775    }
 776    return 0;
 777}
 778
 779/* ibm,dynamic-memory */
 780static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
 781                                   int offset, MemoryDeviceInfoList *dimms)
 782{
 783    MachineState *machine = MACHINE(spapr);
 784    int i, ret;
 785    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 786    uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
 787    uint32_t nr_lmbs = (machine->device_memory->base +
 788                       memory_region_size(&machine->device_memory->mr)) /
 789                       lmb_size;
 790    uint32_t *int_buf, *cur_index, buf_len;
 791
 792    /*
 793     * Allocate enough buffer size to fit in ibm,dynamic-memory
 794     */
 795    buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
 796    cur_index = int_buf = g_malloc0(buf_len);
 797    int_buf[0] = cpu_to_be32(nr_lmbs);
 798    cur_index++;
 799    for (i = 0; i < nr_lmbs; i++) {
 800        uint64_t addr = i * lmb_size;
 801        uint32_t *dynamic_memory = cur_index;
 802
 803        if (i >= device_lmb_start) {
 804            SpaprDrc *drc;
 805
 806            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
 807            g_assert(drc);
 808
 809            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 810            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 811            dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
 812            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 813            dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
 814            if (memory_region_present(get_system_memory(), addr)) {
 815                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 816            } else {
 817                dynamic_memory[5] = cpu_to_be32(0);
 818            }
 819        } else {
 820            /*
 821             * LMB information for RMA, boot time RAM and gap b/n RAM and
 822             * device memory region -- all these are marked as reserved
 823             * and as having no valid DRC.
 824             */
 825            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 826            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 827            dynamic_memory[2] = cpu_to_be32(0);
 828            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 829            dynamic_memory[4] = cpu_to_be32(-1);
 830            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 831                                            SPAPR_LMB_FLAGS_DRC_INVALID);
 832        }
 833
 834        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 835    }
 836    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 837    g_free(int_buf);
 838    if (ret < 0) {
 839        return -1;
 840    }
 841    return 0;
 842}
 843
 844/*
 845 * Adds ibm,dynamic-reconfiguration-memory node.
 846 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 847 * of this device tree node.
 848 */
 849static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
 850{
 851    MachineState *machine = MACHINE(spapr);
 852    int ret, i, offset;
 853    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 854    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
 855    uint32_t *int_buf, *cur_index, buf_len;
 856    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 857    MemoryDeviceInfoList *dimms = NULL;
 858
 859    /*
 860     * Don't create the node if there is no device memory
 861     */
 862    if (machine->ram_size == machine->maxram_size) {
 863        return 0;
 864    }
 865
 866    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 867
 868    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 869                    sizeof(prop_lmb_size));
 870    if (ret < 0) {
 871        return ret;
 872    }
 873
 874    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 875    if (ret < 0) {
 876        return ret;
 877    }
 878
 879    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 880    if (ret < 0) {
 881        return ret;
 882    }
 883
 884    /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
 885    dimms = qmp_memory_device_list();
 886    if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
 887        ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
 888    } else {
 889        ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
 890    }
 891    qapi_free_MemoryDeviceInfoList(dimms);
 892
 893    if (ret < 0) {
 894        return ret;
 895    }
 896
 897    /* ibm,associativity-lookup-arrays */
 898    buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
 899    cur_index = int_buf = g_malloc0(buf_len);
 900    int_buf[0] = cpu_to_be32(nr_nodes);
 901    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
 902    cur_index += 2;
 903    for (i = 0; i < nr_nodes; i++) {
 904        uint32_t associativity[] = {
 905            cpu_to_be32(0x0),
 906            cpu_to_be32(0x0),
 907            cpu_to_be32(0x0),
 908            cpu_to_be32(i)
 909        };
 910        memcpy(cur_index, associativity, sizeof(associativity));
 911        cur_index += 4;
 912    }
 913    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 914            (cur_index - int_buf) * sizeof(uint32_t));
 915    g_free(int_buf);
 916
 917    return ret;
 918}
 919
 920static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
 921                                SpaprOptionVector *ov5_updates)
 922{
 923    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 924    int ret = 0, offset;
 925
 926    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 927    if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
 928        g_assert(smc->dr_lmb_enabled);
 929        ret = spapr_populate_drconf_memory(spapr, fdt);
 930        if (ret) {
 931            goto out;
 932        }
 933    }
 934
 935    offset = fdt_path_offset(fdt, "/chosen");
 936    if (offset < 0) {
 937        offset = fdt_add_subnode(fdt, 0, "chosen");
 938        if (offset < 0) {
 939            return offset;
 940        }
 941    }
 942    ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
 943                                 "ibm,architecture-vec-5");
 944
 945out:
 946    return ret;
 947}
 948
 949static bool spapr_hotplugged_dev_before_cas(void)
 950{
 951    Object *drc_container, *obj;
 952    ObjectProperty *prop;
 953    ObjectPropertyIterator iter;
 954
 955    drc_container = container_get(object_get_root(), "/dr-connector");
 956    object_property_iter_init(&iter, drc_container);
 957    while ((prop = object_property_iter_next(&iter))) {
 958        if (!strstart(prop->type, "link<", NULL)) {
 959            continue;
 960        }
 961        obj = object_property_get_link(drc_container, prop->name, NULL);
 962        if (spapr_drc_needed(obj)) {
 963            return true;
 964        }
 965    }
 966    return false;
 967}
 968
 969int spapr_h_cas_compose_response(SpaprMachineState *spapr,
 970                                 target_ulong addr, target_ulong size,
 971                                 SpaprOptionVector *ov5_updates)
 972{
 973    void *fdt, *fdt_skel;
 974    SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
 975
 976    if (spapr_hotplugged_dev_before_cas()) {
 977        return 1;
 978    }
 979
 980    if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
 981        error_report("SLOF provided an unexpected CAS buffer size "
 982                     TARGET_FMT_lu " (min: %zu, max: %u)",
 983                     size, sizeof(hdr), FW_MAX_SIZE);
 984        exit(EXIT_FAILURE);
 985    }
 986
 987    size -= sizeof(hdr);
 988
 989    /* Create skeleton */
 990    fdt_skel = g_malloc0(size);
 991    _FDT((fdt_create(fdt_skel, size)));
 992    _FDT((fdt_finish_reservemap(fdt_skel)));
 993    _FDT((fdt_begin_node(fdt_skel, "")));
 994    _FDT((fdt_end_node(fdt_skel)));
 995    _FDT((fdt_finish(fdt_skel)));
 996    fdt = g_malloc0(size);
 997    _FDT((fdt_open_into(fdt_skel, fdt, size)));
 998    g_free(fdt_skel);
 999
1000    /* Fixup cpu nodes */
1001    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1002
1003    if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1004        return -1;
1005    }
1006
1007    /* Pack resulting tree */
1008    _FDT((fdt_pack(fdt)));
1009
1010    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1011        trace_spapr_cas_failed(size);
1012        return -1;
1013    }
1014
1015    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1016    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1017    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1018    g_free(fdt);
1019
1020    return 0;
1021}
1022
1023static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1024{
1025    int rtas;
1026    GString *hypertas = g_string_sized_new(256);
1027    GString *qemu_hypertas = g_string_sized_new(256);
1028    uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1029    uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1030        memory_region_size(&MACHINE(spapr)->device_memory->mr);
1031    uint32_t lrdr_capacity[] = {
1032        cpu_to_be32(max_device_addr >> 32),
1033        cpu_to_be32(max_device_addr & 0xffffffff),
1034        0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1035        cpu_to_be32(max_cpus / smp_threads),
1036    };
1037    uint32_t maxdomains[] = {
1038        cpu_to_be32(4),
1039        cpu_to_be32(0),
1040        cpu_to_be32(0),
1041        cpu_to_be32(0),
1042        cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1),
1043    };
1044
1045    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1046
1047    /* hypertas */
1048    add_str(hypertas, "hcall-pft");
1049    add_str(hypertas, "hcall-term");
1050    add_str(hypertas, "hcall-dabr");
1051    add_str(hypertas, "hcall-interrupt");
1052    add_str(hypertas, "hcall-tce");
1053    add_str(hypertas, "hcall-vio");
1054    add_str(hypertas, "hcall-splpar");
1055    add_str(hypertas, "hcall-bulk");
1056    add_str(hypertas, "hcall-set-mode");
1057    add_str(hypertas, "hcall-sprg0");
1058    add_str(hypertas, "hcall-copy");
1059    add_str(hypertas, "hcall-debug");
1060    add_str(hypertas, "hcall-vphn");
1061    add_str(qemu_hypertas, "hcall-memop1");
1062
1063    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1064        add_str(hypertas, "hcall-multi-tce");
1065    }
1066
1067    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1068        add_str(hypertas, "hcall-hpt-resize");
1069    }
1070
1071    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1072                     hypertas->str, hypertas->len));
1073    g_string_free(hypertas, TRUE);
1074    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1075                     qemu_hypertas->str, qemu_hypertas->len));
1076    g_string_free(qemu_hypertas, TRUE);
1077
1078    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1079                     refpoints, sizeof(refpoints)));
1080
1081    _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1082                     maxdomains, sizeof(maxdomains)));
1083
1084    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1085                          RTAS_ERROR_LOG_MAX));
1086    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1087                          RTAS_EVENT_SCAN_RATE));
1088
1089    g_assert(msi_nonbroken);
1090    _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1091
1092    /*
1093     * According to PAPR, rtas ibm,os-term does not guarantee a return
1094     * back to the guest cpu.
1095     *
1096     * While an additional ibm,extended-os-term property indicates
1097     * that rtas call return will always occur. Set this property.
1098     */
1099    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1100
1101    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1102                     lrdr_capacity, sizeof(lrdr_capacity)));
1103
1104    spapr_dt_rtas_tokens(fdt, rtas);
1105}
1106
1107/*
1108 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1109 * and the XIVE features that the guest may request and thus the valid
1110 * values for bytes 23..26 of option vector 5:
1111 */
1112static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1113                                          int chosen)
1114{
1115    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1116
1117    char val[2 * 4] = {
1118        23, spapr->irq->ov5, /* Xive mode. */
1119        24, 0x00, /* Hash/Radix, filled in below. */
1120        25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1121        26, 0x40, /* Radix options: GTSE == yes. */
1122    };
1123
1124    if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1125                          first_ppc_cpu->compat_pvr)) {
1126        /*
1127         * If we're in a pre POWER9 compat mode then the guest should
1128         * do hash and use the legacy interrupt mode
1129         */
1130        val[1] = 0x00; /* XICS */
1131        val[3] = 0x00; /* Hash */
1132    } else if (kvm_enabled()) {
1133        if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1134            val[3] = 0x80; /* OV5_MMU_BOTH */
1135        } else if (kvmppc_has_cap_mmu_radix()) {
1136            val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1137        } else {
1138            val[3] = 0x00; /* Hash */
1139        }
1140    } else {
1141        /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1142        val[3] = 0xC0;
1143    }
1144    _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1145                     val, sizeof(val)));
1146}
1147
1148static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1149{
1150    MachineState *machine = MACHINE(spapr);
1151    int chosen;
1152    const char *boot_device = machine->boot_order;
1153    char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1154    size_t cb = 0;
1155    char *bootlist = get_boot_devices_list(&cb);
1156
1157    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1158
1159    _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1160    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1161                          spapr->initrd_base));
1162    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1163                          spapr->initrd_base + spapr->initrd_size));
1164
1165    if (spapr->kernel_size) {
1166        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1167                              cpu_to_be64(spapr->kernel_size) };
1168
1169        _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1170                         &kprop, sizeof(kprop)));
1171        if (spapr->kernel_le) {
1172            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1173        }
1174    }
1175    if (boot_menu) {
1176        _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1177    }
1178    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1179    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1180    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1181
1182    if (cb && bootlist) {
1183        int i;
1184
1185        for (i = 0; i < cb; i++) {
1186            if (bootlist[i] == '\n') {
1187                bootlist[i] = ' ';
1188            }
1189        }
1190        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1191    }
1192
1193    if (boot_device && strlen(boot_device)) {
1194        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1195    }
1196
1197    if (!spapr->has_graphics && stdout_path) {
1198        /*
1199         * "linux,stdout-path" and "stdout" properties are deprecated by linux
1200         * kernel. New platforms should only use the "stdout-path" property. Set
1201         * the new property and continue using older property to remain
1202         * compatible with the existing firmware.
1203         */
1204        _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1205        _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1206    }
1207
1208    spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1209
1210    g_free(stdout_path);
1211    g_free(bootlist);
1212}
1213
1214static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1215{
1216    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1217     * KVM to work under pHyp with some guest co-operation */
1218    int hypervisor;
1219    uint8_t hypercall[16];
1220
1221    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1222    /* indicate KVM hypercall interface */
1223    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1224    if (kvmppc_has_cap_fixup_hcalls()) {
1225        /*
1226         * Older KVM versions with older guest kernels were broken
1227         * with the magic page, don't allow the guest to map it.
1228         */
1229        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1230                                  sizeof(hypercall))) {
1231            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1232                             hypercall, sizeof(hypercall)));
1233        }
1234    }
1235}
1236
1237static void *spapr_build_fdt(SpaprMachineState *spapr)
1238{
1239    MachineState *machine = MACHINE(spapr);
1240    MachineClass *mc = MACHINE_GET_CLASS(machine);
1241    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1242    int ret;
1243    void *fdt;
1244    SpaprPhbState *phb;
1245    char *buf;
1246
1247    fdt = g_malloc0(FDT_MAX_SIZE);
1248    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1249
1250    /* Root node */
1251    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1252    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1253    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1254
1255    /* Guest UUID & Name*/
1256    buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1257    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1258    if (qemu_uuid_set) {
1259        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1260    }
1261    g_free(buf);
1262
1263    if (qemu_get_vm_name()) {
1264        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1265                                qemu_get_vm_name()));
1266    }
1267
1268    /* Host Model & Serial Number */
1269    if (spapr->host_model) {
1270        _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1271    } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1272        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1273        g_free(buf);
1274    }
1275
1276    if (spapr->host_serial) {
1277        _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1278    } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1279        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1280        g_free(buf);
1281    }
1282
1283    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1284    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1285
1286    /* /interrupt controller */
1287    spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1288                          PHANDLE_INTC);
1289
1290    ret = spapr_populate_memory(spapr, fdt);
1291    if (ret < 0) {
1292        error_report("couldn't setup memory nodes in fdt");
1293        exit(1);
1294    }
1295
1296    /* /vdevice */
1297    spapr_dt_vdevice(spapr->vio_bus, fdt);
1298
1299    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1300        ret = spapr_rng_populate_dt(fdt);
1301        if (ret < 0) {
1302            error_report("could not set up rng device in the fdt");
1303            exit(1);
1304        }
1305    }
1306
1307    QLIST_FOREACH(phb, &spapr->phbs, list) {
1308        ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt,
1309                                    spapr->irq->nr_msis, NULL);
1310        if (ret < 0) {
1311            error_report("couldn't setup PCI devices in fdt");
1312            exit(1);
1313        }
1314    }
1315
1316    /* cpus */
1317    spapr_populate_cpus_dt_node(fdt, spapr);
1318
1319    if (smc->dr_lmb_enabled) {
1320        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1321    }
1322
1323    if (mc->has_hotpluggable_cpus) {
1324        int offset = fdt_path_offset(fdt, "/cpus");
1325        ret = spapr_drc_populate_dt(fdt, offset, NULL,
1326                                    SPAPR_DR_CONNECTOR_TYPE_CPU);
1327        if (ret < 0) {
1328            error_report("Couldn't set up CPU DR device tree properties");
1329            exit(1);
1330        }
1331    }
1332
1333    /* /event-sources */
1334    spapr_dt_events(spapr, fdt);
1335
1336    /* /rtas */
1337    spapr_dt_rtas(spapr, fdt);
1338
1339    /* /chosen */
1340    spapr_dt_chosen(spapr, fdt);
1341
1342    /* /hypervisor */
1343    if (kvm_enabled()) {
1344        spapr_dt_hypervisor(spapr, fdt);
1345    }
1346
1347    /* Build memory reserve map */
1348    if (spapr->kernel_size) {
1349        _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1350    }
1351    if (spapr->initrd_size) {
1352        _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1353    }
1354
1355    /* ibm,client-architecture-support updates */
1356    ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1357    if (ret < 0) {
1358        error_report("couldn't setup CAS properties fdt");
1359        exit(1);
1360    }
1361
1362    if (smc->dr_phb_enabled) {
1363        ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1364        if (ret < 0) {
1365            error_report("Couldn't set up PHB DR device tree properties");
1366            exit(1);
1367        }
1368    }
1369
1370    return fdt;
1371}
1372
1373static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1374{
1375    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1376}
1377
1378static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1379                                    PowerPCCPU *cpu)
1380{
1381    CPUPPCState *env = &cpu->env;
1382
1383    /* The TCG path should also be holding the BQL at this point */
1384    g_assert(qemu_mutex_iothread_locked());
1385
1386    if (msr_pr) {
1387        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1388        env->gpr[3] = H_PRIVILEGE;
1389    } else {
1390        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1391    }
1392}
1393
1394struct LPCRSyncState {
1395    target_ulong value;
1396    target_ulong mask;
1397};
1398
1399static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1400{
1401    struct LPCRSyncState *s = arg.host_ptr;
1402    PowerPCCPU *cpu = POWERPC_CPU(cs);
1403    CPUPPCState *env = &cpu->env;
1404    target_ulong lpcr;
1405
1406    cpu_synchronize_state(cs);
1407    lpcr = env->spr[SPR_LPCR];
1408    lpcr &= ~s->mask;
1409    lpcr |= s->value;
1410    ppc_store_lpcr(cpu, lpcr);
1411}
1412
1413void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1414{
1415    CPUState *cs;
1416    struct LPCRSyncState s = {
1417        .value = value,
1418        .mask = mask
1419    };
1420    CPU_FOREACH(cs) {
1421        run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1422    }
1423}
1424
1425static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1426{
1427    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1428
1429    /* Copy PATE1:GR into PATE0:HR */
1430    entry->dw0 = spapr->patb_entry & PATE0_HR;
1431    entry->dw1 = spapr->patb_entry;
1432}
1433
1434#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1435#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1436#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1437#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1438#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1439
1440/*
1441 * Get the fd to access the kernel htab, re-opening it if necessary
1442 */
1443static int get_htab_fd(SpaprMachineState *spapr)
1444{
1445    Error *local_err = NULL;
1446
1447    if (spapr->htab_fd >= 0) {
1448        return spapr->htab_fd;
1449    }
1450
1451    spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1452    if (spapr->htab_fd < 0) {
1453        error_report_err(local_err);
1454    }
1455
1456    return spapr->htab_fd;
1457}
1458
1459void close_htab_fd(SpaprMachineState *spapr)
1460{
1461    if (spapr->htab_fd >= 0) {
1462        close(spapr->htab_fd);
1463    }
1464    spapr->htab_fd = -1;
1465}
1466
1467static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1468{
1469    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1470
1471    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1472}
1473
1474static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1475{
1476    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1477
1478    assert(kvm_enabled());
1479
1480    if (!spapr->htab) {
1481        return 0;
1482    }
1483
1484    return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1485}
1486
1487static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1488                                                hwaddr ptex, int n)
1489{
1490    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1491    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1492
1493    if (!spapr->htab) {
1494        /*
1495         * HTAB is controlled by KVM. Fetch into temporary buffer
1496         */
1497        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1498        kvmppc_read_hptes(hptes, ptex, n);
1499        return hptes;
1500    }
1501
1502    /*
1503     * HTAB is controlled by QEMU. Just point to the internally
1504     * accessible PTEG.
1505     */
1506    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1507}
1508
1509static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1510                              const ppc_hash_pte64_t *hptes,
1511                              hwaddr ptex, int n)
1512{
1513    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1514
1515    if (!spapr->htab) {
1516        g_free((void *)hptes);
1517    }
1518
1519    /* Nothing to do for qemu managed HPT */
1520}
1521
1522static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1523                             uint64_t pte0, uint64_t pte1)
1524{
1525    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1526    hwaddr offset = ptex * HASH_PTE_SIZE_64;
1527
1528    if (!spapr->htab) {
1529        kvmppc_write_hpte(ptex, pte0, pte1);
1530    } else {
1531        if (pte0 & HPTE64_V_VALID) {
1532            stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1533            /*
1534             * When setting valid, we write PTE1 first. This ensures
1535             * proper synchronization with the reading code in
1536             * ppc_hash64_pteg_search()
1537             */
1538            smp_wmb();
1539            stq_p(spapr->htab + offset, pte0);
1540        } else {
1541            stq_p(spapr->htab + offset, pte0);
1542            /*
1543             * When clearing it we set PTE0 first. This ensures proper
1544             * synchronization with the reading code in
1545             * ppc_hash64_pteg_search()
1546             */
1547            smp_wmb();
1548            stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1549        }
1550    }
1551}
1552
1553int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1554{
1555    int shift;
1556
1557    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1558     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1559     * that's much more than is needed for Linux guests */
1560    shift = ctz64(pow2ceil(ramsize)) - 7;
1561    shift = MAX(shift, 18); /* Minimum architected size */
1562    shift = MIN(shift, 46); /* Maximum architected size */
1563    return shift;
1564}
1565
1566void spapr_free_hpt(SpaprMachineState *spapr)
1567{
1568    g_free(spapr->htab);
1569    spapr->htab = NULL;
1570    spapr->htab_shift = 0;
1571    close_htab_fd(spapr);
1572}
1573
1574void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1575                          Error **errp)
1576{
1577    long rc;
1578
1579    /* Clean up any HPT info from a previous boot */
1580    spapr_free_hpt(spapr);
1581
1582    rc = kvmppc_reset_htab(shift);
1583    if (rc < 0) {
1584        /* kernel-side HPT needed, but couldn't allocate one */
1585        error_setg_errno(errp, errno,
1586                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1587                         shift);
1588        /* This is almost certainly fatal, but if the caller really
1589         * wants to carry on with shift == 0, it's welcome to try */
1590    } else if (rc > 0) {
1591        /* kernel-side HPT allocated */
1592        if (rc != shift) {
1593            error_setg(errp,
1594                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1595                       shift, rc);
1596        }
1597
1598        spapr->htab_shift = shift;
1599        spapr->htab = NULL;
1600    } else {
1601        /* kernel-side HPT not needed, allocate in userspace instead */
1602        size_t size = 1ULL << shift;
1603        int i;
1604
1605        spapr->htab = qemu_memalign(size, size);
1606        if (!spapr->htab) {
1607            error_setg_errno(errp, errno,
1608                             "Could not allocate HPT of order %d", shift);
1609            return;
1610        }
1611
1612        memset(spapr->htab, 0, size);
1613        spapr->htab_shift = shift;
1614
1615        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1616            DIRTY_HPTE(HPTE(spapr->htab, i));
1617        }
1618    }
1619    /* We're setting up a hash table, so that means we're not radix */
1620    spapr->patb_entry = 0;
1621    spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1622}
1623
1624void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1625{
1626    int hpt_shift;
1627
1628    if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1629        || (spapr->cas_reboot
1630            && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1631        hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1632    } else {
1633        uint64_t current_ram_size;
1634
1635        current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1636        hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1637    }
1638    spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1639
1640    if (spapr->vrma_adjust) {
1641        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1642                                          spapr->htab_shift);
1643    }
1644}
1645
1646static int spapr_reset_drcs(Object *child, void *opaque)
1647{
1648    SpaprDrc *drc =
1649        (SpaprDrc *) object_dynamic_cast(child,
1650                                                 TYPE_SPAPR_DR_CONNECTOR);
1651
1652    if (drc) {
1653        spapr_drc_reset(drc);
1654    }
1655
1656    return 0;
1657}
1658
1659static void spapr_machine_reset(void)
1660{
1661    MachineState *machine = MACHINE(qdev_get_machine());
1662    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1663    PowerPCCPU *first_ppc_cpu;
1664    uint32_t rtas_limit;
1665    hwaddr rtas_addr, fdt_addr;
1666    void *fdt;
1667    int rc;
1668
1669    spapr_caps_apply(spapr);
1670
1671    first_ppc_cpu = POWERPC_CPU(first_cpu);
1672    if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1673        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1674                              spapr->max_compat_pvr)) {
1675        /*
1676         * If using KVM with radix mode available, VCPUs can be started
1677         * without a HPT because KVM will start them in radix mode.
1678         * Set the GR bit in PATE so that we know there is no HPT.
1679         */
1680        spapr->patb_entry = PATE1_GR;
1681        spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1682    } else {
1683        spapr_setup_hpt_and_vrma(spapr);
1684    }
1685
1686    /*
1687     * If this reset wasn't generated by CAS, we should reset our
1688     * negotiated options and start from scratch
1689     */
1690    if (!spapr->cas_reboot) {
1691        spapr_ovec_cleanup(spapr->ov5_cas);
1692        spapr->ov5_cas = spapr_ovec_new();
1693
1694        ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1695    }
1696
1697    if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1698        spapr_irq_msi_reset(spapr);
1699    }
1700
1701    qemu_devices_reset();
1702
1703    /*
1704     * This is fixing some of the default configuration of the XIVE
1705     * devices. To be called after the reset of the machine devices.
1706     */
1707    spapr_irq_reset(spapr, &error_fatal);
1708
1709    /*
1710     * There is no CAS under qtest. Simulate one to please the code that
1711     * depends on spapr->ov5_cas. This is especially needed to test device
1712     * unplug, so we do that before resetting the DRCs.
1713     */
1714    if (qtest_enabled()) {
1715        spapr_ovec_cleanup(spapr->ov5_cas);
1716        spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1717    }
1718
1719    /* DRC reset may cause a device to be unplugged. This will cause troubles
1720     * if this device is used by another device (eg, a running vhost backend
1721     * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1722     * situations, we reset DRCs after all devices have been reset.
1723     */
1724    object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1725
1726    spapr_clear_pending_events(spapr);
1727
1728    /*
1729     * We place the device tree and RTAS just below either the top of the RMA,
1730     * or just below 2GB, whichever is lower, so that it can be
1731     * processed with 32-bit real mode code if necessary
1732     */
1733    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1734    rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1735    fdt_addr = rtas_addr - FDT_MAX_SIZE;
1736
1737    fdt = spapr_build_fdt(spapr);
1738
1739    spapr_load_rtas(spapr, fdt, rtas_addr);
1740
1741    rc = fdt_pack(fdt);
1742
1743    /* Should only fail if we've built a corrupted tree */
1744    assert(rc == 0);
1745
1746    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1747        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1748                     fdt_totalsize(fdt), FDT_MAX_SIZE);
1749        exit(1);
1750    }
1751
1752    /* Load the fdt */
1753    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1754    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1755    g_free(spapr->fdt_blob);
1756    spapr->fdt_size = fdt_totalsize(fdt);
1757    spapr->fdt_initial_size = spapr->fdt_size;
1758    spapr->fdt_blob = fdt;
1759
1760    /* Set up the entry state */
1761    spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1762    first_ppc_cpu->env.gpr[5] = 0;
1763
1764    spapr->cas_reboot = false;
1765}
1766
1767static void spapr_create_nvram(SpaprMachineState *spapr)
1768{
1769    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1770    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1771
1772    if (dinfo) {
1773        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1774                            &error_fatal);
1775    }
1776
1777    qdev_init_nofail(dev);
1778
1779    spapr->nvram = (struct SpaprNvram *)dev;
1780}
1781
1782static void spapr_rtc_create(SpaprMachineState *spapr)
1783{
1784    object_initialize_child(OBJECT(spapr), "rtc",
1785                            &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1786                            &error_fatal, NULL);
1787    object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1788                              &error_fatal);
1789    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1790                              "date", &error_fatal);
1791}
1792
1793/* Returns whether we want to use VGA or not */
1794static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1795{
1796    switch (vga_interface_type) {
1797    case VGA_NONE:
1798        return false;
1799    case VGA_DEVICE:
1800        return true;
1801    case VGA_STD:
1802    case VGA_VIRTIO:
1803    case VGA_CIRRUS:
1804        return pci_vga_init(pci_bus) != NULL;
1805    default:
1806        error_setg(errp,
1807                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1808        return false;
1809    }
1810}
1811
1812static int spapr_pre_load(void *opaque)
1813{
1814    int rc;
1815
1816    rc = spapr_caps_pre_load(opaque);
1817    if (rc) {
1818        return rc;
1819    }
1820
1821    return 0;
1822}
1823
1824static int spapr_post_load(void *opaque, int version_id)
1825{
1826    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1827    int err = 0;
1828
1829    err = spapr_caps_post_migration(spapr);
1830    if (err) {
1831        return err;
1832    }
1833
1834    /*
1835     * In earlier versions, there was no separate qdev for the PAPR
1836     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1837     * So when migrating from those versions, poke the incoming offset
1838     * value into the RTC device
1839     */
1840    if (version_id < 3) {
1841        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1842        if (err) {
1843            return err;
1844        }
1845    }
1846
1847    if (kvm_enabled() && spapr->patb_entry) {
1848        PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1849        bool radix = !!(spapr->patb_entry & PATE1_GR);
1850        bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1851
1852        /*
1853         * Update LPCR:HR and UPRT as they may not be set properly in
1854         * the stream
1855         */
1856        spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1857                            LPCR_HR | LPCR_UPRT);
1858
1859        err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1860        if (err) {
1861            error_report("Process table config unsupported by the host");
1862            return -EINVAL;
1863        }
1864    }
1865
1866    err = spapr_irq_post_load(spapr, version_id);
1867    if (err) {
1868        return err;
1869    }
1870
1871    return err;
1872}
1873
1874static int spapr_pre_save(void *opaque)
1875{
1876    int rc;
1877
1878    rc = spapr_caps_pre_save(opaque);
1879    if (rc) {
1880        return rc;
1881    }
1882
1883    return 0;
1884}
1885
1886static bool version_before_3(void *opaque, int version_id)
1887{
1888    return version_id < 3;
1889}
1890
1891static bool spapr_pending_events_needed(void *opaque)
1892{
1893    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1894    return !QTAILQ_EMPTY(&spapr->pending_events);
1895}
1896
1897static const VMStateDescription vmstate_spapr_event_entry = {
1898    .name = "spapr_event_log_entry",
1899    .version_id = 1,
1900    .minimum_version_id = 1,
1901    .fields = (VMStateField[]) {
1902        VMSTATE_UINT32(summary, SpaprEventLogEntry),
1903        VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1904        VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1905                                     NULL, extended_length),
1906        VMSTATE_END_OF_LIST()
1907    },
1908};
1909
1910static const VMStateDescription vmstate_spapr_pending_events = {
1911    .name = "spapr_pending_events",
1912    .version_id = 1,
1913    .minimum_version_id = 1,
1914    .needed = spapr_pending_events_needed,
1915    .fields = (VMStateField[]) {
1916        VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1917                         vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1918        VMSTATE_END_OF_LIST()
1919    },
1920};
1921
1922static bool spapr_ov5_cas_needed(void *opaque)
1923{
1924    SpaprMachineState *spapr = opaque;
1925    SpaprOptionVector *ov5_mask = spapr_ovec_new();
1926    SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1927    SpaprOptionVector *ov5_removed = spapr_ovec_new();
1928    bool cas_needed;
1929
1930    /* Prior to the introduction of SpaprOptionVector, we had two option
1931     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1932     * Both of these options encode machine topology into the device-tree
1933     * in such a way that the now-booted OS should still be able to interact
1934     * appropriately with QEMU regardless of what options were actually
1935     * negotiatied on the source side.
1936     *
1937     * As such, we can avoid migrating the CAS-negotiated options if these
1938     * are the only options available on the current machine/platform.
1939     * Since these are the only options available for pseries-2.7 and
1940     * earlier, this allows us to maintain old->new/new->old migration
1941     * compatibility.
1942     *
1943     * For QEMU 2.8+, there are additional CAS-negotiatable options available
1944     * via default pseries-2.8 machines and explicit command-line parameters.
1945     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1946     * of the actual CAS-negotiated values to continue working properly. For
1947     * example, availability of memory unplug depends on knowing whether
1948     * OV5_HP_EVT was negotiated via CAS.
1949     *
1950     * Thus, for any cases where the set of available CAS-negotiatable
1951     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1952     * include the CAS-negotiated options in the migration stream, unless
1953     * if they affect boot time behaviour only.
1954     */
1955    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1956    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1957    spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1958
1959    /* spapr_ovec_diff returns true if bits were removed. we avoid using
1960     * the mask itself since in the future it's possible "legacy" bits may be
1961     * removed via machine options, which could generate a false positive
1962     * that breaks migration.
1963     */
1964    spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1965    cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1966
1967    spapr_ovec_cleanup(ov5_mask);
1968    spapr_ovec_cleanup(ov5_legacy);
1969    spapr_ovec_cleanup(ov5_removed);
1970
1971    return cas_needed;
1972}
1973
1974static const VMStateDescription vmstate_spapr_ov5_cas = {
1975    .name = "spapr_option_vector_ov5_cas",
1976    .version_id = 1,
1977    .minimum_version_id = 1,
1978    .needed = spapr_ov5_cas_needed,
1979    .fields = (VMStateField[]) {
1980        VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1981                                 vmstate_spapr_ovec, SpaprOptionVector),
1982        VMSTATE_END_OF_LIST()
1983    },
1984};
1985
1986static bool spapr_patb_entry_needed(void *opaque)
1987{
1988    SpaprMachineState *spapr = opaque;
1989
1990    return !!spapr->patb_entry;
1991}
1992
1993static const VMStateDescription vmstate_spapr_patb_entry = {
1994    .name = "spapr_patb_entry",
1995    .version_id = 1,
1996    .minimum_version_id = 1,
1997    .needed = spapr_patb_entry_needed,
1998    .fields = (VMStateField[]) {
1999        VMSTATE_UINT64(patb_entry, SpaprMachineState),
2000        VMSTATE_END_OF_LIST()
2001    },
2002};
2003
2004static bool spapr_irq_map_needed(void *opaque)
2005{
2006    SpaprMachineState *spapr = opaque;
2007
2008    return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2009}
2010
2011static const VMStateDescription vmstate_spapr_irq_map = {
2012    .name = "spapr_irq_map",
2013    .version_id = 1,
2014    .minimum_version_id = 1,
2015    .needed = spapr_irq_map_needed,
2016    .fields = (VMStateField[]) {
2017        VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2018        VMSTATE_END_OF_LIST()
2019    },
2020};
2021
2022static bool spapr_dtb_needed(void *opaque)
2023{
2024    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2025
2026    return smc->update_dt_enabled;
2027}
2028
2029static int spapr_dtb_pre_load(void *opaque)
2030{
2031    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2032
2033    g_free(spapr->fdt_blob);
2034    spapr->fdt_blob = NULL;
2035    spapr->fdt_size = 0;
2036
2037    return 0;
2038}
2039
2040static const VMStateDescription vmstate_spapr_dtb = {
2041    .name = "spapr_dtb",
2042    .version_id = 1,
2043    .minimum_version_id = 1,
2044    .needed = spapr_dtb_needed,
2045    .pre_load = spapr_dtb_pre_load,
2046    .fields = (VMStateField[]) {
2047        VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2048        VMSTATE_UINT32(fdt_size, SpaprMachineState),
2049        VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2050                                     fdt_size),
2051        VMSTATE_END_OF_LIST()
2052    },
2053};
2054
2055static const VMStateDescription vmstate_spapr = {
2056    .name = "spapr",
2057    .version_id = 3,
2058    .minimum_version_id = 1,
2059    .pre_load = spapr_pre_load,
2060    .post_load = spapr_post_load,
2061    .pre_save = spapr_pre_save,
2062    .fields = (VMStateField[]) {
2063        /* used to be @next_irq */
2064        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2065
2066        /* RTC offset */
2067        VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2068
2069        VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2070        VMSTATE_END_OF_LIST()
2071    },
2072    .subsections = (const VMStateDescription*[]) {
2073        &vmstate_spapr_ov5_cas,
2074        &vmstate_spapr_patb_entry,
2075        &vmstate_spapr_pending_events,
2076        &vmstate_spapr_cap_htm,
2077        &vmstate_spapr_cap_vsx,
2078        &vmstate_spapr_cap_dfp,
2079        &vmstate_spapr_cap_cfpc,
2080        &vmstate_spapr_cap_sbbc,
2081        &vmstate_spapr_cap_ibs,
2082        &vmstate_spapr_irq_map,
2083        &vmstate_spapr_cap_nested_kvm_hv,
2084        &vmstate_spapr_dtb,
2085        &vmstate_spapr_cap_large_decr,
2086        &vmstate_spapr_cap_ccf_assist,
2087        NULL
2088    }
2089};
2090
2091static int htab_save_setup(QEMUFile *f, void *opaque)
2092{
2093    SpaprMachineState *spapr = opaque;
2094
2095    /* "Iteration" header */
2096    if (!spapr->htab_shift) {
2097        qemu_put_be32(f, -1);
2098    } else {
2099        qemu_put_be32(f, spapr->htab_shift);
2100    }
2101
2102    if (spapr->htab) {
2103        spapr->htab_save_index = 0;
2104        spapr->htab_first_pass = true;
2105    } else {
2106        if (spapr->htab_shift) {
2107            assert(kvm_enabled());
2108        }
2109    }
2110
2111
2112    return 0;
2113}
2114
2115static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2116                            int chunkstart, int n_valid, int n_invalid)
2117{
2118    qemu_put_be32(f, chunkstart);
2119    qemu_put_be16(f, n_valid);
2120    qemu_put_be16(f, n_invalid);
2121    qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2122                    HASH_PTE_SIZE_64 * n_valid);
2123}
2124
2125static void htab_save_end_marker(QEMUFile *f)
2126{
2127    qemu_put_be32(f, 0);
2128    qemu_put_be16(f, 0);
2129    qemu_put_be16(f, 0);
2130}
2131
2132static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2133                                 int64_t max_ns)
2134{
2135    bool has_timeout = max_ns != -1;
2136    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2137    int index = spapr->htab_save_index;
2138    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2139
2140    assert(spapr->htab_first_pass);
2141
2142    do {
2143        int chunkstart;
2144
2145        /* Consume invalid HPTEs */
2146        while ((index < htabslots)
2147               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2148            CLEAN_HPTE(HPTE(spapr->htab, index));
2149            index++;
2150        }
2151
2152        /* Consume valid HPTEs */
2153        chunkstart = index;
2154        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2155               && HPTE_VALID(HPTE(spapr->htab, index))) {
2156            CLEAN_HPTE(HPTE(spapr->htab, index));
2157            index++;
2158        }
2159
2160        if (index > chunkstart) {
2161            int n_valid = index - chunkstart;
2162
2163            htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2164
2165            if (has_timeout &&
2166                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2167                break;
2168            }
2169        }
2170    } while ((index < htabslots) && !qemu_file_rate_limit(f));
2171
2172    if (index >= htabslots) {
2173        assert(index == htabslots);
2174        index = 0;
2175        spapr->htab_first_pass = false;
2176    }
2177    spapr->htab_save_index = index;
2178}
2179
2180static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2181                                int64_t max_ns)
2182{
2183    bool final = max_ns < 0;
2184    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2185    int examined = 0, sent = 0;
2186    int index = spapr->htab_save_index;
2187    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2188
2189    assert(!spapr->htab_first_pass);
2190
2191    do {
2192        int chunkstart, invalidstart;
2193
2194        /* Consume non-dirty HPTEs */
2195        while ((index < htabslots)
2196               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2197            index++;
2198            examined++;
2199        }
2200
2201        chunkstart = index;
2202        /* Consume valid dirty HPTEs */
2203        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2204               && HPTE_DIRTY(HPTE(spapr->htab, index))
2205               && HPTE_VALID(HPTE(spapr->htab, index))) {
2206            CLEAN_HPTE(HPTE(spapr->htab, index));
2207            index++;
2208            examined++;
2209        }
2210
2211        invalidstart = index;
2212        /* Consume invalid dirty HPTEs */
2213        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2214               && HPTE_DIRTY(HPTE(spapr->htab, index))
2215               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2216            CLEAN_HPTE(HPTE(spapr->htab, index));
2217            index++;
2218            examined++;
2219        }
2220
2221        if (index > chunkstart) {
2222            int n_valid = invalidstart - chunkstart;
2223            int n_invalid = index - invalidstart;
2224
2225            htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2226            sent += index - chunkstart;
2227
2228            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2229                break;
2230            }
2231        }
2232
2233        if (examined >= htabslots) {
2234            break;
2235        }
2236
2237        if (index >= htabslots) {
2238            assert(index == htabslots);
2239            index = 0;
2240        }
2241    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2242
2243    if (index >= htabslots) {
2244        assert(index == htabslots);
2245        index = 0;
2246    }
2247
2248    spapr->htab_save_index = index;
2249
2250    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2251}
2252
2253#define MAX_ITERATION_NS    5000000 /* 5 ms */
2254#define MAX_KVM_BUF_SIZE    2048
2255
2256static int htab_save_iterate(QEMUFile *f, void *opaque)
2257{
2258    SpaprMachineState *spapr = opaque;
2259    int fd;
2260    int rc = 0;
2261
2262    /* Iteration header */
2263    if (!spapr->htab_shift) {
2264        qemu_put_be32(f, -1);
2265        return 1;
2266    } else {
2267        qemu_put_be32(f, 0);
2268    }
2269
2270    if (!spapr->htab) {
2271        assert(kvm_enabled());
2272
2273        fd = get_htab_fd(spapr);
2274        if (fd < 0) {
2275            return fd;
2276        }
2277
2278        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2279        if (rc < 0) {
2280            return rc;
2281        }
2282    } else  if (spapr->htab_first_pass) {
2283        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2284    } else {
2285        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2286    }
2287
2288    htab_save_end_marker(f);
2289
2290    return rc;
2291}
2292
2293static int htab_save_complete(QEMUFile *f, void *opaque)
2294{
2295    SpaprMachineState *spapr = opaque;
2296    int fd;
2297
2298    /* Iteration header */
2299    if (!spapr->htab_shift) {
2300        qemu_put_be32(f, -1);
2301        return 0;
2302    } else {
2303        qemu_put_be32(f, 0);
2304    }
2305
2306    if (!spapr->htab) {
2307        int rc;
2308
2309        assert(kvm_enabled());
2310
2311        fd = get_htab_fd(spapr);
2312        if (fd < 0) {
2313            return fd;
2314        }
2315
2316        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2317        if (rc < 0) {
2318            return rc;
2319        }
2320    } else {
2321        if (spapr->htab_first_pass) {
2322            htab_save_first_pass(f, spapr, -1);
2323        }
2324        htab_save_later_pass(f, spapr, -1);
2325    }
2326
2327    /* End marker */
2328    htab_save_end_marker(f);
2329
2330    return 0;
2331}
2332
2333static int htab_load(QEMUFile *f, void *opaque, int version_id)
2334{
2335    SpaprMachineState *spapr = opaque;
2336    uint32_t section_hdr;
2337    int fd = -1;
2338    Error *local_err = NULL;
2339
2340    if (version_id < 1 || version_id > 1) {
2341        error_report("htab_load() bad version");
2342        return -EINVAL;
2343    }
2344
2345    section_hdr = qemu_get_be32(f);
2346
2347    if (section_hdr == -1) {
2348        spapr_free_hpt(spapr);
2349        return 0;
2350    }
2351
2352    if (section_hdr) {
2353        /* First section gives the htab size */
2354        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2355        if (local_err) {
2356            error_report_err(local_err);
2357            return -EINVAL;
2358        }
2359        return 0;
2360    }
2361
2362    if (!spapr->htab) {
2363        assert(kvm_enabled());
2364
2365        fd = kvmppc_get_htab_fd(true, 0, &local_err);
2366        if (fd < 0) {
2367            error_report_err(local_err);
2368            return fd;
2369        }
2370    }
2371
2372    while (true) {
2373        uint32_t index;
2374        uint16_t n_valid, n_invalid;
2375
2376        index = qemu_get_be32(f);
2377        n_valid = qemu_get_be16(f);
2378        n_invalid = qemu_get_be16(f);
2379
2380        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2381            /* End of Stream */
2382            break;
2383        }
2384
2385        if ((index + n_valid + n_invalid) >
2386            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2387            /* Bad index in stream */
2388            error_report(
2389                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2390                index, n_valid, n_invalid, spapr->htab_shift);
2391            return -EINVAL;
2392        }
2393
2394        if (spapr->htab) {
2395            if (n_valid) {
2396                qemu_get_buffer(f, HPTE(spapr->htab, index),
2397                                HASH_PTE_SIZE_64 * n_valid);
2398            }
2399            if (n_invalid) {
2400                memset(HPTE(spapr->htab, index + n_valid), 0,
2401                       HASH_PTE_SIZE_64 * n_invalid);
2402            }
2403        } else {
2404            int rc;
2405
2406            assert(fd >= 0);
2407
2408            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2409            if (rc < 0) {
2410                return rc;
2411            }
2412        }
2413    }
2414
2415    if (!spapr->htab) {
2416        assert(fd >= 0);
2417        close(fd);
2418    }
2419
2420    return 0;
2421}
2422
2423static void htab_save_cleanup(void *opaque)
2424{
2425    SpaprMachineState *spapr = opaque;
2426
2427    close_htab_fd(spapr);
2428}
2429
2430static SaveVMHandlers savevm_htab_handlers = {
2431    .save_setup = htab_save_setup,
2432    .save_live_iterate = htab_save_iterate,
2433    .save_live_complete_precopy = htab_save_complete,
2434    .save_cleanup = htab_save_cleanup,
2435    .load_state = htab_load,
2436};
2437
2438static void spapr_boot_set(void *opaque, const char *boot_device,
2439                           Error **errp)
2440{
2441    MachineState *machine = MACHINE(opaque);
2442    machine->boot_order = g_strdup(boot_device);
2443}
2444
2445static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2446{
2447    MachineState *machine = MACHINE(spapr);
2448    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2449    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2450    int i;
2451
2452    for (i = 0; i < nr_lmbs; i++) {
2453        uint64_t addr;
2454
2455        addr = i * lmb_size + machine->device_memory->base;
2456        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2457                               addr / lmb_size);
2458    }
2459}
2460
2461/*
2462 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2463 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2464 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2465 */
2466static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2467{
2468    int i;
2469
2470    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2471        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2472                   " is not aligned to %" PRIu64 " MiB",
2473                   machine->ram_size,
2474                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2475        return;
2476    }
2477
2478    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2479        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2480                   " is not aligned to %" PRIu64 " MiB",
2481                   machine->ram_size,
2482                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2483        return;
2484    }
2485
2486    for (i = 0; i < nb_numa_nodes; i++) {
2487        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2488            error_setg(errp,
2489                       "Node %d memory size 0x%" PRIx64
2490                       " is not aligned to %" PRIu64 " MiB",
2491                       i, numa_info[i].node_mem,
2492                       SPAPR_MEMORY_BLOCK_SIZE / MiB);
2493            return;
2494        }
2495    }
2496}
2497
2498/* find cpu slot in machine->possible_cpus by core_id */
2499static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2500{
2501    int index = id / smp_threads;
2502
2503    if (index >= ms->possible_cpus->len) {
2504        return NULL;
2505    }
2506    if (idx) {
2507        *idx = index;
2508    }
2509    return &ms->possible_cpus->cpus[index];
2510}
2511
2512static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2513{
2514    Error *local_err = NULL;
2515    bool vsmt_user = !!spapr->vsmt;
2516    int kvm_smt = kvmppc_smt_threads();
2517    int ret;
2518
2519    if (!kvm_enabled() && (smp_threads > 1)) {
2520        error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2521                     "on a pseries machine");
2522        goto out;
2523    }
2524    if (!is_power_of_2(smp_threads)) {
2525        error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2526                     "machine because it must be a power of 2", smp_threads);
2527        goto out;
2528    }
2529
2530    /* Detemine the VSMT mode to use: */
2531    if (vsmt_user) {
2532        if (spapr->vsmt < smp_threads) {
2533            error_setg(&local_err, "Cannot support VSMT mode %d"
2534                         " because it must be >= threads/core (%d)",
2535                         spapr->vsmt, smp_threads);
2536            goto out;
2537        }
2538        /* In this case, spapr->vsmt has been set by the command line */
2539    } else {
2540        /*
2541         * Default VSMT value is tricky, because we need it to be as
2542         * consistent as possible (for migration), but this requires
2543         * changing it for at least some existing cases.  We pick 8 as
2544         * the value that we'd get with KVM on POWER8, the
2545         * overwhelmingly common case in production systems.
2546         */
2547        spapr->vsmt = MAX(8, smp_threads);
2548    }
2549
2550    /* KVM: If necessary, set the SMT mode: */
2551    if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2552        ret = kvmppc_set_smt_threads(spapr->vsmt);
2553        if (ret) {
2554            /* Looks like KVM isn't able to change VSMT mode */
2555            error_setg(&local_err,
2556                       "Failed to set KVM's VSMT mode to %d (errno %d)",
2557                       spapr->vsmt, ret);
2558            /* We can live with that if the default one is big enough
2559             * for the number of threads, and a submultiple of the one
2560             * we want.  In this case we'll waste some vcpu ids, but
2561             * behaviour will be correct */
2562            if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2563                warn_report_err(local_err);
2564                local_err = NULL;
2565                goto out;
2566            } else {
2567                if (!vsmt_user) {
2568                    error_append_hint(&local_err,
2569                                      "On PPC, a VM with %d threads/core"
2570                                      " on a host with %d threads/core"
2571                                      " requires the use of VSMT mode %d.\n",
2572                                      smp_threads, kvm_smt, spapr->vsmt);
2573                }
2574                kvmppc_hint_smt_possible(&local_err);
2575                goto out;
2576            }
2577        }
2578    }
2579    /* else TCG: nothing to do currently */
2580out:
2581    error_propagate(errp, local_err);
2582}
2583
2584static void spapr_init_cpus(SpaprMachineState *spapr)
2585{
2586    MachineState *machine = MACHINE(spapr);
2587    MachineClass *mc = MACHINE_GET_CLASS(machine);
2588    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2589    const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2590    const CPUArchIdList *possible_cpus;
2591    int boot_cores_nr = smp_cpus / smp_threads;
2592    int i;
2593
2594    possible_cpus = mc->possible_cpu_arch_ids(machine);
2595    if (mc->has_hotpluggable_cpus) {
2596        if (smp_cpus % smp_threads) {
2597            error_report("smp_cpus (%u) must be multiple of threads (%u)",
2598                         smp_cpus, smp_threads);
2599            exit(1);
2600        }
2601        if (max_cpus % smp_threads) {
2602            error_report("max_cpus (%u) must be multiple of threads (%u)",
2603                         max_cpus, smp_threads);
2604            exit(1);
2605        }
2606    } else {
2607        if (max_cpus != smp_cpus) {
2608            error_report("This machine version does not support CPU hotplug");
2609            exit(1);
2610        }
2611        boot_cores_nr = possible_cpus->len;
2612    }
2613
2614    if (smc->pre_2_10_has_unused_icps) {
2615        int i;
2616
2617        for (i = 0; i < spapr_max_server_number(spapr); i++) {
2618            /* Dummy entries get deregistered when real ICPState objects
2619             * are registered during CPU core hotplug.
2620             */
2621            pre_2_10_vmstate_register_dummy_icp(i);
2622        }
2623    }
2624
2625    for (i = 0; i < possible_cpus->len; i++) {
2626        int core_id = i * smp_threads;
2627
2628        if (mc->has_hotpluggable_cpus) {
2629            spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2630                                   spapr_vcpu_id(spapr, core_id));
2631        }
2632
2633        if (i < boot_cores_nr) {
2634            Object *core  = object_new(type);
2635            int nr_threads = smp_threads;
2636
2637            /* Handle the partially filled core for older machine types */
2638            if ((i + 1) * smp_threads >= smp_cpus) {
2639                nr_threads = smp_cpus - i * smp_threads;
2640            }
2641
2642            object_property_set_int(core, nr_threads, "nr-threads",
2643                                    &error_fatal);
2644            object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2645                                    &error_fatal);
2646            object_property_set_bool(core, true, "realized", &error_fatal);
2647
2648            object_unref(core);
2649        }
2650    }
2651}
2652
2653static PCIHostState *spapr_create_default_phb(void)
2654{
2655    DeviceState *dev;
2656
2657    dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2658    qdev_prop_set_uint32(dev, "index", 0);
2659    qdev_init_nofail(dev);
2660
2661    return PCI_HOST_BRIDGE(dev);
2662}
2663
2664/* pSeries LPAR / sPAPR hardware init */
2665static void spapr_machine_init(MachineState *machine)
2666{
2667    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2668    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2669    const char *kernel_filename = machine->kernel_filename;
2670    const char *initrd_filename = machine->initrd_filename;
2671    PCIHostState *phb;
2672    int i;
2673    MemoryRegion *sysmem = get_system_memory();
2674    MemoryRegion *ram = g_new(MemoryRegion, 1);
2675    hwaddr node0_size = spapr_node0_size(machine);
2676    long load_limit, fw_size;
2677    char *filename;
2678    Error *resize_hpt_err = NULL;
2679
2680    msi_nonbroken = true;
2681
2682    QLIST_INIT(&spapr->phbs);
2683    QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2684
2685    /* Determine capabilities to run with */
2686    spapr_caps_init(spapr);
2687
2688    kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2689    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2690        /*
2691         * If the user explicitly requested a mode we should either
2692         * supply it, or fail completely (which we do below).  But if
2693         * it's not set explicitly, we reset our mode to something
2694         * that works
2695         */
2696        if (resize_hpt_err) {
2697            spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2698            error_free(resize_hpt_err);
2699            resize_hpt_err = NULL;
2700        } else {
2701            spapr->resize_hpt = smc->resize_hpt_default;
2702        }
2703    }
2704
2705    assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2706
2707    if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2708        /*
2709         * User requested HPT resize, but this host can't supply it.  Bail out
2710         */
2711        error_report_err(resize_hpt_err);
2712        exit(1);
2713    }
2714
2715    spapr->rma_size = node0_size;
2716
2717    /* With KVM, we don't actually know whether KVM supports an
2718     * unbounded RMA (PR KVM) or is limited by the hash table size
2719     * (HV KVM using VRMA), so we always assume the latter
2720     *
2721     * In that case, we also limit the initial allocations for RTAS
2722     * etc... to 256M since we have no way to know what the VRMA size
2723     * is going to be as it depends on the size of the hash table
2724     * which isn't determined yet.
2725     */
2726    if (kvm_enabled()) {
2727        spapr->vrma_adjust = 1;
2728        spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2729    }
2730
2731    /* Actually we don't support unbounded RMA anymore since we added
2732     * proper emulation of HV mode. The max we can get is 16G which
2733     * also happens to be what we configure for PAPR mode so make sure
2734     * we don't do anything bigger than that
2735     */
2736    spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2737
2738    if (spapr->rma_size > node0_size) {
2739        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2740                     spapr->rma_size);
2741        exit(1);
2742    }
2743
2744    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2745    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2746
2747    /*
2748     * VSMT must be set in order to be able to compute VCPU ids, ie to
2749     * call spapr_max_server_number() or spapr_vcpu_id().
2750     */
2751    spapr_set_vsmt_mode(spapr, &error_fatal);
2752
2753    /* Set up Interrupt Controller before we create the VCPUs */
2754    spapr_irq_init(spapr, &error_fatal);
2755
2756    /* Set up containers for ibm,client-architecture-support negotiated options
2757     */
2758    spapr->ov5 = spapr_ovec_new();
2759    spapr->ov5_cas = spapr_ovec_new();
2760
2761    if (smc->dr_lmb_enabled) {
2762        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2763        spapr_validate_node_memory(machine, &error_fatal);
2764    }
2765
2766    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2767
2768    /* advertise support for dedicated HP event source to guests */
2769    if (spapr->use_hotplug_event_source) {
2770        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2771    }
2772
2773    /* advertise support for HPT resizing */
2774    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2775        spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2776    }
2777
2778    /* advertise support for ibm,dyamic-memory-v2 */
2779    spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2780
2781    /* advertise XIVE on POWER9 machines */
2782    if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2783        spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2784    }
2785
2786    /* init CPUs */
2787    spapr_init_cpus(spapr);
2788
2789    if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2790        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2791                              spapr->max_compat_pvr)) {
2792        /* KVM and TCG always allow GTSE with radix... */
2793        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2794    }
2795    /* ... but not with hash (currently). */
2796
2797    if (kvm_enabled()) {
2798        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2799        kvmppc_enable_logical_ci_hcalls();
2800        kvmppc_enable_set_mode_hcall();
2801
2802        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2803        kvmppc_enable_clear_ref_mod_hcalls();
2804
2805        /* Enable H_PAGE_INIT */
2806        kvmppc_enable_h_page_init();
2807    }
2808
2809    /* allocate RAM */
2810    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2811                                         machine->ram_size);
2812    memory_region_add_subregion(sysmem, 0, ram);
2813
2814    /* always allocate the device memory information */
2815    machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2816
2817    /* initialize hotplug memory address space */
2818    if (machine->ram_size < machine->maxram_size) {
2819        ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2820        /*
2821         * Limit the number of hotpluggable memory slots to half the number
2822         * slots that KVM supports, leaving the other half for PCI and other
2823         * devices. However ensure that number of slots doesn't drop below 32.
2824         */
2825        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2826                           SPAPR_MAX_RAM_SLOTS;
2827
2828        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2829            max_memslots = SPAPR_MAX_RAM_SLOTS;
2830        }
2831        if (machine->ram_slots > max_memslots) {
2832            error_report("Specified number of memory slots %"
2833                         PRIu64" exceeds max supported %d",
2834                         machine->ram_slots, max_memslots);
2835            exit(1);
2836        }
2837
2838        machine->device_memory->base = ROUND_UP(machine->ram_size,
2839                                                SPAPR_DEVICE_MEM_ALIGN);
2840        memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2841                           "device-memory", device_mem_size);
2842        memory_region_add_subregion(sysmem, machine->device_memory->base,
2843                                    &machine->device_memory->mr);
2844    }
2845
2846    if (smc->dr_lmb_enabled) {
2847        spapr_create_lmb_dr_connectors(spapr);
2848    }
2849
2850    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2851    if (!filename) {
2852        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2853        exit(1);
2854    }
2855    spapr->rtas_size = get_image_size(filename);
2856    if (spapr->rtas_size < 0) {
2857        error_report("Could not get size of LPAR rtas '%s'", filename);
2858        exit(1);
2859    }
2860    spapr->rtas_blob = g_malloc(spapr->rtas_size);
2861    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2862        error_report("Could not load LPAR rtas '%s'", filename);
2863        exit(1);
2864    }
2865    if (spapr->rtas_size > RTAS_MAX_SIZE) {
2866        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2867                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2868        exit(1);
2869    }
2870    g_free(filename);
2871
2872    /* Set up RTAS event infrastructure */
2873    spapr_events_init(spapr);
2874
2875    /* Set up the RTC RTAS interfaces */
2876    spapr_rtc_create(spapr);
2877
2878    /* Set up VIO bus */
2879    spapr->vio_bus = spapr_vio_bus_init();
2880
2881    for (i = 0; i < serial_max_hds(); i++) {
2882        if (serial_hd(i)) {
2883            spapr_vty_create(spapr->vio_bus, serial_hd(i));
2884        }
2885    }
2886
2887    /* We always have at least the nvram device on VIO */
2888    spapr_create_nvram(spapr);
2889
2890    /*
2891     * Setup hotplug / dynamic-reconfiguration connectors. top-level
2892     * connectors (described in root DT node's "ibm,drc-types" property)
2893     * are pre-initialized here. additional child connectors (such as
2894     * connectors for a PHBs PCI slots) are added as needed during their
2895     * parent's realization.
2896     */
2897    if (smc->dr_phb_enabled) {
2898        for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2899            spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2900        }
2901    }
2902
2903    /* Set up PCI */
2904    spapr_pci_rtas_init();
2905
2906    phb = spapr_create_default_phb();
2907
2908    for (i = 0; i < nb_nics; i++) {
2909        NICInfo *nd = &nd_table[i];
2910
2911        if (!nd->model) {
2912            nd->model = g_strdup("spapr-vlan");
2913        }
2914
2915        if (g_str_equal(nd->model, "spapr-vlan") ||
2916            g_str_equal(nd->model, "ibmveth")) {
2917            spapr_vlan_create(spapr->vio_bus, nd);
2918        } else {
2919            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2920        }
2921    }
2922
2923    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2924        spapr_vscsi_create(spapr->vio_bus);
2925    }
2926
2927    /* Graphics */
2928    if (spapr_vga_init(phb->bus, &error_fatal)) {
2929        spapr->has_graphics = true;
2930        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2931    }
2932
2933    if (machine->usb) {
2934        if (smc->use_ohci_by_default) {
2935            pci_create_simple(phb->bus, -1, "pci-ohci");
2936        } else {
2937            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2938        }
2939
2940        if (spapr->has_graphics) {
2941            USBBus *usb_bus = usb_bus_find(-1);
2942
2943            usb_create_simple(usb_bus, "usb-kbd");
2944            usb_create_simple(usb_bus, "usb-mouse");
2945        }
2946    }
2947
2948    if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2949        error_report(
2950            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2951            MIN_RMA_SLOF);
2952        exit(1);
2953    }
2954
2955    if (kernel_filename) {
2956        uint64_t lowaddr = 0;
2957
2958        spapr->kernel_size = load_elf(kernel_filename, NULL,
2959                                      translate_kernel_address, NULL,
2960                                      NULL, &lowaddr, NULL, 1,
2961                                      PPC_ELF_MACHINE, 0, 0);
2962        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2963            spapr->kernel_size = load_elf(kernel_filename, NULL,
2964                                          translate_kernel_address, NULL, NULL,
2965                                          &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2966                                          0, 0);
2967            spapr->kernel_le = spapr->kernel_size > 0;
2968        }
2969        if (spapr->kernel_size < 0) {
2970            error_report("error loading %s: %s", kernel_filename,
2971                         load_elf_strerror(spapr->kernel_size));
2972            exit(1);
2973        }
2974
2975        /* load initrd */
2976        if (initrd_filename) {
2977            /* Try to locate the initrd in the gap between the kernel
2978             * and the firmware. Add a bit of space just in case
2979             */
2980            spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2981                                  + 0x1ffff) & ~0xffff;
2982            spapr->initrd_size = load_image_targphys(initrd_filename,
2983                                                     spapr->initrd_base,
2984                                                     load_limit
2985                                                     - spapr->initrd_base);
2986            if (spapr->initrd_size < 0) {
2987                error_report("could not load initial ram disk '%s'",
2988                             initrd_filename);
2989                exit(1);
2990            }
2991        }
2992    }
2993
2994    if (bios_name == NULL) {
2995        bios_name = FW_FILE_NAME;
2996    }
2997    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2998    if (!filename) {
2999        error_report("Could not find LPAR firmware '%s'", bios_name);
3000        exit(1);
3001    }
3002    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3003    if (fw_size <= 0) {
3004        error_report("Could not load LPAR firmware '%s'", filename);
3005        exit(1);
3006    }
3007    g_free(filename);
3008
3009    /* FIXME: Should register things through the MachineState's qdev
3010     * interface, this is a legacy from the sPAPREnvironment structure
3011     * which predated MachineState but had a similar function */
3012    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3013    register_savevm_live(NULL, "spapr/htab", -1, 1,
3014                         &savevm_htab_handlers, spapr);
3015
3016    qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3017                             &error_fatal);
3018
3019    qemu_register_boot_set(spapr_boot_set, spapr);
3020
3021    if (kvm_enabled()) {
3022        /* to stop and start vmclock */
3023        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3024                                         &spapr->tb);
3025
3026        kvmppc_spapr_enable_inkernel_multitce();
3027    }
3028}
3029
3030static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3031{
3032    if (!vm_type) {
3033        return 0;
3034    }
3035
3036    if (!strcmp(vm_type, "HV")) {
3037        return 1;
3038    }
3039
3040    if (!strcmp(vm_type, "PR")) {
3041        return 2;
3042    }
3043
3044    error_report("Unknown kvm-type specified '%s'", vm_type);
3045    exit(1);
3046}
3047
3048/*
3049 * Implementation of an interface to adjust firmware path
3050 * for the bootindex property handling.
3051 */
3052static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3053                                   DeviceState *dev)
3054{
3055#define CAST(type, obj, name) \
3056    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3057    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3058    SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3059    VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3060
3061    if (d) {
3062        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3063        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3064        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3065
3066        if (spapr) {
3067            /*
3068             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3069             * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3070             * 0x8000 | (target << 8) | (bus << 5) | lun
3071             * (see the "Logical unit addressing format" table in SAM5)
3072             */
3073            unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3074            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3075                                   (uint64_t)id << 48);
3076        } else if (virtio) {
3077            /*
3078             * We use SRP luns of the form 01000000 | (target << 8) | lun
3079             * in the top 32 bits of the 64-bit LUN
3080             * Note: the quote above is from SLOF and it is wrong,
3081             * the actual binding is:
3082             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3083             */
3084            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3085            if (d->lun >= 256) {
3086                /* Use the LUN "flat space addressing method" */
3087                id |= 0x4000;
3088            }
3089            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3090                                   (uint64_t)id << 32);
3091        } else if (usb) {
3092            /*
3093             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3094             * in the top 32 bits of the 64-bit LUN
3095             */
3096            unsigned usb_port = atoi(usb->port->path);
3097            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3098            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3099                                   (uint64_t)id << 32);
3100        }
3101    }
3102
3103    /*
3104     * SLOF probes the USB devices, and if it recognizes that the device is a
3105     * storage device, it changes its name to "storage" instead of "usb-host",
3106     * and additionally adds a child node for the SCSI LUN, so the correct
3107     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3108     */
3109    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3110        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3111        if (usb_host_dev_is_scsi_storage(usbdev)) {
3112            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3113        }
3114    }
3115
3116    if (phb) {
3117        /* Replace "pci" with "pci@800000020000000" */
3118        return g_strdup_printf("pci@%"PRIX64, phb->buid);
3119    }
3120
3121    if (vsc) {
3122        /* Same logic as virtio above */
3123        unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3124        return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3125    }
3126
3127    if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3128        /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3129        PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3130        return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3131    }
3132
3133    return NULL;
3134}
3135
3136static char *spapr_get_kvm_type(Object *obj, Error **errp)
3137{
3138    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3139
3140    return g_strdup(spapr->kvm_type);
3141}
3142
3143static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3144{
3145    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3146
3147    g_free(spapr->kvm_type);
3148    spapr->kvm_type = g_strdup(value);
3149}
3150
3151static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3152{
3153    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3154
3155    return spapr->use_hotplug_event_source;
3156}
3157
3158static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3159                                            Error **errp)
3160{
3161    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3162
3163    spapr->use_hotplug_event_source = value;
3164}
3165
3166static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3167{
3168    return true;
3169}
3170
3171static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3172{
3173    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3174
3175    switch (spapr->resize_hpt) {
3176    case SPAPR_RESIZE_HPT_DEFAULT:
3177        return g_strdup("default");
3178    case SPAPR_RESIZE_HPT_DISABLED:
3179        return g_strdup("disabled");
3180    case SPAPR_RESIZE_HPT_ENABLED:
3181        return g_strdup("enabled");
3182    case SPAPR_RESIZE_HPT_REQUIRED:
3183        return g_strdup("required");
3184    }
3185    g_assert_not_reached();
3186}
3187
3188static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3189{
3190    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3191
3192    if (strcmp(value, "default") == 0) {
3193        spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3194    } else if (strcmp(value, "disabled") == 0) {
3195        spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3196    } else if (strcmp(value, "enabled") == 0) {
3197        spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3198    } else if (strcmp(value, "required") == 0) {
3199        spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3200    } else {
3201        error_setg(errp, "Bad value for \"resize-hpt\" property");
3202    }
3203}
3204
3205static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3206                                   void *opaque, Error **errp)
3207{
3208    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3209}
3210
3211static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3212                                   void *opaque, Error **errp)
3213{
3214    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3215}
3216
3217static char *spapr_get_ic_mode(Object *obj, Error **errp)
3218{
3219    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3220
3221    if (spapr->irq == &spapr_irq_xics_legacy) {
3222        return g_strdup("legacy");
3223    } else if (spapr->irq == &spapr_irq_xics) {
3224        return g_strdup("xics");
3225    } else if (spapr->irq == &spapr_irq_xive) {
3226        return g_strdup("xive");
3227    } else if (spapr->irq == &spapr_irq_dual) {
3228        return g_strdup("dual");
3229    }
3230    g_assert_not_reached();
3231}
3232
3233static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3234{
3235    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3236
3237    if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3238        error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3239        return;
3240    }
3241
3242    /* The legacy IRQ backend can not be set */
3243    if (strcmp(value, "xics") == 0) {
3244        spapr->irq = &spapr_irq_xics;
3245    } else if (strcmp(value, "xive") == 0) {
3246        spapr->irq = &spapr_irq_xive;
3247    } else if (strcmp(value, "dual") == 0) {
3248        spapr->irq = &spapr_irq_dual;
3249    } else {
3250        error_setg(errp, "Bad value for \"ic-mode\" property");
3251    }
3252}
3253
3254static char *spapr_get_host_model(Object *obj, Error **errp)
3255{
3256    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3257
3258    return g_strdup(spapr->host_model);
3259}
3260
3261static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3262{
3263    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3264
3265    g_free(spapr->host_model);
3266    spapr->host_model = g_strdup(value);
3267}
3268
3269static char *spapr_get_host_serial(Object *obj, Error **errp)
3270{
3271    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3272
3273    return g_strdup(spapr->host_serial);
3274}
3275
3276static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3277{
3278    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3279
3280    g_free(spapr->host_serial);
3281    spapr->host_serial = g_strdup(value);
3282}
3283
3284static void spapr_instance_init(Object *obj)
3285{
3286    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3287    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3288
3289    spapr->htab_fd = -1;
3290    spapr->use_hotplug_event_source = true;
3291    object_property_add_str(obj, "kvm-type",
3292                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3293    object_property_set_description(obj, "kvm-type",
3294                                    "Specifies the KVM virtualization mode (HV, PR)",
3295                                    NULL);
3296    object_property_add_bool(obj, "modern-hotplug-events",
3297                            spapr_get_modern_hotplug_events,
3298                            spapr_set_modern_hotplug_events,
3299                            NULL);
3300    object_property_set_description(obj, "modern-hotplug-events",
3301                                    "Use dedicated hotplug event mechanism in"
3302                                    " place of standard EPOW events when possible"
3303                                    " (required for memory hot-unplug support)",
3304                                    NULL);
3305    ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3306                            "Maximum permitted CPU compatibility mode",
3307                            &error_fatal);
3308
3309    object_property_add_str(obj, "resize-hpt",
3310                            spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3311    object_property_set_description(obj, "resize-hpt",
3312                                    "Resizing of the Hash Page Table (enabled, disabled, required)",
3313                                    NULL);
3314    object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3315                        spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3316    object_property_set_description(obj, "vsmt",
3317                                    "Virtual SMT: KVM behaves as if this were"
3318                                    " the host's SMT mode", &error_abort);
3319    object_property_add_bool(obj, "vfio-no-msix-emulation",
3320                             spapr_get_msix_emulation, NULL, NULL);
3321
3322    /* The machine class defines the default interrupt controller mode */
3323    spapr->irq = smc->irq;
3324    object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3325                            spapr_set_ic_mode, NULL);
3326    object_property_set_description(obj, "ic-mode",
3327                 "Specifies the interrupt controller mode (xics, xive, dual)",
3328                 NULL);
3329
3330    object_property_add_str(obj, "host-model",
3331        spapr_get_host_model, spapr_set_host_model,
3332        &error_abort);
3333    object_property_set_description(obj, "host-model",
3334        "Host model to advertise in guest device tree", &error_abort);
3335    object_property_add_str(obj, "host-serial",
3336        spapr_get_host_serial, spapr_set_host_serial,
3337        &error_abort);
3338    object_property_set_description(obj, "host-serial",
3339        "Host serial number to advertise in guest device tree", &error_abort);
3340}
3341
3342static void spapr_machine_finalizefn(Object *obj)
3343{
3344    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3345
3346    g_free(spapr->kvm_type);
3347}
3348
3349void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3350{
3351    cpu_synchronize_state(cs);
3352    ppc_cpu_do_system_reset(cs);
3353}
3354
3355static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3356{
3357    CPUState *cs;
3358
3359    CPU_FOREACH(cs) {
3360        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3361    }
3362}
3363
3364int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3365                          void *fdt, int *fdt_start_offset, Error **errp)
3366{
3367    uint64_t addr;
3368    uint32_t node;
3369
3370    addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3371    node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3372                                    &error_abort);
3373    *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3374                                                   SPAPR_MEMORY_BLOCK_SIZE);
3375    return 0;
3376}
3377
3378static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3379                           bool dedicated_hp_event_source, Error **errp)
3380{
3381    SpaprDrc *drc;
3382    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3383    int i;
3384    uint64_t addr = addr_start;
3385    bool hotplugged = spapr_drc_hotplugged(dev);
3386    Error *local_err = NULL;
3387
3388    for (i = 0; i < nr_lmbs; i++) {
3389        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3390                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3391        g_assert(drc);
3392
3393        spapr_drc_attach(drc, dev, &local_err);
3394        if (local_err) {
3395            while (addr > addr_start) {
3396                addr -= SPAPR_MEMORY_BLOCK_SIZE;
3397                drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3398                                      addr / SPAPR_MEMORY_BLOCK_SIZE);
3399                spapr_drc_detach(drc);
3400            }
3401            error_propagate(errp, local_err);
3402            return;
3403        }
3404        if (!hotplugged) {
3405            spapr_drc_reset(drc);
3406        }
3407        addr += SPAPR_MEMORY_BLOCK_SIZE;
3408    }
3409    /* send hotplug notification to the
3410     * guest only in case of hotplugged memory
3411     */
3412    if (hotplugged) {
3413        if (dedicated_hp_event_source) {
3414            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3415                                  addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3416            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3417                                                   nr_lmbs,
3418                                                   spapr_drc_index(drc));
3419        } else {
3420            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3421                                           nr_lmbs);
3422        }
3423    }
3424}
3425
3426static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3427                              Error **errp)
3428{
3429    Error *local_err = NULL;
3430    SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3431    PCDIMMDevice *dimm = PC_DIMM(dev);
3432    uint64_t size, addr;
3433
3434    size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3435
3436    pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3437    if (local_err) {
3438        goto out;
3439    }
3440
3441    addr = object_property_get_uint(OBJECT(dimm),
3442                                    PC_DIMM_ADDR_PROP, &local_err);
3443    if (local_err) {
3444        goto out_unplug;
3445    }
3446
3447    spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3448                   &local_err);
3449    if (local_err) {
3450        goto out_unplug;
3451    }
3452
3453    return;
3454
3455out_unplug:
3456    pc_dimm_unplug(dimm, MACHINE(ms));
3457out:
3458    error_propagate(errp, local_err);
3459}
3460
3461static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3462                                  Error **errp)
3463{
3464    const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3465    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3466    PCDIMMDevice *dimm = PC_DIMM(dev);
3467    Error *local_err = NULL;
3468    uint64_t size;
3469    Object *memdev;
3470    hwaddr pagesize;
3471
3472    if (!smc->dr_lmb_enabled) {
3473        error_setg(errp, "Memory hotplug not supported for this machine");
3474        return;
3475    }
3476
3477    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3478    if (local_err) {
3479        error_propagate(errp, local_err);
3480        return;
3481    }
3482
3483    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3484        error_setg(errp, "Hotplugged memory size must be a multiple of "
3485                      "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3486        return;
3487    }
3488
3489    memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3490                                      &error_abort);
3491    pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3492    spapr_check_pagesize(spapr, pagesize, &local_err);
3493    if (local_err) {
3494        error_propagate(errp, local_err);
3495        return;
3496    }
3497
3498    pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3499}
3500
3501struct SpaprDimmState {
3502    PCDIMMDevice *dimm;
3503    uint32_t nr_lmbs;
3504    QTAILQ_ENTRY(SpaprDimmState) next;
3505};
3506
3507static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3508                                                       PCDIMMDevice *dimm)
3509{
3510    SpaprDimmState *dimm_state = NULL;
3511
3512    QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3513        if (dimm_state->dimm == dimm) {
3514            break;
3515        }
3516    }
3517    return dimm_state;
3518}
3519
3520static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3521                                                      uint32_t nr_lmbs,
3522                                                      PCDIMMDevice *dimm)
3523{
3524    SpaprDimmState *ds = NULL;
3525
3526    /*
3527     * If this request is for a DIMM whose removal had failed earlier
3528     * (due to guest's refusal to remove the LMBs), we would have this
3529     * dimm already in the pending_dimm_unplugs list. In that
3530     * case don't add again.
3531     */
3532    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3533    if (!ds) {
3534        ds = g_malloc0(sizeof(SpaprDimmState));
3535        ds->nr_lmbs = nr_lmbs;
3536        ds->dimm = dimm;
3537        QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3538    }
3539    return ds;
3540}
3541
3542static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3543                                              SpaprDimmState *dimm_state)
3544{
3545    QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3546    g_free(dimm_state);
3547}
3548
3549static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3550                                                        PCDIMMDevice *dimm)
3551{
3552    SpaprDrc *drc;
3553    uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3554                                                  &error_abort);
3555    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3556    uint32_t avail_lmbs = 0;
3557    uint64_t addr_start, addr;
3558    int i;
3559
3560    addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3561                                         &error_abort);
3562
3563    addr = addr_start;
3564    for (i = 0; i < nr_lmbs; i++) {
3565        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3566                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3567        g_assert(drc);
3568        if (drc->dev) {
3569            avail_lmbs++;
3570        }
3571        addr += SPAPR_MEMORY_BLOCK_SIZE;
3572    }
3573
3574    return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3575}
3576
3577/* Callback to be called during DRC release. */
3578void spapr_lmb_release(DeviceState *dev)
3579{
3580    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3581    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3582    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3583
3584    /* This information will get lost if a migration occurs
3585     * during the unplug process. In this case recover it. */
3586    if (ds == NULL) {
3587        ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3588        g_assert(ds);
3589        /* The DRC being examined by the caller at least must be counted */
3590        g_assert(ds->nr_lmbs);
3591    }
3592
3593    if (--ds->nr_lmbs) {
3594        return;
3595    }
3596
3597    /*
3598     * Now that all the LMBs have been removed by the guest, call the
3599     * unplug handler chain. This can never fail.
3600     */
3601    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3602    object_unparent(OBJECT(dev));
3603}
3604
3605static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3606{
3607    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3608    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3609
3610    pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3611    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3612    spapr_pending_dimm_unplugs_remove(spapr, ds);
3613}
3614
3615static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3616                                        DeviceState *dev, Error **errp)
3617{
3618    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3619    Error *local_err = NULL;
3620    PCDIMMDevice *dimm = PC_DIMM(dev);
3621    uint32_t nr_lmbs;
3622    uint64_t size, addr_start, addr;
3623    int i;
3624    SpaprDrc *drc;
3625
3626    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3627    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3628
3629    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3630                                         &local_err);
3631    if (local_err) {
3632        goto out;
3633    }
3634
3635    /*
3636     * An existing pending dimm state for this DIMM means that there is an
3637     * unplug operation in progress, waiting for the spapr_lmb_release
3638     * callback to complete the job (BQL can't cover that far). In this case,
3639     * bail out to avoid detaching DRCs that were already released.
3640     */
3641    if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3642        error_setg(&local_err,
3643                   "Memory unplug already in progress for device %s",
3644                   dev->id);
3645        goto out;
3646    }
3647
3648    spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3649
3650    addr = addr_start;
3651    for (i = 0; i < nr_lmbs; i++) {
3652        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3653                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3654        g_assert(drc);
3655
3656        spapr_drc_detach(drc);
3657        addr += SPAPR_MEMORY_BLOCK_SIZE;
3658    }
3659
3660    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3661                          addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3662    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3663                                              nr_lmbs, spapr_drc_index(drc));
3664out:
3665    error_propagate(errp, local_err);
3666}
3667
3668/* Callback to be called during DRC release. */
3669void spapr_core_release(DeviceState *dev)
3670{
3671    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3672
3673    /* Call the unplug handler chain. This can never fail. */
3674    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3675    object_unparent(OBJECT(dev));
3676}
3677
3678static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3679{
3680    MachineState *ms = MACHINE(hotplug_dev);
3681    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3682    CPUCore *cc = CPU_CORE(dev);
3683    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3684
3685    if (smc->pre_2_10_has_unused_icps) {
3686        SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3687        int i;
3688
3689        for (i = 0; i < cc->nr_threads; i++) {
3690            CPUState *cs = CPU(sc->threads[i]);
3691
3692            pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3693        }
3694    }
3695
3696    assert(core_slot);
3697    core_slot->cpu = NULL;
3698    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3699}
3700
3701static
3702void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3703                               Error **errp)
3704{
3705    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3706    int index;
3707    SpaprDrc *drc;
3708    CPUCore *cc = CPU_CORE(dev);
3709
3710    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3711        error_setg(errp, "Unable to find CPU core with core-id: %d",
3712                   cc->core_id);
3713        return;
3714    }
3715    if (index == 0) {
3716        error_setg(errp, "Boot CPU core may not be unplugged");
3717        return;
3718    }
3719
3720    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3721                          spapr_vcpu_id(spapr, cc->core_id));
3722    g_assert(drc);
3723
3724    spapr_drc_detach(drc);
3725
3726    spapr_hotplug_req_remove_by_index(drc);
3727}
3728
3729int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3730                           void *fdt, int *fdt_start_offset, Error **errp)
3731{
3732    SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3733    CPUState *cs = CPU(core->threads[0]);
3734    PowerPCCPU *cpu = POWERPC_CPU(cs);
3735    DeviceClass *dc = DEVICE_GET_CLASS(cs);
3736    int id = spapr_get_vcpu_id(cpu);
3737    char *nodename;
3738    int offset;
3739
3740    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3741    offset = fdt_add_subnode(fdt, 0, nodename);
3742    g_free(nodename);
3743
3744    spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3745
3746    *fdt_start_offset = offset;
3747    return 0;
3748}
3749
3750static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3751                            Error **errp)
3752{
3753    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3754    MachineClass *mc = MACHINE_GET_CLASS(spapr);
3755    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3756    SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3757    CPUCore *cc = CPU_CORE(dev);
3758    CPUState *cs;
3759    SpaprDrc *drc;
3760    Error *local_err = NULL;
3761    CPUArchId *core_slot;
3762    int index;
3763    bool hotplugged = spapr_drc_hotplugged(dev);
3764
3765    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3766    if (!core_slot) {
3767        error_setg(errp, "Unable to find CPU core with core-id: %d",
3768                   cc->core_id);
3769        return;
3770    }
3771    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3772                          spapr_vcpu_id(spapr, cc->core_id));
3773
3774    g_assert(drc || !mc->has_hotpluggable_cpus);
3775
3776    if (drc) {
3777        spapr_drc_attach(drc, dev, &local_err);
3778        if (local_err) {
3779            error_propagate(errp, local_err);
3780            return;
3781        }
3782
3783        if (hotplugged) {
3784            /*
3785             * Send hotplug notification interrupt to the guest only
3786             * in case of hotplugged CPUs.
3787             */
3788            spapr_hotplug_req_add_by_index(drc);
3789        } else {
3790            spapr_drc_reset(drc);
3791        }
3792    }
3793
3794    core_slot->cpu = OBJECT(dev);
3795
3796    if (smc->pre_2_10_has_unused_icps) {
3797        int i;
3798
3799        for (i = 0; i < cc->nr_threads; i++) {
3800            cs = CPU(core->threads[i]);
3801            pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3802        }
3803    }
3804}
3805
3806static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3807                                Error **errp)
3808{
3809    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3810    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3811    Error *local_err = NULL;
3812    CPUCore *cc = CPU_CORE(dev);
3813    const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3814    const char *type = object_get_typename(OBJECT(dev));
3815    CPUArchId *core_slot;
3816    int index;
3817
3818    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3819        error_setg(&local_err, "CPU hotplug not supported for this machine");
3820        goto out;
3821    }
3822
3823    if (strcmp(base_core_type, type)) {
3824        error_setg(&local_err, "CPU core type should be %s", base_core_type);
3825        goto out;
3826    }
3827
3828    if (cc->core_id % smp_threads) {
3829        error_setg(&local_err, "invalid core id %d", cc->core_id);
3830        goto out;
3831    }
3832
3833    /*
3834     * In general we should have homogeneous threads-per-core, but old
3835     * (pre hotplug support) machine types allow the last core to have
3836     * reduced threads as a compatibility hack for when we allowed
3837     * total vcpus not a multiple of threads-per-core.
3838     */
3839    if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3840        error_setg(&local_err, "invalid nr-threads %d, must be %d",
3841                   cc->nr_threads, smp_threads);
3842        goto out;
3843    }
3844
3845    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3846    if (!core_slot) {
3847        error_setg(&local_err, "core id %d out of range", cc->core_id);
3848        goto out;
3849    }
3850
3851    if (core_slot->cpu) {
3852        error_setg(&local_err, "core %d already populated", cc->core_id);
3853        goto out;
3854    }
3855
3856    numa_cpu_pre_plug(core_slot, dev, &local_err);
3857
3858out:
3859    error_propagate(errp, local_err);
3860}
3861
3862int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3863                          void *fdt, int *fdt_start_offset, Error **errp)
3864{
3865    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3866    int intc_phandle;
3867
3868    intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3869    if (intc_phandle <= 0) {
3870        return -1;
3871    }
3872
3873    if (spapr_populate_pci_dt(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3874                              fdt_start_offset)) {
3875        error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3876        return -1;
3877    }
3878
3879    /* generally SLOF creates these, for hotplug it's up to QEMU */
3880    _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3881
3882    return 0;
3883}
3884
3885static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3886                               Error **errp)
3887{
3888    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3889    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3890    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3891    const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3892
3893    if (dev->hotplugged && !smc->dr_phb_enabled) {
3894        error_setg(errp, "PHB hotplug not supported for this machine");
3895        return;
3896    }
3897
3898    if (sphb->index == (uint32_t)-1) {
3899        error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3900        return;
3901    }
3902
3903    /*
3904     * This will check that sphb->index doesn't exceed the maximum number of
3905     * PHBs for the current machine type.
3906     */
3907    smc->phb_placement(spapr, sphb->index,
3908                       &sphb->buid, &sphb->io_win_addr,
3909                       &sphb->mem_win_addr, &sphb->mem64_win_addr,
3910                       windows_supported, sphb->dma_liobn, errp);
3911}
3912
3913static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3914                           Error **errp)
3915{
3916    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3917    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3918    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3919    SpaprDrc *drc;
3920    bool hotplugged = spapr_drc_hotplugged(dev);
3921    Error *local_err = NULL;
3922
3923    if (!smc->dr_phb_enabled) {
3924        return;
3925    }
3926
3927    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3928    /* hotplug hooks should check it's enabled before getting this far */
3929    assert(drc);
3930
3931    spapr_drc_attach(drc, DEVICE(dev), &local_err);
3932    if (local_err) {
3933        error_propagate(errp, local_err);
3934        return;
3935    }
3936
3937    if (hotplugged) {
3938        spapr_hotplug_req_add_by_index(drc);
3939    } else {
3940        spapr_drc_reset(drc);
3941    }
3942}
3943
3944void spapr_phb_release(DeviceState *dev)
3945{
3946    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3947
3948    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3949    object_unparent(OBJECT(dev));
3950}
3951
3952static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3953{
3954    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3955}
3956
3957static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3958                                     DeviceState *dev, Error **errp)
3959{
3960    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3961    SpaprDrc *drc;
3962
3963    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3964    assert(drc);
3965
3966    if (!spapr_drc_unplug_requested(drc)) {
3967        spapr_drc_detach(drc);
3968        spapr_hotplug_req_remove_by_index(drc);
3969    }
3970}
3971
3972static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3973                                      DeviceState *dev, Error **errp)
3974{
3975    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3976        spapr_memory_plug(hotplug_dev, dev, errp);
3977    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3978        spapr_core_plug(hotplug_dev, dev, errp);
3979    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
3980        spapr_phb_plug(hotplug_dev, dev, errp);
3981    }
3982}
3983
3984static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3985                                        DeviceState *dev, Error **errp)
3986{
3987    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3988        spapr_memory_unplug(hotplug_dev, dev);
3989    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3990        spapr_core_unplug(hotplug_dev, dev);
3991    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
3992        spapr_phb_unplug(hotplug_dev, dev);
3993    }
3994}
3995
3996static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3997                                                DeviceState *dev, Error **errp)
3998{
3999    SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4000    MachineClass *mc = MACHINE_GET_CLASS(sms);
4001    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4002
4003    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4004        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4005            spapr_memory_unplug_request(hotplug_dev, dev, errp);
4006        } else {
4007            /* NOTE: this means there is a window after guest reset, prior to
4008             * CAS negotiation, where unplug requests will fail due to the
4009             * capability not being detected yet. This is a bit different than
4010             * the case with PCI unplug, where the events will be queued and
4011             * eventually handled by the guest after boot
4012             */
4013            error_setg(errp, "Memory hot unplug not supported for this guest");
4014        }
4015    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4016        if (!mc->has_hotpluggable_cpus) {
4017            error_setg(errp, "CPU hot unplug not supported on this machine");
4018            return;
4019        }
4020        spapr_core_unplug_request(hotplug_dev, dev, errp);
4021    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4022        if (!smc->dr_phb_enabled) {
4023            error_setg(errp, "PHB hot unplug not supported on this machine");
4024            return;
4025        }
4026        spapr_phb_unplug_request(hotplug_dev, dev, errp);
4027    }
4028}
4029
4030static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4031                                          DeviceState *dev, Error **errp)
4032{
4033    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4034        spapr_memory_pre_plug(hotplug_dev, dev, errp);
4035    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4036        spapr_core_pre_plug(hotplug_dev, dev, errp);
4037    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4038        spapr_phb_pre_plug(hotplug_dev, dev, errp);
4039    }
4040}
4041
4042static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4043                                                 DeviceState *dev)
4044{
4045    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4046        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4047        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4048        return HOTPLUG_HANDLER(machine);
4049    }
4050    return NULL;
4051}
4052
4053static CpuInstanceProperties
4054spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4055{
4056    CPUArchId *core_slot;
4057    MachineClass *mc = MACHINE_GET_CLASS(machine);
4058
4059    /* make sure possible_cpu are intialized */
4060    mc->possible_cpu_arch_ids(machine);
4061    /* get CPU core slot containing thread that matches cpu_index */
4062    core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4063    assert(core_slot);
4064    return core_slot->props;
4065}
4066
4067static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4068{
4069    return idx / smp_cores % nb_numa_nodes;
4070}
4071
4072static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4073{
4074    int i;
4075    const char *core_type;
4076    int spapr_max_cores = max_cpus / smp_threads;
4077    MachineClass *mc = MACHINE_GET_CLASS(machine);
4078
4079    if (!mc->has_hotpluggable_cpus) {
4080        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4081    }
4082    if (machine->possible_cpus) {
4083        assert(machine->possible_cpus->len == spapr_max_cores);
4084        return machine->possible_cpus;
4085    }
4086
4087    core_type = spapr_get_cpu_core_type(machine->cpu_type);
4088    if (!core_type) {
4089        error_report("Unable to find sPAPR CPU Core definition");
4090        exit(1);
4091    }
4092
4093    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4094                             sizeof(CPUArchId) * spapr_max_cores);
4095    machine->possible_cpus->len = spapr_max_cores;
4096    for (i = 0; i < machine->possible_cpus->len; i++) {
4097        int core_id = i * smp_threads;
4098
4099        machine->possible_cpus->cpus[i].type = core_type;
4100        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4101        machine->possible_cpus->cpus[i].arch_id = core_id;
4102        machine->possible_cpus->cpus[i].props.has_core_id = true;
4103        machine->possible_cpus->cpus[i].props.core_id = core_id;
4104    }
4105    return machine->possible_cpus;
4106}
4107
4108static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4109                                uint64_t *buid, hwaddr *pio,
4110                                hwaddr *mmio32, hwaddr *mmio64,
4111                                unsigned n_dma, uint32_t *liobns, Error **errp)
4112{
4113    /*
4114     * New-style PHB window placement.
4115     *
4116     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4117     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4118     * windows.
4119     *
4120     * Some guest kernels can't work with MMIO windows above 1<<46
4121     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4122     *
4123     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4124     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4125     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4126     * 1TiB 64-bit MMIO windows for each PHB.
4127     */
4128    const uint64_t base_buid = 0x800000020000000ULL;
4129    int i;
4130
4131    /* Sanity check natural alignments */
4132    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4133    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4134    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4135    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4136    /* Sanity check bounds */
4137    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4138                      SPAPR_PCI_MEM32_WIN_SIZE);
4139    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4140                      SPAPR_PCI_MEM64_WIN_SIZE);
4141
4142    if (index >= SPAPR_MAX_PHBS) {
4143        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4144                   SPAPR_MAX_PHBS - 1);
4145        return;
4146    }
4147
4148    *buid = base_buid + index;
4149    for (i = 0; i < n_dma; ++i) {
4150        liobns[i] = SPAPR_PCI_LIOBN(index, i);
4151    }
4152
4153    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4154    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4155    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4156}
4157
4158static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4159{
4160    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4161
4162    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4163}
4164
4165static void spapr_ics_resend(XICSFabric *dev)
4166{
4167    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4168
4169    ics_resend(spapr->ics);
4170}
4171
4172static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4173{
4174    PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4175
4176    return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4177}
4178
4179static void spapr_pic_print_info(InterruptStatsProvider *obj,
4180                                 Monitor *mon)
4181{
4182    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4183
4184    spapr->irq->print_info(spapr, mon);
4185}
4186
4187int spapr_get_vcpu_id(PowerPCCPU *cpu)
4188{
4189    return cpu->vcpu_id;
4190}
4191
4192void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4193{
4194    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4195    int vcpu_id;
4196
4197    vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4198
4199    if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4200        error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4201        error_append_hint(errp, "Adjust the number of cpus to %d "
4202                          "or try to raise the number of threads per core\n",
4203                          vcpu_id * smp_threads / spapr->vsmt);
4204        return;
4205    }
4206
4207    cpu->vcpu_id = vcpu_id;
4208}
4209
4210PowerPCCPU *spapr_find_cpu(int vcpu_id)
4211{
4212    CPUState *cs;
4213
4214    CPU_FOREACH(cs) {
4215        PowerPCCPU *cpu = POWERPC_CPU(cs);
4216
4217        if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4218            return cpu;
4219        }
4220    }
4221
4222    return NULL;
4223}
4224
4225static void spapr_machine_class_init(ObjectClass *oc, void *data)
4226{
4227    MachineClass *mc = MACHINE_CLASS(oc);
4228    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4229    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4230    NMIClass *nc = NMI_CLASS(oc);
4231    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4232    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4233    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4234    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4235
4236    mc->desc = "pSeries Logical Partition (PAPR compliant)";
4237    mc->ignore_boot_device_suffixes = true;
4238
4239    /*
4240     * We set up the default / latest behaviour here.  The class_init
4241     * functions for the specific versioned machine types can override
4242     * these details for backwards compatibility
4243     */
4244    mc->init = spapr_machine_init;
4245    mc->reset = spapr_machine_reset;
4246    mc->block_default_type = IF_SCSI;
4247    mc->max_cpus = 1024;
4248    mc->no_parallel = 1;
4249    mc->default_boot_order = "";
4250    mc->default_ram_size = 512 * MiB;
4251    mc->default_display = "std";
4252    mc->kvm_type = spapr_kvm_type;
4253    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4254    mc->pci_allow_0_address = true;
4255    assert(!mc->get_hotplug_handler);
4256    mc->get_hotplug_handler = spapr_get_hotplug_handler;
4257    hc->pre_plug = spapr_machine_device_pre_plug;
4258    hc->plug = spapr_machine_device_plug;
4259    mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4260    mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4261    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4262    hc->unplug_request = spapr_machine_device_unplug_request;
4263    hc->unplug = spapr_machine_device_unplug;
4264
4265    smc->dr_lmb_enabled = true;
4266    smc->update_dt_enabled = true;
4267    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4268    mc->has_hotpluggable_cpus = true;
4269    smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4270    fwc->get_dev_path = spapr_get_fw_dev_path;
4271    nc->nmi_monitor_handler = spapr_nmi;
4272    smc->phb_placement = spapr_phb_placement;
4273    vhc->hypercall = emulate_spapr_hypercall;
4274    vhc->hpt_mask = spapr_hpt_mask;
4275    vhc->map_hptes = spapr_map_hptes;
4276    vhc->unmap_hptes = spapr_unmap_hptes;
4277    vhc->store_hpte = spapr_store_hpte;
4278    vhc->get_pate = spapr_get_pate;
4279    vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4280    xic->ics_get = spapr_ics_get;
4281    xic->ics_resend = spapr_ics_resend;
4282    xic->icp_get = spapr_icp_get;
4283    ispc->print_info = spapr_pic_print_info;
4284    /* Force NUMA node memory size to be a multiple of
4285     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4286     * in which LMBs are represented and hot-added
4287     */
4288    mc->numa_mem_align_shift = 28;
4289
4290    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4291    smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4292    smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4293    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4294    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4295    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4296    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4297    smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4298    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4299    smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4300    spapr_caps_add_properties(smc, &error_abort);
4301    smc->irq = &spapr_irq_xics;
4302    smc->dr_phb_enabled = true;
4303}
4304
4305static const TypeInfo spapr_machine_info = {
4306    .name          = TYPE_SPAPR_MACHINE,
4307    .parent        = TYPE_MACHINE,
4308    .abstract      = true,
4309    .instance_size = sizeof(SpaprMachineState),
4310    .instance_init = spapr_instance_init,
4311    .instance_finalize = spapr_machine_finalizefn,
4312    .class_size    = sizeof(SpaprMachineClass),
4313    .class_init    = spapr_machine_class_init,
4314    .interfaces = (InterfaceInfo[]) {
4315        { TYPE_FW_PATH_PROVIDER },
4316        { TYPE_NMI },
4317        { TYPE_HOTPLUG_HANDLER },
4318        { TYPE_PPC_VIRTUAL_HYPERVISOR },
4319        { TYPE_XICS_FABRIC },
4320        { TYPE_INTERRUPT_STATS_PROVIDER },
4321        { }
4322    },
4323};
4324
4325#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4326    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4327                                                    void *data)      \
4328    {                                                                \
4329        MachineClass *mc = MACHINE_CLASS(oc);                        \
4330        spapr_machine_##suffix##_class_options(mc);                  \
4331        if (latest) {                                                \
4332            mc->alias = "pseries";                                   \
4333            mc->is_default = 1;                                      \
4334        }                                                            \
4335    }                                                                \
4336    static const TypeInfo spapr_machine_##suffix##_info = {          \
4337        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4338        .parent = TYPE_SPAPR_MACHINE,                                \
4339        .class_init = spapr_machine_##suffix##_class_init,           \
4340    };                                                               \
4341    static void spapr_machine_register_##suffix(void)                \
4342    {                                                                \
4343        type_register(&spapr_machine_##suffix##_info);               \
4344    }                                                                \
4345    type_init(spapr_machine_register_##suffix)
4346
4347/*
4348 * pseries-4.0
4349 */
4350static void spapr_machine_4_0_class_options(MachineClass *mc)
4351{
4352    /* Defaults for the latest behaviour inherited from the base class */
4353}
4354
4355DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
4356
4357/*
4358 * pseries-3.1
4359 */
4360static void spapr_machine_3_1_class_options(MachineClass *mc)
4361{
4362    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4363
4364    spapr_machine_4_0_class_options(mc);
4365    compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4366
4367    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4368    smc->update_dt_enabled = false;
4369    smc->dr_phb_enabled = false;
4370    smc->broken_host_serial_model = true;
4371    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4372    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4373    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4374    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4375}
4376
4377DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4378
4379/*
4380 * pseries-3.0
4381 */
4382
4383static void spapr_machine_3_0_class_options(MachineClass *mc)
4384{
4385    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4386
4387    spapr_machine_3_1_class_options(mc);
4388    compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4389
4390    smc->legacy_irq_allocation = true;
4391    smc->irq = &spapr_irq_xics_legacy;
4392}
4393
4394DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4395
4396/*
4397 * pseries-2.12
4398 */
4399static void spapr_machine_2_12_class_options(MachineClass *mc)
4400{
4401    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4402    static GlobalProperty compat[] = {
4403        { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4404        { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4405    };
4406
4407    spapr_machine_3_0_class_options(mc);
4408    compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4409    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4410
4411    /* We depend on kvm_enabled() to choose a default value for the
4412     * hpt-max-page-size capability. Of course we can't do it here
4413     * because this is too early and the HW accelerator isn't initialzed
4414     * yet. Postpone this to machine init (see default_caps_with_cpu()).
4415     */
4416    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4417}
4418
4419DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4420
4421static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4422{
4423    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4424
4425    spapr_machine_2_12_class_options(mc);
4426    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4427    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4428    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4429}
4430
4431DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4432
4433/*
4434 * pseries-2.11
4435 */
4436
4437static void spapr_machine_2_11_class_options(MachineClass *mc)
4438{
4439    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4440
4441    spapr_machine_2_12_class_options(mc);
4442    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4443    compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4444}
4445
4446DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4447
4448/*
4449 * pseries-2.10
4450 */
4451
4452static void spapr_machine_2_10_class_options(MachineClass *mc)
4453{
4454    spapr_machine_2_11_class_options(mc);
4455    compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4456}
4457
4458DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4459
4460/*
4461 * pseries-2.9
4462 */
4463
4464static void spapr_machine_2_9_class_options(MachineClass *mc)
4465{
4466    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4467    static GlobalProperty compat[] = {
4468        { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4469    };
4470
4471    spapr_machine_2_10_class_options(mc);
4472    compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4473    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4474    mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4475    smc->pre_2_10_has_unused_icps = true;
4476    smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4477}
4478
4479DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4480
4481/*
4482 * pseries-2.8
4483 */
4484
4485static void spapr_machine_2_8_class_options(MachineClass *mc)
4486{
4487    static GlobalProperty compat[] = {
4488        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4489    };
4490
4491    spapr_machine_2_9_class_options(mc);
4492    compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4493    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4494    mc->numa_mem_align_shift = 23;
4495}
4496
4497DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4498
4499/*
4500 * pseries-2.7
4501 */
4502
4503static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4504                              uint64_t *buid, hwaddr *pio,
4505                              hwaddr *mmio32, hwaddr *mmio64,
4506                              unsigned n_dma, uint32_t *liobns, Error **errp)
4507{
4508    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4509    const uint64_t base_buid = 0x800000020000000ULL;
4510    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4511    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4512    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4513    const uint32_t max_index = 255;
4514    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4515
4516    uint64_t ram_top = MACHINE(spapr)->ram_size;
4517    hwaddr phb0_base, phb_base;
4518    int i;
4519
4520    /* Do we have device memory? */
4521    if (MACHINE(spapr)->maxram_size > ram_top) {
4522        /* Can't just use maxram_size, because there may be an
4523         * alignment gap between normal and device memory regions
4524         */
4525        ram_top = MACHINE(spapr)->device_memory->base +
4526            memory_region_size(&MACHINE(spapr)->device_memory->mr);
4527    }
4528
4529    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4530
4531    if (index > max_index) {
4532        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4533                   max_index);
4534        return;
4535    }
4536
4537    *buid = base_buid + index;
4538    for (i = 0; i < n_dma; ++i) {
4539        liobns[i] = SPAPR_PCI_LIOBN(index, i);
4540    }
4541
4542    phb_base = phb0_base + index * phb_spacing;
4543    *pio = phb_base + pio_offset;
4544    *mmio32 = phb_base + mmio_offset;
4545    /*
4546     * We don't set the 64-bit MMIO window, relying on the PHB's
4547     * fallback behaviour of automatically splitting a large "32-bit"
4548     * window into contiguous 32-bit and 64-bit windows
4549     */
4550}
4551
4552static void spapr_machine_2_7_class_options(MachineClass *mc)
4553{
4554    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4555    static GlobalProperty compat[] = {
4556        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4557        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4558        { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4559        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4560    };
4561
4562    spapr_machine_2_8_class_options(mc);
4563    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4564    mc->default_machine_opts = "modern-hotplug-events=off";
4565    compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4566    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4567    smc->phb_placement = phb_placement_2_7;
4568}
4569
4570DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4571
4572/*
4573 * pseries-2.6
4574 */
4575
4576static void spapr_machine_2_6_class_options(MachineClass *mc)
4577{
4578    static GlobalProperty compat[] = {
4579        { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4580    };
4581
4582    spapr_machine_2_7_class_options(mc);
4583    mc->has_hotpluggable_cpus = false;
4584    compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4585    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4586}
4587
4588DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4589
4590/*
4591 * pseries-2.5
4592 */
4593
4594static void spapr_machine_2_5_class_options(MachineClass *mc)
4595{
4596    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4597    static GlobalProperty compat[] = {
4598        { "spapr-vlan", "use-rx-buffer-pools", "off" },
4599    };
4600
4601    spapr_machine_2_6_class_options(mc);
4602    smc->use_ohci_by_default = true;
4603    compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4604    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4605}
4606
4607DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4608
4609/*
4610 * pseries-2.4
4611 */
4612
4613static void spapr_machine_2_4_class_options(MachineClass *mc)
4614{
4615    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4616
4617    spapr_machine_2_5_class_options(mc);
4618    smc->dr_lmb_enabled = false;
4619    compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4620}
4621
4622DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4623
4624/*
4625 * pseries-2.3
4626 */
4627
4628static void spapr_machine_2_3_class_options(MachineClass *mc)
4629{
4630    static GlobalProperty compat[] = {
4631        { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4632    };
4633    spapr_machine_2_4_class_options(mc);
4634    compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4635    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4636}
4637DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4638
4639/*
4640 * pseries-2.2
4641 */
4642
4643static void spapr_machine_2_2_class_options(MachineClass *mc)
4644{
4645    static GlobalProperty compat[] = {
4646        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4647    };
4648
4649    spapr_machine_2_3_class_options(mc);
4650    compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4651    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4652    mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4653}
4654DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4655
4656/*
4657 * pseries-2.1
4658 */
4659
4660static void spapr_machine_2_1_class_options(MachineClass *mc)
4661{
4662    spapr_machine_2_2_class_options(mc);
4663    compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4664}
4665DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4666
4667static void spapr_machine_register_types(void)
4668{
4669    type_register_static(&spapr_machine_info);
4670}
4671
4672type_init(spapr_machine_register_types)
4673