qemu/target/arm/internals.h
<<
>>
Prefs
   1/*
   2 * QEMU ARM CPU -- internal functions and types
   3 *
   4 * Copyright (c) 2014 Linaro Ltd
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version 2
   9 * of the License, or (at your option) any later version.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program; if not, see
  18 * <http://www.gnu.org/licenses/gpl-2.0.html>
  19 *
  20 * This header defines functions, types, etc which need to be shared
  21 * between different source files within target/arm/ but which are
  22 * private to it and not required by the rest of QEMU.
  23 */
  24
  25#ifndef TARGET_ARM_INTERNALS_H
  26#define TARGET_ARM_INTERNALS_H
  27
  28#include "hw/registerfields.h"
  29
  30/* register banks for CPU modes */
  31#define BANK_USRSYS 0
  32#define BANK_SVC    1
  33#define BANK_ABT    2
  34#define BANK_UND    3
  35#define BANK_IRQ    4
  36#define BANK_FIQ    5
  37#define BANK_HYP    6
  38#define BANK_MON    7
  39
  40static inline bool excp_is_internal(int excp)
  41{
  42    /* Return true if this exception number represents a QEMU-internal
  43     * exception that will not be passed to the guest.
  44     */
  45    return excp == EXCP_INTERRUPT
  46        || excp == EXCP_HLT
  47        || excp == EXCP_DEBUG
  48        || excp == EXCP_HALTED
  49        || excp == EXCP_EXCEPTION_EXIT
  50        || excp == EXCP_KERNEL_TRAP
  51        || excp == EXCP_SEMIHOST;
  52}
  53
  54/* Scale factor for generic timers, ie number of ns per tick.
  55 * This gives a 62.5MHz timer.
  56 */
  57#define GTIMER_SCALE 16
  58
  59/* Bit definitions for the v7M CONTROL register */
  60FIELD(V7M_CONTROL, NPRIV, 0, 1)
  61FIELD(V7M_CONTROL, SPSEL, 1, 1)
  62FIELD(V7M_CONTROL, FPCA, 2, 1)
  63FIELD(V7M_CONTROL, SFPA, 3, 1)
  64
  65/* Bit definitions for v7M exception return payload */
  66FIELD(V7M_EXCRET, ES, 0, 1)
  67FIELD(V7M_EXCRET, RES0, 1, 1)
  68FIELD(V7M_EXCRET, SPSEL, 2, 1)
  69FIELD(V7M_EXCRET, MODE, 3, 1)
  70FIELD(V7M_EXCRET, FTYPE, 4, 1)
  71FIELD(V7M_EXCRET, DCRS, 5, 1)
  72FIELD(V7M_EXCRET, S, 6, 1)
  73FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
  74
  75/* Minimum value which is a magic number for exception return */
  76#define EXC_RETURN_MIN_MAGIC 0xff000000
  77/* Minimum number which is a magic number for function or exception return
  78 * when using v8M security extension
  79 */
  80#define FNC_RETURN_MIN_MAGIC 0xfefffffe
  81
  82/* We use a few fake FSR values for internal purposes in M profile.
  83 * M profile cores don't have A/R format FSRs, but currently our
  84 * get_phys_addr() code assumes A/R profile and reports failures via
  85 * an A/R format FSR value. We then translate that into the proper
  86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
  87 * Mostly the FSR values we use for this are those defined for v7PMSA,
  88 * since we share some of that codepath. A few kinds of fault are
  89 * only for M profile and have no A/R equivalent, though, so we have
  90 * to pick a value from the reserved range (which we never otherwise
  91 * generate) to use for these.
  92 * These values will never be visible to the guest.
  93 */
  94#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
  95#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
  96
  97/**
  98 * raise_exception: Raise the specified exception.
  99 * Raise a guest exception with the specified value, syndrome register
 100 * and target exception level. This should be called from helper functions,
 101 * and never returns because we will longjump back up to the CPU main loop.
 102 */
 103void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
 104                                   uint32_t syndrome, uint32_t target_el);
 105
 106/*
 107 * Similarly, but also use unwinding to restore cpu state.
 108 */
 109void QEMU_NORETURN raise_exception_ra(CPUARMState *env, uint32_t excp,
 110                                      uint32_t syndrome, uint32_t target_el,
 111                                      uintptr_t ra);
 112
 113/*
 114 * For AArch64, map a given EL to an index in the banked_spsr array.
 115 * Note that this mapping and the AArch32 mapping defined in bank_number()
 116 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
 117 * mandated mapping between each other.
 118 */
 119static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
 120{
 121    static const unsigned int map[4] = {
 122        [1] = BANK_SVC, /* EL1.  */
 123        [2] = BANK_HYP, /* EL2.  */
 124        [3] = BANK_MON, /* EL3.  */
 125    };
 126    assert(el >= 1 && el <= 3);
 127    return map[el];
 128}
 129
 130/* Map CPU modes onto saved register banks.  */
 131static inline int bank_number(int mode)
 132{
 133    switch (mode) {
 134    case ARM_CPU_MODE_USR:
 135    case ARM_CPU_MODE_SYS:
 136        return BANK_USRSYS;
 137    case ARM_CPU_MODE_SVC:
 138        return BANK_SVC;
 139    case ARM_CPU_MODE_ABT:
 140        return BANK_ABT;
 141    case ARM_CPU_MODE_UND:
 142        return BANK_UND;
 143    case ARM_CPU_MODE_IRQ:
 144        return BANK_IRQ;
 145    case ARM_CPU_MODE_FIQ:
 146        return BANK_FIQ;
 147    case ARM_CPU_MODE_HYP:
 148        return BANK_HYP;
 149    case ARM_CPU_MODE_MON:
 150        return BANK_MON;
 151    }
 152    g_assert_not_reached();
 153}
 154
 155/**
 156 * r14_bank_number: Map CPU mode onto register bank for r14
 157 *
 158 * Given an AArch32 CPU mode, return the index into the saved register
 159 * banks to use for the R14 (LR) in that mode. This is the same as
 160 * bank_number(), except for the special case of Hyp mode, where
 161 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
 162 * This should be used as the index into env->banked_r14[], and
 163 * bank_number() used for the index into env->banked_r13[] and
 164 * env->banked_spsr[].
 165 */
 166static inline int r14_bank_number(int mode)
 167{
 168    return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
 169}
 170
 171void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 172void arm_translate_init(void);
 173
 174enum arm_fprounding {
 175    FPROUNDING_TIEEVEN,
 176    FPROUNDING_POSINF,
 177    FPROUNDING_NEGINF,
 178    FPROUNDING_ZERO,
 179    FPROUNDING_TIEAWAY,
 180    FPROUNDING_ODD
 181};
 182
 183int arm_rmode_to_sf(int rmode);
 184
 185static inline void aarch64_save_sp(CPUARMState *env, int el)
 186{
 187    if (env->pstate & PSTATE_SP) {
 188        env->sp_el[el] = env->xregs[31];
 189    } else {
 190        env->sp_el[0] = env->xregs[31];
 191    }
 192}
 193
 194static inline void aarch64_restore_sp(CPUARMState *env, int el)
 195{
 196    if (env->pstate & PSTATE_SP) {
 197        env->xregs[31] = env->sp_el[el];
 198    } else {
 199        env->xregs[31] = env->sp_el[0];
 200    }
 201}
 202
 203static inline void update_spsel(CPUARMState *env, uint32_t imm)
 204{
 205    unsigned int cur_el = arm_current_el(env);
 206    /* Update PSTATE SPSel bit; this requires us to update the
 207     * working stack pointer in xregs[31].
 208     */
 209    if (!((imm ^ env->pstate) & PSTATE_SP)) {
 210        return;
 211    }
 212    aarch64_save_sp(env, cur_el);
 213    env->pstate = deposit32(env->pstate, 0, 1, imm);
 214
 215    /* We rely on illegal updates to SPsel from EL0 to get trapped
 216     * at translation time.
 217     */
 218    assert(cur_el >= 1 && cur_el <= 3);
 219    aarch64_restore_sp(env, cur_el);
 220}
 221
 222/*
 223 * arm_pamax
 224 * @cpu: ARMCPU
 225 *
 226 * Returns the implementation defined bit-width of physical addresses.
 227 * The ARMv8 reference manuals refer to this as PAMax().
 228 */
 229static inline unsigned int arm_pamax(ARMCPU *cpu)
 230{
 231    static const unsigned int pamax_map[] = {
 232        [0] = 32,
 233        [1] = 36,
 234        [2] = 40,
 235        [3] = 42,
 236        [4] = 44,
 237        [5] = 48,
 238    };
 239    unsigned int parange =
 240        FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
 241
 242    /* id_aa64mmfr0 is a read-only register so values outside of the
 243     * supported mappings can be considered an implementation error.  */
 244    assert(parange < ARRAY_SIZE(pamax_map));
 245    return pamax_map[parange];
 246}
 247
 248/* Return true if extended addresses are enabled.
 249 * This is always the case if our translation regime is 64 bit,
 250 * but depends on TTBCR.EAE for 32 bit.
 251 */
 252static inline bool extended_addresses_enabled(CPUARMState *env)
 253{
 254    TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
 255    return arm_el_is_aa64(env, 1) ||
 256           (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
 257}
 258
 259/* Valid Syndrome Register EC field values */
 260enum arm_exception_class {
 261    EC_UNCATEGORIZED          = 0x00,
 262    EC_WFX_TRAP               = 0x01,
 263    EC_CP15RTTRAP             = 0x03,
 264    EC_CP15RRTTRAP            = 0x04,
 265    EC_CP14RTTRAP             = 0x05,
 266    EC_CP14DTTRAP             = 0x06,
 267    EC_ADVSIMDFPACCESSTRAP    = 0x07,
 268    EC_FPIDTRAP               = 0x08,
 269    EC_PACTRAP                = 0x09,
 270    EC_CP14RRTTRAP            = 0x0c,
 271    EC_BTITRAP                = 0x0d,
 272    EC_ILLEGALSTATE           = 0x0e,
 273    EC_AA32_SVC               = 0x11,
 274    EC_AA32_HVC               = 0x12,
 275    EC_AA32_SMC               = 0x13,
 276    EC_AA64_SVC               = 0x15,
 277    EC_AA64_HVC               = 0x16,
 278    EC_AA64_SMC               = 0x17,
 279    EC_SYSTEMREGISTERTRAP     = 0x18,
 280    EC_SVEACCESSTRAP          = 0x19,
 281    EC_INSNABORT              = 0x20,
 282    EC_INSNABORT_SAME_EL      = 0x21,
 283    EC_PCALIGNMENT            = 0x22,
 284    EC_DATAABORT              = 0x24,
 285    EC_DATAABORT_SAME_EL      = 0x25,
 286    EC_SPALIGNMENT            = 0x26,
 287    EC_AA32_FPTRAP            = 0x28,
 288    EC_AA64_FPTRAP            = 0x2c,
 289    EC_SERROR                 = 0x2f,
 290    EC_BREAKPOINT             = 0x30,
 291    EC_BREAKPOINT_SAME_EL     = 0x31,
 292    EC_SOFTWARESTEP           = 0x32,
 293    EC_SOFTWARESTEP_SAME_EL   = 0x33,
 294    EC_WATCHPOINT             = 0x34,
 295    EC_WATCHPOINT_SAME_EL     = 0x35,
 296    EC_AA32_BKPT              = 0x38,
 297    EC_VECTORCATCH            = 0x3a,
 298    EC_AA64_BKPT              = 0x3c,
 299};
 300
 301#define ARM_EL_EC_SHIFT 26
 302#define ARM_EL_IL_SHIFT 25
 303#define ARM_EL_ISV_SHIFT 24
 304#define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
 305#define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
 306
 307static inline uint32_t syn_get_ec(uint32_t syn)
 308{
 309    return syn >> ARM_EL_EC_SHIFT;
 310}
 311
 312/* Utility functions for constructing various kinds of syndrome value.
 313 * Note that in general we follow the AArch64 syndrome values; in a
 314 * few cases the value in HSR for exceptions taken to AArch32 Hyp
 315 * mode differs slightly, and we fix this up when populating HSR in
 316 * arm_cpu_do_interrupt_aarch32_hyp().
 317 * The exception is FP/SIMD access traps -- these report extra information
 318 * when taking an exception to AArch32. For those we include the extra coproc
 319 * and TA fields, and mask them out when taking the exception to AArch64.
 320 */
 321static inline uint32_t syn_uncategorized(void)
 322{
 323    return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 324}
 325
 326static inline uint32_t syn_aa64_svc(uint32_t imm16)
 327{
 328    return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 329}
 330
 331static inline uint32_t syn_aa64_hvc(uint32_t imm16)
 332{
 333    return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 334}
 335
 336static inline uint32_t syn_aa64_smc(uint32_t imm16)
 337{
 338    return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 339}
 340
 341static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
 342{
 343    return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 344        | (is_16bit ? 0 : ARM_EL_IL);
 345}
 346
 347static inline uint32_t syn_aa32_hvc(uint32_t imm16)
 348{
 349    return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 350}
 351
 352static inline uint32_t syn_aa32_smc(void)
 353{
 354    return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 355}
 356
 357static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
 358{
 359    return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 360}
 361
 362static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
 363{
 364    return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 365        | (is_16bit ? 0 : ARM_EL_IL);
 366}
 367
 368static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
 369                                           int crn, int crm, int rt,
 370                                           int isread)
 371{
 372    return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
 373        | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
 374        | (crm << 1) | isread;
 375}
 376
 377static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
 378                                        int crn, int crm, int rt, int isread,
 379                                        bool is_16bit)
 380{
 381    return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
 382        | (is_16bit ? 0 : ARM_EL_IL)
 383        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 384        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 385}
 386
 387static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
 388                                        int crn, int crm, int rt, int isread,
 389                                        bool is_16bit)
 390{
 391    return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
 392        | (is_16bit ? 0 : ARM_EL_IL)
 393        | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 394        | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 395}
 396
 397static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
 398                                         int rt, int rt2, int isread,
 399                                         bool is_16bit)
 400{
 401    return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
 402        | (is_16bit ? 0 : ARM_EL_IL)
 403        | (cv << 24) | (cond << 20) | (opc1 << 16)
 404        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 405}
 406
 407static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
 408                                         int rt, int rt2, int isread,
 409                                         bool is_16bit)
 410{
 411    return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
 412        | (is_16bit ? 0 : ARM_EL_IL)
 413        | (cv << 24) | (cond << 20) | (opc1 << 16)
 414        | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 415}
 416
 417static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
 418{
 419    /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */
 420    return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
 421        | (is_16bit ? 0 : ARM_EL_IL)
 422        | (cv << 24) | (cond << 20) | 0xa;
 423}
 424
 425static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit)
 426{
 427    /* AArch32 SIMD trap: TA == 1 coproc == 0 */
 428    return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
 429        | (is_16bit ? 0 : ARM_EL_IL)
 430        | (cv << 24) | (cond << 20) | (1 << 5);
 431}
 432
 433static inline uint32_t syn_sve_access_trap(void)
 434{
 435    return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
 436}
 437
 438static inline uint32_t syn_pactrap(void)
 439{
 440    return EC_PACTRAP << ARM_EL_EC_SHIFT;
 441}
 442
 443static inline uint32_t syn_btitrap(int btype)
 444{
 445    return (EC_BTITRAP << ARM_EL_EC_SHIFT) | btype;
 446}
 447
 448static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
 449{
 450    return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 451        | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
 452}
 453
 454static inline uint32_t syn_data_abort_no_iss(int same_el,
 455                                             int ea, int cm, int s1ptw,
 456                                             int wnr, int fsc)
 457{
 458    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 459           | ARM_EL_IL
 460           | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 461}
 462
 463static inline uint32_t syn_data_abort_with_iss(int same_el,
 464                                               int sas, int sse, int srt,
 465                                               int sf, int ar,
 466                                               int ea, int cm, int s1ptw,
 467                                               int wnr, int fsc,
 468                                               bool is_16bit)
 469{
 470    return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 471           | (is_16bit ? 0 : ARM_EL_IL)
 472           | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
 473           | (sf << 15) | (ar << 14)
 474           | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 475}
 476
 477static inline uint32_t syn_swstep(int same_el, int isv, int ex)
 478{
 479    return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 480        | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
 481}
 482
 483static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
 484{
 485    return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 486        | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
 487}
 488
 489static inline uint32_t syn_breakpoint(int same_el)
 490{
 491    return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 492        | ARM_EL_IL | 0x22;
 493}
 494
 495static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
 496{
 497    return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
 498           (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
 499           (cv << 24) | (cond << 20) | ti;
 500}
 501
 502/* Update a QEMU watchpoint based on the information the guest has set in the
 503 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
 504 */
 505void hw_watchpoint_update(ARMCPU *cpu, int n);
 506/* Update the QEMU watchpoints for every guest watchpoint. This does a
 507 * complete delete-and-reinstate of the QEMU watchpoint list and so is
 508 * suitable for use after migration or on reset.
 509 */
 510void hw_watchpoint_update_all(ARMCPU *cpu);
 511/* Update a QEMU breakpoint based on the information the guest has set in the
 512 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
 513 */
 514void hw_breakpoint_update(ARMCPU *cpu, int n);
 515/* Update the QEMU breakpoints for every guest breakpoint. This does a
 516 * complete delete-and-reinstate of the QEMU breakpoint list and so is
 517 * suitable for use after migration or on reset.
 518 */
 519void hw_breakpoint_update_all(ARMCPU *cpu);
 520
 521/* Callback function for checking if a watchpoint should trigger. */
 522bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
 523
 524/* Adjust addresses (in BE32 mode) before testing against watchpoint
 525 * addresses.
 526 */
 527vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
 528
 529/* Callback function for when a watchpoint or breakpoint triggers. */
 530void arm_debug_excp_handler(CPUState *cs);
 531
 532#ifdef CONFIG_USER_ONLY
 533static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
 534{
 535    return false;
 536}
 537#else
 538/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
 539bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
 540/* Actually handle a PSCI call */
 541void arm_handle_psci_call(ARMCPU *cpu);
 542#endif
 543
 544/**
 545 * arm_clear_exclusive: clear the exclusive monitor
 546 * @env: CPU env
 547 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
 548 */
 549static inline void arm_clear_exclusive(CPUARMState *env)
 550{
 551    env->exclusive_addr = -1;
 552}
 553
 554/**
 555 * ARMFaultType: type of an ARM MMU fault
 556 * This corresponds to the v8A pseudocode's Fault enumeration,
 557 * with extensions for QEMU internal conditions.
 558 */
 559typedef enum ARMFaultType {
 560    ARMFault_None,
 561    ARMFault_AccessFlag,
 562    ARMFault_Alignment,
 563    ARMFault_Background,
 564    ARMFault_Domain,
 565    ARMFault_Permission,
 566    ARMFault_Translation,
 567    ARMFault_AddressSize,
 568    ARMFault_SyncExternal,
 569    ARMFault_SyncExternalOnWalk,
 570    ARMFault_SyncParity,
 571    ARMFault_SyncParityOnWalk,
 572    ARMFault_AsyncParity,
 573    ARMFault_AsyncExternal,
 574    ARMFault_Debug,
 575    ARMFault_TLBConflict,
 576    ARMFault_Lockdown,
 577    ARMFault_Exclusive,
 578    ARMFault_ICacheMaint,
 579    ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
 580    ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
 581} ARMFaultType;
 582
 583/**
 584 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
 585 * @type: Type of fault
 586 * @level: Table walk level (for translation, access flag and permission faults)
 587 * @domain: Domain of the fault address (for non-LPAE CPUs only)
 588 * @s2addr: Address that caused a fault at stage 2
 589 * @stage2: True if we faulted at stage 2
 590 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
 591 * @ea: True if we should set the EA (external abort type) bit in syndrome
 592 */
 593typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 594struct ARMMMUFaultInfo {
 595    ARMFaultType type;
 596    target_ulong s2addr;
 597    int level;
 598    int domain;
 599    bool stage2;
 600    bool s1ptw;
 601    bool ea;
 602};
 603
 604/**
 605 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
 606 * Compare pseudocode EncodeSDFSC(), though unlike that function
 607 * we set up a whole FSR-format code including domain field and
 608 * putting the high bit of the FSC into bit 10.
 609 */
 610static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
 611{
 612    uint32_t fsc;
 613
 614    switch (fi->type) {
 615    case ARMFault_None:
 616        return 0;
 617    case ARMFault_AccessFlag:
 618        fsc = fi->level == 1 ? 0x3 : 0x6;
 619        break;
 620    case ARMFault_Alignment:
 621        fsc = 0x1;
 622        break;
 623    case ARMFault_Permission:
 624        fsc = fi->level == 1 ? 0xd : 0xf;
 625        break;
 626    case ARMFault_Domain:
 627        fsc = fi->level == 1 ? 0x9 : 0xb;
 628        break;
 629    case ARMFault_Translation:
 630        fsc = fi->level == 1 ? 0x5 : 0x7;
 631        break;
 632    case ARMFault_SyncExternal:
 633        fsc = 0x8 | (fi->ea << 12);
 634        break;
 635    case ARMFault_SyncExternalOnWalk:
 636        fsc = fi->level == 1 ? 0xc : 0xe;
 637        fsc |= (fi->ea << 12);
 638        break;
 639    case ARMFault_SyncParity:
 640        fsc = 0x409;
 641        break;
 642    case ARMFault_SyncParityOnWalk:
 643        fsc = fi->level == 1 ? 0x40c : 0x40e;
 644        break;
 645    case ARMFault_AsyncParity:
 646        fsc = 0x408;
 647        break;
 648    case ARMFault_AsyncExternal:
 649        fsc = 0x406 | (fi->ea << 12);
 650        break;
 651    case ARMFault_Debug:
 652        fsc = 0x2;
 653        break;
 654    case ARMFault_TLBConflict:
 655        fsc = 0x400;
 656        break;
 657    case ARMFault_Lockdown:
 658        fsc = 0x404;
 659        break;
 660    case ARMFault_Exclusive:
 661        fsc = 0x405;
 662        break;
 663    case ARMFault_ICacheMaint:
 664        fsc = 0x4;
 665        break;
 666    case ARMFault_Background:
 667        fsc = 0x0;
 668        break;
 669    case ARMFault_QEMU_NSCExec:
 670        fsc = M_FAKE_FSR_NSC_EXEC;
 671        break;
 672    case ARMFault_QEMU_SFault:
 673        fsc = M_FAKE_FSR_SFAULT;
 674        break;
 675    default:
 676        /* Other faults can't occur in a context that requires a
 677         * short-format status code.
 678         */
 679        g_assert_not_reached();
 680    }
 681
 682    fsc |= (fi->domain << 4);
 683    return fsc;
 684}
 685
 686/**
 687 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
 688 * Compare pseudocode EncodeLDFSC(), though unlike that function
 689 * we fill in also the LPAE bit 9 of a DFSR format.
 690 */
 691static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
 692{
 693    uint32_t fsc;
 694
 695    switch (fi->type) {
 696    case ARMFault_None:
 697        return 0;
 698    case ARMFault_AddressSize:
 699        fsc = fi->level & 3;
 700        break;
 701    case ARMFault_AccessFlag:
 702        fsc = (fi->level & 3) | (0x2 << 2);
 703        break;
 704    case ARMFault_Permission:
 705        fsc = (fi->level & 3) | (0x3 << 2);
 706        break;
 707    case ARMFault_Translation:
 708        fsc = (fi->level & 3) | (0x1 << 2);
 709        break;
 710    case ARMFault_SyncExternal:
 711        fsc = 0x10 | (fi->ea << 12);
 712        break;
 713    case ARMFault_SyncExternalOnWalk:
 714        fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
 715        break;
 716    case ARMFault_SyncParity:
 717        fsc = 0x18;
 718        break;
 719    case ARMFault_SyncParityOnWalk:
 720        fsc = (fi->level & 3) | (0x7 << 2);
 721        break;
 722    case ARMFault_AsyncParity:
 723        fsc = 0x19;
 724        break;
 725    case ARMFault_AsyncExternal:
 726        fsc = 0x11 | (fi->ea << 12);
 727        break;
 728    case ARMFault_Alignment:
 729        fsc = 0x21;
 730        break;
 731    case ARMFault_Debug:
 732        fsc = 0x22;
 733        break;
 734    case ARMFault_TLBConflict:
 735        fsc = 0x30;
 736        break;
 737    case ARMFault_Lockdown:
 738        fsc = 0x34;
 739        break;
 740    case ARMFault_Exclusive:
 741        fsc = 0x35;
 742        break;
 743    default:
 744        /* Other faults can't occur in a context that requires a
 745         * long-format status code.
 746         */
 747        g_assert_not_reached();
 748    }
 749
 750    fsc |= 1 << 9;
 751    return fsc;
 752}
 753
 754static inline bool arm_extabort_type(MemTxResult result)
 755{
 756    /* The EA bit in syndromes and fault status registers is an
 757     * IMPDEF classification of external aborts. ARM implementations
 758     * usually use this to indicate AXI bus Decode error (0) or
 759     * Slave error (1); in QEMU we follow that.
 760     */
 761    return result != MEMTX_DECODE_ERROR;
 762}
 763
 764/* Do a page table walk and add page to TLB if possible */
 765bool arm_tlb_fill(CPUState *cpu, vaddr address,
 766                  MMUAccessType access_type, int mmu_idx,
 767                  ARMMMUFaultInfo *fi);
 768
 769/* Return true if the stage 1 translation regime is using LPAE format page
 770 * tables */
 771bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
 772
 773/* Raise a data fault alignment exception for the specified virtual address */
 774void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
 775                                 MMUAccessType access_type,
 776                                 int mmu_idx, uintptr_t retaddr);
 777
 778/* arm_cpu_do_transaction_failed: handle a memory system error response
 779 * (eg "no device/memory present at address") by raising an external abort
 780 * exception
 781 */
 782void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
 783                                   vaddr addr, unsigned size,
 784                                   MMUAccessType access_type,
 785                                   int mmu_idx, MemTxAttrs attrs,
 786                                   MemTxResult response, uintptr_t retaddr);
 787
 788/* Call any registered EL change hooks */
 789static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
 790{
 791    ARMELChangeHook *hook, *next;
 792    QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
 793        hook->hook(cpu, hook->opaque);
 794    }
 795}
 796static inline void arm_call_el_change_hook(ARMCPU *cpu)
 797{
 798    ARMELChangeHook *hook, *next;
 799    QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
 800        hook->hook(cpu, hook->opaque);
 801    }
 802}
 803
 804/* Return true if this address translation regime is secure */
 805static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
 806{
 807    switch (mmu_idx) {
 808    case ARMMMUIdx_S12NSE0:
 809    case ARMMMUIdx_S12NSE1:
 810    case ARMMMUIdx_S1NSE0:
 811    case ARMMMUIdx_S1NSE1:
 812    case ARMMMUIdx_S1E2:
 813    case ARMMMUIdx_S2NS:
 814    case ARMMMUIdx_MPrivNegPri:
 815    case ARMMMUIdx_MUserNegPri:
 816    case ARMMMUIdx_MPriv:
 817    case ARMMMUIdx_MUser:
 818        return false;
 819    case ARMMMUIdx_S1E3:
 820    case ARMMMUIdx_S1SE0:
 821    case ARMMMUIdx_S1SE1:
 822    case ARMMMUIdx_MSPrivNegPri:
 823    case ARMMMUIdx_MSUserNegPri:
 824    case ARMMMUIdx_MSPriv:
 825    case ARMMMUIdx_MSUser:
 826        return true;
 827    default:
 828        g_assert_not_reached();
 829    }
 830}
 831
 832/* Return the FSR value for a debug exception (watchpoint, hardware
 833 * breakpoint or BKPT insn) targeting the specified exception level.
 834 */
 835static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
 836{
 837    ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
 838    int target_el = arm_debug_target_el(env);
 839    bool using_lpae = false;
 840
 841    if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
 842        using_lpae = true;
 843    } else {
 844        if (arm_feature(env, ARM_FEATURE_LPAE) &&
 845            (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
 846            using_lpae = true;
 847        }
 848    }
 849
 850    if (using_lpae) {
 851        return arm_fi_to_lfsc(&fi);
 852    } else {
 853        return arm_fi_to_sfsc(&fi);
 854    }
 855}
 856
 857/* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
 858 * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
 859 */
 860#define MEMOPIDX_SHIFT  8
 861
 862/**
 863 * v7m_using_psp: Return true if using process stack pointer
 864 * Return true if the CPU is currently using the process stack
 865 * pointer, or false if it is using the main stack pointer.
 866 */
 867static inline bool v7m_using_psp(CPUARMState *env)
 868{
 869    /* Handler mode always uses the main stack; for thread mode
 870     * the CONTROL.SPSEL bit determines the answer.
 871     * Note that in v7M it is not possible to be in Handler mode with
 872     * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
 873     */
 874    return !arm_v7m_is_handler_mode(env) &&
 875        env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
 876}
 877
 878/**
 879 * v7m_sp_limit: Return SP limit for current CPU state
 880 * Return the SP limit value for the current CPU security state
 881 * and stack pointer.
 882 */
 883static inline uint32_t v7m_sp_limit(CPUARMState *env)
 884{
 885    if (v7m_using_psp(env)) {
 886        return env->v7m.psplim[env->v7m.secure];
 887    } else {
 888        return env->v7m.msplim[env->v7m.secure];
 889    }
 890}
 891
 892/**
 893 * aarch32_mode_name(): Return name of the AArch32 CPU mode
 894 * @psr: Program Status Register indicating CPU mode
 895 *
 896 * Returns, for debug logging purposes, a printable representation
 897 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
 898 * the low bits of the specified PSR.
 899 */
 900static inline const char *aarch32_mode_name(uint32_t psr)
 901{
 902    static const char cpu_mode_names[16][4] = {
 903        "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
 904        "???", "???", "hyp", "und", "???", "???", "???", "sys"
 905    };
 906
 907    return cpu_mode_names[psr & 0xf];
 908}
 909
 910/**
 911 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
 912 *
 913 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
 914 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
 915 * Must be called with the iothread lock held.
 916 */
 917void arm_cpu_update_virq(ARMCPU *cpu);
 918
 919/**
 920 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
 921 *
 922 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
 923 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
 924 * Must be called with the iothread lock held.
 925 */
 926void arm_cpu_update_vfiq(ARMCPU *cpu);
 927
 928/**
 929 * arm_mmu_idx:
 930 * @env: The cpu environment
 931 *
 932 * Return the full ARMMMUIdx for the current translation regime.
 933 */
 934ARMMMUIdx arm_mmu_idx(CPUARMState *env);
 935
 936/**
 937 * arm_stage1_mmu_idx:
 938 * @env: The cpu environment
 939 *
 940 * Return the ARMMMUIdx for the stage1 traversal for the current regime.
 941 */
 942#ifdef CONFIG_USER_ONLY
 943static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
 944{
 945    return ARMMMUIdx_S1NSE0;
 946}
 947#else
 948ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
 949#endif
 950
 951/*
 952 * Parameters of a given virtual address, as extracted from the
 953 * translation control register (TCR) for a given regime.
 954 */
 955typedef struct ARMVAParameters {
 956    unsigned tsz    : 8;
 957    unsigned select : 1;
 958    bool tbi        : 1;
 959    bool tbid       : 1;
 960    bool epd        : 1;
 961    bool hpd        : 1;
 962    bool using16k   : 1;
 963    bool using64k   : 1;
 964} ARMVAParameters;
 965
 966ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
 967                                        ARMMMUIdx mmu_idx);
 968ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
 969                                   ARMMMUIdx mmu_idx, bool data);
 970
 971static inline int exception_target_el(CPUARMState *env)
 972{
 973    int target_el = MAX(1, arm_current_el(env));
 974
 975    /*
 976     * No such thing as secure EL1 if EL3 is aarch32,
 977     * so update the target EL to EL3 in this case.
 978     */
 979    if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
 980        target_el = 3;
 981    }
 982
 983    return target_el;
 984}
 985
 986#endif
 987