qemu/target/arm/kvm32.c
<<
>>
Prefs
   1/*
   2 * ARM implementation of KVM hooks, 32 bit specific code.
   3 *
   4 * Copyright Christoffer Dall 2009-2010
   5 *
   6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
   7 * See the COPYING file in the top-level directory.
   8 *
   9 */
  10
  11#include "qemu/osdep.h"
  12#include <sys/ioctl.h>
  13
  14#include <linux/kvm.h>
  15
  16#include "qemu-common.h"
  17#include "cpu.h"
  18#include "qemu/timer.h"
  19#include "sysemu/sysemu.h"
  20#include "sysemu/kvm.h"
  21#include "kvm_arm.h"
  22#include "internals.h"
  23#include "hw/arm/arm.h"
  24#include "qemu/log.h"
  25
  26static inline void set_feature(uint64_t *features, int feature)
  27{
  28    *features |= 1ULL << feature;
  29}
  30
  31static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
  32{
  33    struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
  34
  35    assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32);
  36    return ioctl(fd, KVM_GET_ONE_REG, &idreg);
  37}
  38
  39bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
  40{
  41    /* Identify the feature bits corresponding to the host CPU, and
  42     * fill out the ARMHostCPUClass fields accordingly. To do this
  43     * we have to create a scratch VM, create a single CPU inside it,
  44     * and then query that CPU for the relevant ID registers.
  45     */
  46    int err = 0, fdarray[3];
  47    uint32_t midr, id_pfr0;
  48    uint64_t features = 0;
  49
  50    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
  51     * we know these will only support creating one kind of guest CPU,
  52     * which is its preferred CPU type.
  53     */
  54    static const uint32_t cpus_to_try[] = {
  55        QEMU_KVM_ARM_TARGET_CORTEX_A15,
  56        QEMU_KVM_ARM_TARGET_NONE
  57    };
  58    struct kvm_vcpu_init init;
  59
  60    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
  61        return false;
  62    }
  63
  64    ahcf->target = init.target;
  65
  66    /* This is not strictly blessed by the device tree binding docs yet,
  67     * but in practice the kernel does not care about this string so
  68     * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
  69     */
  70    ahcf->dtb_compatible = "arm,arm-v7";
  71
  72    err |= read_sys_reg32(fdarray[2], &midr, ARM_CP15_REG32(0, 0, 0, 0));
  73    err |= read_sys_reg32(fdarray[2], &id_pfr0, ARM_CP15_REG32(0, 0, 1, 0));
  74
  75    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
  76                          ARM_CP15_REG32(0, 0, 2, 0));
  77    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
  78                          ARM_CP15_REG32(0, 0, 2, 1));
  79    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
  80                          ARM_CP15_REG32(0, 0, 2, 2));
  81    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
  82                          ARM_CP15_REG32(0, 0, 2, 3));
  83    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
  84                          ARM_CP15_REG32(0, 0, 2, 4));
  85    err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
  86                          ARM_CP15_REG32(0, 0, 2, 5));
  87    if (read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
  88                       ARM_CP15_REG32(0, 0, 2, 7))) {
  89        /*
  90         * Older kernels don't support reading ID_ISAR6. This register was
  91         * only introduced in ARMv8, so we can assume that it is zero on a
  92         * CPU that a kernel this old is running on.
  93         */
  94        ahcf->isar.id_isar6 = 0;
  95    }
  96
  97    err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
  98                          KVM_REG_ARM | KVM_REG_SIZE_U32 |
  99                          KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR0);
 100    err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
 101                          KVM_REG_ARM | KVM_REG_SIZE_U32 |
 102                          KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1);
 103    /*
 104     * FIXME: There is not yet a way to read MVFR2.
 105     * Fortunately there is not yet anything in there that affects migration.
 106     */
 107
 108    kvm_arm_destroy_scratch_host_vcpu(fdarray);
 109
 110    if (err < 0) {
 111        return false;
 112    }
 113
 114    /* Now we've retrieved all the register information we can
 115     * set the feature bits based on the ID register fields.
 116     * We can assume any KVM supporting CPU is at least a v7
 117     * with VFPv3, virtualization extensions, and the generic
 118     * timers; this in turn implies most of the other feature
 119     * bits, but a few must be tested.
 120     */
 121    set_feature(&features, ARM_FEATURE_V7VE);
 122    set_feature(&features, ARM_FEATURE_VFP3);
 123    set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
 124
 125    if (extract32(id_pfr0, 12, 4) == 1) {
 126        set_feature(&features, ARM_FEATURE_THUMB2EE);
 127    }
 128    if (extract32(ahcf->isar.mvfr1, 12, 4) == 1) {
 129        set_feature(&features, ARM_FEATURE_NEON);
 130    }
 131    if (extract32(ahcf->isar.mvfr1, 28, 4) == 1) {
 132        /* FMAC support implies VFPv4 */
 133        set_feature(&features, ARM_FEATURE_VFP4);
 134    }
 135
 136    ahcf->features = features;
 137
 138    return true;
 139}
 140
 141bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
 142{
 143    /* Return true if the regidx is a register we should synchronize
 144     * via the cpreg_tuples array (ie is not a core reg we sync by
 145     * hand in kvm_arch_get/put_registers())
 146     */
 147    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
 148    case KVM_REG_ARM_CORE:
 149    case KVM_REG_ARM_VFP:
 150        return false;
 151    default:
 152        return true;
 153    }
 154}
 155
 156typedef struct CPRegStateLevel {
 157    uint64_t regidx;
 158    int level;
 159} CPRegStateLevel;
 160
 161/* All coprocessor registers not listed in the following table are assumed to
 162 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
 163 * often, you must add it to this table with a state of either
 164 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
 165 */
 166static const CPRegStateLevel non_runtime_cpregs[] = {
 167    { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
 168};
 169
 170int kvm_arm_cpreg_level(uint64_t regidx)
 171{
 172    int i;
 173
 174    for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
 175        const CPRegStateLevel *l = &non_runtime_cpregs[i];
 176        if (l->regidx == regidx) {
 177            return l->level;
 178        }
 179    }
 180
 181    return KVM_PUT_RUNTIME_STATE;
 182}
 183
 184#define ARM_CPU_ID_MPIDR       0, 0, 0, 5
 185
 186int kvm_arch_init_vcpu(CPUState *cs)
 187{
 188    int ret;
 189    uint64_t v;
 190    uint32_t mpidr;
 191    struct kvm_one_reg r;
 192    ARMCPU *cpu = ARM_CPU(cs);
 193
 194    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
 195        fprintf(stderr, "KVM is not supported for this guest CPU type\n");
 196        return -EINVAL;
 197    }
 198
 199    /* Determine init features for this CPU */
 200    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
 201    if (cpu->start_powered_off) {
 202        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
 203    }
 204    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
 205        cpu->psci_version = 2;
 206        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
 207    }
 208
 209    /* Do KVM_ARM_VCPU_INIT ioctl */
 210    ret = kvm_arm_vcpu_init(cs);
 211    if (ret) {
 212        return ret;
 213    }
 214
 215    /* Query the kernel to make sure it supports 32 VFP
 216     * registers: QEMU's "cortex-a15" CPU is always a
 217     * VFP-D32 core. The simplest way to do this is just
 218     * to attempt to read register d31.
 219     */
 220    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
 221    r.addr = (uintptr_t)(&v);
 222    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 223    if (ret == -ENOENT) {
 224        return -EINVAL;
 225    }
 226
 227    /*
 228     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
 229     * Currently KVM has its own idea about MPIDR assignment, so we
 230     * override our defaults with what we get from KVM.
 231     */
 232    ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
 233    if (ret) {
 234        return ret;
 235    }
 236    cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK;
 237
 238    /* Check whether userspace can specify guest syndrome value */
 239    kvm_arm_init_serror_injection(cs);
 240
 241    return kvm_arm_init_cpreg_list(cpu);
 242}
 243
 244typedef struct Reg {
 245    uint64_t id;
 246    int offset;
 247} Reg;
 248
 249#define COREREG(KERNELNAME, QEMUFIELD)                       \
 250    {                                                        \
 251        KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
 252        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
 253        offsetof(CPUARMState, QEMUFIELD)                     \
 254    }
 255
 256#define VFPSYSREG(R)                                       \
 257    {                                                      \
 258        KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
 259        KVM_REG_ARM_VFP_##R,                               \
 260        offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R])      \
 261    }
 262
 263/* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
 264#define COREREG64(KERNELNAME, QEMUFIELD)                     \
 265    {                                                        \
 266        KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
 267        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
 268        offsetoflow32(CPUARMState, QEMUFIELD)                \
 269    }
 270
 271static const Reg regs[] = {
 272    /* R0_usr .. R14_usr */
 273    COREREG(usr_regs.uregs[0], regs[0]),
 274    COREREG(usr_regs.uregs[1], regs[1]),
 275    COREREG(usr_regs.uregs[2], regs[2]),
 276    COREREG(usr_regs.uregs[3], regs[3]),
 277    COREREG(usr_regs.uregs[4], regs[4]),
 278    COREREG(usr_regs.uregs[5], regs[5]),
 279    COREREG(usr_regs.uregs[6], regs[6]),
 280    COREREG(usr_regs.uregs[7], regs[7]),
 281    COREREG(usr_regs.uregs[8], usr_regs[0]),
 282    COREREG(usr_regs.uregs[9], usr_regs[1]),
 283    COREREG(usr_regs.uregs[10], usr_regs[2]),
 284    COREREG(usr_regs.uregs[11], usr_regs[3]),
 285    COREREG(usr_regs.uregs[12], usr_regs[4]),
 286    COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]),
 287    COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]),
 288    /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
 289    COREREG(svc_regs[0], banked_r13[BANK_SVC]),
 290    COREREG(svc_regs[1], banked_r14[BANK_SVC]),
 291    COREREG64(svc_regs[2], banked_spsr[BANK_SVC]),
 292    COREREG(abt_regs[0], banked_r13[BANK_ABT]),
 293    COREREG(abt_regs[1], banked_r14[BANK_ABT]),
 294    COREREG64(abt_regs[2], banked_spsr[BANK_ABT]),
 295    COREREG(und_regs[0], banked_r13[BANK_UND]),
 296    COREREG(und_regs[1], banked_r14[BANK_UND]),
 297    COREREG64(und_regs[2], banked_spsr[BANK_UND]),
 298    COREREG(irq_regs[0], banked_r13[BANK_IRQ]),
 299    COREREG(irq_regs[1], banked_r14[BANK_IRQ]),
 300    COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]),
 301    /* R8_fiq .. R14_fiq and SPSR_fiq */
 302    COREREG(fiq_regs[0], fiq_regs[0]),
 303    COREREG(fiq_regs[1], fiq_regs[1]),
 304    COREREG(fiq_regs[2], fiq_regs[2]),
 305    COREREG(fiq_regs[3], fiq_regs[3]),
 306    COREREG(fiq_regs[4], fiq_regs[4]),
 307    COREREG(fiq_regs[5], banked_r13[BANK_FIQ]),
 308    COREREG(fiq_regs[6], banked_r14[BANK_FIQ]),
 309    COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]),
 310    /* R15 */
 311    COREREG(usr_regs.uregs[15], regs[15]),
 312    /* VFP system registers */
 313    VFPSYSREG(FPSID),
 314    VFPSYSREG(MVFR1),
 315    VFPSYSREG(MVFR0),
 316    VFPSYSREG(FPEXC),
 317    VFPSYSREG(FPINST),
 318    VFPSYSREG(FPINST2),
 319};
 320
 321int kvm_arch_put_registers(CPUState *cs, int level)
 322{
 323    ARMCPU *cpu = ARM_CPU(cs);
 324    CPUARMState *env = &cpu->env;
 325    struct kvm_one_reg r;
 326    int mode, bn;
 327    int ret, i;
 328    uint32_t cpsr, fpscr;
 329
 330    /* Make sure the banked regs are properly set */
 331    mode = env->uncached_cpsr & CPSR_M;
 332    bn = bank_number(mode);
 333    if (mode == ARM_CPU_MODE_FIQ) {
 334        memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
 335    } else {
 336        memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
 337    }
 338    env->banked_r13[bn] = env->regs[13];
 339    env->banked_spsr[bn] = env->spsr;
 340    env->banked_r14[r14_bank_number(mode)] = env->regs[14];
 341
 342    /* Now we can safely copy stuff down to the kernel */
 343    for (i = 0; i < ARRAY_SIZE(regs); i++) {
 344        r.id = regs[i].id;
 345        r.addr = (uintptr_t)(env) + regs[i].offset;
 346        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 347        if (ret) {
 348            return ret;
 349        }
 350    }
 351
 352    /* Special cases which aren't a single CPUARMState field */
 353    cpsr = cpsr_read(env);
 354    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
 355        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
 356    r.addr = (uintptr_t)(&cpsr);
 357    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 358    if (ret) {
 359        return ret;
 360    }
 361
 362    /* VFP registers */
 363    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
 364    for (i = 0; i < 32; i++) {
 365        r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
 366        ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 367        if (ret) {
 368            return ret;
 369        }
 370        r.id++;
 371    }
 372
 373    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
 374        KVM_REG_ARM_VFP_FPSCR;
 375    fpscr = vfp_get_fpscr(env);
 376    r.addr = (uintptr_t)&fpscr;
 377    ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
 378    if (ret) {
 379        return ret;
 380    }
 381
 382    ret = kvm_put_vcpu_events(cpu);
 383    if (ret) {
 384        return ret;
 385    }
 386
 387    /* Note that we do not call write_cpustate_to_list()
 388     * here, so we are only writing the tuple list back to
 389     * KVM. This is safe because nothing can change the
 390     * CPUARMState cp15 fields (in particular gdb accesses cannot)
 391     * and so there are no changes to sync. In fact syncing would
 392     * be wrong at this point: for a constant register where TCG and
 393     * KVM disagree about its value, the preceding write_list_to_cpustate()
 394     * would not have had any effect on the CPUARMState value (since the
 395     * register is read-only), and a write_cpustate_to_list() here would
 396     * then try to write the TCG value back into KVM -- this would either
 397     * fail or incorrectly change the value the guest sees.
 398     *
 399     * If we ever want to allow the user to modify cp15 registers via
 400     * the gdb stub, we would need to be more clever here (for instance
 401     * tracking the set of registers kvm_arch_get_registers() successfully
 402     * managed to update the CPUARMState with, and only allowing those
 403     * to be written back up into the kernel).
 404     */
 405    if (!write_list_to_kvmstate(cpu, level)) {
 406        return EINVAL;
 407    }
 408
 409    kvm_arm_sync_mpstate_to_kvm(cpu);
 410
 411    return ret;
 412}
 413
 414int kvm_arch_get_registers(CPUState *cs)
 415{
 416    ARMCPU *cpu = ARM_CPU(cs);
 417    CPUARMState *env = &cpu->env;
 418    struct kvm_one_reg r;
 419    int mode, bn;
 420    int ret, i;
 421    uint32_t cpsr, fpscr;
 422
 423    for (i = 0; i < ARRAY_SIZE(regs); i++) {
 424        r.id = regs[i].id;
 425        r.addr = (uintptr_t)(env) + regs[i].offset;
 426        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 427        if (ret) {
 428            return ret;
 429        }
 430    }
 431
 432    /* Special cases which aren't a single CPUARMState field */
 433    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
 434        KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
 435    r.addr = (uintptr_t)(&cpsr);
 436    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 437    if (ret) {
 438        return ret;
 439    }
 440    cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw);
 441
 442    /* Make sure the current mode regs are properly set */
 443    mode = env->uncached_cpsr & CPSR_M;
 444    bn = bank_number(mode);
 445    if (mode == ARM_CPU_MODE_FIQ) {
 446        memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
 447    } else {
 448        memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
 449    }
 450    env->regs[13] = env->banked_r13[bn];
 451    env->spsr = env->banked_spsr[bn];
 452    env->regs[14] = env->banked_r14[r14_bank_number(mode)];
 453
 454    /* VFP registers */
 455    r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
 456    for (i = 0; i < 32; i++) {
 457        r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
 458        ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 459        if (ret) {
 460            return ret;
 461        }
 462        r.id++;
 463    }
 464
 465    r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
 466        KVM_REG_ARM_VFP_FPSCR;
 467    r.addr = (uintptr_t)&fpscr;
 468    ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
 469    if (ret) {
 470        return ret;
 471    }
 472    vfp_set_fpscr(env, fpscr);
 473
 474    ret = kvm_get_vcpu_events(cpu);
 475    if (ret) {
 476        return ret;
 477    }
 478
 479    if (!write_kvmstate_to_list(cpu)) {
 480        return EINVAL;
 481    }
 482    /* Note that it's OK to have registers which aren't in CPUState,
 483     * so we can ignore a failure return here.
 484     */
 485    write_list_to_cpustate(cpu);
 486
 487    kvm_arm_sync_mpstate_to_qemu(cpu);
 488
 489    return 0;
 490}
 491
 492int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 493{
 494    qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
 495    return -EINVAL;
 496}
 497
 498int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 499{
 500    qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
 501    return -EINVAL;
 502}
 503
 504bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
 505{
 506    qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
 507    return false;
 508}
 509
 510int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 511                                  target_ulong len, int type)
 512{
 513    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 514    return -EINVAL;
 515}
 516
 517int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 518                                  target_ulong len, int type)
 519{
 520    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 521    return -EINVAL;
 522}
 523
 524void kvm_arch_remove_all_hw_breakpoints(void)
 525{
 526    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 527}
 528
 529void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
 530{
 531    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 532}
 533
 534bool kvm_arm_hw_debug_active(CPUState *cs)
 535{
 536    return false;
 537}
 538
 539void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
 540{
 541    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 542}
 543
 544void kvm_arm_pmu_init(CPUState *cs)
 545{
 546    qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
 547}
 548