qemu/block/qcow2-cluster.c
<<
>>
Prefs
   1/*
   2 * Block driver for the QCOW version 2 format
   3 *
   4 * Copyright (c) 2004-2006 Fabrice Bellard
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a copy
   7 * of this software and associated documentation files (the "Software"), to deal
   8 * in the Software without restriction, including without limitation the rights
   9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  10 * copies of the Software, and to permit persons to whom the Software is
  11 * furnished to do so, subject to the following conditions:
  12 *
  13 * The above copyright notice and this permission notice shall be included in
  14 * all copies or substantial portions of the Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  22 * THE SOFTWARE.
  23 */
  24
  25#include "qemu/osdep.h"
  26#include <zlib.h>
  27
  28#include "qapi/error.h"
  29#include "qcow2.h"
  30#include "qemu/bswap.h"
  31#include "trace.h"
  32
  33int qcow2_shrink_l1_table(BlockDriverState *bs, uint64_t exact_size)
  34{
  35    BDRVQcow2State *s = bs->opaque;
  36    int new_l1_size, i, ret;
  37
  38    if (exact_size >= s->l1_size) {
  39        return 0;
  40    }
  41
  42    new_l1_size = exact_size;
  43
  44#ifdef DEBUG_ALLOC2
  45    fprintf(stderr, "shrink l1_table from %d to %d\n", s->l1_size, new_l1_size);
  46#endif
  47
  48    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_WRITE_TABLE);
  49    ret = bdrv_pwrite_zeroes(bs->file, s->l1_table_offset +
  50                                       new_l1_size * sizeof(uint64_t),
  51                             (s->l1_size - new_l1_size) * sizeof(uint64_t), 0);
  52    if (ret < 0) {
  53        goto fail;
  54    }
  55
  56    ret = bdrv_flush(bs->file->bs);
  57    if (ret < 0) {
  58        goto fail;
  59    }
  60
  61    BLKDBG_EVENT(bs->file, BLKDBG_L1_SHRINK_FREE_L2_CLUSTERS);
  62    for (i = s->l1_size - 1; i > new_l1_size - 1; i--) {
  63        if ((s->l1_table[i] & L1E_OFFSET_MASK) == 0) {
  64            continue;
  65        }
  66        qcow2_free_clusters(bs, s->l1_table[i] & L1E_OFFSET_MASK,
  67                            s->cluster_size, QCOW2_DISCARD_ALWAYS);
  68        s->l1_table[i] = 0;
  69    }
  70    return 0;
  71
  72fail:
  73    /*
  74     * If the write in the l1_table failed the image may contain a partially
  75     * overwritten l1_table. In this case it would be better to clear the
  76     * l1_table in memory to avoid possible image corruption.
  77     */
  78    memset(s->l1_table + new_l1_size, 0,
  79           (s->l1_size - new_l1_size) * sizeof(uint64_t));
  80    return ret;
  81}
  82
  83int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
  84                        bool exact_size)
  85{
  86    BDRVQcow2State *s = bs->opaque;
  87    int new_l1_size2, ret, i;
  88    uint64_t *new_l1_table;
  89    int64_t old_l1_table_offset, old_l1_size;
  90    int64_t new_l1_table_offset, new_l1_size;
  91    uint8_t data[12];
  92
  93    if (min_size <= s->l1_size)
  94        return 0;
  95
  96    /* Do a sanity check on min_size before trying to calculate new_l1_size
  97     * (this prevents overflows during the while loop for the calculation of
  98     * new_l1_size) */
  99    if (min_size > INT_MAX / sizeof(uint64_t)) {
 100        return -EFBIG;
 101    }
 102
 103    if (exact_size) {
 104        new_l1_size = min_size;
 105    } else {
 106        /* Bump size up to reduce the number of times we have to grow */
 107        new_l1_size = s->l1_size;
 108        if (new_l1_size == 0) {
 109            new_l1_size = 1;
 110        }
 111        while (min_size > new_l1_size) {
 112            new_l1_size = DIV_ROUND_UP(new_l1_size * 3, 2);
 113        }
 114    }
 115
 116    QEMU_BUILD_BUG_ON(QCOW_MAX_L1_SIZE > INT_MAX);
 117    if (new_l1_size > QCOW_MAX_L1_SIZE / sizeof(uint64_t)) {
 118        return -EFBIG;
 119    }
 120
 121#ifdef DEBUG_ALLOC2
 122    fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
 123            s->l1_size, new_l1_size);
 124#endif
 125
 126    new_l1_size2 = sizeof(uint64_t) * new_l1_size;
 127    new_l1_table = qemu_try_blockalign(bs->file->bs,
 128                                       ROUND_UP(new_l1_size2, 512));
 129    if (new_l1_table == NULL) {
 130        return -ENOMEM;
 131    }
 132    memset(new_l1_table, 0, ROUND_UP(new_l1_size2, 512));
 133
 134    if (s->l1_size) {
 135        memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
 136    }
 137
 138    /* write new table (align to cluster) */
 139    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
 140    new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
 141    if (new_l1_table_offset < 0) {
 142        qemu_vfree(new_l1_table);
 143        return new_l1_table_offset;
 144    }
 145
 146    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 147    if (ret < 0) {
 148        goto fail;
 149    }
 150
 151    /* the L1 position has not yet been updated, so these clusters must
 152     * indeed be completely free */
 153    ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
 154                                        new_l1_size2, false);
 155    if (ret < 0) {
 156        goto fail;
 157    }
 158
 159    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
 160    for(i = 0; i < s->l1_size; i++)
 161        new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
 162    ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset,
 163                           new_l1_table, new_l1_size2);
 164    if (ret < 0)
 165        goto fail;
 166    for(i = 0; i < s->l1_size; i++)
 167        new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
 168
 169    /* set new table */
 170    BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
 171    stl_be_p(data, new_l1_size);
 172    stq_be_p(data + 4, new_l1_table_offset);
 173    ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size),
 174                           data, sizeof(data));
 175    if (ret < 0) {
 176        goto fail;
 177    }
 178    qemu_vfree(s->l1_table);
 179    old_l1_table_offset = s->l1_table_offset;
 180    s->l1_table_offset = new_l1_table_offset;
 181    s->l1_table = new_l1_table;
 182    old_l1_size = s->l1_size;
 183    s->l1_size = new_l1_size;
 184    qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
 185                        QCOW2_DISCARD_OTHER);
 186    return 0;
 187 fail:
 188    qemu_vfree(new_l1_table);
 189    qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
 190                        QCOW2_DISCARD_OTHER);
 191    return ret;
 192}
 193
 194/*
 195 * l2_load
 196 *
 197 * @bs: The BlockDriverState
 198 * @offset: A guest offset, used to calculate what slice of the L2
 199 *          table to load.
 200 * @l2_offset: Offset to the L2 table in the image file.
 201 * @l2_slice: Location to store the pointer to the L2 slice.
 202 *
 203 * Loads a L2 slice into memory (L2 slices are the parts of L2 tables
 204 * that are loaded by the qcow2 cache). If the slice is in the cache,
 205 * the cache is used; otherwise the L2 slice is loaded from the image
 206 * file.
 207 */
 208static int l2_load(BlockDriverState *bs, uint64_t offset,
 209                   uint64_t l2_offset, uint64_t **l2_slice)
 210{
 211    BDRVQcow2State *s = bs->opaque;
 212    int start_of_slice = sizeof(uint64_t) *
 213        (offset_to_l2_index(s, offset) - offset_to_l2_slice_index(s, offset));
 214
 215    return qcow2_cache_get(bs, s->l2_table_cache, l2_offset + start_of_slice,
 216                           (void **)l2_slice);
 217}
 218
 219/*
 220 * Writes one sector of the L1 table to the disk (can't update single entries
 221 * and we really don't want bdrv_pread to perform a read-modify-write)
 222 */
 223#define L1_ENTRIES_PER_SECTOR (512 / 8)
 224int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
 225{
 226    BDRVQcow2State *s = bs->opaque;
 227    uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
 228    int l1_start_index;
 229    int i, ret;
 230
 231    l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
 232    for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
 233         i++)
 234    {
 235        buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
 236    }
 237
 238    ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
 239            s->l1_table_offset + 8 * l1_start_index, sizeof(buf), false);
 240    if (ret < 0) {
 241        return ret;
 242    }
 243
 244    BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
 245    ret = bdrv_pwrite_sync(bs->file,
 246                           s->l1_table_offset + 8 * l1_start_index,
 247                           buf, sizeof(buf));
 248    if (ret < 0) {
 249        return ret;
 250    }
 251
 252    return 0;
 253}
 254
 255/*
 256 * l2_allocate
 257 *
 258 * Allocate a new l2 entry in the file. If l1_index points to an already
 259 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
 260 * table) copy the contents of the old L2 table into the newly allocated one.
 261 * Otherwise the new table is initialized with zeros.
 262 *
 263 */
 264
 265static int l2_allocate(BlockDriverState *bs, int l1_index)
 266{
 267    BDRVQcow2State *s = bs->opaque;
 268    uint64_t old_l2_offset;
 269    uint64_t *l2_slice = NULL;
 270    unsigned slice, slice_size2, n_slices;
 271    int64_t l2_offset;
 272    int ret;
 273
 274    old_l2_offset = s->l1_table[l1_index];
 275
 276    trace_qcow2_l2_allocate(bs, l1_index);
 277
 278    /* allocate a new l2 entry */
 279
 280    l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
 281    if (l2_offset < 0) {
 282        ret = l2_offset;
 283        goto fail;
 284    }
 285
 286    /* The offset must fit in the offset field of the L1 table entry */
 287    assert((l2_offset & L1E_OFFSET_MASK) == l2_offset);
 288
 289    /* If we're allocating the table at offset 0 then something is wrong */
 290    if (l2_offset == 0) {
 291        qcow2_signal_corruption(bs, true, -1, -1, "Preventing invalid "
 292                                "allocation of L2 table at offset 0");
 293        ret = -EIO;
 294        goto fail;
 295    }
 296
 297    ret = qcow2_cache_flush(bs, s->refcount_block_cache);
 298    if (ret < 0) {
 299        goto fail;
 300    }
 301
 302    /* allocate a new entry in the l2 cache */
 303
 304    slice_size2 = s->l2_slice_size * sizeof(uint64_t);
 305    n_slices = s->cluster_size / slice_size2;
 306
 307    trace_qcow2_l2_allocate_get_empty(bs, l1_index);
 308    for (slice = 0; slice < n_slices; slice++) {
 309        ret = qcow2_cache_get_empty(bs, s->l2_table_cache,
 310                                    l2_offset + slice * slice_size2,
 311                                    (void **) &l2_slice);
 312        if (ret < 0) {
 313            goto fail;
 314        }
 315
 316        if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
 317            /* if there was no old l2 table, clear the new slice */
 318            memset(l2_slice, 0, slice_size2);
 319        } else {
 320            uint64_t *old_slice;
 321            uint64_t old_l2_slice_offset =
 322                (old_l2_offset & L1E_OFFSET_MASK) + slice * slice_size2;
 323
 324            /* if there was an old l2 table, read a slice from the disk */
 325            BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
 326            ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_slice_offset,
 327                                  (void **) &old_slice);
 328            if (ret < 0) {
 329                goto fail;
 330            }
 331
 332            memcpy(l2_slice, old_slice, slice_size2);
 333
 334            qcow2_cache_put(s->l2_table_cache, (void **) &old_slice);
 335        }
 336
 337        /* write the l2 slice to the file */
 338        BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
 339
 340        trace_qcow2_l2_allocate_write_l2(bs, l1_index);
 341        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 342        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 343    }
 344
 345    ret = qcow2_cache_flush(bs, s->l2_table_cache);
 346    if (ret < 0) {
 347        goto fail;
 348    }
 349
 350    /* update the L1 entry */
 351    trace_qcow2_l2_allocate_write_l1(bs, l1_index);
 352    s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
 353    ret = qcow2_write_l1_entry(bs, l1_index);
 354    if (ret < 0) {
 355        goto fail;
 356    }
 357
 358    trace_qcow2_l2_allocate_done(bs, l1_index, 0);
 359    return 0;
 360
 361fail:
 362    trace_qcow2_l2_allocate_done(bs, l1_index, ret);
 363    if (l2_slice != NULL) {
 364        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 365    }
 366    s->l1_table[l1_index] = old_l2_offset;
 367    if (l2_offset > 0) {
 368        qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
 369                            QCOW2_DISCARD_ALWAYS);
 370    }
 371    return ret;
 372}
 373
 374/*
 375 * Checks how many clusters in a given L2 slice are contiguous in the image
 376 * file. As soon as one of the flags in the bitmask stop_flags changes compared
 377 * to the first cluster, the search is stopped and the cluster is not counted
 378 * as contiguous. (This allows it, for example, to stop at the first compressed
 379 * cluster which may require a different handling)
 380 */
 381static int count_contiguous_clusters(BlockDriverState *bs, int nb_clusters,
 382        int cluster_size, uint64_t *l2_slice, uint64_t stop_flags)
 383{
 384    int i;
 385    QCow2ClusterType first_cluster_type;
 386    uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
 387    uint64_t first_entry = be64_to_cpu(l2_slice[0]);
 388    uint64_t offset = first_entry & mask;
 389
 390    first_cluster_type = qcow2_get_cluster_type(bs, first_entry);
 391    if (first_cluster_type == QCOW2_CLUSTER_UNALLOCATED) {
 392        return 0;
 393    }
 394
 395    /* must be allocated */
 396    assert(first_cluster_type == QCOW2_CLUSTER_NORMAL ||
 397           first_cluster_type == QCOW2_CLUSTER_ZERO_ALLOC);
 398
 399    for (i = 0; i < nb_clusters; i++) {
 400        uint64_t l2_entry = be64_to_cpu(l2_slice[i]) & mask;
 401        if (offset + (uint64_t) i * cluster_size != l2_entry) {
 402            break;
 403        }
 404    }
 405
 406        return i;
 407}
 408
 409/*
 410 * Checks how many consecutive unallocated clusters in a given L2
 411 * slice have the same cluster type.
 412 */
 413static int count_contiguous_clusters_unallocated(BlockDriverState *bs,
 414                                                 int nb_clusters,
 415                                                 uint64_t *l2_slice,
 416                                                 QCow2ClusterType wanted_type)
 417{
 418    int i;
 419
 420    assert(wanted_type == QCOW2_CLUSTER_ZERO_PLAIN ||
 421           wanted_type == QCOW2_CLUSTER_UNALLOCATED);
 422    for (i = 0; i < nb_clusters; i++) {
 423        uint64_t entry = be64_to_cpu(l2_slice[i]);
 424        QCow2ClusterType type = qcow2_get_cluster_type(bs, entry);
 425
 426        if (type != wanted_type) {
 427            break;
 428        }
 429    }
 430
 431    return i;
 432}
 433
 434static int coroutine_fn do_perform_cow_read(BlockDriverState *bs,
 435                                            uint64_t src_cluster_offset,
 436                                            unsigned offset_in_cluster,
 437                                            QEMUIOVector *qiov)
 438{
 439    int ret;
 440
 441    if (qiov->size == 0) {
 442        return 0;
 443    }
 444
 445    BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
 446
 447    if (!bs->drv) {
 448        return -ENOMEDIUM;
 449    }
 450
 451    /* Call .bdrv_co_readv() directly instead of using the public block-layer
 452     * interface.  This avoids double I/O throttling and request tracking,
 453     * which can lead to deadlock when block layer copy-on-read is enabled.
 454     */
 455    ret = bs->drv->bdrv_co_preadv(bs, src_cluster_offset + offset_in_cluster,
 456                                  qiov->size, qiov, 0);
 457    if (ret < 0) {
 458        return ret;
 459    }
 460
 461    return 0;
 462}
 463
 464static bool coroutine_fn do_perform_cow_encrypt(BlockDriverState *bs,
 465                                                uint64_t src_cluster_offset,
 466                                                uint64_t cluster_offset,
 467                                                unsigned offset_in_cluster,
 468                                                uint8_t *buffer,
 469                                                unsigned bytes)
 470{
 471    if (bytes && bs->encrypted) {
 472        BDRVQcow2State *s = bs->opaque;
 473        assert((offset_in_cluster & ~BDRV_SECTOR_MASK) == 0);
 474        assert((bytes & ~BDRV_SECTOR_MASK) == 0);
 475        assert(s->crypto);
 476        if (qcow2_co_encrypt(bs, cluster_offset,
 477                             src_cluster_offset + offset_in_cluster,
 478                             buffer, bytes) < 0) {
 479            return false;
 480        }
 481    }
 482    return true;
 483}
 484
 485static int coroutine_fn do_perform_cow_write(BlockDriverState *bs,
 486                                             uint64_t cluster_offset,
 487                                             unsigned offset_in_cluster,
 488                                             QEMUIOVector *qiov)
 489{
 490    BDRVQcow2State *s = bs->opaque;
 491    int ret;
 492
 493    if (qiov->size == 0) {
 494        return 0;
 495    }
 496
 497    ret = qcow2_pre_write_overlap_check(bs, 0,
 498            cluster_offset + offset_in_cluster, qiov->size, true);
 499    if (ret < 0) {
 500        return ret;
 501    }
 502
 503    BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
 504    ret = bdrv_co_pwritev(s->data_file, cluster_offset + offset_in_cluster,
 505                          qiov->size, qiov, 0);
 506    if (ret < 0) {
 507        return ret;
 508    }
 509
 510    return 0;
 511}
 512
 513
 514/*
 515 * get_cluster_offset
 516 *
 517 * For a given offset of the virtual disk, find the cluster type and offset in
 518 * the qcow2 file. The offset is stored in *cluster_offset.
 519 *
 520 * On entry, *bytes is the maximum number of contiguous bytes starting at
 521 * offset that we are interested in.
 522 *
 523 * On exit, *bytes is the number of bytes starting at offset that have the same
 524 * cluster type and (if applicable) are stored contiguously in the image file.
 525 * Compressed clusters are always returned one by one.
 526 *
 527 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
 528 * cases.
 529 */
 530int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
 531                             unsigned int *bytes, uint64_t *cluster_offset)
 532{
 533    BDRVQcow2State *s = bs->opaque;
 534    unsigned int l2_index;
 535    uint64_t l1_index, l2_offset, *l2_slice;
 536    int c;
 537    unsigned int offset_in_cluster;
 538    uint64_t bytes_available, bytes_needed, nb_clusters;
 539    QCow2ClusterType type;
 540    int ret;
 541
 542    offset_in_cluster = offset_into_cluster(s, offset);
 543    bytes_needed = (uint64_t) *bytes + offset_in_cluster;
 544
 545    /* compute how many bytes there are between the start of the cluster
 546     * containing offset and the end of the l2 slice that contains
 547     * the entry pointing to it */
 548    bytes_available =
 549        ((uint64_t) (s->l2_slice_size - offset_to_l2_slice_index(s, offset)))
 550        << s->cluster_bits;
 551
 552    if (bytes_needed > bytes_available) {
 553        bytes_needed = bytes_available;
 554    }
 555
 556    *cluster_offset = 0;
 557
 558    /* seek to the l2 offset in the l1 table */
 559
 560    l1_index = offset_to_l1_index(s, offset);
 561    if (l1_index >= s->l1_size) {
 562        type = QCOW2_CLUSTER_UNALLOCATED;
 563        goto out;
 564    }
 565
 566    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 567    if (!l2_offset) {
 568        type = QCOW2_CLUSTER_UNALLOCATED;
 569        goto out;
 570    }
 571
 572    if (offset_into_cluster(s, l2_offset)) {
 573        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 574                                " unaligned (L1 index: %#" PRIx64 ")",
 575                                l2_offset, l1_index);
 576        return -EIO;
 577    }
 578
 579    /* load the l2 slice in memory */
 580
 581    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 582    if (ret < 0) {
 583        return ret;
 584    }
 585
 586    /* find the cluster offset for the given disk offset */
 587
 588    l2_index = offset_to_l2_slice_index(s, offset);
 589    *cluster_offset = be64_to_cpu(l2_slice[l2_index]);
 590
 591    nb_clusters = size_to_clusters(s, bytes_needed);
 592    /* bytes_needed <= *bytes + offset_in_cluster, both of which are unsigned
 593     * integers; the minimum cluster size is 512, so this assertion is always
 594     * true */
 595    assert(nb_clusters <= INT_MAX);
 596
 597    type = qcow2_get_cluster_type(bs, *cluster_offset);
 598    if (s->qcow_version < 3 && (type == QCOW2_CLUSTER_ZERO_PLAIN ||
 599                                type == QCOW2_CLUSTER_ZERO_ALLOC)) {
 600        qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
 601                                " in pre-v3 image (L2 offset: %#" PRIx64
 602                                ", L2 index: %#x)", l2_offset, l2_index);
 603        ret = -EIO;
 604        goto fail;
 605    }
 606    switch (type) {
 607    case QCOW2_CLUSTER_COMPRESSED:
 608        if (has_data_file(bs)) {
 609            qcow2_signal_corruption(bs, true, -1, -1, "Compressed cluster "
 610                                    "entry found in image with external data "
 611                                    "file (L2 offset: %#" PRIx64 ", L2 index: "
 612                                    "%#x)", l2_offset, l2_index);
 613            ret = -EIO;
 614            goto fail;
 615        }
 616        /* Compressed clusters can only be processed one by one */
 617        c = 1;
 618        *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
 619        break;
 620    case QCOW2_CLUSTER_ZERO_PLAIN:
 621    case QCOW2_CLUSTER_UNALLOCATED:
 622        /* how many empty clusters ? */
 623        c = count_contiguous_clusters_unallocated(bs, nb_clusters,
 624                                                  &l2_slice[l2_index], type);
 625        *cluster_offset = 0;
 626        break;
 627    case QCOW2_CLUSTER_ZERO_ALLOC:
 628    case QCOW2_CLUSTER_NORMAL:
 629        /* how many allocated clusters ? */
 630        c = count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
 631                                      &l2_slice[l2_index], QCOW_OFLAG_ZERO);
 632        *cluster_offset &= L2E_OFFSET_MASK;
 633        if (offset_into_cluster(s, *cluster_offset)) {
 634            qcow2_signal_corruption(bs, true, -1, -1,
 635                                    "Cluster allocation offset %#"
 636                                    PRIx64 " unaligned (L2 offset: %#" PRIx64
 637                                    ", L2 index: %#x)", *cluster_offset,
 638                                    l2_offset, l2_index);
 639            ret = -EIO;
 640            goto fail;
 641        }
 642        if (has_data_file(bs) && *cluster_offset != offset - offset_in_cluster)
 643        {
 644            qcow2_signal_corruption(bs, true, -1, -1,
 645                                    "External data file host cluster offset %#"
 646                                    PRIx64 " does not match guest cluster "
 647                                    "offset: %#" PRIx64
 648                                    ", L2 index: %#x)", *cluster_offset,
 649                                    offset - offset_in_cluster, l2_index);
 650            ret = -EIO;
 651            goto fail;
 652        }
 653        break;
 654    default:
 655        abort();
 656    }
 657
 658    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 659
 660    bytes_available = (int64_t)c * s->cluster_size;
 661
 662out:
 663    if (bytes_available > bytes_needed) {
 664        bytes_available = bytes_needed;
 665    }
 666
 667    /* bytes_available <= bytes_needed <= *bytes + offset_in_cluster;
 668     * subtracting offset_in_cluster will therefore definitely yield something
 669     * not exceeding UINT_MAX */
 670    assert(bytes_available - offset_in_cluster <= UINT_MAX);
 671    *bytes = bytes_available - offset_in_cluster;
 672
 673    return type;
 674
 675fail:
 676    qcow2_cache_put(s->l2_table_cache, (void **)&l2_slice);
 677    return ret;
 678}
 679
 680/*
 681 * get_cluster_table
 682 *
 683 * for a given disk offset, load (and allocate if needed)
 684 * the appropriate slice of its l2 table.
 685 *
 686 * the cluster index in the l2 slice is given to the caller.
 687 *
 688 * Returns 0 on success, -errno in failure case
 689 */
 690static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
 691                             uint64_t **new_l2_slice,
 692                             int *new_l2_index)
 693{
 694    BDRVQcow2State *s = bs->opaque;
 695    unsigned int l2_index;
 696    uint64_t l1_index, l2_offset;
 697    uint64_t *l2_slice = NULL;
 698    int ret;
 699
 700    /* seek to the l2 offset in the l1 table */
 701
 702    l1_index = offset_to_l1_index(s, offset);
 703    if (l1_index >= s->l1_size) {
 704        ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
 705        if (ret < 0) {
 706            return ret;
 707        }
 708    }
 709
 710    assert(l1_index < s->l1_size);
 711    l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 712    if (offset_into_cluster(s, l2_offset)) {
 713        qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
 714                                " unaligned (L1 index: %#" PRIx64 ")",
 715                                l2_offset, l1_index);
 716        return -EIO;
 717    }
 718
 719    if (!(s->l1_table[l1_index] & QCOW_OFLAG_COPIED)) {
 720        /* First allocate a new L2 table (and do COW if needed) */
 721        ret = l2_allocate(bs, l1_index);
 722        if (ret < 0) {
 723            return ret;
 724        }
 725
 726        /* Then decrease the refcount of the old table */
 727        if (l2_offset) {
 728            qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
 729                                QCOW2_DISCARD_OTHER);
 730        }
 731
 732        /* Get the offset of the newly-allocated l2 table */
 733        l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
 734        assert(offset_into_cluster(s, l2_offset) == 0);
 735    }
 736
 737    /* load the l2 slice in memory */
 738    ret = l2_load(bs, offset, l2_offset, &l2_slice);
 739    if (ret < 0) {
 740        return ret;
 741    }
 742
 743    /* find the cluster offset for the given disk offset */
 744
 745    l2_index = offset_to_l2_slice_index(s, offset);
 746
 747    *new_l2_slice = l2_slice;
 748    *new_l2_index = l2_index;
 749
 750    return 0;
 751}
 752
 753/*
 754 * alloc_compressed_cluster_offset
 755 *
 756 * For a given offset on the virtual disk, allocate a new compressed cluster
 757 * and put the host offset of the cluster into *host_offset. If a cluster is
 758 * already allocated at the offset, return an error.
 759 *
 760 * Return 0 on success and -errno in error cases
 761 */
 762int qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
 763                                          uint64_t offset,
 764                                          int compressed_size,
 765                                          uint64_t *host_offset)
 766{
 767    BDRVQcow2State *s = bs->opaque;
 768    int l2_index, ret;
 769    uint64_t *l2_slice;
 770    int64_t cluster_offset;
 771    int nb_csectors;
 772
 773    if (has_data_file(bs)) {
 774        return 0;
 775    }
 776
 777    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
 778    if (ret < 0) {
 779        return ret;
 780    }
 781
 782    /* Compression can't overwrite anything. Fail if the cluster was already
 783     * allocated. */
 784    cluster_offset = be64_to_cpu(l2_slice[l2_index]);
 785    if (cluster_offset & L2E_OFFSET_MASK) {
 786        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 787        return -EIO;
 788    }
 789
 790    cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
 791    if (cluster_offset < 0) {
 792        qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 793        return cluster_offset;
 794    }
 795
 796    nb_csectors =
 797        (cluster_offset + compressed_size - 1) / QCOW2_COMPRESSED_SECTOR_SIZE -
 798        (cluster_offset / QCOW2_COMPRESSED_SECTOR_SIZE);
 799
 800    cluster_offset |= QCOW_OFLAG_COMPRESSED |
 801                      ((uint64_t)nb_csectors << s->csize_shift);
 802
 803    /* update L2 table */
 804
 805    /* compressed clusters never have the copied flag */
 806
 807    BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
 808    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 809    l2_slice[l2_index] = cpu_to_be64(cluster_offset);
 810    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
 811
 812    *host_offset = cluster_offset & s->cluster_offset_mask;
 813    return 0;
 814}
 815
 816static int perform_cow(BlockDriverState *bs, QCowL2Meta *m)
 817{
 818    BDRVQcow2State *s = bs->opaque;
 819    Qcow2COWRegion *start = &m->cow_start;
 820    Qcow2COWRegion *end = &m->cow_end;
 821    unsigned buffer_size;
 822    unsigned data_bytes = end->offset - (start->offset + start->nb_bytes);
 823    bool merge_reads;
 824    uint8_t *start_buffer, *end_buffer;
 825    QEMUIOVector qiov;
 826    int ret;
 827
 828    assert(start->nb_bytes <= UINT_MAX - end->nb_bytes);
 829    assert(start->nb_bytes + end->nb_bytes <= UINT_MAX - data_bytes);
 830    assert(start->offset + start->nb_bytes <= end->offset);
 831    assert(!m->data_qiov || m->data_qiov->size == data_bytes);
 832
 833    if ((start->nb_bytes == 0 && end->nb_bytes == 0) || m->skip_cow) {
 834        return 0;
 835    }
 836
 837    /* If we have to read both the start and end COW regions and the
 838     * middle region is not too large then perform just one read
 839     * operation */
 840    merge_reads = start->nb_bytes && end->nb_bytes && data_bytes <= 16384;
 841    if (merge_reads) {
 842        buffer_size = start->nb_bytes + data_bytes + end->nb_bytes;
 843    } else {
 844        /* If we have to do two reads, add some padding in the middle
 845         * if necessary to make sure that the end region is optimally
 846         * aligned. */
 847        size_t align = bdrv_opt_mem_align(bs);
 848        assert(align > 0 && align <= UINT_MAX);
 849        assert(QEMU_ALIGN_UP(start->nb_bytes, align) <=
 850               UINT_MAX - end->nb_bytes);
 851        buffer_size = QEMU_ALIGN_UP(start->nb_bytes, align) + end->nb_bytes;
 852    }
 853
 854    /* Reserve a buffer large enough to store all the data that we're
 855     * going to read */
 856    start_buffer = qemu_try_blockalign(bs, buffer_size);
 857    if (start_buffer == NULL) {
 858        return -ENOMEM;
 859    }
 860    /* The part of the buffer where the end region is located */
 861    end_buffer = start_buffer + buffer_size - end->nb_bytes;
 862
 863    qemu_iovec_init(&qiov, 2 + (m->data_qiov ? m->data_qiov->niov : 0));
 864
 865    qemu_co_mutex_unlock(&s->lock);
 866    /* First we read the existing data from both COW regions. We
 867     * either read the whole region in one go, or the start and end
 868     * regions separately. */
 869    if (merge_reads) {
 870        qemu_iovec_add(&qiov, start_buffer, buffer_size);
 871        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 872    } else {
 873        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 874        ret = do_perform_cow_read(bs, m->offset, start->offset, &qiov);
 875        if (ret < 0) {
 876            goto fail;
 877        }
 878
 879        qemu_iovec_reset(&qiov);
 880        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 881        ret = do_perform_cow_read(bs, m->offset, end->offset, &qiov);
 882    }
 883    if (ret < 0) {
 884        goto fail;
 885    }
 886
 887    /* Encrypt the data if necessary before writing it */
 888    if (bs->encrypted) {
 889        if (!do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
 890                                    start->offset, start_buffer,
 891                                    start->nb_bytes) ||
 892            !do_perform_cow_encrypt(bs, m->offset, m->alloc_offset,
 893                                    end->offset, end_buffer, end->nb_bytes)) {
 894            ret = -EIO;
 895            goto fail;
 896        }
 897    }
 898
 899    /* And now we can write everything. If we have the guest data we
 900     * can write everything in one single operation */
 901    if (m->data_qiov) {
 902        qemu_iovec_reset(&qiov);
 903        if (start->nb_bytes) {
 904            qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 905        }
 906        qemu_iovec_concat(&qiov, m->data_qiov, 0, data_bytes);
 907        if (end->nb_bytes) {
 908            qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 909        }
 910        /* NOTE: we have a write_aio blkdebug event here followed by
 911         * a cow_write one in do_perform_cow_write(), but there's only
 912         * one single I/O operation */
 913        BLKDBG_EVENT(bs->file, BLKDBG_WRITE_AIO);
 914        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 915    } else {
 916        /* If there's no guest data then write both COW regions separately */
 917        qemu_iovec_reset(&qiov);
 918        qemu_iovec_add(&qiov, start_buffer, start->nb_bytes);
 919        ret = do_perform_cow_write(bs, m->alloc_offset, start->offset, &qiov);
 920        if (ret < 0) {
 921            goto fail;
 922        }
 923
 924        qemu_iovec_reset(&qiov);
 925        qemu_iovec_add(&qiov, end_buffer, end->nb_bytes);
 926        ret = do_perform_cow_write(bs, m->alloc_offset, end->offset, &qiov);
 927    }
 928
 929fail:
 930    qemu_co_mutex_lock(&s->lock);
 931
 932    /*
 933     * Before we update the L2 table to actually point to the new cluster, we
 934     * need to be sure that the refcounts have been increased and COW was
 935     * handled.
 936     */
 937    if (ret == 0) {
 938        qcow2_cache_depends_on_flush(s->l2_table_cache);
 939    }
 940
 941    qemu_vfree(start_buffer);
 942    qemu_iovec_destroy(&qiov);
 943    return ret;
 944}
 945
 946int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
 947{
 948    BDRVQcow2State *s = bs->opaque;
 949    int i, j = 0, l2_index, ret;
 950    uint64_t *old_cluster, *l2_slice;
 951    uint64_t cluster_offset = m->alloc_offset;
 952
 953    trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
 954    assert(m->nb_clusters > 0);
 955
 956    old_cluster = g_try_new(uint64_t, m->nb_clusters);
 957    if (old_cluster == NULL) {
 958        ret = -ENOMEM;
 959        goto err;
 960    }
 961
 962    /* copy content of unmodified sectors */
 963    ret = perform_cow(bs, m);
 964    if (ret < 0) {
 965        goto err;
 966    }
 967
 968    /* Update L2 table. */
 969    if (s->use_lazy_refcounts) {
 970        qcow2_mark_dirty(bs);
 971    }
 972    if (qcow2_need_accurate_refcounts(s)) {
 973        qcow2_cache_set_dependency(bs, s->l2_table_cache,
 974                                   s->refcount_block_cache);
 975    }
 976
 977    ret = get_cluster_table(bs, m->offset, &l2_slice, &l2_index);
 978    if (ret < 0) {
 979        goto err;
 980    }
 981    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
 982
 983    assert(l2_index + m->nb_clusters <= s->l2_slice_size);
 984    for (i = 0; i < m->nb_clusters; i++) {
 985        /* if two concurrent writes happen to the same unallocated cluster
 986         * each write allocates separate cluster and writes data concurrently.
 987         * The first one to complete updates l2 table with pointer to its
 988         * cluster the second one has to do RMW (which is done above by
 989         * perform_cow()), update l2 table with its cluster pointer and free
 990         * old cluster. This is what this loop does */
 991        if (l2_slice[l2_index + i] != 0) {
 992            old_cluster[j++] = l2_slice[l2_index + i];
 993        }
 994
 995        l2_slice[l2_index + i] = cpu_to_be64((cluster_offset +
 996                    (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
 997     }
 998
 999
1000    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1001
1002    /*
1003     * If this was a COW, we need to decrease the refcount of the old cluster.
1004     *
1005     * Don't discard clusters that reach a refcount of 0 (e.g. compressed
1006     * clusters), the next write will reuse them anyway.
1007     */
1008    if (!m->keep_old_clusters && j != 0) {
1009        for (i = 0; i < j; i++) {
1010            qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
1011                                    QCOW2_DISCARD_NEVER);
1012        }
1013    }
1014
1015    ret = 0;
1016err:
1017    g_free(old_cluster);
1018    return ret;
1019 }
1020
1021/**
1022 * Frees the allocated clusters because the request failed and they won't
1023 * actually be linked.
1024 */
1025void qcow2_alloc_cluster_abort(BlockDriverState *bs, QCowL2Meta *m)
1026{
1027    BDRVQcow2State *s = bs->opaque;
1028    qcow2_free_clusters(bs, m->alloc_offset, m->nb_clusters << s->cluster_bits,
1029                        QCOW2_DISCARD_NEVER);
1030}
1031
1032/*
1033 * Returns the number of contiguous clusters that can be used for an allocating
1034 * write, but require COW to be performed (this includes yet unallocated space,
1035 * which must copy from the backing file)
1036 */
1037static int count_cow_clusters(BlockDriverState *bs, int nb_clusters,
1038    uint64_t *l2_slice, int l2_index)
1039{
1040    int i;
1041
1042    for (i = 0; i < nb_clusters; i++) {
1043        uint64_t l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1044        QCow2ClusterType cluster_type = qcow2_get_cluster_type(bs, l2_entry);
1045
1046        switch(cluster_type) {
1047        case QCOW2_CLUSTER_NORMAL:
1048            if (l2_entry & QCOW_OFLAG_COPIED) {
1049                goto out;
1050            }
1051            break;
1052        case QCOW2_CLUSTER_UNALLOCATED:
1053        case QCOW2_CLUSTER_COMPRESSED:
1054        case QCOW2_CLUSTER_ZERO_PLAIN:
1055        case QCOW2_CLUSTER_ZERO_ALLOC:
1056            break;
1057        default:
1058            abort();
1059        }
1060    }
1061
1062out:
1063    assert(i <= nb_clusters);
1064    return i;
1065}
1066
1067/*
1068 * Check if there already is an AIO write request in flight which allocates
1069 * the same cluster. In this case we need to wait until the previous
1070 * request has completed and updated the L2 table accordingly.
1071 *
1072 * Returns:
1073 *   0       if there was no dependency. *cur_bytes indicates the number of
1074 *           bytes from guest_offset that can be read before the next
1075 *           dependency must be processed (or the request is complete)
1076 *
1077 *   -EAGAIN if we had to wait for another request, previously gathered
1078 *           information on cluster allocation may be invalid now. The caller
1079 *           must start over anyway, so consider *cur_bytes undefined.
1080 */
1081static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
1082    uint64_t *cur_bytes, QCowL2Meta **m)
1083{
1084    BDRVQcow2State *s = bs->opaque;
1085    QCowL2Meta *old_alloc;
1086    uint64_t bytes = *cur_bytes;
1087
1088    QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
1089
1090        uint64_t start = guest_offset;
1091        uint64_t end = start + bytes;
1092        uint64_t old_start = l2meta_cow_start(old_alloc);
1093        uint64_t old_end = l2meta_cow_end(old_alloc);
1094
1095        if (end <= old_start || start >= old_end) {
1096            /* No intersection */
1097        } else {
1098            if (start < old_start) {
1099                /* Stop at the start of a running allocation */
1100                bytes = old_start - start;
1101            } else {
1102                bytes = 0;
1103            }
1104
1105            /* Stop if already an l2meta exists. After yielding, it wouldn't
1106             * be valid any more, so we'd have to clean up the old L2Metas
1107             * and deal with requests depending on them before starting to
1108             * gather new ones. Not worth the trouble. */
1109            if (bytes == 0 && *m) {
1110                *cur_bytes = 0;
1111                return 0;
1112            }
1113
1114            if (bytes == 0) {
1115                /* Wait for the dependency to complete. We need to recheck
1116                 * the free/allocated clusters when we continue. */
1117                qemu_co_queue_wait(&old_alloc->dependent_requests, &s->lock);
1118                return -EAGAIN;
1119            }
1120        }
1121    }
1122
1123    /* Make sure that existing clusters and new allocations are only used up to
1124     * the next dependency if we shortened the request above */
1125    *cur_bytes = bytes;
1126
1127    return 0;
1128}
1129
1130/*
1131 * Checks how many already allocated clusters that don't require a copy on
1132 * write there are at the given guest_offset (up to *bytes). If *host_offset is
1133 * not INV_OFFSET, only physically contiguous clusters beginning at this host
1134 * offset are counted.
1135 *
1136 * Note that guest_offset may not be cluster aligned. In this case, the
1137 * returned *host_offset points to exact byte referenced by guest_offset and
1138 * therefore isn't cluster aligned as well.
1139 *
1140 * Returns:
1141 *   0:     if no allocated clusters are available at the given offset.
1142 *          *bytes is normally unchanged. It is set to 0 if the cluster
1143 *          is allocated and doesn't need COW, but doesn't have the right
1144 *          physical offset.
1145 *
1146 *   1:     if allocated clusters that don't require a COW are available at
1147 *          the requested offset. *bytes may have decreased and describes
1148 *          the length of the area that can be written to.
1149 *
1150 *  -errno: in error cases
1151 */
1152static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
1153    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1154{
1155    BDRVQcow2State *s = bs->opaque;
1156    int l2_index;
1157    uint64_t cluster_offset;
1158    uint64_t *l2_slice;
1159    uint64_t nb_clusters;
1160    unsigned int keep_clusters;
1161    int ret;
1162
1163    trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
1164                              *bytes);
1165
1166    assert(*host_offset == INV_OFFSET || offset_into_cluster(s, guest_offset)
1167                                      == offset_into_cluster(s, *host_offset));
1168
1169    /*
1170     * Calculate the number of clusters to look for. We stop at L2 slice
1171     * boundaries to keep things simple.
1172     */
1173    nb_clusters =
1174        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1175
1176    l2_index = offset_to_l2_slice_index(s, guest_offset);
1177    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1178    assert(nb_clusters <= INT_MAX);
1179
1180    /* Find L2 entry for the first involved cluster */
1181    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1182    if (ret < 0) {
1183        return ret;
1184    }
1185
1186    cluster_offset = be64_to_cpu(l2_slice[l2_index]);
1187
1188    /* Check how many clusters are already allocated and don't need COW */
1189    if (qcow2_get_cluster_type(bs, cluster_offset) == QCOW2_CLUSTER_NORMAL
1190        && (cluster_offset & QCOW_OFLAG_COPIED))
1191    {
1192        /* If a specific host_offset is required, check it */
1193        bool offset_matches =
1194            (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1195
1196        if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1197            qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1198                                    "%#llx unaligned (guest offset: %#" PRIx64
1199                                    ")", cluster_offset & L2E_OFFSET_MASK,
1200                                    guest_offset);
1201            ret = -EIO;
1202            goto out;
1203        }
1204
1205        if (*host_offset != INV_OFFSET && !offset_matches) {
1206            *bytes = 0;
1207            ret = 0;
1208            goto out;
1209        }
1210
1211        /* We keep all QCOW_OFLAG_COPIED clusters */
1212        keep_clusters =
1213            count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1214                                      &l2_slice[l2_index],
1215                                      QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1216        assert(keep_clusters <= nb_clusters);
1217
1218        *bytes = MIN(*bytes,
1219                 keep_clusters * s->cluster_size
1220                 - offset_into_cluster(s, guest_offset));
1221
1222        ret = 1;
1223    } else {
1224        ret = 0;
1225    }
1226
1227    /* Cleanup */
1228out:
1229    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1230
1231    /* Only return a host offset if we actually made progress. Otherwise we
1232     * would make requirements for handle_alloc() that it can't fulfill */
1233    if (ret > 0) {
1234        *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1235                     + offset_into_cluster(s, guest_offset);
1236    }
1237
1238    return ret;
1239}
1240
1241/*
1242 * Allocates new clusters for the given guest_offset.
1243 *
1244 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1245 * contain the number of clusters that have been allocated and are contiguous
1246 * in the image file.
1247 *
1248 * If *host_offset is not INV_OFFSET, it specifies the offset in the image file
1249 * at which the new clusters must start. *nb_clusters can be 0 on return in
1250 * this case if the cluster at host_offset is already in use. If *host_offset
1251 * is INV_OFFSET, the clusters can be allocated anywhere in the image file.
1252 *
1253 * *host_offset is updated to contain the offset into the image file at which
1254 * the first allocated cluster starts.
1255 *
1256 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1257 * function has been waiting for another request and the allocation must be
1258 * restarted, but the whole request should not be failed.
1259 */
1260static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1261                                   uint64_t *host_offset, uint64_t *nb_clusters)
1262{
1263    BDRVQcow2State *s = bs->opaque;
1264
1265    trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1266                                         *host_offset, *nb_clusters);
1267
1268    if (has_data_file(bs)) {
1269        assert(*host_offset == INV_OFFSET ||
1270               *host_offset == start_of_cluster(s, guest_offset));
1271        *host_offset = start_of_cluster(s, guest_offset);
1272        return 0;
1273    }
1274
1275    /* Allocate new clusters */
1276    trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1277    if (*host_offset == INV_OFFSET) {
1278        int64_t cluster_offset =
1279            qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1280        if (cluster_offset < 0) {
1281            return cluster_offset;
1282        }
1283        *host_offset = cluster_offset;
1284        return 0;
1285    } else {
1286        int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1287        if (ret < 0) {
1288            return ret;
1289        }
1290        *nb_clusters = ret;
1291        return 0;
1292    }
1293}
1294
1295/*
1296 * Allocates new clusters for an area that either is yet unallocated or needs a
1297 * copy on write. If *host_offset is not INV_OFFSET, clusters are only
1298 * allocated if the new allocation can match the specified host offset.
1299 *
1300 * Note that guest_offset may not be cluster aligned. In this case, the
1301 * returned *host_offset points to exact byte referenced by guest_offset and
1302 * therefore isn't cluster aligned as well.
1303 *
1304 * Returns:
1305 *   0:     if no clusters could be allocated. *bytes is set to 0,
1306 *          *host_offset is left unchanged.
1307 *
1308 *   1:     if new clusters were allocated. *bytes may be decreased if the
1309 *          new allocation doesn't cover all of the requested area.
1310 *          *host_offset is updated to contain the host offset of the first
1311 *          newly allocated cluster.
1312 *
1313 *  -errno: in error cases
1314 */
1315static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1316    uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1317{
1318    BDRVQcow2State *s = bs->opaque;
1319    int l2_index;
1320    uint64_t *l2_slice;
1321    uint64_t entry;
1322    uint64_t nb_clusters;
1323    int ret;
1324    bool keep_old_clusters = false;
1325
1326    uint64_t alloc_cluster_offset = INV_OFFSET;
1327
1328    trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1329                             *bytes);
1330    assert(*bytes > 0);
1331
1332    /*
1333     * Calculate the number of clusters to look for. We stop at L2 slice
1334     * boundaries to keep things simple.
1335     */
1336    nb_clusters =
1337        size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1338
1339    l2_index = offset_to_l2_slice_index(s, guest_offset);
1340    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1341    assert(nb_clusters <= INT_MAX);
1342
1343    /* Find L2 entry for the first involved cluster */
1344    ret = get_cluster_table(bs, guest_offset, &l2_slice, &l2_index);
1345    if (ret < 0) {
1346        return ret;
1347    }
1348
1349    entry = be64_to_cpu(l2_slice[l2_index]);
1350
1351    /* For the moment, overwrite compressed clusters one by one */
1352    if (entry & QCOW_OFLAG_COMPRESSED) {
1353        nb_clusters = 1;
1354    } else {
1355        nb_clusters = count_cow_clusters(bs, nb_clusters, l2_slice, l2_index);
1356    }
1357
1358    /* This function is only called when there were no non-COW clusters, so if
1359     * we can't find any unallocated or COW clusters either, something is
1360     * wrong with our code. */
1361    assert(nb_clusters > 0);
1362
1363    if (qcow2_get_cluster_type(bs, entry) == QCOW2_CLUSTER_ZERO_ALLOC &&
1364        (entry & QCOW_OFLAG_COPIED) &&
1365        (*host_offset == INV_OFFSET ||
1366         start_of_cluster(s, *host_offset) == (entry & L2E_OFFSET_MASK)))
1367    {
1368        int preallocated_nb_clusters;
1369
1370        if (offset_into_cluster(s, entry & L2E_OFFSET_MASK)) {
1371            qcow2_signal_corruption(bs, true, -1, -1, "Preallocated zero "
1372                                    "cluster offset %#llx unaligned (guest "
1373                                    "offset: %#" PRIx64 ")",
1374                                    entry & L2E_OFFSET_MASK, guest_offset);
1375            ret = -EIO;
1376            goto fail;
1377        }
1378
1379        /* Try to reuse preallocated zero clusters; contiguous normal clusters
1380         * would be fine, too, but count_cow_clusters() above has limited
1381         * nb_clusters already to a range of COW clusters */
1382        preallocated_nb_clusters =
1383            count_contiguous_clusters(bs, nb_clusters, s->cluster_size,
1384                                      &l2_slice[l2_index], QCOW_OFLAG_COPIED);
1385        assert(preallocated_nb_clusters > 0);
1386
1387        nb_clusters = preallocated_nb_clusters;
1388        alloc_cluster_offset = entry & L2E_OFFSET_MASK;
1389
1390        /* We want to reuse these clusters, so qcow2_alloc_cluster_link_l2()
1391         * should not free them. */
1392        keep_old_clusters = true;
1393    }
1394
1395    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1396
1397    if (alloc_cluster_offset == INV_OFFSET) {
1398        /* Allocate, if necessary at a given offset in the image file */
1399        alloc_cluster_offset = *host_offset == INV_OFFSET ? INV_OFFSET :
1400                               start_of_cluster(s, *host_offset);
1401        ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1402                                      &nb_clusters);
1403        if (ret < 0) {
1404            goto fail;
1405        }
1406
1407        /* Can't extend contiguous allocation */
1408        if (nb_clusters == 0) {
1409            *bytes = 0;
1410            return 0;
1411        }
1412
1413        assert(alloc_cluster_offset != INV_OFFSET);
1414    }
1415
1416    /*
1417     * Save info needed for meta data update.
1418     *
1419     * requested_bytes: Number of bytes from the start of the first
1420     * newly allocated cluster to the end of the (possibly shortened
1421     * before) write request.
1422     *
1423     * avail_bytes: Number of bytes from the start of the first
1424     * newly allocated to the end of the last newly allocated cluster.
1425     *
1426     * nb_bytes: The number of bytes from the start of the first
1427     * newly allocated cluster to the end of the area that the write
1428     * request actually writes to (excluding COW at the end)
1429     */
1430    uint64_t requested_bytes = *bytes + offset_into_cluster(s, guest_offset);
1431    int avail_bytes = MIN(INT_MAX, nb_clusters << s->cluster_bits);
1432    int nb_bytes = MIN(requested_bytes, avail_bytes);
1433    QCowL2Meta *old_m = *m;
1434
1435    *m = g_malloc0(sizeof(**m));
1436
1437    **m = (QCowL2Meta) {
1438        .next           = old_m,
1439
1440        .alloc_offset   = alloc_cluster_offset,
1441        .offset         = start_of_cluster(s, guest_offset),
1442        .nb_clusters    = nb_clusters,
1443
1444        .keep_old_clusters  = keep_old_clusters,
1445
1446        .cow_start = {
1447            .offset     = 0,
1448            .nb_bytes   = offset_into_cluster(s, guest_offset),
1449        },
1450        .cow_end = {
1451            .offset     = nb_bytes,
1452            .nb_bytes   = avail_bytes - nb_bytes,
1453        },
1454    };
1455    qemu_co_queue_init(&(*m)->dependent_requests);
1456    QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1457
1458    *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1459    *bytes = MIN(*bytes, nb_bytes - offset_into_cluster(s, guest_offset));
1460    assert(*bytes != 0);
1461
1462    return 1;
1463
1464fail:
1465    if (*m && (*m)->nb_clusters > 0) {
1466        QLIST_REMOVE(*m, next_in_flight);
1467    }
1468    return ret;
1469}
1470
1471/*
1472 * alloc_cluster_offset
1473 *
1474 * For a given offset on the virtual disk, find the cluster offset in qcow2
1475 * file. If the offset is not found, allocate a new cluster.
1476 *
1477 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1478 * other fields in m are meaningless.
1479 *
1480 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1481 * contiguous clusters that have been allocated. In this case, the other
1482 * fields of m are valid and contain information about the first allocated
1483 * cluster.
1484 *
1485 * If the request conflicts with another write request in flight, the coroutine
1486 * is queued and will be reentered when the dependency has completed.
1487 *
1488 * Return 0 on success and -errno in error cases
1489 */
1490int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1491                               unsigned int *bytes, uint64_t *host_offset,
1492                               QCowL2Meta **m)
1493{
1494    BDRVQcow2State *s = bs->opaque;
1495    uint64_t start, remaining;
1496    uint64_t cluster_offset;
1497    uint64_t cur_bytes;
1498    int ret;
1499
1500    trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *bytes);
1501
1502again:
1503    start = offset;
1504    remaining = *bytes;
1505    cluster_offset = INV_OFFSET;
1506    *host_offset = INV_OFFSET;
1507    cur_bytes = 0;
1508    *m = NULL;
1509
1510    while (true) {
1511
1512        if (*host_offset == INV_OFFSET && cluster_offset != INV_OFFSET) {
1513            *host_offset = start_of_cluster(s, cluster_offset);
1514        }
1515
1516        assert(remaining >= cur_bytes);
1517
1518        start           += cur_bytes;
1519        remaining       -= cur_bytes;
1520
1521        if (cluster_offset != INV_OFFSET) {
1522            cluster_offset += cur_bytes;
1523        }
1524
1525        if (remaining == 0) {
1526            break;
1527        }
1528
1529        cur_bytes = remaining;
1530
1531        /*
1532         * Now start gathering as many contiguous clusters as possible:
1533         *
1534         * 1. Check for overlaps with in-flight allocations
1535         *
1536         *      a) Overlap not in the first cluster -> shorten this request and
1537         *         let the caller handle the rest in its next loop iteration.
1538         *
1539         *      b) Real overlaps of two requests. Yield and restart the search
1540         *         for contiguous clusters (the situation could have changed
1541         *         while we were sleeping)
1542         *
1543         *      c) TODO: Request starts in the same cluster as the in-flight
1544         *         allocation ends. Shorten the COW of the in-fight allocation,
1545         *         set cluster_offset to write to the same cluster and set up
1546         *         the right synchronisation between the in-flight request and
1547         *         the new one.
1548         */
1549        ret = handle_dependencies(bs, start, &cur_bytes, m);
1550        if (ret == -EAGAIN) {
1551            /* Currently handle_dependencies() doesn't yield if we already had
1552             * an allocation. If it did, we would have to clean up the L2Meta
1553             * structs before starting over. */
1554            assert(*m == NULL);
1555            goto again;
1556        } else if (ret < 0) {
1557            return ret;
1558        } else if (cur_bytes == 0) {
1559            break;
1560        } else {
1561            /* handle_dependencies() may have decreased cur_bytes (shortened
1562             * the allocations below) so that the next dependency is processed
1563             * correctly during the next loop iteration. */
1564        }
1565
1566        /*
1567         * 2. Count contiguous COPIED clusters.
1568         */
1569        ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1570        if (ret < 0) {
1571            return ret;
1572        } else if (ret) {
1573            continue;
1574        } else if (cur_bytes == 0) {
1575            break;
1576        }
1577
1578        /*
1579         * 3. If the request still hasn't completed, allocate new clusters,
1580         *    considering any cluster_offset of steps 1c or 2.
1581         */
1582        ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1583        if (ret < 0) {
1584            return ret;
1585        } else if (ret) {
1586            continue;
1587        } else {
1588            assert(cur_bytes == 0);
1589            break;
1590        }
1591    }
1592
1593    *bytes -= remaining;
1594    assert(*bytes > 0);
1595    assert(*host_offset != INV_OFFSET);
1596
1597    return 0;
1598}
1599
1600/*
1601 * This discards as many clusters of nb_clusters as possible at once (i.e.
1602 * all clusters in the same L2 slice) and returns the number of discarded
1603 * clusters.
1604 */
1605static int discard_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1606                               uint64_t nb_clusters,
1607                               enum qcow2_discard_type type, bool full_discard)
1608{
1609    BDRVQcow2State *s = bs->opaque;
1610    uint64_t *l2_slice;
1611    int l2_index;
1612    int ret;
1613    int i;
1614
1615    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1616    if (ret < 0) {
1617        return ret;
1618    }
1619
1620    /* Limit nb_clusters to one L2 slice */
1621    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1622    assert(nb_clusters <= INT_MAX);
1623
1624    for (i = 0; i < nb_clusters; i++) {
1625        uint64_t old_l2_entry;
1626
1627        old_l2_entry = be64_to_cpu(l2_slice[l2_index + i]);
1628
1629        /*
1630         * If full_discard is false, make sure that a discarded area reads back
1631         * as zeroes for v3 images (we cannot do it for v2 without actually
1632         * writing a zero-filled buffer). We can skip the operation if the
1633         * cluster is already marked as zero, or if it's unallocated and we
1634         * don't have a backing file.
1635         *
1636         * TODO We might want to use bdrv_block_status(bs) here, but we're
1637         * holding s->lock, so that doesn't work today.
1638         *
1639         * If full_discard is true, the sector should not read back as zeroes,
1640         * but rather fall through to the backing file.
1641         */
1642        switch (qcow2_get_cluster_type(bs, old_l2_entry)) {
1643        case QCOW2_CLUSTER_UNALLOCATED:
1644            if (full_discard || !bs->backing) {
1645                continue;
1646            }
1647            break;
1648
1649        case QCOW2_CLUSTER_ZERO_PLAIN:
1650            if (!full_discard) {
1651                continue;
1652            }
1653            break;
1654
1655        case QCOW2_CLUSTER_ZERO_ALLOC:
1656        case QCOW2_CLUSTER_NORMAL:
1657        case QCOW2_CLUSTER_COMPRESSED:
1658            break;
1659
1660        default:
1661            abort();
1662        }
1663
1664        /* First remove L2 entries */
1665        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1666        if (!full_discard && s->qcow_version >= 3) {
1667            l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1668        } else {
1669            l2_slice[l2_index + i] = cpu_to_be64(0);
1670        }
1671
1672        /* Then decrease the refcount */
1673        qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1674    }
1675
1676    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1677
1678    return nb_clusters;
1679}
1680
1681int qcow2_cluster_discard(BlockDriverState *bs, uint64_t offset,
1682                          uint64_t bytes, enum qcow2_discard_type type,
1683                          bool full_discard)
1684{
1685    BDRVQcow2State *s = bs->opaque;
1686    uint64_t end_offset = offset + bytes;
1687    uint64_t nb_clusters;
1688    int64_t cleared;
1689    int ret;
1690
1691    /* Caller must pass aligned values, except at image end */
1692    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1693    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1694           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1695
1696    nb_clusters = size_to_clusters(s, bytes);
1697
1698    s->cache_discards = true;
1699
1700    /* Each L2 slice is handled by its own loop iteration */
1701    while (nb_clusters > 0) {
1702        cleared = discard_in_l2_slice(bs, offset, nb_clusters, type,
1703                                      full_discard);
1704        if (cleared < 0) {
1705            ret = cleared;
1706            goto fail;
1707        }
1708
1709        nb_clusters -= cleared;
1710        offset += (cleared * s->cluster_size);
1711    }
1712
1713    ret = 0;
1714fail:
1715    s->cache_discards = false;
1716    qcow2_process_discards(bs, ret);
1717
1718    return ret;
1719}
1720
1721/*
1722 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1723 * all clusters in the same L2 slice) and returns the number of zeroed
1724 * clusters.
1725 */
1726static int zero_in_l2_slice(BlockDriverState *bs, uint64_t offset,
1727                            uint64_t nb_clusters, int flags)
1728{
1729    BDRVQcow2State *s = bs->opaque;
1730    uint64_t *l2_slice;
1731    int l2_index;
1732    int ret;
1733    int i;
1734    bool unmap = !!(flags & BDRV_REQ_MAY_UNMAP);
1735
1736    ret = get_cluster_table(bs, offset, &l2_slice, &l2_index);
1737    if (ret < 0) {
1738        return ret;
1739    }
1740
1741    /* Limit nb_clusters to one L2 slice */
1742    nb_clusters = MIN(nb_clusters, s->l2_slice_size - l2_index);
1743    assert(nb_clusters <= INT_MAX);
1744
1745    for (i = 0; i < nb_clusters; i++) {
1746        uint64_t old_offset;
1747        QCow2ClusterType cluster_type;
1748
1749        old_offset = be64_to_cpu(l2_slice[l2_index + i]);
1750
1751        /*
1752         * Minimize L2 changes if the cluster already reads back as
1753         * zeroes with correct allocation.
1754         */
1755        cluster_type = qcow2_get_cluster_type(bs, old_offset);
1756        if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN ||
1757            (cluster_type == QCOW2_CLUSTER_ZERO_ALLOC && !unmap)) {
1758            continue;
1759        }
1760
1761        qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1762        if (cluster_type == QCOW2_CLUSTER_COMPRESSED || unmap) {
1763            l2_slice[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1764            qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1765        } else {
1766            l2_slice[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1767        }
1768    }
1769
1770    qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1771
1772    return nb_clusters;
1773}
1774
1775int qcow2_cluster_zeroize(BlockDriverState *bs, uint64_t offset,
1776                          uint64_t bytes, int flags)
1777{
1778    BDRVQcow2State *s = bs->opaque;
1779    uint64_t end_offset = offset + bytes;
1780    uint64_t nb_clusters;
1781    int64_t cleared;
1782    int ret;
1783
1784    /* If we have to stay in sync with an external data file, zero out
1785     * s->data_file first. */
1786    if (data_file_is_raw(bs)) {
1787        assert(has_data_file(bs));
1788        ret = bdrv_co_pwrite_zeroes(s->data_file, offset, bytes, flags);
1789        if (ret < 0) {
1790            return ret;
1791        }
1792    }
1793
1794    /* Caller must pass aligned values, except at image end */
1795    assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
1796    assert(QEMU_IS_ALIGNED(end_offset, s->cluster_size) ||
1797           end_offset == bs->total_sectors << BDRV_SECTOR_BITS);
1798
1799    /* The zero flag is only supported by version 3 and newer */
1800    if (s->qcow_version < 3) {
1801        return -ENOTSUP;
1802    }
1803
1804    /* Each L2 slice is handled by its own loop iteration */
1805    nb_clusters = size_to_clusters(s, bytes);
1806
1807    s->cache_discards = true;
1808
1809    while (nb_clusters > 0) {
1810        cleared = zero_in_l2_slice(bs, offset, nb_clusters, flags);
1811        if (cleared < 0) {
1812            ret = cleared;
1813            goto fail;
1814        }
1815
1816        nb_clusters -= cleared;
1817        offset += (cleared * s->cluster_size);
1818    }
1819
1820    ret = 0;
1821fail:
1822    s->cache_discards = false;
1823    qcow2_process_discards(bs, ret);
1824
1825    return ret;
1826}
1827
1828/*
1829 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1830 * non-backed non-pre-allocated zero clusters).
1831 *
1832 * l1_entries and *visited_l1_entries are used to keep track of progress for
1833 * status_cb(). l1_entries contains the total number of L1 entries and
1834 * *visited_l1_entries counts all visited L1 entries.
1835 */
1836static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1837                                      int l1_size, int64_t *visited_l1_entries,
1838                                      int64_t l1_entries,
1839                                      BlockDriverAmendStatusCB *status_cb,
1840                                      void *cb_opaque)
1841{
1842    BDRVQcow2State *s = bs->opaque;
1843    bool is_active_l1 = (l1_table == s->l1_table);
1844    uint64_t *l2_slice = NULL;
1845    unsigned slice, slice_size2, n_slices;
1846    int ret;
1847    int i, j;
1848
1849    slice_size2 = s->l2_slice_size * sizeof(uint64_t);
1850    n_slices = s->cluster_size / slice_size2;
1851
1852    if (!is_active_l1) {
1853        /* inactive L2 tables require a buffer to be stored in when loading
1854         * them from disk */
1855        l2_slice = qemu_try_blockalign(bs->file->bs, slice_size2);
1856        if (l2_slice == NULL) {
1857            return -ENOMEM;
1858        }
1859    }
1860
1861    for (i = 0; i < l1_size; i++) {
1862        uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1863        uint64_t l2_refcount;
1864
1865        if (!l2_offset) {
1866            /* unallocated */
1867            (*visited_l1_entries)++;
1868            if (status_cb) {
1869                status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
1870            }
1871            continue;
1872        }
1873
1874        if (offset_into_cluster(s, l2_offset)) {
1875            qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1876                                    PRIx64 " unaligned (L1 index: %#x)",
1877                                    l2_offset, i);
1878            ret = -EIO;
1879            goto fail;
1880        }
1881
1882        ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1883                                 &l2_refcount);
1884        if (ret < 0) {
1885            goto fail;
1886        }
1887
1888        for (slice = 0; slice < n_slices; slice++) {
1889            uint64_t slice_offset = l2_offset + slice * slice_size2;
1890            bool l2_dirty = false;
1891            if (is_active_l1) {
1892                /* get active L2 tables from cache */
1893                ret = qcow2_cache_get(bs, s->l2_table_cache, slice_offset,
1894                                      (void **)&l2_slice);
1895            } else {
1896                /* load inactive L2 tables from disk */
1897                ret = bdrv_pread(bs->file, slice_offset, l2_slice, slice_size2);
1898            }
1899            if (ret < 0) {
1900                goto fail;
1901            }
1902
1903            for (j = 0; j < s->l2_slice_size; j++) {
1904                uint64_t l2_entry = be64_to_cpu(l2_slice[j]);
1905                int64_t offset = l2_entry & L2E_OFFSET_MASK;
1906                QCow2ClusterType cluster_type =
1907                    qcow2_get_cluster_type(bs, l2_entry);
1908
1909                if (cluster_type != QCOW2_CLUSTER_ZERO_PLAIN &&
1910                    cluster_type != QCOW2_CLUSTER_ZERO_ALLOC) {
1911                    continue;
1912                }
1913
1914                if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1915                    if (!bs->backing) {
1916                        /* not backed; therefore we can simply deallocate the
1917                         * cluster */
1918                        l2_slice[j] = 0;
1919                        l2_dirty = true;
1920                        continue;
1921                    }
1922
1923                    offset = qcow2_alloc_clusters(bs, s->cluster_size);
1924                    if (offset < 0) {
1925                        ret = offset;
1926                        goto fail;
1927                    }
1928
1929                    if (l2_refcount > 1) {
1930                        /* For shared L2 tables, set the refcount accordingly
1931                         * (it is already 1 and needs to be l2_refcount) */
1932                        ret = qcow2_update_cluster_refcount(
1933                            bs, offset >> s->cluster_bits,
1934                            refcount_diff(1, l2_refcount), false,
1935                            QCOW2_DISCARD_OTHER);
1936                        if (ret < 0) {
1937                            qcow2_free_clusters(bs, offset, s->cluster_size,
1938                                                QCOW2_DISCARD_OTHER);
1939                            goto fail;
1940                        }
1941                    }
1942                }
1943
1944                if (offset_into_cluster(s, offset)) {
1945                    int l2_index = slice * s->l2_slice_size + j;
1946                    qcow2_signal_corruption(
1947                        bs, true, -1, -1,
1948                        "Cluster allocation offset "
1949                        "%#" PRIx64 " unaligned (L2 offset: %#"
1950                        PRIx64 ", L2 index: %#x)", offset,
1951                        l2_offset, l2_index);
1952                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1953                        qcow2_free_clusters(bs, offset, s->cluster_size,
1954                                            QCOW2_DISCARD_ALWAYS);
1955                    }
1956                    ret = -EIO;
1957                    goto fail;
1958                }
1959
1960                ret = qcow2_pre_write_overlap_check(bs, 0, offset,
1961                                                    s->cluster_size, true);
1962                if (ret < 0) {
1963                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1964                        qcow2_free_clusters(bs, offset, s->cluster_size,
1965                                            QCOW2_DISCARD_ALWAYS);
1966                    }
1967                    goto fail;
1968                }
1969
1970                ret = bdrv_pwrite_zeroes(s->data_file, offset,
1971                                         s->cluster_size, 0);
1972                if (ret < 0) {
1973                    if (cluster_type == QCOW2_CLUSTER_ZERO_PLAIN) {
1974                        qcow2_free_clusters(bs, offset, s->cluster_size,
1975                                            QCOW2_DISCARD_ALWAYS);
1976                    }
1977                    goto fail;
1978                }
1979
1980                if (l2_refcount == 1) {
1981                    l2_slice[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1982                } else {
1983                    l2_slice[j] = cpu_to_be64(offset);
1984                }
1985                l2_dirty = true;
1986            }
1987
1988            if (is_active_l1) {
1989                if (l2_dirty) {
1990                    qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_slice);
1991                    qcow2_cache_depends_on_flush(s->l2_table_cache);
1992                }
1993                qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
1994            } else {
1995                if (l2_dirty) {
1996                    ret = qcow2_pre_write_overlap_check(
1997                        bs, QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2,
1998                        slice_offset, slice_size2, false);
1999                    if (ret < 0) {
2000                        goto fail;
2001                    }
2002
2003                    ret = bdrv_pwrite(bs->file, slice_offset,
2004                                      l2_slice, slice_size2);
2005                    if (ret < 0) {
2006                        goto fail;
2007                    }
2008                }
2009            }
2010        }
2011
2012        (*visited_l1_entries)++;
2013        if (status_cb) {
2014            status_cb(bs, *visited_l1_entries, l1_entries, cb_opaque);
2015        }
2016    }
2017
2018    ret = 0;
2019
2020fail:
2021    if (l2_slice) {
2022        if (!is_active_l1) {
2023            qemu_vfree(l2_slice);
2024        } else {
2025            qcow2_cache_put(s->l2_table_cache, (void **) &l2_slice);
2026        }
2027    }
2028    return ret;
2029}
2030
2031/*
2032 * For backed images, expands all zero clusters on the image. For non-backed
2033 * images, deallocates all non-pre-allocated zero clusters (and claims the
2034 * allocation for pre-allocated ones). This is important for downgrading to a
2035 * qcow2 version which doesn't yet support metadata zero clusters.
2036 */
2037int qcow2_expand_zero_clusters(BlockDriverState *bs,
2038                               BlockDriverAmendStatusCB *status_cb,
2039                               void *cb_opaque)
2040{
2041    BDRVQcow2State *s = bs->opaque;
2042    uint64_t *l1_table = NULL;
2043    int64_t l1_entries = 0, visited_l1_entries = 0;
2044    int ret;
2045    int i, j;
2046
2047    if (status_cb) {
2048        l1_entries = s->l1_size;
2049        for (i = 0; i < s->nb_snapshots; i++) {
2050            l1_entries += s->snapshots[i].l1_size;
2051        }
2052    }
2053
2054    ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
2055                                     &visited_l1_entries, l1_entries,
2056                                     status_cb, cb_opaque);
2057    if (ret < 0) {
2058        goto fail;
2059    }
2060
2061    /* Inactive L1 tables may point to active L2 tables - therefore it is
2062     * necessary to flush the L2 table cache before trying to access the L2
2063     * tables pointed to by inactive L1 entries (else we might try to expand
2064     * zero clusters that have already been expanded); furthermore, it is also
2065     * necessary to empty the L2 table cache, since it may contain tables which
2066     * are now going to be modified directly on disk, bypassing the cache.
2067     * qcow2_cache_empty() does both for us. */
2068    ret = qcow2_cache_empty(bs, s->l2_table_cache);
2069    if (ret < 0) {
2070        goto fail;
2071    }
2072
2073    for (i = 0; i < s->nb_snapshots; i++) {
2074        int l1_size2;
2075        uint64_t *new_l1_table;
2076        Error *local_err = NULL;
2077
2078        ret = qcow2_validate_table(bs, s->snapshots[i].l1_table_offset,
2079                                   s->snapshots[i].l1_size, sizeof(uint64_t),
2080                                   QCOW_MAX_L1_SIZE, "Snapshot L1 table",
2081                                   &local_err);
2082        if (ret < 0) {
2083            error_report_err(local_err);
2084            goto fail;
2085        }
2086
2087        l1_size2 = s->snapshots[i].l1_size * sizeof(uint64_t);
2088        new_l1_table = g_try_realloc(l1_table, l1_size2);
2089
2090        if (!new_l1_table) {
2091            ret = -ENOMEM;
2092            goto fail;
2093        }
2094
2095        l1_table = new_l1_table;
2096
2097        ret = bdrv_pread(bs->file, s->snapshots[i].l1_table_offset,
2098                         l1_table, l1_size2);
2099        if (ret < 0) {
2100            goto fail;
2101        }
2102
2103        for (j = 0; j < s->snapshots[i].l1_size; j++) {
2104            be64_to_cpus(&l1_table[j]);
2105        }
2106
2107        ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
2108                                         &visited_l1_entries, l1_entries,
2109                                         status_cb, cb_opaque);
2110        if (ret < 0) {
2111            goto fail;
2112        }
2113    }
2114
2115    ret = 0;
2116
2117fail:
2118    g_free(l1_table);
2119    return ret;
2120}
2121