qemu/include/hw/arm/armsse.h
<<
>>
Prefs
   1/*
   2 * ARM SSE (Subsystems for Embedded): IoTKit, SSE-200
   3 *
   4 * Copyright (c) 2018 Linaro Limited
   5 * Written by Peter Maydell
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 or
   9 * (at your option) any later version.
  10 */
  11
  12/*
  13 * This is a model of the Arm "Subsystems for Embedded" family of
  14 * hardware, which include the IoT Kit and the SSE-050, SSE-100 and
  15 * SSE-200. Currently we model:
  16 *  - the Arm IoT Kit which is documented in
  17 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
  18 *  - the SSE-200 which is documented in
  19 * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
  20 *
  21 * The IoTKit contains:
  22 *  a Cortex-M33
  23 *  the IDAU
  24 *  some timers and watchdogs
  25 *  two peripheral protection controllers
  26 *  a memory protection controller
  27 *  a security controller
  28 *  a bus fabric which arranges that some parts of the address
  29 *  space are secure and non-secure aliases of each other
  30 * The SSE-200 additionally contains:
  31 *  a second Cortex-M33
  32 *  two Message Handling Units (MHUs)
  33 *  an optional CryptoCell (which we do not model)
  34 *  more SRAM banks with associated MPCs
  35 *  multiple Power Policy Units (PPUs)
  36 *  a control interface for an icache for each CPU
  37 *  per-CPU identity and control register blocks
  38 *
  39 * QEMU interface:
  40 *  + QOM property "memory" is a MemoryRegion containing the devices provided
  41 *    by the board model.
  42 *  + QOM property "MAINCLK" is the frequency of the main system clock
  43 *  + QOM property "EXP_NUMIRQ" sets the number of expansion interrupts.
  44 *    (In hardware, the SSE-200 permits the number of expansion interrupts
  45 *    for the two CPUs to be configured separately, but we restrict it to
  46 *    being the same for both, to avoid having to have separate Property
  47 *    lists for different variants. This restriction can be relaxed later
  48 *    if necessary.)
  49 *  + QOM property "SRAM_ADDR_WIDTH" sets the number of bits used for the
  50 *    address of each SRAM bank (and thus the total amount of internal SRAM)
  51 *  + QOM property "init-svtor" sets the initial value of the CPU SVTOR register
  52 *    (where it expects to load the PC and SP from the vector table on reset)
  53 *  + Named GPIO inputs "EXP_IRQ" 0..n are the expansion interrupts for CPU 0,
  54 *    which are wired to its NVIC lines 32 .. n+32
  55 *  + Named GPIO inputs "EXP_CPU1_IRQ" 0..n are the expansion interrupts for
  56 *    CPU 1, which are wired to its NVIC lines 32 .. n+32
  57 *  + sysbus MMIO region 0 is the "AHB Slave Expansion" which allows
  58 *    bus master devices in the board model to make transactions into
  59 *    all the devices and memory areas in the IoTKit
  60 * Controlling up to 4 AHB expansion PPBs which a system using the IoTKit
  61 * might provide:
  62 *  + named GPIO outputs apb_ppcexp{0,1,2,3}_nonsec[0..15]
  63 *  + named GPIO outputs apb_ppcexp{0,1,2,3}_ap[0..15]
  64 *  + named GPIO outputs apb_ppcexp{0,1,2,3}_irq_enable
  65 *  + named GPIO outputs apb_ppcexp{0,1,2,3}_irq_clear
  66 *  + named GPIO inputs apb_ppcexp{0,1,2,3}_irq_status
  67 * Controlling each of the 4 expansion AHB PPCs which a system using the IoTKit
  68 * might provide:
  69 *  + named GPIO outputs ahb_ppcexp{0,1,2,3}_nonsec[0..15]
  70 *  + named GPIO outputs ahb_ppcexp{0,1,2,3}_ap[0..15]
  71 *  + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_enable
  72 *  + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_clear
  73 *  + named GPIO inputs ahb_ppcexp{0,1,2,3}_irq_status
  74 * Controlling each of the 16 expansion MPCs which a system using the IoTKit
  75 * might provide:
  76 *  + named GPIO inputs mpcexp_status[0..15]
  77 * Controlling each of the 16 expansion MSCs which a system using the IoTKit
  78 * might provide:
  79 *  + named GPIO inputs mscexp_status[0..15]
  80 *  + named GPIO outputs mscexp_clear[0..15]
  81 *  + named GPIO outputs mscexp_ns[0..15]
  82 */
  83
  84#ifndef ARMSSE_H
  85#define ARMSSE_H
  86
  87#include "hw/sysbus.h"
  88#include "hw/arm/armv7m.h"
  89#include "hw/misc/iotkit-secctl.h"
  90#include "hw/misc/tz-ppc.h"
  91#include "hw/misc/tz-mpc.h"
  92#include "hw/timer/cmsdk-apb-timer.h"
  93#include "hw/timer/cmsdk-apb-dualtimer.h"
  94#include "hw/watchdog/cmsdk-apb-watchdog.h"
  95#include "hw/misc/iotkit-sysctl.h"
  96#include "hw/misc/iotkit-sysinfo.h"
  97#include "hw/misc/armsse-cpuid.h"
  98#include "hw/misc/armsse-mhu.h"
  99#include "hw/misc/unimp.h"
 100#include "hw/or-irq.h"
 101#include "hw/core/split-irq.h"
 102#include "hw/cpu/cluster.h"
 103
 104#define TYPE_ARMSSE "arm-sse"
 105#define ARMSSE(obj) OBJECT_CHECK(ARMSSE, (obj), TYPE_ARMSSE)
 106
 107/*
 108 * These type names are for specific IoTKit subsystems; other than
 109 * instantiating them, code using these devices should always handle
 110 * them via the ARMSSE base class, so they have no IOTKIT() etc macros.
 111 */
 112#define TYPE_IOTKIT "iotkit"
 113#define TYPE_SSE200 "sse-200"
 114
 115/* We have an IRQ splitter and an OR gate input for each external PPC
 116 * and the 2 internal PPCs
 117 */
 118#define NUM_EXTERNAL_PPCS (IOTS_NUM_AHB_EXP_PPC + IOTS_NUM_APB_EXP_PPC)
 119#define NUM_PPCS (NUM_EXTERNAL_PPCS + 2)
 120
 121#define MAX_SRAM_BANKS 4
 122#if MAX_SRAM_BANKS > IOTS_NUM_MPC
 123#error Too many SRAM banks
 124#endif
 125
 126#define SSE_MAX_CPUS 2
 127
 128/* These define what each PPU in the ppu[] index is for */
 129#define CPU0CORE_PPU 0
 130#define CPU1CORE_PPU 1
 131#define DBG_PPU 2
 132#define RAM0_PPU 3
 133#define RAM1_PPU 4
 134#define RAM2_PPU 5
 135#define RAM3_PPU 6
 136#define NUM_PPUS 7
 137
 138typedef struct ARMSSE {
 139    /*< private >*/
 140    SysBusDevice parent_obj;
 141
 142    /*< public >*/
 143    ARMv7MState armv7m[SSE_MAX_CPUS];
 144    CPUClusterState cluster[SSE_MAX_CPUS];
 145    IoTKitSecCtl secctl;
 146    TZPPC apb_ppc0;
 147    TZPPC apb_ppc1;
 148    TZMPC mpc[IOTS_NUM_MPC];
 149    CMSDKAPBTIMER timer0;
 150    CMSDKAPBTIMER timer1;
 151    CMSDKAPBTIMER s32ktimer;
 152    qemu_or_irq ppc_irq_orgate;
 153    SplitIRQ sec_resp_splitter;
 154    SplitIRQ ppc_irq_splitter[NUM_PPCS];
 155    SplitIRQ mpc_irq_splitter[IOTS_NUM_EXP_MPC + IOTS_NUM_MPC];
 156    qemu_or_irq mpc_irq_orgate;
 157    qemu_or_irq nmi_orgate;
 158
 159    SplitIRQ cpu_irq_splitter[32];
 160
 161    CMSDKAPBDualTimer dualtimer;
 162
 163    CMSDKAPBWatchdog s32kwatchdog;
 164    CMSDKAPBWatchdog nswatchdog;
 165    CMSDKAPBWatchdog swatchdog;
 166
 167    IoTKitSysCtl sysctl;
 168    IoTKitSysCtl sysinfo;
 169
 170    ARMSSEMHU mhu[2];
 171    UnimplementedDeviceState ppu[NUM_PPUS];
 172    UnimplementedDeviceState cachectrl[SSE_MAX_CPUS];
 173    UnimplementedDeviceState cpusecctrl[SSE_MAX_CPUS];
 174
 175    ARMSSECPUID cpuid[SSE_MAX_CPUS];
 176
 177    /*
 178     * 'container' holds all devices seen by all CPUs.
 179     * 'cpu_container[i]' is the view that CPU i has: this has the
 180     * per-CPU devices of that CPU, plus as the background 'container'
 181     * (or an alias of it, since we can only use it directly once).
 182     * container_alias[i] is the alias of 'container' used by CPU i+1;
 183     * CPU 0 can use 'container' directly.
 184     */
 185    MemoryRegion container;
 186    MemoryRegion container_alias[SSE_MAX_CPUS - 1];
 187    MemoryRegion cpu_container[SSE_MAX_CPUS];
 188    MemoryRegion alias1;
 189    MemoryRegion alias2;
 190    MemoryRegion alias3[SSE_MAX_CPUS];
 191    MemoryRegion sram[MAX_SRAM_BANKS];
 192
 193    qemu_irq *exp_irqs[SSE_MAX_CPUS];
 194    qemu_irq ppc0_irq;
 195    qemu_irq ppc1_irq;
 196    qemu_irq sec_resp_cfg;
 197    qemu_irq sec_resp_cfg_in;
 198    qemu_irq nsc_cfg_in;
 199
 200    qemu_irq irq_status_in[NUM_EXTERNAL_PPCS];
 201    qemu_irq mpcexp_status_in[IOTS_NUM_EXP_MPC];
 202
 203    uint32_t nsccfg;
 204
 205    /* Properties */
 206    MemoryRegion *board_memory;
 207    uint32_t exp_numirq;
 208    uint32_t mainclk_frq;
 209    uint32_t sram_addr_width;
 210    uint32_t init_svtor;
 211} ARMSSE;
 212
 213typedef struct ARMSSEInfo ARMSSEInfo;
 214
 215typedef struct ARMSSEClass {
 216    DeviceClass parent_class;
 217    const ARMSSEInfo *info;
 218} ARMSSEClass;
 219
 220#define ARMSSE_CLASS(klass) \
 221    OBJECT_CLASS_CHECK(ARMSSEClass, (klass), TYPE_ARMSSE)
 222#define ARMSSE_GET_CLASS(obj) \
 223    OBJECT_GET_CLASS(ARMSSEClass, (obj), TYPE_ARMSSE)
 224
 225#endif
 226