qemu/linux-user/qemu.h
<<
>>
Prefs
   1#ifndef QEMU_H
   2#define QEMU_H
   3
   4#include "hostdep.h"
   5#include "cpu.h"
   6#include "exec/exec-all.h"
   7#include "exec/cpu_ldst.h"
   8
   9#undef DEBUG_REMAP
  10#ifdef DEBUG_REMAP
  11#endif /* DEBUG_REMAP */
  12
  13#include "exec/user/abitypes.h"
  14
  15#include "exec/user/thunk.h"
  16#include "syscall_defs.h"
  17#include "target_syscall.h"
  18#include "exec/gdbstub.h"
  19#include "qemu/queue.h"
  20
  21/* This is the size of the host kernel's sigset_t, needed where we make
  22 * direct system calls that take a sigset_t pointer and a size.
  23 */
  24#define SIGSET_T_SIZE (_NSIG / 8)
  25
  26/* This struct is used to hold certain information about the image.
  27 * Basically, it replicates in user space what would be certain
  28 * task_struct fields in the kernel
  29 */
  30struct image_info {
  31        abi_ulong       load_bias;
  32        abi_ulong       load_addr;
  33        abi_ulong       start_code;
  34        abi_ulong       end_code;
  35        abi_ulong       start_data;
  36        abi_ulong       end_data;
  37        abi_ulong       start_brk;
  38        abi_ulong       brk;
  39        abi_ulong       start_mmap;
  40        abi_ulong       start_stack;
  41        abi_ulong       stack_limit;
  42        abi_ulong       entry;
  43        abi_ulong       code_offset;
  44        abi_ulong       data_offset;
  45        abi_ulong       saved_auxv;
  46        abi_ulong       auxv_len;
  47        abi_ulong       arg_start;
  48        abi_ulong       arg_end;
  49        abi_ulong       arg_strings;
  50        abi_ulong       env_strings;
  51        abi_ulong       file_string;
  52        uint32_t        elf_flags;
  53        int             personality;
  54        abi_ulong       alignment;
  55
  56        /* The fields below are used in FDPIC mode.  */
  57        abi_ulong       loadmap_addr;
  58        uint16_t        nsegs;
  59        void           *loadsegs;
  60        abi_ulong       pt_dynamic_addr;
  61        abi_ulong       interpreter_loadmap_addr;
  62        abi_ulong       interpreter_pt_dynamic_addr;
  63        struct image_info *other_info;
  64#ifdef TARGET_MIPS
  65        int             fp_abi;
  66        int             interp_fp_abi;
  67#endif
  68};
  69
  70#ifdef TARGET_I386
  71/* Information about the current linux thread */
  72struct vm86_saved_state {
  73    uint32_t eax; /* return code */
  74    uint32_t ebx;
  75    uint32_t ecx;
  76    uint32_t edx;
  77    uint32_t esi;
  78    uint32_t edi;
  79    uint32_t ebp;
  80    uint32_t esp;
  81    uint32_t eflags;
  82    uint32_t eip;
  83    uint16_t cs, ss, ds, es, fs, gs;
  84};
  85#endif
  86
  87#if defined(TARGET_ARM) && defined(TARGET_ABI32)
  88/* FPU emulator */
  89#include "nwfpe/fpa11.h"
  90#endif
  91
  92#define MAX_SIGQUEUE_SIZE 1024
  93
  94struct emulated_sigtable {
  95    int pending; /* true if signal is pending */
  96    target_siginfo_t info;
  97};
  98
  99/* NOTE: we force a big alignment so that the stack stored after is
 100   aligned too */
 101typedef struct TaskState {
 102    pid_t ts_tid;     /* tid (or pid) of this task */
 103#ifdef TARGET_ARM
 104# ifdef TARGET_ABI32
 105    /* FPA state */
 106    FPA11 fpa;
 107# endif
 108    int swi_errno;
 109#endif
 110#if defined(TARGET_I386) && !defined(TARGET_X86_64)
 111    abi_ulong target_v86;
 112    struct vm86_saved_state vm86_saved_regs;
 113    struct target_vm86plus_struct vm86plus;
 114    uint32_t v86flags;
 115    uint32_t v86mask;
 116#endif
 117    abi_ulong child_tidptr;
 118#ifdef TARGET_M68K
 119    int sim_syscalls;
 120    abi_ulong tp_value;
 121#endif
 122#if defined(TARGET_ARM) || defined(TARGET_M68K)
 123    /* Extra fields for semihosted binaries.  */
 124    abi_ulong heap_base;
 125    abi_ulong heap_limit;
 126#endif
 127    abi_ulong stack_base;
 128    int used; /* non zero if used */
 129    struct image_info *info;
 130    struct linux_binprm *bprm;
 131
 132    struct emulated_sigtable sync_signal;
 133    struct emulated_sigtable sigtab[TARGET_NSIG];
 134    /* This thread's signal mask, as requested by the guest program.
 135     * The actual signal mask of this thread may differ:
 136     *  + we don't let SIGSEGV and SIGBUS be blocked while running guest code
 137     *  + sometimes we block all signals to avoid races
 138     */
 139    sigset_t signal_mask;
 140    /* The signal mask imposed by a guest sigsuspend syscall, if we are
 141     * currently in the middle of such a syscall
 142     */
 143    sigset_t sigsuspend_mask;
 144    /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
 145    int in_sigsuspend;
 146
 147    /* Nonzero if process_pending_signals() needs to do something (either
 148     * handle a pending signal or unblock signals).
 149     * This flag is written from a signal handler so should be accessed via
 150     * the atomic_read() and atomic_set() functions. (It is not accessed
 151     * from multiple threads.)
 152     */
 153    int signal_pending;
 154
 155} __attribute__((aligned(16))) TaskState;
 156
 157extern char *exec_path;
 158void init_task_state(TaskState *ts);
 159void task_settid(TaskState *);
 160void stop_all_tasks(void);
 161extern const char *qemu_uname_release;
 162extern unsigned long mmap_min_addr;
 163
 164/* ??? See if we can avoid exposing so much of the loader internals.  */
 165
 166/* Read a good amount of data initially, to hopefully get all the
 167   program headers loaded.  */
 168#define BPRM_BUF_SIZE  1024
 169
 170/*
 171 * This structure is used to hold the arguments that are
 172 * used when loading binaries.
 173 */
 174struct linux_binprm {
 175        char buf[BPRM_BUF_SIZE] __attribute__((aligned));
 176        abi_ulong p;
 177        int fd;
 178        int e_uid, e_gid;
 179        int argc, envc;
 180        char **argv;
 181        char **envp;
 182        char * filename;        /* Name of binary */
 183        int (*core_dump)(int, const CPUArchState *); /* coredump routine */
 184};
 185
 186void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
 187abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
 188                              abi_ulong stringp, int push_ptr);
 189int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
 190             struct target_pt_regs * regs, struct image_info *infop,
 191             struct linux_binprm *);
 192
 193/* Returns true if the image uses the FDPIC ABI. If this is the case,
 194 * we have to provide some information (loadmap, pt_dynamic_info) such
 195 * that the program can be relocated adequately. This is also useful
 196 * when handling signals.
 197 */
 198int info_is_fdpic(struct image_info *info);
 199
 200uint32_t get_elf_eflags(int fd);
 201int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
 202int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
 203
 204abi_long memcpy_to_target(abi_ulong dest, const void *src,
 205                          unsigned long len);
 206void target_set_brk(abi_ulong new_brk);
 207abi_long do_brk(abi_ulong new_brk);
 208void syscall_init(void);
 209abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
 210                    abi_long arg2, abi_long arg3, abi_long arg4,
 211                    abi_long arg5, abi_long arg6, abi_long arg7,
 212                    abi_long arg8);
 213void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
 214extern __thread CPUState *thread_cpu;
 215void cpu_loop(CPUArchState *env);
 216const char *target_strerror(int err);
 217int get_osversion(void);
 218void init_qemu_uname_release(void);
 219void fork_start(void);
 220void fork_end(int child);
 221
 222/* Creates the initial guest address space in the host memory space using
 223 * the given host start address hint and size.  The guest_start parameter
 224 * specifies the start address of the guest space.  guest_base will be the
 225 * difference between the host start address computed by this function and
 226 * guest_start.  If fixed is specified, then the mapped address space must
 227 * start at host_start.  The real start address of the mapped memory space is
 228 * returned or -1 if there was an error.
 229 */
 230unsigned long init_guest_space(unsigned long host_start,
 231                               unsigned long host_size,
 232                               unsigned long guest_start,
 233                               bool fixed);
 234
 235#include "qemu/log.h"
 236
 237/* safe_syscall.S */
 238
 239/**
 240 * safe_syscall:
 241 * @int number: number of system call to make
 242 * ...: arguments to the system call
 243 *
 244 * Call a system call if guest signal not pending.
 245 * This has the same API as the libc syscall() function, except that it
 246 * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
 247 *
 248 * Returns: the system call result, or -1 with an error code in errno
 249 * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
 250 * with any of the host errno values.)
 251 */
 252
 253/* A guide to using safe_syscall() to handle interactions between guest
 254 * syscalls and guest signals:
 255 *
 256 * Guest syscalls come in two flavours:
 257 *
 258 * (1) Non-interruptible syscalls
 259 *
 260 * These are guest syscalls that never get interrupted by signals and
 261 * so never return EINTR. They can be implemented straightforwardly in
 262 * QEMU: just make sure that if the implementation code has to make any
 263 * blocking calls that those calls are retried if they return EINTR.
 264 * It's also OK to implement these with safe_syscall, though it will be
 265 * a little less efficient if a signal is delivered at the 'wrong' moment.
 266 *
 267 * Some non-interruptible syscalls need to be handled using block_signals()
 268 * to block signals for the duration of the syscall. This mainly applies
 269 * to code which needs to modify the data structures used by the
 270 * host_signal_handler() function and the functions it calls, including
 271 * all syscalls which change the thread's signal mask.
 272 *
 273 * (2) Interruptible syscalls
 274 *
 275 * These are guest syscalls that can be interrupted by signals and
 276 * for which we need to either return EINTR or arrange for the guest
 277 * syscall to be restarted. This category includes both syscalls which
 278 * always restart (and in the kernel return -ERESTARTNOINTR), ones
 279 * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
 280 * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
 281 * if the handler was registered with SA_RESTART (kernel returns
 282 * -ERESTARTSYS). System calls which are only interruptible in some
 283 * situations (like 'open') also need to be handled this way.
 284 *
 285 * Here it is important that the host syscall is made
 286 * via this safe_syscall() function, and *not* via the host libc.
 287 * If the host libc is used then the implementation will appear to work
 288 * most of the time, but there will be a race condition where a
 289 * signal could arrive just before we make the host syscall inside libc,
 290 * and then then guest syscall will not correctly be interrupted.
 291 * Instead the implementation of the guest syscall can use the safe_syscall
 292 * function but otherwise just return the result or errno in the usual
 293 * way; the main loop code will take care of restarting the syscall
 294 * if appropriate.
 295 *
 296 * (If the implementation needs to make multiple host syscalls this is
 297 * OK; any which might really block must be via safe_syscall(); for those
 298 * which are only technically blocking (ie which we know in practice won't
 299 * stay in the host kernel indefinitely) it's OK to use libc if necessary.
 300 * You must be able to cope with backing out correctly if some safe_syscall
 301 * you make in the implementation returns either -TARGET_ERESTARTSYS or
 302 * EINTR though.)
 303 *
 304 * block_signals() cannot be used for interruptible syscalls.
 305 *
 306 *
 307 * How and why the safe_syscall implementation works:
 308 *
 309 * The basic setup is that we make the host syscall via a known
 310 * section of host native assembly. If a signal occurs, our signal
 311 * handler checks the interrupted host PC against the addresse of that
 312 * known section. If the PC is before or at the address of the syscall
 313 * instruction then we change the PC to point at a "return
 314 * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
 315 * (causing the safe_syscall() call to immediately return that value).
 316 * Then in the main.c loop if we see this magic return value we adjust
 317 * the guest PC to wind it back to before the system call, and invoke
 318 * the guest signal handler as usual.
 319 *
 320 * This winding-back will happen in two cases:
 321 * (1) signal came in just before we took the host syscall (a race);
 322 *   in this case we'll take the guest signal and have another go
 323 *   at the syscall afterwards, and this is indistinguishable for the
 324 *   guest from the timing having been different such that the guest
 325 *   signal really did win the race
 326 * (2) signal came in while the host syscall was blocking, and the
 327 *   host kernel decided the syscall should be restarted;
 328 *   in this case we want to restart the guest syscall also, and so
 329 *   rewinding is the right thing. (Note that "restart" semantics mean
 330 *   "first call the signal handler, then reattempt the syscall".)
 331 * The other situation to consider is when a signal came in while the
 332 * host syscall was blocking, and the host kernel decided that the syscall
 333 * should not be restarted; in this case QEMU's host signal handler will
 334 * be invoked with the PC pointing just after the syscall instruction,
 335 * with registers indicating an EINTR return; the special code in the
 336 * handler will not kick in, and we will return EINTR to the guest as
 337 * we should.
 338 *
 339 * Notice that we can leave the host kernel to make the decision for
 340 * us about whether to do a restart of the syscall or not; we do not
 341 * need to check SA_RESTART flags in QEMU or distinguish the various
 342 * kinds of restartability.
 343 */
 344#ifdef HAVE_SAFE_SYSCALL
 345/* The core part of this function is implemented in assembly */
 346extern long safe_syscall_base(int *pending, long number, ...);
 347
 348#define safe_syscall(...)                                               \
 349    ({                                                                  \
 350        long ret_;                                                      \
 351        int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
 352        ret_ = safe_syscall_base(psp_, __VA_ARGS__);                    \
 353        if (is_error(ret_)) {                                           \
 354            errno = -ret_;                                              \
 355            ret_ = -1;                                                  \
 356        }                                                               \
 357        ret_;                                                           \
 358    })
 359
 360#else
 361
 362/* Fallback for architectures which don't yet provide a safe-syscall assembly
 363 * fragment; note that this is racy!
 364 * This should go away when all host architectures have been updated.
 365 */
 366#define safe_syscall syscall
 367
 368#endif
 369
 370/* syscall.c */
 371int host_to_target_waitstatus(int status);
 372
 373/* strace.c */
 374void print_syscall(int num,
 375                   abi_long arg1, abi_long arg2, abi_long arg3,
 376                   abi_long arg4, abi_long arg5, abi_long arg6);
 377void print_syscall_ret(int num, abi_long arg1);
 378/**
 379 * print_taken_signal:
 380 * @target_signum: target signal being taken
 381 * @tinfo: target_siginfo_t which will be passed to the guest for the signal
 382 *
 383 * Print strace output indicating that this signal is being taken by the guest,
 384 * in a format similar to:
 385 * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
 386 */
 387void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
 388extern int do_strace;
 389
 390/* signal.c */
 391void process_pending_signals(CPUArchState *cpu_env);
 392void signal_init(void);
 393int queue_signal(CPUArchState *env, int sig, int si_type,
 394                 target_siginfo_t *info);
 395void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
 396void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
 397int target_to_host_signal(int sig);
 398int host_to_target_signal(int sig);
 399long do_sigreturn(CPUArchState *env);
 400long do_rt_sigreturn(CPUArchState *env);
 401abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
 402int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
 403abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
 404                        abi_ulong unew_ctx, abi_long ctx_size);
 405/**
 406 * block_signals: block all signals while handling this guest syscall
 407 *
 408 * Block all signals, and arrange that the signal mask is returned to
 409 * its correct value for the guest before we resume execution of guest code.
 410 * If this function returns non-zero, then the caller should immediately
 411 * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
 412 * signal and restart execution of the syscall.
 413 * If block_signals() returns zero, then the caller can continue with
 414 * emulation of the system call knowing that no signals can be taken
 415 * (and therefore that no race conditions will result).
 416 * This should only be called once, because if it is called a second time
 417 * it will always return non-zero. (Think of it like a mutex that can't
 418 * be recursively locked.)
 419 * Signals will be unblocked again by process_pending_signals().
 420 *
 421 * Return value: non-zero if there was a pending signal, zero if not.
 422 */
 423int block_signals(void); /* Returns non zero if signal pending */
 424
 425#ifdef TARGET_I386
 426/* vm86.c */
 427void save_v86_state(CPUX86State *env);
 428void handle_vm86_trap(CPUX86State *env, int trapno);
 429void handle_vm86_fault(CPUX86State *env);
 430int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
 431#elif defined(TARGET_SPARC64)
 432void sparc64_set_context(CPUSPARCState *env);
 433void sparc64_get_context(CPUSPARCState *env);
 434#endif
 435
 436/* mmap.c */
 437int target_mprotect(abi_ulong start, abi_ulong len, int prot);
 438abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
 439                     int flags, int fd, abi_ulong offset);
 440int target_munmap(abi_ulong start, abi_ulong len);
 441abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
 442                       abi_ulong new_size, unsigned long flags,
 443                       abi_ulong new_addr);
 444extern unsigned long last_brk;
 445extern abi_ulong mmap_next_start;
 446abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
 447void mmap_fork_start(void);
 448void mmap_fork_end(int child);
 449
 450/* main.c */
 451extern unsigned long guest_stack_size;
 452
 453/* user access */
 454
 455#define VERIFY_READ 0
 456#define VERIFY_WRITE 1 /* implies read access */
 457
 458static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
 459{
 460    return page_check_range((target_ulong)addr, size,
 461                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
 462}
 463
 464/* NOTE __get_user and __put_user use host pointers and don't check access.
 465   These are usually used to access struct data members once the struct has
 466   been locked - usually with lock_user_struct.  */
 467
 468/*
 469 * Tricky points:
 470 * - Use __builtin_choose_expr to avoid type promotion from ?:,
 471 * - Invalid sizes result in a compile time error stemming from
 472 *   the fact that abort has no parameters.
 473 * - It's easier to use the endian-specific unaligned load/store
 474 *   functions than host-endian unaligned load/store plus tswapN.
 475 * - The pragmas are necessary only to silence a clang false-positive
 476 *   warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
 477 * - gcc has bugs in its _Pragma() support in some versions, eg
 478 *   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
 479 *   include the warning-suppression pragmas for clang
 480 */
 481#if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
 482#define PRAGMA_DISABLE_PACKED_WARNING                                   \
 483    _Pragma("GCC diagnostic push");                                     \
 484    _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
 485
 486#define PRAGMA_REENABLE_PACKED_WARNING          \
 487    _Pragma("GCC diagnostic pop")
 488
 489#else
 490#define PRAGMA_DISABLE_PACKED_WARNING
 491#define PRAGMA_REENABLE_PACKED_WARNING
 492#endif
 493
 494#define __put_user_e(x, hptr, e)                                            \
 495    do {                                                                    \
 496        PRAGMA_DISABLE_PACKED_WARNING;                                      \
 497        (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                 \
 498        __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,            \
 499        __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,            \
 500        __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))  \
 501            ((hptr), (x)), (void)0);                                        \
 502        PRAGMA_REENABLE_PACKED_WARNING;                                     \
 503    } while (0)
 504
 505#define __get_user_e(x, hptr, e)                                            \
 506    do {                                                                    \
 507        PRAGMA_DISABLE_PACKED_WARNING;                                      \
 508        ((x) = (typeof(*hptr))(                                             \
 509        __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                 \
 510        __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,           \
 511        __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,            \
 512        __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))  \
 513            (hptr)), (void)0);                                              \
 514        PRAGMA_REENABLE_PACKED_WARNING;                                     \
 515    } while (0)
 516
 517
 518#ifdef TARGET_WORDS_BIGENDIAN
 519# define __put_user(x, hptr)  __put_user_e(x, hptr, be)
 520# define __get_user(x, hptr)  __get_user_e(x, hptr, be)
 521#else
 522# define __put_user(x, hptr)  __put_user_e(x, hptr, le)
 523# define __get_user(x, hptr)  __get_user_e(x, hptr, le)
 524#endif
 525
 526/* put_user()/get_user() take a guest address and check access */
 527/* These are usually used to access an atomic data type, such as an int,
 528 * that has been passed by address.  These internally perform locking
 529 * and unlocking on the data type.
 530 */
 531#define put_user(x, gaddr, target_type)                                 \
 532({                                                                      \
 533    abi_ulong __gaddr = (gaddr);                                        \
 534    target_type *__hptr;                                                \
 535    abi_long __ret = 0;                                                 \
 536    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
 537        __put_user((x), __hptr);                                \
 538        unlock_user(__hptr, __gaddr, sizeof(target_type));              \
 539    } else                                                              \
 540        __ret = -TARGET_EFAULT;                                         \
 541    __ret;                                                              \
 542})
 543
 544#define get_user(x, gaddr, target_type)                                 \
 545({                                                                      \
 546    abi_ulong __gaddr = (gaddr);                                        \
 547    target_type *__hptr;                                                \
 548    abi_long __ret = 0;                                                 \
 549    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
 550        __get_user((x), __hptr);                                \
 551        unlock_user(__hptr, __gaddr, 0);                                \
 552    } else {                                                            \
 553        /* avoid warning */                                             \
 554        (x) = 0;                                                        \
 555        __ret = -TARGET_EFAULT;                                         \
 556    }                                                                   \
 557    __ret;                                                              \
 558})
 559
 560#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
 561#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
 562#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
 563#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
 564#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
 565#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
 566#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
 567#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
 568#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
 569#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
 570
 571#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
 572#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
 573#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
 574#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
 575#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
 576#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
 577#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
 578#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
 579#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
 580#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
 581
 582/* copy_from_user() and copy_to_user() are usually used to copy data
 583 * buffers between the target and host.  These internally perform
 584 * locking/unlocking of the memory.
 585 */
 586abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
 587abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
 588
 589/* Functions for accessing guest memory.  The tget and tput functions
 590   read/write single values, byteswapping as necessary.  The lock_user function
 591   gets a pointer to a contiguous area of guest memory, but does not perform
 592   any byteswapping.  lock_user may return either a pointer to the guest
 593   memory, or a temporary buffer.  */
 594
 595/* Lock an area of guest memory into the host.  If copy is true then the
 596   host area will have the same contents as the guest.  */
 597static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
 598{
 599    if (!access_ok(type, guest_addr, len))
 600        return NULL;
 601#ifdef DEBUG_REMAP
 602    {
 603        void *addr;
 604        addr = g_malloc(len);
 605        if (copy)
 606            memcpy(addr, g2h(guest_addr), len);
 607        else
 608            memset(addr, 0, len);
 609        return addr;
 610    }
 611#else
 612    return g2h(guest_addr);
 613#endif
 614}
 615
 616/* Unlock an area of guest memory.  The first LEN bytes must be
 617   flushed back to guest memory. host_ptr = NULL is explicitly
 618   allowed and does nothing. */
 619static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
 620                               long len)
 621{
 622
 623#ifdef DEBUG_REMAP
 624    if (!host_ptr)
 625        return;
 626    if (host_ptr == g2h(guest_addr))
 627        return;
 628    if (len > 0)
 629        memcpy(g2h(guest_addr), host_ptr, len);
 630    g_free(host_ptr);
 631#endif
 632}
 633
 634/* Return the length of a string in target memory or -TARGET_EFAULT if
 635   access error. */
 636abi_long target_strlen(abi_ulong gaddr);
 637
 638/* Like lock_user but for null terminated strings.  */
 639static inline void *lock_user_string(abi_ulong guest_addr)
 640{
 641    abi_long len;
 642    len = target_strlen(guest_addr);
 643    if (len < 0)
 644        return NULL;
 645    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
 646}
 647
 648/* Helper macros for locking/unlocking a target struct.  */
 649#define lock_user_struct(type, host_ptr, guest_addr, copy)      \
 650    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
 651#define unlock_user_struct(host_ptr, guest_addr, copy)          \
 652    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
 653
 654#include <pthread.h>
 655
 656static inline int is_error(abi_long ret)
 657{
 658    return (abi_ulong)ret >= (abi_ulong)(-4096);
 659}
 660
 661/**
 662 * preexit_cleanup: housekeeping before the guest exits
 663 *
 664 * env: the CPU state
 665 * code: the exit code
 666 */
 667void preexit_cleanup(CPUArchState *env, int code);
 668
 669/* Include target-specific struct and function definitions;
 670 * they may need access to the target-independent structures
 671 * above, so include them last.
 672 */
 673#include "target_cpu.h"
 674#include "target_structs.h"
 675
 676#endif /* QEMU_H */
 677