qemu/target/arm/psci.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2014 - Linaro
   3 * Author: Rob Herring <rob.herring@linaro.org>
   4 *
   5 *  This program is free software; you can redistribute it and/or modify
   6 *  it under the terms of the GNU General Public License as published by
   7 *  the Free Software Foundation; either version 2 of the License, or
   8 *  (at your option) any later version.
   9 *
  10 *  This program is distributed in the hope that it will be useful,
  11 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 *  GNU General Public License for more details.
  14 *
  15 *  You should have received a copy of the GNU General Public License
  16 *  along with this program; if not, see <http://www.gnu.org/licenses/>.
  17 */
  18#include "qemu/osdep.h"
  19#include "cpu.h"
  20#include "exec/helper-proto.h"
  21#include "kvm-consts.h"
  22#include "sysemu/sysemu.h"
  23#include "internals.h"
  24#include "arm-powerctl.h"
  25
  26bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
  27{
  28    /* Return true if the r0/x0 value indicates a PSCI call and
  29     * the exception type matches the configured PSCI conduit. This is
  30     * called before the SMC/HVC instruction is executed, to decide whether
  31     * we should treat it as a PSCI call or with the architecturally
  32     * defined behaviour for an SMC or HVC (which might be UNDEF or trap
  33     * to EL2 or to EL3).
  34     */
  35    CPUARMState *env = &cpu->env;
  36    uint64_t param = is_a64(env) ? env->xregs[0] : env->regs[0];
  37
  38    switch (excp_type) {
  39    case EXCP_HVC:
  40        if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_HVC) {
  41            return false;
  42        }
  43        break;
  44    case EXCP_SMC:
  45        if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
  46            return false;
  47        }
  48        break;
  49    default:
  50        return false;
  51    }
  52
  53    switch (param) {
  54    case QEMU_PSCI_0_2_FN_PSCI_VERSION:
  55    case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
  56    case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
  57    case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
  58    case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
  59    case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
  60    case QEMU_PSCI_0_1_FN_CPU_ON:
  61    case QEMU_PSCI_0_2_FN_CPU_ON:
  62    case QEMU_PSCI_0_2_FN64_CPU_ON:
  63    case QEMU_PSCI_0_1_FN_CPU_OFF:
  64    case QEMU_PSCI_0_2_FN_CPU_OFF:
  65    case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
  66    case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
  67    case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
  68    case QEMU_PSCI_0_1_FN_MIGRATE:
  69    case QEMU_PSCI_0_2_FN_MIGRATE:
  70        return true;
  71    default:
  72        return false;
  73    }
  74}
  75
  76void arm_handle_psci_call(ARMCPU *cpu)
  77{
  78    /*
  79     * This function partially implements the logic for dispatching Power State
  80     * Coordination Interface (PSCI) calls (as described in ARM DEN 0022B.b),
  81     * to the extent required for bringing up and taking down secondary cores,
  82     * and for handling reset and poweroff requests.
  83     * Additional information about the calling convention used is available in
  84     * the document 'SMC Calling Convention' (ARM DEN 0028)
  85     */
  86    CPUARMState *env = &cpu->env;
  87    uint64_t param[4];
  88    uint64_t context_id, mpidr;
  89    target_ulong entry;
  90    int32_t ret = 0;
  91    int i;
  92
  93    for (i = 0; i < 4; i++) {
  94        /*
  95         * All PSCI functions take explicit 32-bit or native int sized
  96         * arguments so we can simply zero-extend all arguments regardless
  97         * of which exact function we are about to call.
  98         */
  99        param[i] = is_a64(env) ? env->xregs[i] : env->regs[i];
 100    }
 101
 102    if ((param[0] & QEMU_PSCI_0_2_64BIT) && !is_a64(env)) {
 103        ret = QEMU_PSCI_RET_INVALID_PARAMS;
 104        goto err;
 105    }
 106
 107    switch (param[0]) {
 108        CPUState *target_cpu_state;
 109        ARMCPU *target_cpu;
 110
 111    case QEMU_PSCI_0_2_FN_PSCI_VERSION:
 112        ret = QEMU_PSCI_0_2_RET_VERSION_0_2;
 113        break;
 114    case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
 115        ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
 116        break;
 117    case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
 118    case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
 119        mpidr = param[1];
 120
 121        switch (param[2]) {
 122        case 0:
 123            target_cpu_state = arm_get_cpu_by_id(mpidr);
 124            if (!target_cpu_state) {
 125                ret = QEMU_PSCI_RET_INVALID_PARAMS;
 126                break;
 127            }
 128            target_cpu = ARM_CPU(target_cpu_state);
 129
 130            g_assert(qemu_mutex_iothread_locked());
 131            ret = target_cpu->power_state;
 132            break;
 133        default:
 134            /* Everything above affinity level 0 is always on. */
 135            ret = 0;
 136        }
 137        break;
 138    case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
 139        qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 140        /* QEMU reset and shutdown are async requests, but PSCI
 141         * mandates that we never return from the reset/shutdown
 142         * call, so power the CPU off now so it doesn't execute
 143         * anything further.
 144         */
 145        goto cpu_off;
 146    case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
 147        qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
 148        goto cpu_off;
 149    case QEMU_PSCI_0_1_FN_CPU_ON:
 150    case QEMU_PSCI_0_2_FN_CPU_ON:
 151    case QEMU_PSCI_0_2_FN64_CPU_ON:
 152    {
 153        /* The PSCI spec mandates that newly brought up CPUs start
 154         * in the highest exception level which exists and is enabled
 155         * on the calling CPU. Since the QEMU PSCI implementation is
 156         * acting as a "fake EL3" or "fake EL2" firmware, this for us
 157         * means that we want to start at the highest NS exception level
 158         * that we are providing to the guest.
 159         * The execution mode should be that which is currently in use
 160         * by the same exception level on the calling CPU.
 161         * The CPU should be started with the context_id value
 162         * in x0 (if AArch64) or r0 (if AArch32).
 163         */
 164        int target_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
 165        bool target_aarch64 = arm_el_is_aa64(env, target_el);
 166
 167        mpidr = param[1];
 168        entry = param[2];
 169        context_id = param[3];
 170        ret = arm_set_cpu_on(mpidr, entry, context_id,
 171                             target_el, target_aarch64);
 172        break;
 173    }
 174    case QEMU_PSCI_0_1_FN_CPU_OFF:
 175    case QEMU_PSCI_0_2_FN_CPU_OFF:
 176        goto cpu_off;
 177    case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
 178    case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
 179    case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
 180        /* Affinity levels are not supported in QEMU */
 181        if (param[1] & 0xfffe0000) {
 182            ret = QEMU_PSCI_RET_INVALID_PARAMS;
 183            break;
 184        }
 185        /* Powerdown is not supported, we always go into WFI */
 186        if (is_a64(env)) {
 187            env->xregs[0] = 0;
 188        } else {
 189            env->regs[0] = 0;
 190        }
 191        helper_wfi(env, 4);
 192        break;
 193    case QEMU_PSCI_0_1_FN_MIGRATE:
 194    case QEMU_PSCI_0_2_FN_MIGRATE:
 195        ret = QEMU_PSCI_RET_NOT_SUPPORTED;
 196        break;
 197    default:
 198        g_assert_not_reached();
 199    }
 200
 201err:
 202    if (is_a64(env)) {
 203        env->xregs[0] = ret;
 204    } else {
 205        env->regs[0] = ret;
 206    }
 207    return;
 208
 209cpu_off:
 210    ret = arm_set_cpu_off(cpu->mp_affinity);
 211    /* notreached */
 212    /* sanity check in case something failed */
 213    assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
 214}
 215