qemu/hw/ppc/spapr_hcall.c
<<
>>
Prefs
   1#include "qemu/osdep.h"
   2#include "qapi/error.h"
   3#include "sysemu/hw_accel.h"
   4#include "sysemu/sysemu.h"
   5#include "qemu/log.h"
   6#include "qemu/error-report.h"
   7#include "cpu.h"
   8#include "exec/exec-all.h"
   9#include "helper_regs.h"
  10#include "hw/ppc/spapr.h"
  11#include "hw/ppc/spapr_cpu_core.h"
  12#include "mmu-hash64.h"
  13#include "cpu-models.h"
  14#include "trace.h"
  15#include "kvm_ppc.h"
  16#include "hw/ppc/spapr_ovec.h"
  17#include "mmu-book3s-v3.h"
  18#include "hw/mem/memory-device.h"
  19
  20static bool has_spr(PowerPCCPU *cpu, int spr)
  21{
  22    /* We can test whether the SPR is defined by checking for a valid name */
  23    return cpu->env.spr_cb[spr].name != NULL;
  24}
  25
  26static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
  27{
  28    /*
  29     * hash value/pteg group index is normalized by HPT mask
  30     */
  31    if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
  32        return false;
  33    }
  34    return true;
  35}
  36
  37static bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
  38{
  39    MachineState *machine = MACHINE(spapr);
  40    DeviceMemoryState *dms = machine->device_memory;
  41
  42    if (addr < machine->ram_size) {
  43        return true;
  44    }
  45    if ((addr >= dms->base)
  46        && ((addr - dms->base) < memory_region_size(&dms->mr))) {
  47        return true;
  48    }
  49
  50    return false;
  51}
  52
  53static target_ulong h_enter(PowerPCCPU *cpu, SpaprMachineState *spapr,
  54                            target_ulong opcode, target_ulong *args)
  55{
  56    target_ulong flags = args[0];
  57    target_ulong ptex = args[1];
  58    target_ulong pteh = args[2];
  59    target_ulong ptel = args[3];
  60    unsigned apshift;
  61    target_ulong raddr;
  62    target_ulong slot;
  63    const ppc_hash_pte64_t *hptes;
  64
  65    apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
  66    if (!apshift) {
  67        /* Bad page size encoding */
  68        return H_PARAMETER;
  69    }
  70
  71    raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
  72
  73    if (is_ram_address(spapr, raddr)) {
  74        /* Regular RAM - should have WIMG=0010 */
  75        if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
  76            return H_PARAMETER;
  77        }
  78    } else {
  79        target_ulong wimg_flags;
  80        /* Looks like an IO address */
  81        /* FIXME: What WIMG combinations could be sensible for IO?
  82         * For now we allow WIMG=010x, but are there others? */
  83        /* FIXME: Should we check against registered IO addresses? */
  84        wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
  85
  86        if (wimg_flags != HPTE64_R_I &&
  87            wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
  88            return H_PARAMETER;
  89        }
  90    }
  91
  92    pteh &= ~0x60ULL;
  93
  94    if (!valid_ptex(cpu, ptex)) {
  95        return H_PARAMETER;
  96    }
  97
  98    slot = ptex & 7ULL;
  99    ptex = ptex & ~7ULL;
 100
 101    if (likely((flags & H_EXACT) == 0)) {
 102        hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 103        for (slot = 0; slot < 8; slot++) {
 104            if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
 105                break;
 106            }
 107        }
 108        ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 109        if (slot == 8) {
 110            return H_PTEG_FULL;
 111        }
 112    } else {
 113        hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
 114        if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
 115            ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
 116            return H_PTEG_FULL;
 117        }
 118        ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 119    }
 120
 121    ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
 122
 123    args[0] = ptex + slot;
 124    return H_SUCCESS;
 125}
 126
 127typedef enum {
 128    REMOVE_SUCCESS = 0,
 129    REMOVE_NOT_FOUND = 1,
 130    REMOVE_PARM = 2,
 131    REMOVE_HW = 3,
 132} RemoveResult;
 133
 134static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
 135                                target_ulong avpn,
 136                                target_ulong flags,
 137                                target_ulong *vp, target_ulong *rp)
 138{
 139    const ppc_hash_pte64_t *hptes;
 140    target_ulong v, r;
 141
 142    if (!valid_ptex(cpu, ptex)) {
 143        return REMOVE_PARM;
 144    }
 145
 146    hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
 147    v = ppc_hash64_hpte0(cpu, hptes, 0);
 148    r = ppc_hash64_hpte1(cpu, hptes, 0);
 149    ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 150
 151    if ((v & HPTE64_V_VALID) == 0 ||
 152        ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
 153        ((flags & H_ANDCOND) && (v & avpn) != 0)) {
 154        return REMOVE_NOT_FOUND;
 155    }
 156    *vp = v;
 157    *rp = r;
 158    ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
 159    ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
 160    return REMOVE_SUCCESS;
 161}
 162
 163static target_ulong h_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
 164                             target_ulong opcode, target_ulong *args)
 165{
 166    CPUPPCState *env = &cpu->env;
 167    target_ulong flags = args[0];
 168    target_ulong ptex = args[1];
 169    target_ulong avpn = args[2];
 170    RemoveResult ret;
 171
 172    ret = remove_hpte(cpu, ptex, avpn, flags,
 173                      &args[0], &args[1]);
 174
 175    switch (ret) {
 176    case REMOVE_SUCCESS:
 177        check_tlb_flush(env, true);
 178        return H_SUCCESS;
 179
 180    case REMOVE_NOT_FOUND:
 181        return H_NOT_FOUND;
 182
 183    case REMOVE_PARM:
 184        return H_PARAMETER;
 185
 186    case REMOVE_HW:
 187        return H_HARDWARE;
 188    }
 189
 190    g_assert_not_reached();
 191}
 192
 193#define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
 194#define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
 195#define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
 196#define   H_BULK_REMOVE_END            0xc000000000000000ULL
 197#define H_BULK_REMOVE_CODE             0x3000000000000000ULL
 198#define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
 199#define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
 200#define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
 201#define   H_BULK_REMOVE_HW             0x3000000000000000ULL
 202#define H_BULK_REMOVE_RC               0x0c00000000000000ULL
 203#define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
 204#define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
 205#define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
 206#define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
 207#define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
 208
 209#define H_BULK_REMOVE_MAX_BATCH        4
 210
 211static target_ulong h_bulk_remove(PowerPCCPU *cpu, SpaprMachineState *spapr,
 212                                  target_ulong opcode, target_ulong *args)
 213{
 214    CPUPPCState *env = &cpu->env;
 215    int i;
 216    target_ulong rc = H_SUCCESS;
 217
 218    for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
 219        target_ulong *tsh = &args[i*2];
 220        target_ulong tsl = args[i*2 + 1];
 221        target_ulong v, r, ret;
 222
 223        if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
 224            break;
 225        } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
 226            return H_PARAMETER;
 227        }
 228
 229        *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
 230        *tsh |= H_BULK_REMOVE_RESPONSE;
 231
 232        if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
 233            *tsh |= H_BULK_REMOVE_PARM;
 234            return H_PARAMETER;
 235        }
 236
 237        ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
 238                          (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
 239                          &v, &r);
 240
 241        *tsh |= ret << 60;
 242
 243        switch (ret) {
 244        case REMOVE_SUCCESS:
 245            *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
 246            break;
 247
 248        case REMOVE_PARM:
 249            rc = H_PARAMETER;
 250            goto exit;
 251
 252        case REMOVE_HW:
 253            rc = H_HARDWARE;
 254            goto exit;
 255        }
 256    }
 257 exit:
 258    check_tlb_flush(env, true);
 259
 260    return rc;
 261}
 262
 263static target_ulong h_protect(PowerPCCPU *cpu, SpaprMachineState *spapr,
 264                              target_ulong opcode, target_ulong *args)
 265{
 266    CPUPPCState *env = &cpu->env;
 267    target_ulong flags = args[0];
 268    target_ulong ptex = args[1];
 269    target_ulong avpn = args[2];
 270    const ppc_hash_pte64_t *hptes;
 271    target_ulong v, r;
 272
 273    if (!valid_ptex(cpu, ptex)) {
 274        return H_PARAMETER;
 275    }
 276
 277    hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
 278    v = ppc_hash64_hpte0(cpu, hptes, 0);
 279    r = ppc_hash64_hpte1(cpu, hptes, 0);
 280    ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
 281
 282    if ((v & HPTE64_V_VALID) == 0 ||
 283        ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
 284        return H_NOT_FOUND;
 285    }
 286
 287    r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
 288           HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
 289    r |= (flags << 55) & HPTE64_R_PP0;
 290    r |= (flags << 48) & HPTE64_R_KEY_HI;
 291    r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
 292    ppc_hash64_store_hpte(cpu, ptex,
 293                          (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
 294    ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
 295    /* Flush the tlb */
 296    check_tlb_flush(env, true);
 297    /* Don't need a memory barrier, due to qemu's global lock */
 298    ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
 299    return H_SUCCESS;
 300}
 301
 302static target_ulong h_read(PowerPCCPU *cpu, SpaprMachineState *spapr,
 303                           target_ulong opcode, target_ulong *args)
 304{
 305    target_ulong flags = args[0];
 306    target_ulong ptex = args[1];
 307    uint8_t *hpte;
 308    int i, ridx, n_entries = 1;
 309
 310    if (!valid_ptex(cpu, ptex)) {
 311        return H_PARAMETER;
 312    }
 313
 314    if (flags & H_READ_4) {
 315        /* Clear the two low order bits */
 316        ptex &= ~(3ULL);
 317        n_entries = 4;
 318    }
 319
 320    hpte = spapr->htab + (ptex * HASH_PTE_SIZE_64);
 321
 322    for (i = 0, ridx = 0; i < n_entries; i++) {
 323        args[ridx++] = ldq_p(hpte);
 324        args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
 325        hpte += HASH_PTE_SIZE_64;
 326    }
 327
 328    return H_SUCCESS;
 329}
 330
 331struct SpaprPendingHpt {
 332    /* These fields are read-only after initialization */
 333    int shift;
 334    QemuThread thread;
 335
 336    /* These fields are protected by the BQL */
 337    bool complete;
 338
 339    /* These fields are private to the preparation thread if
 340     * !complete, otherwise protected by the BQL */
 341    int ret;
 342    void *hpt;
 343};
 344
 345static void free_pending_hpt(SpaprPendingHpt *pending)
 346{
 347    if (pending->hpt) {
 348        qemu_vfree(pending->hpt);
 349    }
 350
 351    g_free(pending);
 352}
 353
 354static void *hpt_prepare_thread(void *opaque)
 355{
 356    SpaprPendingHpt *pending = opaque;
 357    size_t size = 1ULL << pending->shift;
 358
 359    pending->hpt = qemu_memalign(size, size);
 360    if (pending->hpt) {
 361        memset(pending->hpt, 0, size);
 362        pending->ret = H_SUCCESS;
 363    } else {
 364        pending->ret = H_NO_MEM;
 365    }
 366
 367    qemu_mutex_lock_iothread();
 368
 369    if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
 370        /* Ready to go */
 371        pending->complete = true;
 372    } else {
 373        /* We've been cancelled, clean ourselves up */
 374        free_pending_hpt(pending);
 375    }
 376
 377    qemu_mutex_unlock_iothread();
 378    return NULL;
 379}
 380
 381/* Must be called with BQL held */
 382static void cancel_hpt_prepare(SpaprMachineState *spapr)
 383{
 384    SpaprPendingHpt *pending = spapr->pending_hpt;
 385
 386    /* Let the thread know it's cancelled */
 387    spapr->pending_hpt = NULL;
 388
 389    if (!pending) {
 390        /* Nothing to do */
 391        return;
 392    }
 393
 394    if (!pending->complete) {
 395        /* thread will clean itself up */
 396        return;
 397    }
 398
 399    free_pending_hpt(pending);
 400}
 401
 402/* Convert a return code from the KVM ioctl()s implementing resize HPT
 403 * into a PAPR hypercall return code */
 404static target_ulong resize_hpt_convert_rc(int ret)
 405{
 406    if (ret >= 100000) {
 407        return H_LONG_BUSY_ORDER_100_SEC;
 408    } else if (ret >= 10000) {
 409        return H_LONG_BUSY_ORDER_10_SEC;
 410    } else if (ret >= 1000) {
 411        return H_LONG_BUSY_ORDER_1_SEC;
 412    } else if (ret >= 100) {
 413        return H_LONG_BUSY_ORDER_100_MSEC;
 414    } else if (ret >= 10) {
 415        return H_LONG_BUSY_ORDER_10_MSEC;
 416    } else if (ret > 0) {
 417        return H_LONG_BUSY_ORDER_1_MSEC;
 418    }
 419
 420    switch (ret) {
 421    case 0:
 422        return H_SUCCESS;
 423    case -EPERM:
 424        return H_AUTHORITY;
 425    case -EINVAL:
 426        return H_PARAMETER;
 427    case -ENXIO:
 428        return H_CLOSED;
 429    case -ENOSPC:
 430        return H_PTEG_FULL;
 431    case -EBUSY:
 432        return H_BUSY;
 433    case -ENOMEM:
 434        return H_NO_MEM;
 435    default:
 436        return H_HARDWARE;
 437    }
 438}
 439
 440static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
 441                                         SpaprMachineState *spapr,
 442                                         target_ulong opcode,
 443                                         target_ulong *args)
 444{
 445    target_ulong flags = args[0];
 446    int shift = args[1];
 447    SpaprPendingHpt *pending = spapr->pending_hpt;
 448    uint64_t current_ram_size;
 449    int rc;
 450
 451    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 452        return H_AUTHORITY;
 453    }
 454
 455    if (!spapr->htab_shift) {
 456        /* Radix guest, no HPT */
 457        return H_NOT_AVAILABLE;
 458    }
 459
 460    trace_spapr_h_resize_hpt_prepare(flags, shift);
 461
 462    if (flags != 0) {
 463        return H_PARAMETER;
 464    }
 465
 466    if (shift && ((shift < 18) || (shift > 46))) {
 467        return H_PARAMETER;
 468    }
 469
 470    current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
 471
 472    /* We only allow the guest to allocate an HPT one order above what
 473     * we'd normally give them (to stop a small guest claiming a huge
 474     * chunk of resources in the HPT */
 475    if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
 476        return H_RESOURCE;
 477    }
 478
 479    rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
 480    if (rc != -ENOSYS) {
 481        return resize_hpt_convert_rc(rc);
 482    }
 483
 484    if (pending) {
 485        /* something already in progress */
 486        if (pending->shift == shift) {
 487            /* and it's suitable */
 488            if (pending->complete) {
 489                return pending->ret;
 490            } else {
 491                return H_LONG_BUSY_ORDER_100_MSEC;
 492            }
 493        }
 494
 495        /* not suitable, cancel and replace */
 496        cancel_hpt_prepare(spapr);
 497    }
 498
 499    if (!shift) {
 500        /* nothing to do */
 501        return H_SUCCESS;
 502    }
 503
 504    /* start new prepare */
 505
 506    pending = g_new0(SpaprPendingHpt, 1);
 507    pending->shift = shift;
 508    pending->ret = H_HARDWARE;
 509
 510    qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
 511                       hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
 512
 513    spapr->pending_hpt = pending;
 514
 515    /* In theory we could estimate the time more accurately based on
 516     * the new size, but there's not much point */
 517    return H_LONG_BUSY_ORDER_100_MSEC;
 518}
 519
 520static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
 521{
 522    uint8_t *addr = htab;
 523
 524    addr += pteg * HASH_PTEG_SIZE_64;
 525    addr += slot * HASH_PTE_SIZE_64;
 526    return  ldq_p(addr);
 527}
 528
 529static void new_hpte_store(void *htab, uint64_t pteg, int slot,
 530                           uint64_t pte0, uint64_t pte1)
 531{
 532    uint8_t *addr = htab;
 533
 534    addr += pteg * HASH_PTEG_SIZE_64;
 535    addr += slot * HASH_PTE_SIZE_64;
 536
 537    stq_p(addr, pte0);
 538    stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
 539}
 540
 541static int rehash_hpte(PowerPCCPU *cpu,
 542                       const ppc_hash_pte64_t *hptes,
 543                       void *old_hpt, uint64_t oldsize,
 544                       void *new_hpt, uint64_t newsize,
 545                       uint64_t pteg, int slot)
 546{
 547    uint64_t old_hash_mask = (oldsize >> 7) - 1;
 548    uint64_t new_hash_mask = (newsize >> 7) - 1;
 549    target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
 550    target_ulong pte1;
 551    uint64_t avpn;
 552    unsigned base_pg_shift;
 553    uint64_t hash, new_pteg, replace_pte0;
 554
 555    if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
 556        return H_SUCCESS;
 557    }
 558
 559    pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
 560
 561    base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
 562    assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
 563    avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
 564
 565    if (pte0 & HPTE64_V_SECONDARY) {
 566        pteg = ~pteg;
 567    }
 568
 569    if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
 570        uint64_t offset, vsid;
 571
 572        /* We only have 28 - 23 bits of offset in avpn */
 573        offset = (avpn & 0x1f) << 23;
 574        vsid = avpn >> 5;
 575        /* We can find more bits from the pteg value */
 576        if (base_pg_shift < 23) {
 577            offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
 578        }
 579
 580        hash = vsid ^ (offset >> base_pg_shift);
 581    } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
 582        uint64_t offset, vsid;
 583
 584        /* We only have 40 - 23 bits of seg_off in avpn */
 585        offset = (avpn & 0x1ffff) << 23;
 586        vsid = avpn >> 17;
 587        if (base_pg_shift < 23) {
 588            offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
 589                << base_pg_shift;
 590        }
 591
 592        hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
 593    } else {
 594        error_report("rehash_pte: Bad segment size in HPTE");
 595        return H_HARDWARE;
 596    }
 597
 598    new_pteg = hash & new_hash_mask;
 599    if (pte0 & HPTE64_V_SECONDARY) {
 600        assert(~pteg == (hash & old_hash_mask));
 601        new_pteg = ~new_pteg;
 602    } else {
 603        assert(pteg == (hash & old_hash_mask));
 604    }
 605    assert((oldsize != newsize) || (pteg == new_pteg));
 606    replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
 607    /*
 608     * Strictly speaking, we don't need all these tests, since we only
 609     * ever rehash bolted HPTEs.  We might in future handle non-bolted
 610     * HPTEs, though so make the logic correct for those cases as
 611     * well.
 612     */
 613    if (replace_pte0 & HPTE64_V_VALID) {
 614        assert(newsize < oldsize);
 615        if (replace_pte0 & HPTE64_V_BOLTED) {
 616            if (pte0 & HPTE64_V_BOLTED) {
 617                /* Bolted collision, nothing we can do */
 618                return H_PTEG_FULL;
 619            } else {
 620                /* Discard this hpte */
 621                return H_SUCCESS;
 622            }
 623        }
 624    }
 625
 626    new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
 627    return H_SUCCESS;
 628}
 629
 630static int rehash_hpt(PowerPCCPU *cpu,
 631                      void *old_hpt, uint64_t oldsize,
 632                      void *new_hpt, uint64_t newsize)
 633{
 634    uint64_t n_ptegs = oldsize >> 7;
 635    uint64_t pteg;
 636    int slot;
 637    int rc;
 638
 639    for (pteg = 0; pteg < n_ptegs; pteg++) {
 640        hwaddr ptex = pteg * HPTES_PER_GROUP;
 641        const ppc_hash_pte64_t *hptes
 642            = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
 643
 644        if (!hptes) {
 645            return H_HARDWARE;
 646        }
 647
 648        for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
 649            rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
 650                             pteg, slot);
 651            if (rc != H_SUCCESS) {
 652                ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 653                return rc;
 654            }
 655        }
 656        ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
 657    }
 658
 659    return H_SUCCESS;
 660}
 661
 662static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
 663{
 664    int ret;
 665
 666    cpu_synchronize_state(cs);
 667
 668    ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
 669    if (ret < 0) {
 670        error_report("failed to push sregs to KVM: %s", strerror(-ret));
 671        exit(1);
 672    }
 673}
 674
 675static void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
 676{
 677    CPUState *cs;
 678
 679    /*
 680     * This is a hack for the benefit of KVM PR - it abuses the SDR1
 681     * slot in kvm_sregs to communicate the userspace address of the
 682     * HPT
 683     */
 684    if (!kvm_enabled() || !spapr->htab) {
 685        return;
 686    }
 687
 688    CPU_FOREACH(cs) {
 689        run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
 690    }
 691}
 692
 693static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
 694                                        SpaprMachineState *spapr,
 695                                        target_ulong opcode,
 696                                        target_ulong *args)
 697{
 698    target_ulong flags = args[0];
 699    target_ulong shift = args[1];
 700    SpaprPendingHpt *pending = spapr->pending_hpt;
 701    int rc;
 702    size_t newsize;
 703
 704    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
 705        return H_AUTHORITY;
 706    }
 707
 708    if (!spapr->htab_shift) {
 709        /* Radix guest, no HPT */
 710        return H_NOT_AVAILABLE;
 711    }
 712
 713    trace_spapr_h_resize_hpt_commit(flags, shift);
 714
 715    rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
 716    if (rc != -ENOSYS) {
 717        rc = resize_hpt_convert_rc(rc);
 718        if (rc == H_SUCCESS) {
 719            /* Need to set the new htab_shift in the machine state */
 720            spapr->htab_shift = shift;
 721        }
 722        return rc;
 723    }
 724
 725    if (flags != 0) {
 726        return H_PARAMETER;
 727    }
 728
 729    if (!pending || (pending->shift != shift)) {
 730        /* no matching prepare */
 731        return H_CLOSED;
 732    }
 733
 734    if (!pending->complete) {
 735        /* prepare has not completed */
 736        return H_BUSY;
 737    }
 738
 739    /* Shouldn't have got past PREPARE without an HPT */
 740    g_assert(spapr->htab_shift);
 741
 742    newsize = 1ULL << pending->shift;
 743    rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
 744                    pending->hpt, newsize);
 745    if (rc == H_SUCCESS) {
 746        qemu_vfree(spapr->htab);
 747        spapr->htab = pending->hpt;
 748        spapr->htab_shift = pending->shift;
 749
 750        push_sregs_to_kvm_pr(spapr);
 751
 752        pending->hpt = NULL; /* so it's not free()d */
 753    }
 754
 755    /* Clean up */
 756    spapr->pending_hpt = NULL;
 757    free_pending_hpt(pending);
 758
 759    return rc;
 760}
 761
 762static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
 763                                target_ulong opcode, target_ulong *args)
 764{
 765    cpu_synchronize_state(CPU(cpu));
 766    cpu->env.spr[SPR_SPRG0] = args[0];
 767
 768    return H_SUCCESS;
 769}
 770
 771static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
 772                               target_ulong opcode, target_ulong *args)
 773{
 774    if (!has_spr(cpu, SPR_DABR)) {
 775        return H_HARDWARE;              /* DABR register not available */
 776    }
 777    cpu_synchronize_state(CPU(cpu));
 778
 779    if (has_spr(cpu, SPR_DABRX)) {
 780        cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
 781    } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
 782        return H_RESERVED_DABR;
 783    }
 784
 785    cpu->env.spr[SPR_DABR] = args[0];
 786    return H_SUCCESS;
 787}
 788
 789static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
 790                                target_ulong opcode, target_ulong *args)
 791{
 792    target_ulong dabrx = args[1];
 793
 794    if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
 795        return H_HARDWARE;
 796    }
 797
 798    if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
 799        || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
 800        return H_PARAMETER;
 801    }
 802
 803    cpu_synchronize_state(CPU(cpu));
 804    cpu->env.spr[SPR_DABRX] = dabrx;
 805    cpu->env.spr[SPR_DABR] = args[0];
 806
 807    return H_SUCCESS;
 808}
 809
 810static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
 811                                target_ulong opcode, target_ulong *args)
 812{
 813    target_ulong flags = args[0];
 814    hwaddr dst = args[1];
 815    hwaddr src = args[2];
 816    hwaddr len = TARGET_PAGE_SIZE;
 817    uint8_t *pdst, *psrc;
 818    target_long ret = H_SUCCESS;
 819
 820    if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
 821                  | H_COPY_PAGE | H_ZERO_PAGE)) {
 822        qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
 823                      flags);
 824        return H_PARAMETER;
 825    }
 826
 827    /* Map-in destination */
 828    if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
 829        return H_PARAMETER;
 830    }
 831    pdst = cpu_physical_memory_map(dst, &len, 1);
 832    if (!pdst || len != TARGET_PAGE_SIZE) {
 833        return H_PARAMETER;
 834    }
 835
 836    if (flags & H_COPY_PAGE) {
 837        /* Map-in source, copy to destination, and unmap source again */
 838        if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
 839            ret = H_PARAMETER;
 840            goto unmap_out;
 841        }
 842        psrc = cpu_physical_memory_map(src, &len, 0);
 843        if (!psrc || len != TARGET_PAGE_SIZE) {
 844            ret = H_PARAMETER;
 845            goto unmap_out;
 846        }
 847        memcpy(pdst, psrc, len);
 848        cpu_physical_memory_unmap(psrc, len, 0, len);
 849    } else if (flags & H_ZERO_PAGE) {
 850        memset(pdst, 0, len);          /* Just clear the destination page */
 851    }
 852
 853    if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
 854        kvmppc_dcbst_range(cpu, pdst, len);
 855    }
 856    if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
 857        if (kvm_enabled()) {
 858            kvmppc_icbi_range(cpu, pdst, len);
 859        } else {
 860            tb_flush(CPU(cpu));
 861        }
 862    }
 863
 864unmap_out:
 865    cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
 866    return ret;
 867}
 868
 869#define FLAGS_REGISTER_VPA         0x0000200000000000ULL
 870#define FLAGS_REGISTER_DTL         0x0000400000000000ULL
 871#define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
 872#define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
 873#define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
 874#define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
 875
 876#define VPA_MIN_SIZE           640
 877#define VPA_SIZE_OFFSET        0x4
 878#define VPA_SHARED_PROC_OFFSET 0x9
 879#define VPA_SHARED_PROC_VAL    0x2
 880
 881static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
 882{
 883    CPUState *cs = CPU(cpu);
 884    CPUPPCState *env = &cpu->env;
 885    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 886    uint16_t size;
 887    uint8_t tmp;
 888
 889    if (vpa == 0) {
 890        hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
 891        return H_HARDWARE;
 892    }
 893
 894    if (vpa % env->dcache_line_size) {
 895        return H_PARAMETER;
 896    }
 897    /* FIXME: bounds check the address */
 898
 899    size = lduw_be_phys(cs->as, vpa + 0x4);
 900
 901    if (size < VPA_MIN_SIZE) {
 902        return H_PARAMETER;
 903    }
 904
 905    /* VPA is not allowed to cross a page boundary */
 906    if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
 907        return H_PARAMETER;
 908    }
 909
 910    spapr_cpu->vpa_addr = vpa;
 911
 912    tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
 913    tmp |= VPA_SHARED_PROC_VAL;
 914    stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
 915
 916    return H_SUCCESS;
 917}
 918
 919static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
 920{
 921    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 922
 923    if (spapr_cpu->slb_shadow_addr) {
 924        return H_RESOURCE;
 925    }
 926
 927    if (spapr_cpu->dtl_addr) {
 928        return H_RESOURCE;
 929    }
 930
 931    spapr_cpu->vpa_addr = 0;
 932    return H_SUCCESS;
 933}
 934
 935static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
 936{
 937    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 938    uint32_t size;
 939
 940    if (addr == 0) {
 941        hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
 942        return H_HARDWARE;
 943    }
 944
 945    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
 946    if (size < 0x8) {
 947        return H_PARAMETER;
 948    }
 949
 950    if ((addr / 4096) != ((addr + size - 1) / 4096)) {
 951        return H_PARAMETER;
 952    }
 953
 954    if (!spapr_cpu->vpa_addr) {
 955        return H_RESOURCE;
 956    }
 957
 958    spapr_cpu->slb_shadow_addr = addr;
 959    spapr_cpu->slb_shadow_size = size;
 960
 961    return H_SUCCESS;
 962}
 963
 964static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
 965{
 966    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 967
 968    spapr_cpu->slb_shadow_addr = 0;
 969    spapr_cpu->slb_shadow_size = 0;
 970    return H_SUCCESS;
 971}
 972
 973static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
 974{
 975    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
 976    uint32_t size;
 977
 978    if (addr == 0) {
 979        hcall_dprintf("Can't cope with DTL at logical 0\n");
 980        return H_HARDWARE;
 981    }
 982
 983    size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
 984
 985    if (size < 48) {
 986        return H_PARAMETER;
 987    }
 988
 989    if (!spapr_cpu->vpa_addr) {
 990        return H_RESOURCE;
 991    }
 992
 993    spapr_cpu->dtl_addr = addr;
 994    spapr_cpu->dtl_size = size;
 995
 996    return H_SUCCESS;
 997}
 998
 999static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
1000{
1001    SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1002
1003    spapr_cpu->dtl_addr = 0;
1004    spapr_cpu->dtl_size = 0;
1005
1006    return H_SUCCESS;
1007}
1008
1009static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
1010                                   target_ulong opcode, target_ulong *args)
1011{
1012    target_ulong flags = args[0];
1013    target_ulong procno = args[1];
1014    target_ulong vpa = args[2];
1015    target_ulong ret = H_PARAMETER;
1016    PowerPCCPU *tcpu;
1017
1018    tcpu = spapr_find_cpu(procno);
1019    if (!tcpu) {
1020        return H_PARAMETER;
1021    }
1022
1023    switch (flags) {
1024    case FLAGS_REGISTER_VPA:
1025        ret = register_vpa(tcpu, vpa);
1026        break;
1027
1028    case FLAGS_DEREGISTER_VPA:
1029        ret = deregister_vpa(tcpu, vpa);
1030        break;
1031
1032    case FLAGS_REGISTER_SLBSHADOW:
1033        ret = register_slb_shadow(tcpu, vpa);
1034        break;
1035
1036    case FLAGS_DEREGISTER_SLBSHADOW:
1037        ret = deregister_slb_shadow(tcpu, vpa);
1038        break;
1039
1040    case FLAGS_REGISTER_DTL:
1041        ret = register_dtl(tcpu, vpa);
1042        break;
1043
1044    case FLAGS_DEREGISTER_DTL:
1045        ret = deregister_dtl(tcpu, vpa);
1046        break;
1047    }
1048
1049    return ret;
1050}
1051
1052static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
1053                           target_ulong opcode, target_ulong *args)
1054{
1055    CPUPPCState *env = &cpu->env;
1056    CPUState *cs = CPU(cpu);
1057
1058    env->msr |= (1ULL << MSR_EE);
1059    hreg_compute_hflags(env);
1060    if (!cpu_has_work(cs)) {
1061        cs->halted = 1;
1062        cs->exception_index = EXCP_HLT;
1063        cs->exit_request = 1;
1064    }
1065    return H_SUCCESS;
1066}
1067
1068static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
1069                           target_ulong opcode, target_ulong *args)
1070{
1071    target_ulong rtas_r3 = args[0];
1072    uint32_t token = rtas_ld(rtas_r3, 0);
1073    uint32_t nargs = rtas_ld(rtas_r3, 1);
1074    uint32_t nret = rtas_ld(rtas_r3, 2);
1075
1076    return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1077                           nret, rtas_r3 + 12 + 4*nargs);
1078}
1079
1080static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
1081                                   target_ulong opcode, target_ulong *args)
1082{
1083    CPUState *cs = CPU(cpu);
1084    target_ulong size = args[0];
1085    target_ulong addr = args[1];
1086
1087    switch (size) {
1088    case 1:
1089        args[0] = ldub_phys(cs->as, addr);
1090        return H_SUCCESS;
1091    case 2:
1092        args[0] = lduw_phys(cs->as, addr);
1093        return H_SUCCESS;
1094    case 4:
1095        args[0] = ldl_phys(cs->as, addr);
1096        return H_SUCCESS;
1097    case 8:
1098        args[0] = ldq_phys(cs->as, addr);
1099        return H_SUCCESS;
1100    }
1101    return H_PARAMETER;
1102}
1103
1104static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
1105                                    target_ulong opcode, target_ulong *args)
1106{
1107    CPUState *cs = CPU(cpu);
1108
1109    target_ulong size = args[0];
1110    target_ulong addr = args[1];
1111    target_ulong val  = args[2];
1112
1113    switch (size) {
1114    case 1:
1115        stb_phys(cs->as, addr, val);
1116        return H_SUCCESS;
1117    case 2:
1118        stw_phys(cs->as, addr, val);
1119        return H_SUCCESS;
1120    case 4:
1121        stl_phys(cs->as, addr, val);
1122        return H_SUCCESS;
1123    case 8:
1124        stq_phys(cs->as, addr, val);
1125        return H_SUCCESS;
1126    }
1127    return H_PARAMETER;
1128}
1129
1130static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
1131                                    target_ulong opcode, target_ulong *args)
1132{
1133    CPUState *cs = CPU(cpu);
1134
1135    target_ulong dst   = args[0]; /* Destination address */
1136    target_ulong src   = args[1]; /* Source address */
1137    target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1138    target_ulong count = args[3]; /* Element count */
1139    target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
1140    uint64_t tmp;
1141    unsigned int mask = (1 << esize) - 1;
1142    int step = 1 << esize;
1143
1144    if (count > 0x80000000) {
1145        return H_PARAMETER;
1146    }
1147
1148    if ((dst & mask) || (src & mask) || (op > 1)) {
1149        return H_PARAMETER;
1150    }
1151
1152    if (dst >= src && dst < (src + (count << esize))) {
1153            dst = dst + ((count - 1) << esize);
1154            src = src + ((count - 1) << esize);
1155            step = -step;
1156    }
1157
1158    while (count--) {
1159        switch (esize) {
1160        case 0:
1161            tmp = ldub_phys(cs->as, src);
1162            break;
1163        case 1:
1164            tmp = lduw_phys(cs->as, src);
1165            break;
1166        case 2:
1167            tmp = ldl_phys(cs->as, src);
1168            break;
1169        case 3:
1170            tmp = ldq_phys(cs->as, src);
1171            break;
1172        default:
1173            return H_PARAMETER;
1174        }
1175        if (op == 1) {
1176            tmp = ~tmp;
1177        }
1178        switch (esize) {
1179        case 0:
1180            stb_phys(cs->as, dst, tmp);
1181            break;
1182        case 1:
1183            stw_phys(cs->as, dst, tmp);
1184            break;
1185        case 2:
1186            stl_phys(cs->as, dst, tmp);
1187            break;
1188        case 3:
1189            stq_phys(cs->as, dst, tmp);
1190            break;
1191        }
1192        dst = dst + step;
1193        src = src + step;
1194    }
1195
1196    return H_SUCCESS;
1197}
1198
1199static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
1200                                   target_ulong opcode, target_ulong *args)
1201{
1202    /* Nothing to do on emulation, KVM will trap this in the kernel */
1203    return H_SUCCESS;
1204}
1205
1206static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
1207                                   target_ulong opcode, target_ulong *args)
1208{
1209    /* Nothing to do on emulation, KVM will trap this in the kernel */
1210    return H_SUCCESS;
1211}
1212
1213static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1214                                           target_ulong mflags,
1215                                           target_ulong value1,
1216                                           target_ulong value2)
1217{
1218    if (value1) {
1219        return H_P3;
1220    }
1221    if (value2) {
1222        return H_P4;
1223    }
1224
1225    switch (mflags) {
1226    case H_SET_MODE_ENDIAN_BIG:
1227        spapr_set_all_lpcrs(0, LPCR_ILE);
1228        spapr_pci_switch_vga(true);
1229        return H_SUCCESS;
1230
1231    case H_SET_MODE_ENDIAN_LITTLE:
1232        spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
1233        spapr_pci_switch_vga(false);
1234        return H_SUCCESS;
1235    }
1236
1237    return H_UNSUPPORTED_FLAG;
1238}
1239
1240static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1241                                                        target_ulong mflags,
1242                                                        target_ulong value1,
1243                                                        target_ulong value2)
1244{
1245    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1246
1247    if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1248        return H_P2;
1249    }
1250    if (value1) {
1251        return H_P3;
1252    }
1253    if (value2) {
1254        return H_P4;
1255    }
1256
1257    if (mflags == AIL_RESERVED) {
1258        return H_UNSUPPORTED_FLAG;
1259    }
1260
1261    spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1262
1263    return H_SUCCESS;
1264}
1265
1266static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
1267                               target_ulong opcode, target_ulong *args)
1268{
1269    target_ulong resource = args[1];
1270    target_ulong ret = H_P2;
1271
1272    switch (resource) {
1273    case H_SET_MODE_RESOURCE_LE:
1274        ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1275        break;
1276    case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1277        ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1278                                                  args[2], args[3]);
1279        break;
1280    }
1281
1282    return ret;
1283}
1284
1285static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
1286                                target_ulong opcode, target_ulong *args)
1287{
1288    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1289                  opcode, " (H_CLEAN_SLB)");
1290    return H_FUNCTION;
1291}
1292
1293static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
1294                                     target_ulong opcode, target_ulong *args)
1295{
1296    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1297                  opcode, " (H_INVALIDATE_PID)");
1298    return H_FUNCTION;
1299}
1300
1301static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
1302                                       uint64_t patbe_old, uint64_t patbe_new)
1303{
1304    /*
1305     * We have 4 Options:
1306     * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1307     * HASH->RADIX                                  : Free HPT
1308     * RADIX->HASH                                  : Allocate HPT
1309     * NOTHING->HASH                                : Allocate HPT
1310     * Note: NOTHING implies the case where we said the guest could choose
1311     *       later and so assumed radix and now it's called H_REG_PROC_TBL
1312     */
1313
1314    if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
1315        /* We assume RADIX, so this catches all the "Do Nothing" cases */
1316    } else if (!(patbe_old & PATE1_GR)) {
1317        /* HASH->RADIX : Free HPT */
1318        spapr_free_hpt(spapr);
1319    } else if (!(patbe_new & PATE1_GR)) {
1320        /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1321        spapr_setup_hpt_and_vrma(spapr);
1322    }
1323    return;
1324}
1325
1326#define FLAGS_MASK              0x01FULL
1327#define FLAG_MODIFY             0x10
1328#define FLAG_REGISTER           0x08
1329#define FLAG_RADIX              0x04
1330#define FLAG_HASH_PROC_TBL      0x02
1331#define FLAG_GTSE               0x01
1332
1333static target_ulong h_register_process_table(PowerPCCPU *cpu,
1334                                             SpaprMachineState *spapr,
1335                                             target_ulong opcode,
1336                                             target_ulong *args)
1337{
1338    target_ulong flags = args[0];
1339    target_ulong proc_tbl = args[1];
1340    target_ulong page_size = args[2];
1341    target_ulong table_size = args[3];
1342    target_ulong update_lpcr = 0;
1343    uint64_t cproc;
1344
1345    if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1346        return H_PARAMETER;
1347    }
1348    if (flags & FLAG_MODIFY) {
1349        if (flags & FLAG_REGISTER) {
1350            if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1351                if (proc_tbl & 0xfff || proc_tbl >> 60) {
1352                    return H_P2;
1353                } else if (page_size) {
1354                    return H_P3;
1355                } else if (table_size > 24) {
1356                    return H_P4;
1357                }
1358                cproc = PATE1_GR | proc_tbl | table_size;
1359            } else { /* Register new HPT process table */
1360                if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1361                    /* TODO - Not Supported */
1362                    /* Technically caused by flag bits => H_PARAMETER */
1363                    return H_PARAMETER;
1364                } else { /* Hash with SLB */
1365                    if (proc_tbl >> 38) {
1366                        return H_P2;
1367                    } else if (page_size & ~0x7) {
1368                        return H_P3;
1369                    } else if (table_size > 24) {
1370                        return H_P4;
1371                    }
1372                }
1373                cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1374            }
1375
1376        } else { /* Deregister current process table */
1377            /*
1378             * Set to benign value: (current GR) | 0. This allows
1379             * deregistration in KVM to succeed even if the radix bit
1380             * in flags doesn't match the radix bit in the old PATE.
1381             */
1382            cproc = spapr->patb_entry & PATE1_GR;
1383        }
1384    } else { /* Maintain current registration */
1385        if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
1386            /* Technically caused by flag bits => H_PARAMETER */
1387            return H_PARAMETER; /* Existing Process Table Mismatch */
1388        }
1389        cproc = spapr->patb_entry;
1390    }
1391
1392    /* Check if we need to setup OR free the hpt */
1393    spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1394
1395    spapr->patb_entry = cproc; /* Save new process table */
1396
1397    /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1398    if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
1399        update_lpcr |= (LPCR_UPRT | LPCR_HR);
1400    else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
1401        update_lpcr |= LPCR_UPRT;
1402    if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
1403        update_lpcr |= LPCR_GTSE;
1404
1405    spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1406
1407    if (kvm_enabled()) {
1408        return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1409                                       flags & FLAG_GTSE, cproc);
1410    }
1411    return H_SUCCESS;
1412}
1413
1414#define H_SIGNAL_SYS_RESET_ALL         -1
1415#define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1416
1417static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1418                                       SpaprMachineState *spapr,
1419                                       target_ulong opcode, target_ulong *args)
1420{
1421    target_long target = args[0];
1422    CPUState *cs;
1423
1424    if (target < 0) {
1425        /* Broadcast */
1426        if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1427            return H_PARAMETER;
1428        }
1429
1430        CPU_FOREACH(cs) {
1431            PowerPCCPU *c = POWERPC_CPU(cs);
1432
1433            if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1434                if (c == cpu) {
1435                    continue;
1436                }
1437            }
1438            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1439        }
1440        return H_SUCCESS;
1441
1442    } else {
1443        /* Unicast */
1444        cs = CPU(spapr_find_cpu(target));
1445        if (cs) {
1446            run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1447            return H_SUCCESS;
1448        }
1449        return H_PARAMETER;
1450    }
1451}
1452
1453static uint32_t cas_check_pvr(SpaprMachineState *spapr, PowerPCCPU *cpu,
1454                              target_ulong *addr, bool *raw_mode_supported,
1455                              Error **errp)
1456{
1457    bool explicit_match = false; /* Matched the CPU's real PVR */
1458    uint32_t max_compat = spapr->max_compat_pvr;
1459    uint32_t best_compat = 0;
1460    int i;
1461
1462    /*
1463     * We scan the supplied table of PVRs looking for two things
1464     *   1. Is our real CPU PVR in the list?
1465     *   2. What's the "best" listed logical PVR
1466     */
1467    for (i = 0; i < 512; ++i) {
1468        uint32_t pvr, pvr_mask;
1469
1470        pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1471        pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1472        *addr += 8;
1473
1474        if (~pvr_mask & pvr) {
1475            break; /* Terminator record */
1476        }
1477
1478        if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1479            explicit_match = true;
1480        } else {
1481            if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1482                best_compat = pvr;
1483            }
1484        }
1485    }
1486
1487    if ((best_compat == 0) && (!explicit_match || max_compat)) {
1488        /* We couldn't find a suitable compatibility mode, and either
1489         * the guest doesn't support "raw" mode for this CPU, or raw
1490         * mode is disabled because a maximum compat mode is set */
1491        error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1492        return 0;
1493    }
1494
1495    *raw_mode_supported = explicit_match;
1496
1497    /* Parsing finished */
1498    trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1499
1500    return best_compat;
1501}
1502
1503static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1504                                                  SpaprMachineState *spapr,
1505                                                  target_ulong opcode,
1506                                                  target_ulong *args)
1507{
1508    /* Working address in data buffer */
1509    target_ulong addr = ppc64_phys_to_real(args[0]);
1510    target_ulong ov_table;
1511    uint32_t cas_pvr;
1512    SpaprOptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1513    bool guest_radix;
1514    Error *local_err = NULL;
1515    bool raw_mode_supported = false;
1516
1517    cas_pvr = cas_check_pvr(spapr, cpu, &addr, &raw_mode_supported, &local_err);
1518    if (local_err) {
1519        error_report_err(local_err);
1520        return H_HARDWARE;
1521    }
1522
1523    /* Update CPUs */
1524    if (cpu->compat_pvr != cas_pvr) {
1525        ppc_set_compat_all(cas_pvr, &local_err);
1526        if (local_err) {
1527            /* We fail to set compat mode (likely because running with KVM PR),
1528             * but maybe we can fallback to raw mode if the guest supports it.
1529             */
1530            if (!raw_mode_supported) {
1531                error_report_err(local_err);
1532                return H_HARDWARE;
1533            }
1534            error_free(local_err);
1535            local_err = NULL;
1536        }
1537    }
1538
1539    /* For the future use: here @ov_table points to the first option vector */
1540    ov_table = addr;
1541
1542    ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1543    ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1544    if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1545        error_report("guest requested hash and radix MMU, which is invalid.");
1546        exit(EXIT_FAILURE);
1547    }
1548    /* The radix/hash bit in byte 24 requires special handling: */
1549    guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1550    spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1551
1552    /*
1553     * HPT resizing is a bit of a special case, because when enabled
1554     * we assume an HPT guest will support it until it says it
1555     * doesn't, instead of assuming it won't support it until it says
1556     * it does.  Strictly speaking that approach could break for
1557     * guests which don't make a CAS call, but those are so old we
1558     * don't care about them.  Without that assumption we'd have to
1559     * make at least a temporary allocation of an HPT sized for max
1560     * memory, which could be impossibly difficult under KVM HV if
1561     * maxram is large.
1562     */
1563    if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1564        int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1565
1566        if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1567            error_report(
1568                "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1569            exit(1);
1570        }
1571
1572        if (spapr->htab_shift < maxshift) {
1573            /* Guest doesn't know about HPT resizing, so we
1574             * pre-emptively resize for the maximum permitted RAM.  At
1575             * the point this is called, nothing should have been
1576             * entered into the existing HPT */
1577            spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1578            push_sregs_to_kvm_pr(spapr);
1579        }
1580    }
1581
1582    /* NOTE: there are actually a number of ov5 bits where input from the
1583     * guest is always zero, and the platform/QEMU enables them independently
1584     * of guest input. To model these properly we'd want some sort of mask,
1585     * but since they only currently apply to memory migration as defined
1586     * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1587     * to worry about this for now.
1588     */
1589    ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1590
1591    /* also clear the radix/hash bit from the current ov5_cas bits to
1592     * be in sync with the newly ov5 bits. Else the radix bit will be
1593     * seen as being removed and this will generate a reset loop
1594     */
1595    spapr_ovec_clear(ov5_cas_old, OV5_MMU_RADIX_300);
1596
1597    /* full range of negotiated ov5 capabilities */
1598    spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1599    spapr_ovec_cleanup(ov5_guest);
1600    /* capabilities that have been added since CAS-generated guest reset.
1601     * if capabilities have since been removed, generate another reset
1602     */
1603    ov5_updates = spapr_ovec_new();
1604    spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1605                                        ov5_cas_old, spapr->ov5_cas);
1606    /* Now that processing is finished, set the radix/hash bit for the
1607     * guest if it requested a valid mode; otherwise terminate the boot. */
1608    if (guest_radix) {
1609        if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1610            error_report("Guest requested unavailable MMU mode (radix).");
1611            exit(EXIT_FAILURE);
1612        }
1613        spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1614    } else {
1615        if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1616            && !kvmppc_has_cap_mmu_hash_v3()) {
1617            error_report("Guest requested unavailable MMU mode (hash).");
1618            exit(EXIT_FAILURE);
1619        }
1620    }
1621    spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1622                                                          OV1_PPC_3_00);
1623    if (!spapr->cas_reboot) {
1624        /* If spapr_machine_reset() did not set up a HPT but one is necessary
1625         * (because the guest isn't going to use radix) then set it up here. */
1626        if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1627            /* legacy hash or new hash: */
1628            spapr_setup_hpt_and_vrma(spapr);
1629        }
1630        spapr->cas_reboot =
1631            (spapr_h_cas_compose_response(spapr, args[1], args[2],
1632                                          ov5_updates) != 0);
1633    }
1634
1635    /*
1636     * Generate a machine reset when we have an update of the
1637     * interrupt mode. Only required when the machine supports both
1638     * modes.
1639     */
1640    if (!spapr->cas_reboot) {
1641        spapr->cas_reboot = spapr_ovec_test(ov5_updates, OV5_XIVE_EXPLOIT)
1642            && spapr->irq->ov5 & SPAPR_OV5_XIVE_BOTH;
1643    }
1644
1645    spapr_ovec_cleanup(ov5_updates);
1646
1647    if (spapr->cas_reboot) {
1648        qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1649    }
1650
1651    return H_SUCCESS;
1652}
1653
1654static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
1655                                              SpaprMachineState *spapr,
1656                                              target_ulong opcode,
1657                                              target_ulong *args)
1658{
1659    target_ulong flags = args[0];
1660    target_ulong procno = args[1];
1661    PowerPCCPU *tcpu;
1662    int idx;
1663
1664    /* only support procno from H_REGISTER_VPA */
1665    if (flags != 0x1) {
1666        return H_FUNCTION;
1667    }
1668
1669    tcpu = spapr_find_cpu(procno);
1670    if (tcpu == NULL) {
1671        return H_P2;
1672    }
1673
1674    /* sequence is the same as in the "ibm,associativity" property */
1675
1676    idx = 0;
1677#define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
1678                             ((uint64_t)(b) & 0xffffffff))
1679    args[idx++] = ASSOCIATIVITY(0, 0);
1680    args[idx++] = ASSOCIATIVITY(0, tcpu->node_id);
1681    args[idx++] = ASSOCIATIVITY(procno, -1);
1682    for ( ; idx < 6; idx++) {
1683        args[idx] = -1;
1684    }
1685#undef ASSOCIATIVITY
1686
1687    return H_SUCCESS;
1688}
1689
1690static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1691                                              SpaprMachineState *spapr,
1692                                              target_ulong opcode,
1693                                              target_ulong *args)
1694{
1695    uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1696                               ~H_CPU_CHAR_THR_RECONF_TRIG;
1697    uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1698    uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1699    uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1700    uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1701    uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1702                                                     SPAPR_CAP_CCF_ASSIST);
1703
1704    switch (safe_cache) {
1705    case SPAPR_CAP_WORKAROUND:
1706        characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1707        characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1708        characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1709        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1710        break;
1711    case SPAPR_CAP_FIXED:
1712        break;
1713    default: /* broken */
1714        assert(safe_cache == SPAPR_CAP_BROKEN);
1715        behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1716        break;
1717    }
1718
1719    switch (safe_bounds_check) {
1720    case SPAPR_CAP_WORKAROUND:
1721        characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1722        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1723        break;
1724    case SPAPR_CAP_FIXED:
1725        break;
1726    default: /* broken */
1727        assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1728        behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1729        break;
1730    }
1731
1732    switch (safe_indirect_branch) {
1733    case SPAPR_CAP_FIXED_NA:
1734        break;
1735    case SPAPR_CAP_FIXED_CCD:
1736        characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1737        break;
1738    case SPAPR_CAP_FIXED_IBS:
1739        characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1740        break;
1741    case SPAPR_CAP_WORKAROUND:
1742        behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1743        if (count_cache_flush_assist) {
1744            characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1745        }
1746        break;
1747    default: /* broken */
1748        assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1749        break;
1750    }
1751
1752    args[0] = characteristics;
1753    args[1] = behaviour;
1754    return H_SUCCESS;
1755}
1756
1757static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1758                                target_ulong opcode, target_ulong *args)
1759{
1760    target_ulong dt = ppc64_phys_to_real(args[0]);
1761    struct fdt_header hdr = { 0 };
1762    unsigned cb;
1763    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1764    void *fdt;
1765
1766    cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1767    cb = fdt32_to_cpu(hdr.totalsize);
1768
1769    if (!smc->update_dt_enabled) {
1770        return H_SUCCESS;
1771    }
1772
1773    /* Check that the fdt did not grow out of proportion */
1774    if (cb > spapr->fdt_initial_size * 2) {
1775        trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1776                                          fdt32_to_cpu(hdr.magic));
1777        return H_PARAMETER;
1778    }
1779
1780    fdt = g_malloc0(cb);
1781    cpu_physical_memory_read(dt, fdt, cb);
1782
1783    /* Check the fdt consistency */
1784    if (fdt_check_full(fdt, cb)) {
1785        trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1786                                           fdt32_to_cpu(hdr.magic));
1787        return H_PARAMETER;
1788    }
1789
1790    g_free(spapr->fdt_blob);
1791    spapr->fdt_size = cb;
1792    spapr->fdt_blob = fdt;
1793    trace_spapr_update_dt(cb);
1794
1795    return H_SUCCESS;
1796}
1797
1798static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1799static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1800
1801void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1802{
1803    spapr_hcall_fn *slot;
1804
1805    if (opcode <= MAX_HCALL_OPCODE) {
1806        assert((opcode & 0x3) == 0);
1807
1808        slot = &papr_hypercall_table[opcode / 4];
1809    } else {
1810        assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1811
1812        slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1813    }
1814
1815    assert(!(*slot));
1816    *slot = fn;
1817}
1818
1819target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1820                             target_ulong *args)
1821{
1822    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1823
1824    if ((opcode <= MAX_HCALL_OPCODE)
1825        && ((opcode & 0x3) == 0)) {
1826        spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1827
1828        if (fn) {
1829            return fn(cpu, spapr, opcode, args);
1830        }
1831    } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1832               (opcode <= KVMPPC_HCALL_MAX)) {
1833        spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1834
1835        if (fn) {
1836            return fn(cpu, spapr, opcode, args);
1837        }
1838    }
1839
1840    qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1841                  opcode);
1842    return H_FUNCTION;
1843}
1844
1845static void hypercall_register_types(void)
1846{
1847    /* hcall-pft */
1848    spapr_register_hypercall(H_ENTER, h_enter);
1849    spapr_register_hypercall(H_REMOVE, h_remove);
1850    spapr_register_hypercall(H_PROTECT, h_protect);
1851    spapr_register_hypercall(H_READ, h_read);
1852
1853    /* hcall-bulk */
1854    spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1855
1856    /* hcall-hpt-resize */
1857    spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1858    spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1859
1860    /* hcall-splpar */
1861    spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1862    spapr_register_hypercall(H_CEDE, h_cede);
1863    spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1864
1865    /* processor register resource access h-calls */
1866    spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1867    spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1868    spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1869    spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1870    spapr_register_hypercall(H_SET_MODE, h_set_mode);
1871
1872    /* In Memory Table MMU h-calls */
1873    spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1874    spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1875    spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1876
1877    /* hcall-get-cpu-characteristics */
1878    spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1879                             h_get_cpu_characteristics);
1880
1881    /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1882     * here between the "CI" and the "CACHE" variants, they will use whatever
1883     * mapping attributes qemu is using. When using KVM, the kernel will
1884     * enforce the attributes more strongly
1885     */
1886    spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1887    spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1888    spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1889    spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1890    spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1891    spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1892    spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1893
1894    /* qemu/KVM-PPC specific hcalls */
1895    spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1896
1897    /* ibm,client-architecture-support support */
1898    spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1899
1900    spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1901
1902    /* Virtual Processor Home Node */
1903    spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
1904                             h_home_node_associativity);
1905}
1906
1907type_init(hypercall_register_types)
1908