qemu/target/riscv/cpu_helper.c
<<
>>
Prefs
   1/*
   2 * RISC-V CPU helpers for qemu.
   3 *
   4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
   5 * Copyright (c) 2017-2018 SiFive, Inc.
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2 or later, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along with
  17 * this program.  If not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/log.h"
  22#include "cpu.h"
  23#include "exec/exec-all.h"
  24#include "tcg-op.h"
  25#include "trace.h"
  26
  27int riscv_cpu_mmu_index(CPURISCVState *env, bool ifetch)
  28{
  29#ifdef CONFIG_USER_ONLY
  30    return 0;
  31#else
  32    return env->priv;
  33#endif
  34}
  35
  36#ifndef CONFIG_USER_ONLY
  37static int riscv_cpu_local_irq_pending(CPURISCVState *env)
  38{
  39    target_ulong mstatus_mie = get_field(env->mstatus, MSTATUS_MIE);
  40    target_ulong mstatus_sie = get_field(env->mstatus, MSTATUS_SIE);
  41    target_ulong pending = atomic_read(&env->mip) & env->mie;
  42    target_ulong mie = env->priv < PRV_M || (env->priv == PRV_M && mstatus_mie);
  43    target_ulong sie = env->priv < PRV_S || (env->priv == PRV_S && mstatus_sie);
  44    target_ulong irqs = (pending & ~env->mideleg & -mie) |
  45                        (pending &  env->mideleg & -sie);
  46
  47    if (irqs) {
  48        return ctz64(irqs); /* since non-zero */
  49    } else {
  50        return EXCP_NONE; /* indicates no pending interrupt */
  51    }
  52}
  53#endif
  54
  55bool riscv_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
  56{
  57#if !defined(CONFIG_USER_ONLY)
  58    if (interrupt_request & CPU_INTERRUPT_HARD) {
  59        RISCVCPU *cpu = RISCV_CPU(cs);
  60        CPURISCVState *env = &cpu->env;
  61        int interruptno = riscv_cpu_local_irq_pending(env);
  62        if (interruptno >= 0) {
  63            cs->exception_index = RISCV_EXCP_INT_FLAG | interruptno;
  64            riscv_cpu_do_interrupt(cs);
  65            return true;
  66        }
  67    }
  68#endif
  69    return false;
  70}
  71
  72#if !defined(CONFIG_USER_ONLY)
  73
  74int riscv_cpu_claim_interrupts(RISCVCPU *cpu, uint32_t interrupts)
  75{
  76    CPURISCVState *env = &cpu->env;
  77    if (env->miclaim & interrupts) {
  78        return -1;
  79    } else {
  80        env->miclaim |= interrupts;
  81        return 0;
  82    }
  83}
  84
  85/* iothread_mutex must be held */
  86uint32_t riscv_cpu_update_mip(RISCVCPU *cpu, uint32_t mask, uint32_t value)
  87{
  88    CPURISCVState *env = &cpu->env;
  89    uint32_t old, new, cmp = atomic_read(&env->mip);
  90
  91    do {
  92        old = cmp;
  93        new = (old & ~mask) | (value & mask);
  94        cmp = atomic_cmpxchg(&env->mip, old, new);
  95    } while (old != cmp);
  96
  97    if (new) {
  98        cpu_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
  99    } else {
 100        cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
 101    }
 102
 103    return old;
 104}
 105
 106void riscv_cpu_set_mode(CPURISCVState *env, target_ulong newpriv)
 107{
 108    if (newpriv > PRV_M) {
 109        g_assert_not_reached();
 110    }
 111    if (newpriv == PRV_H) {
 112        newpriv = PRV_U;
 113    }
 114    /* tlb_flush is unnecessary as mode is contained in mmu_idx */
 115    env->priv = newpriv;
 116}
 117
 118/* get_physical_address - get the physical address for this virtual address
 119 *
 120 * Do a page table walk to obtain the physical address corresponding to a
 121 * virtual address. Returns 0 if the translation was successful
 122 *
 123 * Adapted from Spike's mmu_t::translate and mmu_t::walk
 124 *
 125 */
 126static int get_physical_address(CPURISCVState *env, hwaddr *physical,
 127                                int *prot, target_ulong addr,
 128                                int access_type, int mmu_idx)
 129{
 130    /* NOTE: the env->pc value visible here will not be
 131     * correct, but the value visible to the exception handler
 132     * (riscv_cpu_do_interrupt) is correct */
 133
 134    int mode = mmu_idx;
 135
 136    if (mode == PRV_M && access_type != MMU_INST_FETCH) {
 137        if (get_field(env->mstatus, MSTATUS_MPRV)) {
 138            mode = get_field(env->mstatus, MSTATUS_MPP);
 139        }
 140    }
 141
 142    if (mode == PRV_M || !riscv_feature(env, RISCV_FEATURE_MMU)) {
 143        *physical = addr;
 144        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 145        return TRANSLATE_SUCCESS;
 146    }
 147
 148    *prot = 0;
 149
 150    target_ulong base;
 151    int levels, ptidxbits, ptesize, vm, sum;
 152    int mxr = get_field(env->mstatus, MSTATUS_MXR);
 153
 154    if (env->priv_ver >= PRIV_VERSION_1_10_0) {
 155        base = get_field(env->satp, SATP_PPN) << PGSHIFT;
 156        sum = get_field(env->mstatus, MSTATUS_SUM);
 157        vm = get_field(env->satp, SATP_MODE);
 158        switch (vm) {
 159        case VM_1_10_SV32:
 160          levels = 2; ptidxbits = 10; ptesize = 4; break;
 161        case VM_1_10_SV39:
 162          levels = 3; ptidxbits = 9; ptesize = 8; break;
 163        case VM_1_10_SV48:
 164          levels = 4; ptidxbits = 9; ptesize = 8; break;
 165        case VM_1_10_SV57:
 166          levels = 5; ptidxbits = 9; ptesize = 8; break;
 167        case VM_1_10_MBARE:
 168            *physical = addr;
 169            *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 170            return TRANSLATE_SUCCESS;
 171        default:
 172          g_assert_not_reached();
 173        }
 174    } else {
 175        base = env->sptbr << PGSHIFT;
 176        sum = !get_field(env->mstatus, MSTATUS_PUM);
 177        vm = get_field(env->mstatus, MSTATUS_VM);
 178        switch (vm) {
 179        case VM_1_09_SV32:
 180          levels = 2; ptidxbits = 10; ptesize = 4; break;
 181        case VM_1_09_SV39:
 182          levels = 3; ptidxbits = 9; ptesize = 8; break;
 183        case VM_1_09_SV48:
 184          levels = 4; ptidxbits = 9; ptesize = 8; break;
 185        case VM_1_09_MBARE:
 186            *physical = addr;
 187            *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 188            return TRANSLATE_SUCCESS;
 189        default:
 190          g_assert_not_reached();
 191        }
 192    }
 193
 194    CPUState *cs = CPU(riscv_env_get_cpu(env));
 195    int va_bits = PGSHIFT + levels * ptidxbits;
 196    target_ulong mask = (1L << (TARGET_LONG_BITS - (va_bits - 1))) - 1;
 197    target_ulong masked_msbs = (addr >> (va_bits - 1)) & mask;
 198    if (masked_msbs != 0 && masked_msbs != mask) {
 199        return TRANSLATE_FAIL;
 200    }
 201
 202    int ptshift = (levels - 1) * ptidxbits;
 203    int i;
 204
 205#if !TCG_OVERSIZED_GUEST
 206restart:
 207#endif
 208    for (i = 0; i < levels; i++, ptshift -= ptidxbits) {
 209        target_ulong idx = (addr >> (PGSHIFT + ptshift)) &
 210                           ((1 << ptidxbits) - 1);
 211
 212        /* check that physical address of PTE is legal */
 213        target_ulong pte_addr = base + idx * ptesize;
 214#if defined(TARGET_RISCV32)
 215        target_ulong pte = ldl_phys(cs->as, pte_addr);
 216#elif defined(TARGET_RISCV64)
 217        target_ulong pte = ldq_phys(cs->as, pte_addr);
 218#endif
 219        target_ulong ppn = pte >> PTE_PPN_SHIFT;
 220
 221        if (!(pte & PTE_V)) {
 222            /* Invalid PTE */
 223            return TRANSLATE_FAIL;
 224        } else if (!(pte & (PTE_R | PTE_W | PTE_X))) {
 225            /* Inner PTE, continue walking */
 226            base = ppn << PGSHIFT;
 227        } else if ((pte & (PTE_R | PTE_W | PTE_X)) == PTE_W) {
 228            /* Reserved leaf PTE flags: PTE_W */
 229            return TRANSLATE_FAIL;
 230        } else if ((pte & (PTE_R | PTE_W | PTE_X)) == (PTE_W | PTE_X)) {
 231            /* Reserved leaf PTE flags: PTE_W + PTE_X */
 232            return TRANSLATE_FAIL;
 233        } else if ((pte & PTE_U) && ((mode != PRV_U) &&
 234                   (!sum || access_type == MMU_INST_FETCH))) {
 235            /* User PTE flags when not U mode and mstatus.SUM is not set,
 236               or the access type is an instruction fetch */
 237            return TRANSLATE_FAIL;
 238        } else if (!(pte & PTE_U) && (mode != PRV_S)) {
 239            /* Supervisor PTE flags when not S mode */
 240            return TRANSLATE_FAIL;
 241        } else if (ppn & ((1ULL << ptshift) - 1)) {
 242            /* Misaligned PPN */
 243            return TRANSLATE_FAIL;
 244        } else if (access_type == MMU_DATA_LOAD && !((pte & PTE_R) ||
 245                   ((pte & PTE_X) && mxr))) {
 246            /* Read access check failed */
 247            return TRANSLATE_FAIL;
 248        } else if (access_type == MMU_DATA_STORE && !(pte & PTE_W)) {
 249            /* Write access check failed */
 250            return TRANSLATE_FAIL;
 251        } else if (access_type == MMU_INST_FETCH && !(pte & PTE_X)) {
 252            /* Fetch access check failed */
 253            return TRANSLATE_FAIL;
 254        } else {
 255            /* if necessary, set accessed and dirty bits. */
 256            target_ulong updated_pte = pte | PTE_A |
 257                (access_type == MMU_DATA_STORE ? PTE_D : 0);
 258
 259            /* Page table updates need to be atomic with MTTCG enabled */
 260            if (updated_pte != pte) {
 261                /*
 262                 * - if accessed or dirty bits need updating, and the PTE is
 263                 *   in RAM, then we do so atomically with a compare and swap.
 264                 * - if the PTE is in IO space or ROM, then it can't be updated
 265                 *   and we return TRANSLATE_FAIL.
 266                 * - if the PTE changed by the time we went to update it, then
 267                 *   it is no longer valid and we must re-walk the page table.
 268                 */
 269                MemoryRegion *mr;
 270                hwaddr l = sizeof(target_ulong), addr1;
 271                mr = address_space_translate(cs->as, pte_addr,
 272                    &addr1, &l, false, MEMTXATTRS_UNSPECIFIED);
 273                if (memory_region_is_ram(mr)) {
 274                    target_ulong *pte_pa =
 275                        qemu_map_ram_ptr(mr->ram_block, addr1);
 276#if TCG_OVERSIZED_GUEST
 277                    /* MTTCG is not enabled on oversized TCG guests so
 278                     * page table updates do not need to be atomic */
 279                    *pte_pa = pte = updated_pte;
 280#else
 281                    target_ulong old_pte =
 282                        atomic_cmpxchg(pte_pa, pte, updated_pte);
 283                    if (old_pte != pte) {
 284                        goto restart;
 285                    } else {
 286                        pte = updated_pte;
 287                    }
 288#endif
 289                } else {
 290                    /* misconfigured PTE in ROM (AD bits are not preset) or
 291                     * PTE is in IO space and can't be updated atomically */
 292                    return TRANSLATE_FAIL;
 293                }
 294            }
 295
 296            /* for superpage mappings, make a fake leaf PTE for the TLB's
 297               benefit. */
 298            target_ulong vpn = addr >> PGSHIFT;
 299            *physical = (ppn | (vpn & ((1L << ptshift) - 1))) << PGSHIFT;
 300
 301            /* set permissions on the TLB entry */
 302            if ((pte & PTE_R) || ((pte & PTE_X) && mxr)) {
 303                *prot |= PAGE_READ;
 304            }
 305            if ((pte & PTE_X)) {
 306                *prot |= PAGE_EXEC;
 307            }
 308            /* add write permission on stores or if the page is already dirty,
 309               so that we TLB miss on later writes to update the dirty bit */
 310            if ((pte & PTE_W) &&
 311                    (access_type == MMU_DATA_STORE || (pte & PTE_D))) {
 312                *prot |= PAGE_WRITE;
 313            }
 314            return TRANSLATE_SUCCESS;
 315        }
 316    }
 317    return TRANSLATE_FAIL;
 318}
 319
 320static void raise_mmu_exception(CPURISCVState *env, target_ulong address,
 321                                MMUAccessType access_type)
 322{
 323    CPUState *cs = CPU(riscv_env_get_cpu(env));
 324    int page_fault_exceptions =
 325        (env->priv_ver >= PRIV_VERSION_1_10_0) &&
 326        get_field(env->satp, SATP_MODE) != VM_1_10_MBARE;
 327    switch (access_type) {
 328    case MMU_INST_FETCH:
 329        cs->exception_index = page_fault_exceptions ?
 330            RISCV_EXCP_INST_PAGE_FAULT : RISCV_EXCP_INST_ACCESS_FAULT;
 331        break;
 332    case MMU_DATA_LOAD:
 333        cs->exception_index = page_fault_exceptions ?
 334            RISCV_EXCP_LOAD_PAGE_FAULT : RISCV_EXCP_LOAD_ACCESS_FAULT;
 335        break;
 336    case MMU_DATA_STORE:
 337        cs->exception_index = page_fault_exceptions ?
 338            RISCV_EXCP_STORE_PAGE_FAULT : RISCV_EXCP_STORE_AMO_ACCESS_FAULT;
 339        break;
 340    default:
 341        g_assert_not_reached();
 342    }
 343    env->badaddr = address;
 344}
 345
 346hwaddr riscv_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 347{
 348    RISCVCPU *cpu = RISCV_CPU(cs);
 349    hwaddr phys_addr;
 350    int prot;
 351    int mmu_idx = cpu_mmu_index(&cpu->env, false);
 352
 353    if (get_physical_address(&cpu->env, &phys_addr, &prot, addr, 0, mmu_idx)) {
 354        return -1;
 355    }
 356    return phys_addr;
 357}
 358
 359void riscv_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
 360                                   MMUAccessType access_type, int mmu_idx,
 361                                   uintptr_t retaddr)
 362{
 363    RISCVCPU *cpu = RISCV_CPU(cs);
 364    CPURISCVState *env = &cpu->env;
 365    switch (access_type) {
 366    case MMU_INST_FETCH:
 367        cs->exception_index = RISCV_EXCP_INST_ADDR_MIS;
 368        break;
 369    case MMU_DATA_LOAD:
 370        cs->exception_index = RISCV_EXCP_LOAD_ADDR_MIS;
 371        break;
 372    case MMU_DATA_STORE:
 373        cs->exception_index = RISCV_EXCP_STORE_AMO_ADDR_MIS;
 374        break;
 375    default:
 376        g_assert_not_reached();
 377    }
 378    env->badaddr = addr;
 379    riscv_raise_exception(env, cs->exception_index, retaddr);
 380}
 381
 382/* called by qemu's softmmu to fill the qemu tlb */
 383void tlb_fill(CPUState *cs, target_ulong addr, int size,
 384        MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
 385{
 386    int ret;
 387    ret = riscv_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx);
 388    if (ret == TRANSLATE_FAIL) {
 389        RISCVCPU *cpu = RISCV_CPU(cs);
 390        CPURISCVState *env = &cpu->env;
 391        riscv_raise_exception(env, cs->exception_index, retaddr);
 392    }
 393}
 394
 395#endif
 396
 397int riscv_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
 398        int rw, int mmu_idx)
 399{
 400    RISCVCPU *cpu = RISCV_CPU(cs);
 401    CPURISCVState *env = &cpu->env;
 402#if !defined(CONFIG_USER_ONLY)
 403    hwaddr pa = 0;
 404    int prot;
 405#endif
 406    int ret = TRANSLATE_FAIL;
 407
 408    qemu_log_mask(CPU_LOG_MMU,
 409            "%s pc " TARGET_FMT_lx " ad %" VADDR_PRIx " rw %d mmu_idx \
 410             %d\n", __func__, env->pc, address, rw, mmu_idx);
 411
 412#if !defined(CONFIG_USER_ONLY)
 413    ret = get_physical_address(env, &pa, &prot, address, rw, mmu_idx);
 414    qemu_log_mask(CPU_LOG_MMU,
 415            "%s address=%" VADDR_PRIx " ret %d physical " TARGET_FMT_plx
 416             " prot %d\n", __func__, address, ret, pa, prot);
 417    if (riscv_feature(env, RISCV_FEATURE_PMP) &&
 418        !pmp_hart_has_privs(env, pa, TARGET_PAGE_SIZE, 1 << rw)) {
 419        ret = TRANSLATE_FAIL;
 420    }
 421    if (ret == TRANSLATE_SUCCESS) {
 422        tlb_set_page(cs, address & TARGET_PAGE_MASK, pa & TARGET_PAGE_MASK,
 423                     prot, mmu_idx, TARGET_PAGE_SIZE);
 424    } else if (ret == TRANSLATE_FAIL) {
 425        raise_mmu_exception(env, address, rw);
 426    }
 427#else
 428    switch (rw) {
 429    case MMU_INST_FETCH:
 430        cs->exception_index = RISCV_EXCP_INST_PAGE_FAULT;
 431        break;
 432    case MMU_DATA_LOAD:
 433        cs->exception_index = RISCV_EXCP_LOAD_PAGE_FAULT;
 434        break;
 435    case MMU_DATA_STORE:
 436        cs->exception_index = RISCV_EXCP_STORE_PAGE_FAULT;
 437        break;
 438    }
 439#endif
 440    return ret;
 441}
 442
 443/*
 444 * Handle Traps
 445 *
 446 * Adapted from Spike's processor_t::take_trap.
 447 *
 448 */
 449void riscv_cpu_do_interrupt(CPUState *cs)
 450{
 451#if !defined(CONFIG_USER_ONLY)
 452
 453    RISCVCPU *cpu = RISCV_CPU(cs);
 454    CPURISCVState *env = &cpu->env;
 455
 456    /* cs->exception is 32-bits wide unlike mcause which is XLEN-bits wide
 457     * so we mask off the MSB and separate into trap type and cause.
 458     */
 459    bool async = !!(cs->exception_index & RISCV_EXCP_INT_FLAG);
 460    target_ulong cause = cs->exception_index & RISCV_EXCP_INT_MASK;
 461    target_ulong deleg = async ? env->mideleg : env->medeleg;
 462    target_ulong tval = 0;
 463
 464    static const int ecall_cause_map[] = {
 465        [PRV_U] = RISCV_EXCP_U_ECALL,
 466        [PRV_S] = RISCV_EXCP_S_ECALL,
 467        [PRV_H] = RISCV_EXCP_H_ECALL,
 468        [PRV_M] = RISCV_EXCP_M_ECALL
 469    };
 470
 471    if (!async) {
 472        /* set tval to badaddr for traps with address information */
 473        switch (cause) {
 474        case RISCV_EXCP_INST_ADDR_MIS:
 475        case RISCV_EXCP_INST_ACCESS_FAULT:
 476        case RISCV_EXCP_LOAD_ADDR_MIS:
 477        case RISCV_EXCP_STORE_AMO_ADDR_MIS:
 478        case RISCV_EXCP_LOAD_ACCESS_FAULT:
 479        case RISCV_EXCP_STORE_AMO_ACCESS_FAULT:
 480        case RISCV_EXCP_INST_PAGE_FAULT:
 481        case RISCV_EXCP_LOAD_PAGE_FAULT:
 482        case RISCV_EXCP_STORE_PAGE_FAULT:
 483            tval = env->badaddr;
 484            break;
 485        default:
 486            break;
 487        }
 488        /* ecall is dispatched as one cause so translate based on mode */
 489        if (cause == RISCV_EXCP_U_ECALL) {
 490            assert(env->priv <= 3);
 491            cause = ecall_cause_map[env->priv];
 492        }
 493    }
 494
 495    trace_riscv_trap(env->mhartid, async, cause, env->pc, tval, cause < 16 ?
 496        (async ? riscv_intr_names : riscv_excp_names)[cause] : "(unknown)");
 497
 498    if (env->priv <= PRV_S &&
 499            cause < TARGET_LONG_BITS && ((deleg >> cause) & 1)) {
 500        /* handle the trap in S-mode */
 501        target_ulong s = env->mstatus;
 502        s = set_field(s, MSTATUS_SPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
 503            get_field(s, MSTATUS_SIE) : get_field(s, MSTATUS_UIE << env->priv));
 504        s = set_field(s, MSTATUS_SPP, env->priv);
 505        s = set_field(s, MSTATUS_SIE, 0);
 506        env->mstatus = s;
 507        env->scause = cause | ~(((target_ulong)-1) >> async);
 508        env->sepc = env->pc;
 509        env->sbadaddr = tval;
 510        env->pc = (env->stvec >> 2 << 2) +
 511            ((async && (env->stvec & 3) == 1) ? cause * 4 : 0);
 512        riscv_cpu_set_mode(env, PRV_S);
 513    } else {
 514        /* handle the trap in M-mode */
 515        target_ulong s = env->mstatus;
 516        s = set_field(s, MSTATUS_MPIE, env->priv_ver >= PRIV_VERSION_1_10_0 ?
 517            get_field(s, MSTATUS_MIE) : get_field(s, MSTATUS_UIE << env->priv));
 518        s = set_field(s, MSTATUS_MPP, env->priv);
 519        s = set_field(s, MSTATUS_MIE, 0);
 520        env->mstatus = s;
 521        env->mcause = cause | ~(((target_ulong)-1) >> async);
 522        env->mepc = env->pc;
 523        env->mbadaddr = tval;
 524        env->pc = (env->mtvec >> 2 << 2) +
 525            ((async && (env->mtvec & 3) == 1) ? cause * 4 : 0);
 526        riscv_cpu_set_mode(env, PRV_M);
 527    }
 528
 529    /* NOTE: it is not necessary to yield load reservations here. It is only
 530     * necessary for an SC from "another hart" to cause a load reservation
 531     * to be yielded. Refer to the memory consistency model section of the
 532     * RISC-V ISA Specification.
 533     */
 534
 535#endif
 536    cs->exception_index = EXCP_NONE; /* mark handled to qemu */
 537}
 538