qemu/block/qed.c
<<
>>
Prefs
   1/*
   2 * QEMU Enhanced Disk Format
   3 *
   4 * Copyright IBM, Corp. 2010
   5 *
   6 * Authors:
   7 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
  11 * See the COPYING.LIB file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "block/qdict.h"
  17#include "qapi/error.h"
  18#include "qemu/timer.h"
  19#include "qemu/bswap.h"
  20#include "qemu/module.h"
  21#include "qemu/option.h"
  22#include "trace.h"
  23#include "qed.h"
  24#include "sysemu/block-backend.h"
  25#include "qapi/qmp/qdict.h"
  26#include "qapi/qobject-input-visitor.h"
  27#include "qapi/qapi-visit-block-core.h"
  28
  29static QemuOptsList qed_create_opts;
  30
  31static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
  32                          const char *filename)
  33{
  34    const QEDHeader *header = (const QEDHeader *)buf;
  35
  36    if (buf_size < sizeof(*header)) {
  37        return 0;
  38    }
  39    if (le32_to_cpu(header->magic) != QED_MAGIC) {
  40        return 0;
  41    }
  42    return 100;
  43}
  44
  45/**
  46 * Check whether an image format is raw
  47 *
  48 * @fmt:    Backing file format, may be NULL
  49 */
  50static bool qed_fmt_is_raw(const char *fmt)
  51{
  52    return fmt && strcmp(fmt, "raw") == 0;
  53}
  54
  55static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
  56{
  57    cpu->magic = le32_to_cpu(le->magic);
  58    cpu->cluster_size = le32_to_cpu(le->cluster_size);
  59    cpu->table_size = le32_to_cpu(le->table_size);
  60    cpu->header_size = le32_to_cpu(le->header_size);
  61    cpu->features = le64_to_cpu(le->features);
  62    cpu->compat_features = le64_to_cpu(le->compat_features);
  63    cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
  64    cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
  65    cpu->image_size = le64_to_cpu(le->image_size);
  66    cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
  67    cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
  68}
  69
  70static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
  71{
  72    le->magic = cpu_to_le32(cpu->magic);
  73    le->cluster_size = cpu_to_le32(cpu->cluster_size);
  74    le->table_size = cpu_to_le32(cpu->table_size);
  75    le->header_size = cpu_to_le32(cpu->header_size);
  76    le->features = cpu_to_le64(cpu->features);
  77    le->compat_features = cpu_to_le64(cpu->compat_features);
  78    le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
  79    le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
  80    le->image_size = cpu_to_le64(cpu->image_size);
  81    le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
  82    le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
  83}
  84
  85int qed_write_header_sync(BDRVQEDState *s)
  86{
  87    QEDHeader le;
  88    int ret;
  89
  90    qed_header_cpu_to_le(&s->header, &le);
  91    ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
  92    if (ret != sizeof(le)) {
  93        return ret;
  94    }
  95    return 0;
  96}
  97
  98/**
  99 * Update header in-place (does not rewrite backing filename or other strings)
 100 *
 101 * This function only updates known header fields in-place and does not affect
 102 * extra data after the QED header.
 103 *
 104 * No new allocating reqs can start while this function runs.
 105 */
 106static int coroutine_fn qed_write_header(BDRVQEDState *s)
 107{
 108    /* We must write full sectors for O_DIRECT but cannot necessarily generate
 109     * the data following the header if an unrecognized compat feature is
 110     * active.  Therefore, first read the sectors containing the header, update
 111     * them, and write back.
 112     */
 113
 114    int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
 115    size_t len = nsectors * BDRV_SECTOR_SIZE;
 116    uint8_t *buf;
 117    int ret;
 118
 119    assert(s->allocating_acb || s->allocating_write_reqs_plugged);
 120
 121    buf = qemu_blockalign(s->bs, len);
 122
 123    ret = bdrv_co_pread(s->bs->file, 0, len, buf, 0);
 124    if (ret < 0) {
 125        goto out;
 126    }
 127
 128    /* Update header */
 129    qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
 130
 131    ret = bdrv_co_pwrite(s->bs->file, 0, len,  buf, 0);
 132    if (ret < 0) {
 133        goto out;
 134    }
 135
 136    ret = 0;
 137out:
 138    qemu_vfree(buf);
 139    return ret;
 140}
 141
 142static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
 143{
 144    uint64_t table_entries;
 145    uint64_t l2_size;
 146
 147    table_entries = (table_size * cluster_size) / sizeof(uint64_t);
 148    l2_size = table_entries * cluster_size;
 149
 150    return l2_size * table_entries;
 151}
 152
 153static bool qed_is_cluster_size_valid(uint32_t cluster_size)
 154{
 155    if (cluster_size < QED_MIN_CLUSTER_SIZE ||
 156        cluster_size > QED_MAX_CLUSTER_SIZE) {
 157        return false;
 158    }
 159    if (cluster_size & (cluster_size - 1)) {
 160        return false; /* not power of 2 */
 161    }
 162    return true;
 163}
 164
 165static bool qed_is_table_size_valid(uint32_t table_size)
 166{
 167    if (table_size < QED_MIN_TABLE_SIZE ||
 168        table_size > QED_MAX_TABLE_SIZE) {
 169        return false;
 170    }
 171    if (table_size & (table_size - 1)) {
 172        return false; /* not power of 2 */
 173    }
 174    return true;
 175}
 176
 177static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
 178                                    uint32_t table_size)
 179{
 180    if (image_size % BDRV_SECTOR_SIZE != 0) {
 181        return false; /* not multiple of sector size */
 182    }
 183    if (image_size > qed_max_image_size(cluster_size, table_size)) {
 184        return false; /* image is too large */
 185    }
 186    return true;
 187}
 188
 189/**
 190 * Read a string of known length from the image file
 191 *
 192 * @file:       Image file
 193 * @offset:     File offset to start of string, in bytes
 194 * @n:          String length in bytes
 195 * @buf:        Destination buffer
 196 * @buflen:     Destination buffer length in bytes
 197 * @ret:        0 on success, -errno on failure
 198 *
 199 * The string is NUL-terminated.
 200 */
 201static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
 202                           char *buf, size_t buflen)
 203{
 204    int ret;
 205    if (n >= buflen) {
 206        return -EINVAL;
 207    }
 208    ret = bdrv_pread(file, offset, buf, n);
 209    if (ret < 0) {
 210        return ret;
 211    }
 212    buf[n] = '\0';
 213    return 0;
 214}
 215
 216/**
 217 * Allocate new clusters
 218 *
 219 * @s:          QED state
 220 * @n:          Number of contiguous clusters to allocate
 221 * @ret:        Offset of first allocated cluster
 222 *
 223 * This function only produces the offset where the new clusters should be
 224 * written.  It updates BDRVQEDState but does not make any changes to the image
 225 * file.
 226 *
 227 * Called with table_lock held.
 228 */
 229static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
 230{
 231    uint64_t offset = s->file_size;
 232    s->file_size += n * s->header.cluster_size;
 233    return offset;
 234}
 235
 236QEDTable *qed_alloc_table(BDRVQEDState *s)
 237{
 238    /* Honor O_DIRECT memory alignment requirements */
 239    return qemu_blockalign(s->bs,
 240                           s->header.cluster_size * s->header.table_size);
 241}
 242
 243/**
 244 * Allocate a new zeroed L2 table
 245 *
 246 * Called with table_lock held.
 247 */
 248static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
 249{
 250    CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
 251
 252    l2_table->table = qed_alloc_table(s);
 253    l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
 254
 255    memset(l2_table->table->offsets, 0,
 256           s->header.cluster_size * s->header.table_size);
 257    return l2_table;
 258}
 259
 260static bool qed_plug_allocating_write_reqs(BDRVQEDState *s)
 261{
 262    qemu_co_mutex_lock(&s->table_lock);
 263
 264    /* No reentrancy is allowed.  */
 265    assert(!s->allocating_write_reqs_plugged);
 266    if (s->allocating_acb != NULL) {
 267        /* Another allocating write came concurrently.  This cannot happen
 268         * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
 269         */
 270        qemu_co_mutex_unlock(&s->table_lock);
 271        return false;
 272    }
 273
 274    s->allocating_write_reqs_plugged = true;
 275    qemu_co_mutex_unlock(&s->table_lock);
 276    return true;
 277}
 278
 279static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
 280{
 281    qemu_co_mutex_lock(&s->table_lock);
 282    assert(s->allocating_write_reqs_plugged);
 283    s->allocating_write_reqs_plugged = false;
 284    qemu_co_queue_next(&s->allocating_write_reqs);
 285    qemu_co_mutex_unlock(&s->table_lock);
 286}
 287
 288static void coroutine_fn qed_need_check_timer_entry(void *opaque)
 289{
 290    BDRVQEDState *s = opaque;
 291    int ret;
 292
 293    trace_qed_need_check_timer_cb(s);
 294
 295    if (!qed_plug_allocating_write_reqs(s)) {
 296        return;
 297    }
 298
 299    /* Ensure writes are on disk before clearing flag */
 300    ret = bdrv_co_flush(s->bs->file->bs);
 301    if (ret < 0) {
 302        qed_unplug_allocating_write_reqs(s);
 303        return;
 304    }
 305
 306    s->header.features &= ~QED_F_NEED_CHECK;
 307    ret = qed_write_header(s);
 308    (void) ret;
 309
 310    qed_unplug_allocating_write_reqs(s);
 311
 312    ret = bdrv_co_flush(s->bs);
 313    (void) ret;
 314}
 315
 316static void qed_need_check_timer_cb(void *opaque)
 317{
 318    Coroutine *co = qemu_coroutine_create(qed_need_check_timer_entry, opaque);
 319    qemu_coroutine_enter(co);
 320}
 321
 322static void qed_start_need_check_timer(BDRVQEDState *s)
 323{
 324    trace_qed_start_need_check_timer(s);
 325
 326    /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
 327     * migration.
 328     */
 329    timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
 330                   NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
 331}
 332
 333/* It's okay to call this multiple times or when no timer is started */
 334static void qed_cancel_need_check_timer(BDRVQEDState *s)
 335{
 336    trace_qed_cancel_need_check_timer(s);
 337    timer_del(s->need_check_timer);
 338}
 339
 340static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
 341{
 342    BDRVQEDState *s = bs->opaque;
 343
 344    qed_cancel_need_check_timer(s);
 345    timer_free(s->need_check_timer);
 346}
 347
 348static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
 349                                        AioContext *new_context)
 350{
 351    BDRVQEDState *s = bs->opaque;
 352
 353    s->need_check_timer = aio_timer_new(new_context,
 354                                        QEMU_CLOCK_VIRTUAL, SCALE_NS,
 355                                        qed_need_check_timer_cb, s);
 356    if (s->header.features & QED_F_NEED_CHECK) {
 357        qed_start_need_check_timer(s);
 358    }
 359}
 360
 361static void coroutine_fn bdrv_qed_co_drain_begin(BlockDriverState *bs)
 362{
 363    BDRVQEDState *s = bs->opaque;
 364
 365    /* Fire the timer immediately in order to start doing I/O as soon as the
 366     * header is flushed.
 367     */
 368    if (s->need_check_timer && timer_pending(s->need_check_timer)) {
 369        qed_cancel_need_check_timer(s);
 370        qed_need_check_timer_entry(s);
 371    }
 372}
 373
 374static void bdrv_qed_init_state(BlockDriverState *bs)
 375{
 376    BDRVQEDState *s = bs->opaque;
 377
 378    memset(s, 0, sizeof(BDRVQEDState));
 379    s->bs = bs;
 380    qemu_co_mutex_init(&s->table_lock);
 381    qemu_co_queue_init(&s->allocating_write_reqs);
 382}
 383
 384/* Called with table_lock held.  */
 385static int coroutine_fn bdrv_qed_do_open(BlockDriverState *bs, QDict *options,
 386                                         int flags, Error **errp)
 387{
 388    BDRVQEDState *s = bs->opaque;
 389    QEDHeader le_header;
 390    int64_t file_size;
 391    int ret;
 392
 393    ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
 394    if (ret < 0) {
 395        return ret;
 396    }
 397    qed_header_le_to_cpu(&le_header, &s->header);
 398
 399    if (s->header.magic != QED_MAGIC) {
 400        error_setg(errp, "Image not in QED format");
 401        return -EINVAL;
 402    }
 403    if (s->header.features & ~QED_FEATURE_MASK) {
 404        /* image uses unsupported feature bits */
 405        error_setg(errp, "Unsupported QED features: %" PRIx64,
 406                   s->header.features & ~QED_FEATURE_MASK);
 407        return -ENOTSUP;
 408    }
 409    if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
 410        return -EINVAL;
 411    }
 412
 413    /* Round down file size to the last cluster */
 414    file_size = bdrv_getlength(bs->file->bs);
 415    if (file_size < 0) {
 416        return file_size;
 417    }
 418    s->file_size = qed_start_of_cluster(s, file_size);
 419
 420    if (!qed_is_table_size_valid(s->header.table_size)) {
 421        return -EINVAL;
 422    }
 423    if (!qed_is_image_size_valid(s->header.image_size,
 424                                 s->header.cluster_size,
 425                                 s->header.table_size)) {
 426        return -EINVAL;
 427    }
 428    if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
 429        return -EINVAL;
 430    }
 431
 432    s->table_nelems = (s->header.cluster_size * s->header.table_size) /
 433                      sizeof(uint64_t);
 434    s->l2_shift = ctz32(s->header.cluster_size);
 435    s->l2_mask = s->table_nelems - 1;
 436    s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
 437
 438    /* Header size calculation must not overflow uint32_t */
 439    if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
 440        return -EINVAL;
 441    }
 442
 443    if ((s->header.features & QED_F_BACKING_FILE)) {
 444        if ((uint64_t)s->header.backing_filename_offset +
 445            s->header.backing_filename_size >
 446            s->header.cluster_size * s->header.header_size) {
 447            return -EINVAL;
 448        }
 449
 450        ret = qed_read_string(bs->file, s->header.backing_filename_offset,
 451                              s->header.backing_filename_size,
 452                              bs->auto_backing_file,
 453                              sizeof(bs->auto_backing_file));
 454        if (ret < 0) {
 455            return ret;
 456        }
 457        pstrcpy(bs->backing_file, sizeof(bs->backing_file),
 458                bs->auto_backing_file);
 459
 460        if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
 461            pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
 462        }
 463    }
 464
 465    /* Reset unknown autoclear feature bits.  This is a backwards
 466     * compatibility mechanism that allows images to be opened by older
 467     * programs, which "knock out" unknown feature bits.  When an image is
 468     * opened by a newer program again it can detect that the autoclear
 469     * feature is no longer valid.
 470     */
 471    if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
 472        !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
 473        s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
 474
 475        ret = qed_write_header_sync(s);
 476        if (ret) {
 477            return ret;
 478        }
 479
 480        /* From here on only known autoclear feature bits are valid */
 481        bdrv_flush(bs->file->bs);
 482    }
 483
 484    s->l1_table = qed_alloc_table(s);
 485    qed_init_l2_cache(&s->l2_cache);
 486
 487    ret = qed_read_l1_table_sync(s);
 488    if (ret) {
 489        goto out;
 490    }
 491
 492    /* If image was not closed cleanly, check consistency */
 493    if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
 494        /* Read-only images cannot be fixed.  There is no risk of corruption
 495         * since write operations are not possible.  Therefore, allow
 496         * potentially inconsistent images to be opened read-only.  This can
 497         * aid data recovery from an otherwise inconsistent image.
 498         */
 499        if (!bdrv_is_read_only(bs->file->bs) &&
 500            !(flags & BDRV_O_INACTIVE)) {
 501            BdrvCheckResult result = {0};
 502
 503            ret = qed_check(s, &result, true);
 504            if (ret) {
 505                goto out;
 506            }
 507        }
 508    }
 509
 510    bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
 511
 512out:
 513    if (ret) {
 514        qed_free_l2_cache(&s->l2_cache);
 515        qemu_vfree(s->l1_table);
 516    }
 517    return ret;
 518}
 519
 520typedef struct QEDOpenCo {
 521    BlockDriverState *bs;
 522    QDict *options;
 523    int flags;
 524    Error **errp;
 525    int ret;
 526} QEDOpenCo;
 527
 528static void coroutine_fn bdrv_qed_open_entry(void *opaque)
 529{
 530    QEDOpenCo *qoc = opaque;
 531    BDRVQEDState *s = qoc->bs->opaque;
 532
 533    qemu_co_mutex_lock(&s->table_lock);
 534    qoc->ret = bdrv_qed_do_open(qoc->bs, qoc->options, qoc->flags, qoc->errp);
 535    qemu_co_mutex_unlock(&s->table_lock);
 536}
 537
 538static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
 539                         Error **errp)
 540{
 541    QEDOpenCo qoc = {
 542        .bs = bs,
 543        .options = options,
 544        .flags = flags,
 545        .errp = errp,
 546        .ret = -EINPROGRESS
 547    };
 548
 549    bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
 550                               false, errp);
 551    if (!bs->file) {
 552        return -EINVAL;
 553    }
 554
 555    bdrv_qed_init_state(bs);
 556    if (qemu_in_coroutine()) {
 557        bdrv_qed_open_entry(&qoc);
 558    } else {
 559        assert(qemu_get_current_aio_context() == qemu_get_aio_context());
 560        qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry, &qoc));
 561        BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
 562    }
 563    BDRV_POLL_WHILE(bs, qoc.ret == -EINPROGRESS);
 564    return qoc.ret;
 565}
 566
 567static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
 568{
 569    BDRVQEDState *s = bs->opaque;
 570
 571    bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
 572}
 573
 574/* We have nothing to do for QED reopen, stubs just return
 575 * success */
 576static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
 577                                   BlockReopenQueue *queue, Error **errp)
 578{
 579    return 0;
 580}
 581
 582static void bdrv_qed_close(BlockDriverState *bs)
 583{
 584    BDRVQEDState *s = bs->opaque;
 585
 586    bdrv_qed_detach_aio_context(bs);
 587
 588    /* Ensure writes reach stable storage */
 589    bdrv_flush(bs->file->bs);
 590
 591    /* Clean shutdown, no check required on next open */
 592    if (s->header.features & QED_F_NEED_CHECK) {
 593        s->header.features &= ~QED_F_NEED_CHECK;
 594        qed_write_header_sync(s);
 595    }
 596
 597    qed_free_l2_cache(&s->l2_cache);
 598    qemu_vfree(s->l1_table);
 599}
 600
 601static int coroutine_fn bdrv_qed_co_create(BlockdevCreateOptions *opts,
 602                                           Error **errp)
 603{
 604    BlockdevCreateOptionsQed *qed_opts;
 605    BlockBackend *blk = NULL;
 606    BlockDriverState *bs = NULL;
 607
 608    QEDHeader header;
 609    QEDHeader le_header;
 610    uint8_t *l1_table = NULL;
 611    size_t l1_size;
 612    int ret = 0;
 613
 614    assert(opts->driver == BLOCKDEV_DRIVER_QED);
 615    qed_opts = &opts->u.qed;
 616
 617    /* Validate options and set default values */
 618    if (!qed_opts->has_cluster_size) {
 619        qed_opts->cluster_size = QED_DEFAULT_CLUSTER_SIZE;
 620    }
 621    if (!qed_opts->has_table_size) {
 622        qed_opts->table_size = QED_DEFAULT_TABLE_SIZE;
 623    }
 624
 625    if (!qed_is_cluster_size_valid(qed_opts->cluster_size)) {
 626        error_setg(errp, "QED cluster size must be within range [%u, %u] "
 627                         "and power of 2",
 628                   QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
 629        return -EINVAL;
 630    }
 631    if (!qed_is_table_size_valid(qed_opts->table_size)) {
 632        error_setg(errp, "QED table size must be within range [%u, %u] "
 633                         "and power of 2",
 634                   QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
 635        return -EINVAL;
 636    }
 637    if (!qed_is_image_size_valid(qed_opts->size, qed_opts->cluster_size,
 638                                 qed_opts->table_size))
 639    {
 640        error_setg(errp, "QED image size must be a non-zero multiple of "
 641                         "cluster size and less than %" PRIu64 " bytes",
 642                   qed_max_image_size(qed_opts->cluster_size,
 643                                      qed_opts->table_size));
 644        return -EINVAL;
 645    }
 646
 647    /* Create BlockBackend to write to the image */
 648    bs = bdrv_open_blockdev_ref(qed_opts->file, errp);
 649    if (bs == NULL) {
 650        return -EIO;
 651    }
 652
 653    blk = blk_new(bdrv_get_aio_context(bs),
 654                  BLK_PERM_WRITE | BLK_PERM_RESIZE, BLK_PERM_ALL);
 655    ret = blk_insert_bs(blk, bs, errp);
 656    if (ret < 0) {
 657        goto out;
 658    }
 659    blk_set_allow_write_beyond_eof(blk, true);
 660
 661    /* Prepare image format */
 662    header = (QEDHeader) {
 663        .magic = QED_MAGIC,
 664        .cluster_size = qed_opts->cluster_size,
 665        .table_size = qed_opts->table_size,
 666        .header_size = 1,
 667        .features = 0,
 668        .compat_features = 0,
 669        .l1_table_offset = qed_opts->cluster_size,
 670        .image_size = qed_opts->size,
 671    };
 672
 673    l1_size = header.cluster_size * header.table_size;
 674
 675    /* File must start empty and grow, check truncate is supported */
 676    ret = blk_truncate(blk, 0, PREALLOC_MODE_OFF, errp);
 677    if (ret < 0) {
 678        goto out;
 679    }
 680
 681    if (qed_opts->has_backing_file) {
 682        header.features |= QED_F_BACKING_FILE;
 683        header.backing_filename_offset = sizeof(le_header);
 684        header.backing_filename_size = strlen(qed_opts->backing_file);
 685
 686        if (qed_opts->has_backing_fmt) {
 687            const char *backing_fmt = BlockdevDriver_str(qed_opts->backing_fmt);
 688            if (qed_fmt_is_raw(backing_fmt)) {
 689                header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
 690            }
 691        }
 692    }
 693
 694    qed_header_cpu_to_le(&header, &le_header);
 695    ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
 696    if (ret < 0) {
 697        goto out;
 698    }
 699    ret = blk_pwrite(blk, sizeof(le_header), qed_opts->backing_file,
 700                     header.backing_filename_size, 0);
 701    if (ret < 0) {
 702        goto out;
 703    }
 704
 705    l1_table = g_malloc0(l1_size);
 706    ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
 707    if (ret < 0) {
 708        goto out;
 709    }
 710
 711    ret = 0; /* success */
 712out:
 713    g_free(l1_table);
 714    blk_unref(blk);
 715    bdrv_unref(bs);
 716    return ret;
 717}
 718
 719static int coroutine_fn bdrv_qed_co_create_opts(const char *filename,
 720                                                QemuOpts *opts,
 721                                                Error **errp)
 722{
 723    BlockdevCreateOptions *create_options = NULL;
 724    QDict *qdict;
 725    Visitor *v;
 726    BlockDriverState *bs = NULL;
 727    Error *local_err = NULL;
 728    int ret;
 729
 730    static const QDictRenames opt_renames[] = {
 731        { BLOCK_OPT_BACKING_FILE,       "backing-file" },
 732        { BLOCK_OPT_BACKING_FMT,        "backing-fmt" },
 733        { BLOCK_OPT_CLUSTER_SIZE,       "cluster-size" },
 734        { BLOCK_OPT_TABLE_SIZE,         "table-size" },
 735        { NULL, NULL },
 736    };
 737
 738    /* Parse options and convert legacy syntax */
 739    qdict = qemu_opts_to_qdict_filtered(opts, NULL, &qed_create_opts, true);
 740
 741    if (!qdict_rename_keys(qdict, opt_renames, errp)) {
 742        ret = -EINVAL;
 743        goto fail;
 744    }
 745
 746    /* Create and open the file (protocol layer) */
 747    ret = bdrv_create_file(filename, opts, &local_err);
 748    if (ret < 0) {
 749        error_propagate(errp, local_err);
 750        goto fail;
 751    }
 752
 753    bs = bdrv_open(filename, NULL, NULL,
 754                   BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL, errp);
 755    if (bs == NULL) {
 756        ret = -EIO;
 757        goto fail;
 758    }
 759
 760    /* Now get the QAPI type BlockdevCreateOptions */
 761    qdict_put_str(qdict, "driver", "qed");
 762    qdict_put_str(qdict, "file", bs->node_name);
 763
 764    v = qobject_input_visitor_new_flat_confused(qdict, errp);
 765    if (!v) {
 766        ret = -EINVAL;
 767        goto fail;
 768    }
 769
 770    visit_type_BlockdevCreateOptions(v, NULL, &create_options, &local_err);
 771    visit_free(v);
 772
 773    if (local_err) {
 774        error_propagate(errp, local_err);
 775        ret = -EINVAL;
 776        goto fail;
 777    }
 778
 779    /* Silently round up size */
 780    assert(create_options->driver == BLOCKDEV_DRIVER_QED);
 781    create_options->u.qed.size =
 782        ROUND_UP(create_options->u.qed.size, BDRV_SECTOR_SIZE);
 783
 784    /* Create the qed image (format layer) */
 785    ret = bdrv_qed_co_create(create_options, errp);
 786
 787fail:
 788    qobject_unref(qdict);
 789    bdrv_unref(bs);
 790    qapi_free_BlockdevCreateOptions(create_options);
 791    return ret;
 792}
 793
 794static int coroutine_fn bdrv_qed_co_block_status(BlockDriverState *bs,
 795                                                 bool want_zero,
 796                                                 int64_t pos, int64_t bytes,
 797                                                 int64_t *pnum, int64_t *map,
 798                                                 BlockDriverState **file)
 799{
 800    BDRVQEDState *s = bs->opaque;
 801    size_t len = MIN(bytes, SIZE_MAX);
 802    int status;
 803    QEDRequest request = { .l2_table = NULL };
 804    uint64_t offset;
 805    int ret;
 806
 807    qemu_co_mutex_lock(&s->table_lock);
 808    ret = qed_find_cluster(s, &request, pos, &len, &offset);
 809
 810    *pnum = len;
 811    switch (ret) {
 812    case QED_CLUSTER_FOUND:
 813        *map = offset | qed_offset_into_cluster(s, pos);
 814        status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
 815        *file = bs->file->bs;
 816        break;
 817    case QED_CLUSTER_ZERO:
 818        status = BDRV_BLOCK_ZERO;
 819        break;
 820    case QED_CLUSTER_L2:
 821    case QED_CLUSTER_L1:
 822        status = 0;
 823        break;
 824    default:
 825        assert(ret < 0);
 826        status = ret;
 827        break;
 828    }
 829
 830    qed_unref_l2_cache_entry(request.l2_table);
 831    qemu_co_mutex_unlock(&s->table_lock);
 832
 833    return status;
 834}
 835
 836static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
 837{
 838    return acb->bs->opaque;
 839}
 840
 841/**
 842 * Read from the backing file or zero-fill if no backing file
 843 *
 844 * @s:              QED state
 845 * @pos:            Byte position in device
 846 * @qiov:           Destination I/O vector
 847 * @backing_qiov:   Possibly shortened copy of qiov, to be allocated here
 848 * @cb:             Completion function
 849 * @opaque:         User data for completion function
 850 *
 851 * This function reads qiov->size bytes starting at pos from the backing file.
 852 * If there is no backing file then zeroes are read.
 853 */
 854static int coroutine_fn qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
 855                                              QEMUIOVector *qiov,
 856                                              QEMUIOVector **backing_qiov)
 857{
 858    uint64_t backing_length = 0;
 859    size_t size;
 860    int ret;
 861
 862    /* If there is a backing file, get its length.  Treat the absence of a
 863     * backing file like a zero length backing file.
 864     */
 865    if (s->bs->backing) {
 866        int64_t l = bdrv_getlength(s->bs->backing->bs);
 867        if (l < 0) {
 868            return l;
 869        }
 870        backing_length = l;
 871    }
 872
 873    /* Zero all sectors if reading beyond the end of the backing file */
 874    if (pos >= backing_length ||
 875        pos + qiov->size > backing_length) {
 876        qemu_iovec_memset(qiov, 0, 0, qiov->size);
 877    }
 878
 879    /* Complete now if there are no backing file sectors to read */
 880    if (pos >= backing_length) {
 881        return 0;
 882    }
 883
 884    /* If the read straddles the end of the backing file, shorten it */
 885    size = MIN((uint64_t)backing_length - pos, qiov->size);
 886
 887    assert(*backing_qiov == NULL);
 888    *backing_qiov = g_new(QEMUIOVector, 1);
 889    qemu_iovec_init(*backing_qiov, qiov->niov);
 890    qemu_iovec_concat(*backing_qiov, qiov, 0, size);
 891
 892    BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
 893    ret = bdrv_co_preadv(s->bs->backing, pos, size, *backing_qiov, 0);
 894    if (ret < 0) {
 895        return ret;
 896    }
 897    return 0;
 898}
 899
 900/**
 901 * Copy data from backing file into the image
 902 *
 903 * @s:          QED state
 904 * @pos:        Byte position in device
 905 * @len:        Number of bytes
 906 * @offset:     Byte offset in image file
 907 */
 908static int coroutine_fn qed_copy_from_backing_file(BDRVQEDState *s,
 909                                                   uint64_t pos, uint64_t len,
 910                                                   uint64_t offset)
 911{
 912    QEMUIOVector qiov;
 913    QEMUIOVector *backing_qiov = NULL;
 914    int ret;
 915
 916    /* Skip copy entirely if there is no work to do */
 917    if (len == 0) {
 918        return 0;
 919    }
 920
 921    qemu_iovec_init_buf(&qiov, qemu_blockalign(s->bs, len), len);
 922
 923    ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
 924
 925    if (backing_qiov) {
 926        qemu_iovec_destroy(backing_qiov);
 927        g_free(backing_qiov);
 928        backing_qiov = NULL;
 929    }
 930
 931    if (ret) {
 932        goto out;
 933    }
 934
 935    BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
 936    ret = bdrv_co_pwritev(s->bs->file, offset, qiov.size, &qiov, 0);
 937    if (ret < 0) {
 938        goto out;
 939    }
 940    ret = 0;
 941out:
 942    qemu_vfree(qemu_iovec_buf(&qiov));
 943    return ret;
 944}
 945
 946/**
 947 * Link one or more contiguous clusters into a table
 948 *
 949 * @s:              QED state
 950 * @table:          L2 table
 951 * @index:          First cluster index
 952 * @n:              Number of contiguous clusters
 953 * @cluster:        First cluster offset
 954 *
 955 * The cluster offset may be an allocated byte offset in the image file, the
 956 * zero cluster marker, or the unallocated cluster marker.
 957 *
 958 * Called with table_lock held.
 959 */
 960static void coroutine_fn qed_update_l2_table(BDRVQEDState *s, QEDTable *table,
 961                                             int index, unsigned int n,
 962                                             uint64_t cluster)
 963{
 964    int i;
 965    for (i = index; i < index + n; i++) {
 966        table->offsets[i] = cluster;
 967        if (!qed_offset_is_unalloc_cluster(cluster) &&
 968            !qed_offset_is_zero_cluster(cluster)) {
 969            cluster += s->header.cluster_size;
 970        }
 971    }
 972}
 973
 974/* Called with table_lock held.  */
 975static void coroutine_fn qed_aio_complete(QEDAIOCB *acb)
 976{
 977    BDRVQEDState *s = acb_to_s(acb);
 978
 979    /* Free resources */
 980    qemu_iovec_destroy(&acb->cur_qiov);
 981    qed_unref_l2_cache_entry(acb->request.l2_table);
 982
 983    /* Free the buffer we may have allocated for zero writes */
 984    if (acb->flags & QED_AIOCB_ZERO) {
 985        qemu_vfree(acb->qiov->iov[0].iov_base);
 986        acb->qiov->iov[0].iov_base = NULL;
 987    }
 988
 989    /* Start next allocating write request waiting behind this one.  Note that
 990     * requests enqueue themselves when they first hit an unallocated cluster
 991     * but they wait until the entire request is finished before waking up the
 992     * next request in the queue.  This ensures that we don't cycle through
 993     * requests multiple times but rather finish one at a time completely.
 994     */
 995    if (acb == s->allocating_acb) {
 996        s->allocating_acb = NULL;
 997        if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
 998            qemu_co_queue_next(&s->allocating_write_reqs);
 999        } else if (s->header.features & QED_F_NEED_CHECK) {
1000            qed_start_need_check_timer(s);
1001        }
1002    }
1003}
1004
1005/**
1006 * Update L1 table with new L2 table offset and write it out
1007 *
1008 * Called with table_lock held.
1009 */
1010static int coroutine_fn qed_aio_write_l1_update(QEDAIOCB *acb)
1011{
1012    BDRVQEDState *s = acb_to_s(acb);
1013    CachedL2Table *l2_table = acb->request.l2_table;
1014    uint64_t l2_offset = l2_table->offset;
1015    int index, ret;
1016
1017    index = qed_l1_index(s, acb->cur_pos);
1018    s->l1_table->offsets[index] = l2_table->offset;
1019
1020    ret = qed_write_l1_table(s, index, 1);
1021
1022    /* Commit the current L2 table to the cache */
1023    qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
1024
1025    /* This is guaranteed to succeed because we just committed the entry to the
1026     * cache.
1027     */
1028    acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
1029    assert(acb->request.l2_table != NULL);
1030
1031    return ret;
1032}
1033
1034
1035/**
1036 * Update L2 table with new cluster offsets and write them out
1037 *
1038 * Called with table_lock held.
1039 */
1040static int coroutine_fn qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
1041{
1042    BDRVQEDState *s = acb_to_s(acb);
1043    bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
1044    int index, ret;
1045
1046    if (need_alloc) {
1047        qed_unref_l2_cache_entry(acb->request.l2_table);
1048        acb->request.l2_table = qed_new_l2_table(s);
1049    }
1050
1051    index = qed_l2_index(s, acb->cur_pos);
1052    qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
1053                         offset);
1054
1055    if (need_alloc) {
1056        /* Write out the whole new L2 table */
1057        ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
1058        if (ret) {
1059            return ret;
1060        }
1061        return qed_aio_write_l1_update(acb);
1062    } else {
1063        /* Write out only the updated part of the L2 table */
1064        ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1065                                 false);
1066        if (ret) {
1067            return ret;
1068        }
1069    }
1070    return 0;
1071}
1072
1073/**
1074 * Write data to the image file
1075 *
1076 * Called with table_lock *not* held.
1077 */
1078static int coroutine_fn qed_aio_write_main(QEDAIOCB *acb)
1079{
1080    BDRVQEDState *s = acb_to_s(acb);
1081    uint64_t offset = acb->cur_cluster +
1082                      qed_offset_into_cluster(s, acb->cur_pos);
1083
1084    trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1085
1086    BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1087    return bdrv_co_pwritev(s->bs->file, offset, acb->cur_qiov.size,
1088                           &acb->cur_qiov, 0);
1089}
1090
1091/**
1092 * Populate untouched regions of new data cluster
1093 *
1094 * Called with table_lock held.
1095 */
1096static int coroutine_fn qed_aio_write_cow(QEDAIOCB *acb)
1097{
1098    BDRVQEDState *s = acb_to_s(acb);
1099    uint64_t start, len, offset;
1100    int ret;
1101
1102    qemu_co_mutex_unlock(&s->table_lock);
1103
1104    /* Populate front untouched region of new data cluster */
1105    start = qed_start_of_cluster(s, acb->cur_pos);
1106    len = qed_offset_into_cluster(s, acb->cur_pos);
1107
1108    trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1109    ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1110    if (ret < 0) {
1111        goto out;
1112    }
1113
1114    /* Populate back untouched region of new data cluster */
1115    start = acb->cur_pos + acb->cur_qiov.size;
1116    len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1117    offset = acb->cur_cluster +
1118             qed_offset_into_cluster(s, acb->cur_pos) +
1119             acb->cur_qiov.size;
1120
1121    trace_qed_aio_write_postfill(s, acb, start, len, offset);
1122    ret = qed_copy_from_backing_file(s, start, len, offset);
1123    if (ret < 0) {
1124        goto out;
1125    }
1126
1127    ret = qed_aio_write_main(acb);
1128    if (ret < 0) {
1129        goto out;
1130    }
1131
1132    if (s->bs->backing) {
1133        /*
1134         * Flush new data clusters before updating the L2 table
1135         *
1136         * This flush is necessary when a backing file is in use.  A crash
1137         * during an allocating write could result in empty clusters in the
1138         * image.  If the write only touched a subregion of the cluster,
1139         * then backing image sectors have been lost in the untouched
1140         * region.  The solution is to flush after writing a new data
1141         * cluster and before updating the L2 table.
1142         */
1143        ret = bdrv_co_flush(s->bs->file->bs);
1144    }
1145
1146out:
1147    qemu_co_mutex_lock(&s->table_lock);
1148    return ret;
1149}
1150
1151/**
1152 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1153 */
1154static bool qed_should_set_need_check(BDRVQEDState *s)
1155{
1156    /* The flush before L2 update path ensures consistency */
1157    if (s->bs->backing) {
1158        return false;
1159    }
1160
1161    return !(s->header.features & QED_F_NEED_CHECK);
1162}
1163
1164/**
1165 * Write new data cluster
1166 *
1167 * @acb:        Write request
1168 * @len:        Length in bytes
1169 *
1170 * This path is taken when writing to previously unallocated clusters.
1171 *
1172 * Called with table_lock held.
1173 */
1174static int coroutine_fn qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1175{
1176    BDRVQEDState *s = acb_to_s(acb);
1177    int ret;
1178
1179    /* Cancel timer when the first allocating request comes in */
1180    if (s->allocating_acb == NULL) {
1181        qed_cancel_need_check_timer(s);
1182    }
1183
1184    /* Freeze this request if another allocating write is in progress */
1185    if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1186        if (s->allocating_acb != NULL) {
1187            qemu_co_queue_wait(&s->allocating_write_reqs, &s->table_lock);
1188            assert(s->allocating_acb == NULL);
1189        }
1190        s->allocating_acb = acb;
1191        return -EAGAIN; /* start over with looking up table entries */
1192    }
1193
1194    acb->cur_nclusters = qed_bytes_to_clusters(s,
1195            qed_offset_into_cluster(s, acb->cur_pos) + len);
1196    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1197
1198    if (acb->flags & QED_AIOCB_ZERO) {
1199        /* Skip ahead if the clusters are already zero */
1200        if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1201            return 0;
1202        }
1203        acb->cur_cluster = 1;
1204    } else {
1205        acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1206    }
1207
1208    if (qed_should_set_need_check(s)) {
1209        s->header.features |= QED_F_NEED_CHECK;
1210        ret = qed_write_header(s);
1211        if (ret < 0) {
1212            return ret;
1213        }
1214    }
1215
1216    if (!(acb->flags & QED_AIOCB_ZERO)) {
1217        ret = qed_aio_write_cow(acb);
1218        if (ret < 0) {
1219            return ret;
1220        }
1221    }
1222
1223    return qed_aio_write_l2_update(acb, acb->cur_cluster);
1224}
1225
1226/**
1227 * Write data cluster in place
1228 *
1229 * @acb:        Write request
1230 * @offset:     Cluster offset in bytes
1231 * @len:        Length in bytes
1232 *
1233 * This path is taken when writing to already allocated clusters.
1234 *
1235 * Called with table_lock held.
1236 */
1237static int coroutine_fn qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset,
1238                                              size_t len)
1239{
1240    BDRVQEDState *s = acb_to_s(acb);
1241    int r;
1242
1243    qemu_co_mutex_unlock(&s->table_lock);
1244
1245    /* Allocate buffer for zero writes */
1246    if (acb->flags & QED_AIOCB_ZERO) {
1247        struct iovec *iov = acb->qiov->iov;
1248
1249        if (!iov->iov_base) {
1250            iov->iov_base = qemu_try_blockalign(acb->bs, iov->iov_len);
1251            if (iov->iov_base == NULL) {
1252                r = -ENOMEM;
1253                goto out;
1254            }
1255            memset(iov->iov_base, 0, iov->iov_len);
1256        }
1257    }
1258
1259    /* Calculate the I/O vector */
1260    acb->cur_cluster = offset;
1261    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1262
1263    /* Do the actual write.  */
1264    r = qed_aio_write_main(acb);
1265out:
1266    qemu_co_mutex_lock(&s->table_lock);
1267    return r;
1268}
1269
1270/**
1271 * Write data cluster
1272 *
1273 * @opaque:     Write request
1274 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1275 * @offset:     Cluster offset in bytes
1276 * @len:        Length in bytes
1277 *
1278 * Called with table_lock held.
1279 */
1280static int coroutine_fn qed_aio_write_data(void *opaque, int ret,
1281                                           uint64_t offset, size_t len)
1282{
1283    QEDAIOCB *acb = opaque;
1284
1285    trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1286
1287    acb->find_cluster_ret = ret;
1288
1289    switch (ret) {
1290    case QED_CLUSTER_FOUND:
1291        return qed_aio_write_inplace(acb, offset, len);
1292
1293    case QED_CLUSTER_L2:
1294    case QED_CLUSTER_L1:
1295    case QED_CLUSTER_ZERO:
1296        return qed_aio_write_alloc(acb, len);
1297
1298    default:
1299        g_assert_not_reached();
1300    }
1301}
1302
1303/**
1304 * Read data cluster
1305 *
1306 * @opaque:     Read request
1307 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1308 * @offset:     Cluster offset in bytes
1309 * @len:        Length in bytes
1310 *
1311 * Called with table_lock held.
1312 */
1313static int coroutine_fn qed_aio_read_data(void *opaque, int ret,
1314                                          uint64_t offset, size_t len)
1315{
1316    QEDAIOCB *acb = opaque;
1317    BDRVQEDState *s = acb_to_s(acb);
1318    BlockDriverState *bs = acb->bs;
1319    int r;
1320
1321    qemu_co_mutex_unlock(&s->table_lock);
1322
1323    /* Adjust offset into cluster */
1324    offset += qed_offset_into_cluster(s, acb->cur_pos);
1325
1326    trace_qed_aio_read_data(s, acb, ret, offset, len);
1327
1328    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1329
1330    /* Handle zero cluster and backing file reads, otherwise read
1331     * data cluster directly.
1332     */
1333    if (ret == QED_CLUSTER_ZERO) {
1334        qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1335        r = 0;
1336    } else if (ret != QED_CLUSTER_FOUND) {
1337        r = qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1338                                  &acb->backing_qiov);
1339    } else {
1340        BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1341        r = bdrv_co_preadv(bs->file, offset, acb->cur_qiov.size,
1342                           &acb->cur_qiov, 0);
1343    }
1344
1345    qemu_co_mutex_lock(&s->table_lock);
1346    return r;
1347}
1348
1349/**
1350 * Begin next I/O or complete the request
1351 */
1352static int coroutine_fn qed_aio_next_io(QEDAIOCB *acb)
1353{
1354    BDRVQEDState *s = acb_to_s(acb);
1355    uint64_t offset;
1356    size_t len;
1357    int ret;
1358
1359    qemu_co_mutex_lock(&s->table_lock);
1360    while (1) {
1361        trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1362
1363        if (acb->backing_qiov) {
1364            qemu_iovec_destroy(acb->backing_qiov);
1365            g_free(acb->backing_qiov);
1366            acb->backing_qiov = NULL;
1367        }
1368
1369        acb->qiov_offset += acb->cur_qiov.size;
1370        acb->cur_pos += acb->cur_qiov.size;
1371        qemu_iovec_reset(&acb->cur_qiov);
1372
1373        /* Complete request */
1374        if (acb->cur_pos >= acb->end_pos) {
1375            ret = 0;
1376            break;
1377        }
1378
1379        /* Find next cluster and start I/O */
1380        len = acb->end_pos - acb->cur_pos;
1381        ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1382        if (ret < 0) {
1383            break;
1384        }
1385
1386        if (acb->flags & QED_AIOCB_WRITE) {
1387            ret = qed_aio_write_data(acb, ret, offset, len);
1388        } else {
1389            ret = qed_aio_read_data(acb, ret, offset, len);
1390        }
1391
1392        if (ret < 0 && ret != -EAGAIN) {
1393            break;
1394        }
1395    }
1396
1397    trace_qed_aio_complete(s, acb, ret);
1398    qed_aio_complete(acb);
1399    qemu_co_mutex_unlock(&s->table_lock);
1400    return ret;
1401}
1402
1403static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1404                                       QEMUIOVector *qiov, int nb_sectors,
1405                                       int flags)
1406{
1407    QEDAIOCB acb = {
1408        .bs         = bs,
1409        .cur_pos    = (uint64_t) sector_num * BDRV_SECTOR_SIZE,
1410        .end_pos    = (sector_num + nb_sectors) * BDRV_SECTOR_SIZE,
1411        .qiov       = qiov,
1412        .flags      = flags,
1413    };
1414    qemu_iovec_init(&acb.cur_qiov, qiov->niov);
1415
1416    trace_qed_aio_setup(bs->opaque, &acb, sector_num, nb_sectors, NULL, flags);
1417
1418    /* Start request */
1419    return qed_aio_next_io(&acb);
1420}
1421
1422static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1423                                          int64_t sector_num, int nb_sectors,
1424                                          QEMUIOVector *qiov)
1425{
1426    return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1427}
1428
1429static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1430                                           int64_t sector_num, int nb_sectors,
1431                                           QEMUIOVector *qiov, int flags)
1432{
1433    assert(!flags);
1434    return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1435}
1436
1437static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1438                                                  int64_t offset,
1439                                                  int bytes,
1440                                                  BdrvRequestFlags flags)
1441{
1442    BDRVQEDState *s = bs->opaque;
1443
1444    /*
1445     * Zero writes start without an I/O buffer.  If a buffer becomes necessary
1446     * then it will be allocated during request processing.
1447     */
1448    QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, NULL, bytes);
1449
1450    /* Fall back if the request is not aligned */
1451    if (qed_offset_into_cluster(s, offset) ||
1452        qed_offset_into_cluster(s, bytes)) {
1453        return -ENOTSUP;
1454    }
1455
1456    return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1457                          bytes >> BDRV_SECTOR_BITS,
1458                          QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1459}
1460
1461static int coroutine_fn bdrv_qed_co_truncate(BlockDriverState *bs,
1462                                             int64_t offset,
1463                                             PreallocMode prealloc,
1464                                             Error **errp)
1465{
1466    BDRVQEDState *s = bs->opaque;
1467    uint64_t old_image_size;
1468    int ret;
1469
1470    if (prealloc != PREALLOC_MODE_OFF) {
1471        error_setg(errp, "Unsupported preallocation mode '%s'",
1472                   PreallocMode_str(prealloc));
1473        return -ENOTSUP;
1474    }
1475
1476    if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1477                                 s->header.table_size)) {
1478        error_setg(errp, "Invalid image size specified");
1479        return -EINVAL;
1480    }
1481
1482    if ((uint64_t)offset < s->header.image_size) {
1483        error_setg(errp, "Shrinking images is currently not supported");
1484        return -ENOTSUP;
1485    }
1486
1487    old_image_size = s->header.image_size;
1488    s->header.image_size = offset;
1489    ret = qed_write_header_sync(s);
1490    if (ret < 0) {
1491        s->header.image_size = old_image_size;
1492        error_setg_errno(errp, -ret, "Failed to update the image size");
1493    }
1494    return ret;
1495}
1496
1497static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1498{
1499    BDRVQEDState *s = bs->opaque;
1500    return s->header.image_size;
1501}
1502
1503static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1504{
1505    BDRVQEDState *s = bs->opaque;
1506
1507    memset(bdi, 0, sizeof(*bdi));
1508    bdi->cluster_size = s->header.cluster_size;
1509    bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1510    bdi->unallocated_blocks_are_zero = true;
1511    return 0;
1512}
1513
1514static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1515                                        const char *backing_file,
1516                                        const char *backing_fmt)
1517{
1518    BDRVQEDState *s = bs->opaque;
1519    QEDHeader new_header, le_header;
1520    void *buffer;
1521    size_t buffer_len, backing_file_len;
1522    int ret;
1523
1524    /* Refuse to set backing filename if unknown compat feature bits are
1525     * active.  If the image uses an unknown compat feature then we may not
1526     * know the layout of data following the header structure and cannot safely
1527     * add a new string.
1528     */
1529    if (backing_file && (s->header.compat_features &
1530                         ~QED_COMPAT_FEATURE_MASK)) {
1531        return -ENOTSUP;
1532    }
1533
1534    memcpy(&new_header, &s->header, sizeof(new_header));
1535
1536    new_header.features &= ~(QED_F_BACKING_FILE |
1537                             QED_F_BACKING_FORMAT_NO_PROBE);
1538
1539    /* Adjust feature flags */
1540    if (backing_file) {
1541        new_header.features |= QED_F_BACKING_FILE;
1542
1543        if (qed_fmt_is_raw(backing_fmt)) {
1544            new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1545        }
1546    }
1547
1548    /* Calculate new header size */
1549    backing_file_len = 0;
1550
1551    if (backing_file) {
1552        backing_file_len = strlen(backing_file);
1553    }
1554
1555    buffer_len = sizeof(new_header);
1556    new_header.backing_filename_offset = buffer_len;
1557    new_header.backing_filename_size = backing_file_len;
1558    buffer_len += backing_file_len;
1559
1560    /* Make sure we can rewrite header without failing */
1561    if (buffer_len > new_header.header_size * new_header.cluster_size) {
1562        return -ENOSPC;
1563    }
1564
1565    /* Prepare new header */
1566    buffer = g_malloc(buffer_len);
1567
1568    qed_header_cpu_to_le(&new_header, &le_header);
1569    memcpy(buffer, &le_header, sizeof(le_header));
1570    buffer_len = sizeof(le_header);
1571
1572    if (backing_file) {
1573        memcpy(buffer + buffer_len, backing_file, backing_file_len);
1574        buffer_len += backing_file_len;
1575    }
1576
1577    /* Write new header */
1578    ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1579    g_free(buffer);
1580    if (ret == 0) {
1581        memcpy(&s->header, &new_header, sizeof(new_header));
1582    }
1583    return ret;
1584}
1585
1586static void coroutine_fn bdrv_qed_co_invalidate_cache(BlockDriverState *bs,
1587                                                      Error **errp)
1588{
1589    BDRVQEDState *s = bs->opaque;
1590    Error *local_err = NULL;
1591    int ret;
1592
1593    bdrv_qed_close(bs);
1594
1595    bdrv_qed_init_state(bs);
1596    qemu_co_mutex_lock(&s->table_lock);
1597    ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1598    qemu_co_mutex_unlock(&s->table_lock);
1599    if (local_err) {
1600        error_propagate_prepend(errp, local_err,
1601                                "Could not reopen qed layer: ");
1602        return;
1603    } else if (ret < 0) {
1604        error_setg_errno(errp, -ret, "Could not reopen qed layer");
1605        return;
1606    }
1607}
1608
1609static int coroutine_fn bdrv_qed_co_check(BlockDriverState *bs,
1610                                          BdrvCheckResult *result,
1611                                          BdrvCheckMode fix)
1612{
1613    BDRVQEDState *s = bs->opaque;
1614    int ret;
1615
1616    qemu_co_mutex_lock(&s->table_lock);
1617    ret = qed_check(s, result, !!fix);
1618    qemu_co_mutex_unlock(&s->table_lock);
1619
1620    return ret;
1621}
1622
1623static QemuOptsList qed_create_opts = {
1624    .name = "qed-create-opts",
1625    .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1626    .desc = {
1627        {
1628            .name = BLOCK_OPT_SIZE,
1629            .type = QEMU_OPT_SIZE,
1630            .help = "Virtual disk size"
1631        },
1632        {
1633            .name = BLOCK_OPT_BACKING_FILE,
1634            .type = QEMU_OPT_STRING,
1635            .help = "File name of a base image"
1636        },
1637        {
1638            .name = BLOCK_OPT_BACKING_FMT,
1639            .type = QEMU_OPT_STRING,
1640            .help = "Image format of the base image"
1641        },
1642        {
1643            .name = BLOCK_OPT_CLUSTER_SIZE,
1644            .type = QEMU_OPT_SIZE,
1645            .help = "Cluster size (in bytes)",
1646            .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1647        },
1648        {
1649            .name = BLOCK_OPT_TABLE_SIZE,
1650            .type = QEMU_OPT_SIZE,
1651            .help = "L1/L2 table size (in clusters)"
1652        },
1653        { /* end of list */ }
1654    }
1655};
1656
1657static BlockDriver bdrv_qed = {
1658    .format_name              = "qed",
1659    .instance_size            = sizeof(BDRVQEDState),
1660    .create_opts              = &qed_create_opts,
1661    .supports_backing         = true,
1662
1663    .bdrv_probe               = bdrv_qed_probe,
1664    .bdrv_open                = bdrv_qed_open,
1665    .bdrv_close               = bdrv_qed_close,
1666    .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1667    .bdrv_child_perm          = bdrv_format_default_perms,
1668    .bdrv_co_create           = bdrv_qed_co_create,
1669    .bdrv_co_create_opts      = bdrv_qed_co_create_opts,
1670    .bdrv_has_zero_init       = bdrv_has_zero_init_1,
1671    .bdrv_co_block_status     = bdrv_qed_co_block_status,
1672    .bdrv_co_readv            = bdrv_qed_co_readv,
1673    .bdrv_co_writev           = bdrv_qed_co_writev,
1674    .bdrv_co_pwrite_zeroes    = bdrv_qed_co_pwrite_zeroes,
1675    .bdrv_co_truncate         = bdrv_qed_co_truncate,
1676    .bdrv_getlength           = bdrv_qed_getlength,
1677    .bdrv_get_info            = bdrv_qed_get_info,
1678    .bdrv_refresh_limits      = bdrv_qed_refresh_limits,
1679    .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1680    .bdrv_co_invalidate_cache = bdrv_qed_co_invalidate_cache,
1681    .bdrv_co_check            = bdrv_qed_co_check,
1682    .bdrv_detach_aio_context  = bdrv_qed_detach_aio_context,
1683    .bdrv_attach_aio_context  = bdrv_qed_attach_aio_context,
1684    .bdrv_co_drain_begin      = bdrv_qed_co_drain_begin,
1685};
1686
1687static void bdrv_qed_init(void)
1688{
1689    bdrv_register(&bdrv_qed);
1690}
1691
1692block_init(bdrv_qed_init);
1693