qemu/hw/arm/omap1.c
<<
>>
Prefs
   1/*
   2 * TI OMAP processors emulation.
   3 *
   4 * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as
   8 * published by the Free Software Foundation; either version 2 or
   9 * (at your option) version 3 of the License.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along
  17 * with this program; if not, see <http://www.gnu.org/licenses/>.
  18 */
  19
  20#include "qemu/osdep.h"
  21#include "qemu/error-report.h"
  22#include "qapi/error.h"
  23#include "qemu-common.h"
  24#include "cpu.h"
  25#include "hw/boards.h"
  26#include "hw/hw.h"
  27#include "hw/arm/boot.h"
  28#include "hw/arm/omap.h"
  29#include "sysemu/sysemu.h"
  30#include "hw/arm/soc_dma.h"
  31#include "sysemu/qtest.h"
  32#include "qemu/range.h"
  33#include "hw/sysbus.h"
  34#include "qemu/cutils.h"
  35#include "qemu/bcd.h"
  36
  37static inline void omap_log_badwidth(const char *funcname, hwaddr addr, int sz)
  38{
  39    qemu_log_mask(LOG_GUEST_ERROR, "%s: %d-bit register %#08" HWADDR_PRIx "\n",
  40                  funcname, 8 * sz, addr);
  41}
  42
  43/* Should signal the TCMI/GPMC */
  44uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
  45{
  46    uint8_t ret;
  47
  48    omap_log_badwidth(__func__, addr, 1);
  49    cpu_physical_memory_read(addr, &ret, 1);
  50    return ret;
  51}
  52
  53void omap_badwidth_write8(void *opaque, hwaddr addr,
  54                uint32_t value)
  55{
  56    uint8_t val8 = value;
  57
  58    omap_log_badwidth(__func__, addr, 1);
  59    cpu_physical_memory_write(addr, &val8, 1);
  60}
  61
  62uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
  63{
  64    uint16_t ret;
  65
  66    omap_log_badwidth(__func__, addr, 2);
  67    cpu_physical_memory_read(addr, &ret, 2);
  68    return ret;
  69}
  70
  71void omap_badwidth_write16(void *opaque, hwaddr addr,
  72                uint32_t value)
  73{
  74    uint16_t val16 = value;
  75
  76    omap_log_badwidth(__func__, addr, 2);
  77    cpu_physical_memory_write(addr, &val16, 2);
  78}
  79
  80uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
  81{
  82    uint32_t ret;
  83
  84    omap_log_badwidth(__func__, addr, 4);
  85    cpu_physical_memory_read(addr, &ret, 4);
  86    return ret;
  87}
  88
  89void omap_badwidth_write32(void *opaque, hwaddr addr,
  90                uint32_t value)
  91{
  92    omap_log_badwidth(__func__, addr, 4);
  93    cpu_physical_memory_write(addr, &value, 4);
  94}
  95
  96/* MPU OS timers */
  97struct omap_mpu_timer_s {
  98    MemoryRegion iomem;
  99    qemu_irq irq;
 100    omap_clk clk;
 101    uint32_t val;
 102    int64_t time;
 103    QEMUTimer *timer;
 104    QEMUBH *tick;
 105    int64_t rate;
 106    int it_ena;
 107
 108    int enable;
 109    int ptv;
 110    int ar;
 111    int st;
 112    uint32_t reset_val;
 113};
 114
 115static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
 116{
 117    uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
 118
 119    if (timer->st && timer->enable && timer->rate)
 120        return timer->val - muldiv64(distance >> (timer->ptv + 1),
 121                                     timer->rate, NANOSECONDS_PER_SECOND);
 122    else
 123        return timer->val;
 124}
 125
 126static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
 127{
 128    timer->val = omap_timer_read(timer);
 129    timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 130}
 131
 132static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
 133{
 134    int64_t expires;
 135
 136    if (timer->enable && timer->st && timer->rate) {
 137        timer->val = timer->reset_val;  /* Should skip this on clk enable */
 138        expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
 139                           NANOSECONDS_PER_SECOND, timer->rate);
 140
 141        /* If timer expiry would be sooner than in about 1 ms and
 142         * auto-reload isn't set, then fire immediately.  This is a hack
 143         * to make systems like PalmOS run in acceptable time.  PalmOS
 144         * sets the interval to a very low value and polls the status bit
 145         * in a busy loop when it wants to sleep just a couple of CPU
 146         * ticks.  */
 147        if (expires > (NANOSECONDS_PER_SECOND >> 10) || timer->ar) {
 148            timer_mod(timer->timer, timer->time + expires);
 149        } else {
 150            qemu_bh_schedule(timer->tick);
 151        }
 152    } else
 153        timer_del(timer->timer);
 154}
 155
 156static void omap_timer_fire(void *opaque)
 157{
 158    struct omap_mpu_timer_s *timer = opaque;
 159
 160    if (!timer->ar) {
 161        timer->val = 0;
 162        timer->st = 0;
 163    }
 164
 165    if (timer->it_ena)
 166        /* Edge-triggered irq */
 167        qemu_irq_pulse(timer->irq);
 168}
 169
 170static void omap_timer_tick(void *opaque)
 171{
 172    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
 173
 174    omap_timer_sync(timer);
 175    omap_timer_fire(timer);
 176    omap_timer_update(timer);
 177}
 178
 179static void omap_timer_clk_update(void *opaque, int line, int on)
 180{
 181    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
 182
 183    omap_timer_sync(timer);
 184    timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
 185    omap_timer_update(timer);
 186}
 187
 188static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
 189{
 190    omap_clk_adduser(timer->clk,
 191                    qemu_allocate_irq(omap_timer_clk_update, timer, 0));
 192    timer->rate = omap_clk_getrate(timer->clk);
 193}
 194
 195static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
 196                                    unsigned size)
 197{
 198    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
 199
 200    if (size != 4) {
 201        return omap_badwidth_read32(opaque, addr);
 202    }
 203
 204    switch (addr) {
 205    case 0x00:  /* CNTL_TIMER */
 206        return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
 207
 208    case 0x04:  /* LOAD_TIM */
 209        break;
 210
 211    case 0x08:  /* READ_TIM */
 212        return omap_timer_read(s);
 213    }
 214
 215    OMAP_BAD_REG(addr);
 216    return 0;
 217}
 218
 219static void omap_mpu_timer_write(void *opaque, hwaddr addr,
 220                                 uint64_t value, unsigned size)
 221{
 222    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
 223
 224    if (size != 4) {
 225        omap_badwidth_write32(opaque, addr, value);
 226        return;
 227    }
 228
 229    switch (addr) {
 230    case 0x00:  /* CNTL_TIMER */
 231        omap_timer_sync(s);
 232        s->enable = (value >> 5) & 1;
 233        s->ptv = (value >> 2) & 7;
 234        s->ar = (value >> 1) & 1;
 235        s->st = value & 1;
 236        omap_timer_update(s);
 237        return;
 238
 239    case 0x04:  /* LOAD_TIM */
 240        s->reset_val = value;
 241        return;
 242
 243    case 0x08:  /* READ_TIM */
 244        OMAP_RO_REG(addr);
 245        break;
 246
 247    default:
 248        OMAP_BAD_REG(addr);
 249    }
 250}
 251
 252static const MemoryRegionOps omap_mpu_timer_ops = {
 253    .read = omap_mpu_timer_read,
 254    .write = omap_mpu_timer_write,
 255    .endianness = DEVICE_LITTLE_ENDIAN,
 256};
 257
 258static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
 259{
 260    timer_del(s->timer);
 261    s->enable = 0;
 262    s->reset_val = 31337;
 263    s->val = 0;
 264    s->ptv = 0;
 265    s->ar = 0;
 266    s->st = 0;
 267    s->it_ena = 1;
 268}
 269
 270static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
 271                hwaddr base,
 272                qemu_irq irq, omap_clk clk)
 273{
 274    struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
 275
 276    s->irq = irq;
 277    s->clk = clk;
 278    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
 279    s->tick = qemu_bh_new(omap_timer_fire, s);
 280    omap_mpu_timer_reset(s);
 281    omap_timer_clk_setup(s);
 282
 283    memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
 284                          "omap-mpu-timer", 0x100);
 285
 286    memory_region_add_subregion(system_memory, base, &s->iomem);
 287
 288    return s;
 289}
 290
 291/* Watchdog timer */
 292struct omap_watchdog_timer_s {
 293    struct omap_mpu_timer_s timer;
 294    MemoryRegion iomem;
 295    uint8_t last_wr;
 296    int mode;
 297    int free;
 298    int reset;
 299};
 300
 301static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
 302                                   unsigned size)
 303{
 304    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
 305
 306    if (size != 2) {
 307        return omap_badwidth_read16(opaque, addr);
 308    }
 309
 310    switch (addr) {
 311    case 0x00:  /* CNTL_TIMER */
 312        return (s->timer.ptv << 9) | (s->timer.ar << 8) |
 313                (s->timer.st << 7) | (s->free << 1);
 314
 315    case 0x04:  /* READ_TIMER */
 316        return omap_timer_read(&s->timer);
 317
 318    case 0x08:  /* TIMER_MODE */
 319        return s->mode << 15;
 320    }
 321
 322    OMAP_BAD_REG(addr);
 323    return 0;
 324}
 325
 326static void omap_wd_timer_write(void *opaque, hwaddr addr,
 327                                uint64_t value, unsigned size)
 328{
 329    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
 330
 331    if (size != 2) {
 332        omap_badwidth_write16(opaque, addr, value);
 333        return;
 334    }
 335
 336    switch (addr) {
 337    case 0x00:  /* CNTL_TIMER */
 338        omap_timer_sync(&s->timer);
 339        s->timer.ptv = (value >> 9) & 7;
 340        s->timer.ar = (value >> 8) & 1;
 341        s->timer.st = (value >> 7) & 1;
 342        s->free = (value >> 1) & 1;
 343        omap_timer_update(&s->timer);
 344        break;
 345
 346    case 0x04:  /* LOAD_TIMER */
 347        s->timer.reset_val = value & 0xffff;
 348        break;
 349
 350    case 0x08:  /* TIMER_MODE */
 351        if (!s->mode && ((value >> 15) & 1))
 352            omap_clk_get(s->timer.clk);
 353        s->mode |= (value >> 15) & 1;
 354        if (s->last_wr == 0xf5) {
 355            if ((value & 0xff) == 0xa0) {
 356                if (s->mode) {
 357                    s->mode = 0;
 358                    omap_clk_put(s->timer.clk);
 359                }
 360            } else {
 361                /* XXX: on T|E hardware somehow this has no effect,
 362                 * on Zire 71 it works as specified.  */
 363                s->reset = 1;
 364                qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 365            }
 366        }
 367        s->last_wr = value & 0xff;
 368        break;
 369
 370    default:
 371        OMAP_BAD_REG(addr);
 372    }
 373}
 374
 375static const MemoryRegionOps omap_wd_timer_ops = {
 376    .read = omap_wd_timer_read,
 377    .write = omap_wd_timer_write,
 378    .endianness = DEVICE_NATIVE_ENDIAN,
 379};
 380
 381static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
 382{
 383    timer_del(s->timer.timer);
 384    if (!s->mode)
 385        omap_clk_get(s->timer.clk);
 386    s->mode = 1;
 387    s->free = 1;
 388    s->reset = 0;
 389    s->timer.enable = 1;
 390    s->timer.it_ena = 1;
 391    s->timer.reset_val = 0xffff;
 392    s->timer.val = 0;
 393    s->timer.st = 0;
 394    s->timer.ptv = 0;
 395    s->timer.ar = 0;
 396    omap_timer_update(&s->timer);
 397}
 398
 399static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
 400                hwaddr base,
 401                qemu_irq irq, omap_clk clk)
 402{
 403    struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
 404
 405    s->timer.irq = irq;
 406    s->timer.clk = clk;
 407    s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
 408    omap_wd_timer_reset(s);
 409    omap_timer_clk_setup(&s->timer);
 410
 411    memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
 412                          "omap-wd-timer", 0x100);
 413    memory_region_add_subregion(memory, base, &s->iomem);
 414
 415    return s;
 416}
 417
 418/* 32-kHz timer */
 419struct omap_32khz_timer_s {
 420    struct omap_mpu_timer_s timer;
 421    MemoryRegion iomem;
 422};
 423
 424static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
 425                                   unsigned size)
 426{
 427    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
 428    int offset = addr & OMAP_MPUI_REG_MASK;
 429
 430    if (size != 4) {
 431        return omap_badwidth_read32(opaque, addr);
 432    }
 433
 434    switch (offset) {
 435    case 0x00:  /* TVR */
 436        return s->timer.reset_val;
 437
 438    case 0x04:  /* TCR */
 439        return omap_timer_read(&s->timer);
 440
 441    case 0x08:  /* CR */
 442        return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
 443
 444    default:
 445        break;
 446    }
 447    OMAP_BAD_REG(addr);
 448    return 0;
 449}
 450
 451static void omap_os_timer_write(void *opaque, hwaddr addr,
 452                                uint64_t value, unsigned size)
 453{
 454    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
 455    int offset = addr & OMAP_MPUI_REG_MASK;
 456
 457    if (size != 4) {
 458        omap_badwidth_write32(opaque, addr, value);
 459        return;
 460    }
 461
 462    switch (offset) {
 463    case 0x00:  /* TVR */
 464        s->timer.reset_val = value & 0x00ffffff;
 465        break;
 466
 467    case 0x04:  /* TCR */
 468        OMAP_RO_REG(addr);
 469        break;
 470
 471    case 0x08:  /* CR */
 472        s->timer.ar = (value >> 3) & 1;
 473        s->timer.it_ena = (value >> 2) & 1;
 474        if (s->timer.st != (value & 1) || (value & 2)) {
 475            omap_timer_sync(&s->timer);
 476            s->timer.enable = value & 1;
 477            s->timer.st = value & 1;
 478            omap_timer_update(&s->timer);
 479        }
 480        break;
 481
 482    default:
 483        OMAP_BAD_REG(addr);
 484    }
 485}
 486
 487static const MemoryRegionOps omap_os_timer_ops = {
 488    .read = omap_os_timer_read,
 489    .write = omap_os_timer_write,
 490    .endianness = DEVICE_NATIVE_ENDIAN,
 491};
 492
 493static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
 494{
 495    timer_del(s->timer.timer);
 496    s->timer.enable = 0;
 497    s->timer.it_ena = 0;
 498    s->timer.reset_val = 0x00ffffff;
 499    s->timer.val = 0;
 500    s->timer.st = 0;
 501    s->timer.ptv = 0;
 502    s->timer.ar = 1;
 503}
 504
 505static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
 506                hwaddr base,
 507                qemu_irq irq, omap_clk clk)
 508{
 509    struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
 510
 511    s->timer.irq = irq;
 512    s->timer.clk = clk;
 513    s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
 514    omap_os_timer_reset(s);
 515    omap_timer_clk_setup(&s->timer);
 516
 517    memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
 518                          "omap-os-timer", 0x800);
 519    memory_region_add_subregion(memory, base, &s->iomem);
 520
 521    return s;
 522}
 523
 524/* Ultra Low-Power Device Module */
 525static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
 526                                  unsigned size)
 527{
 528    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 529    uint16_t ret;
 530
 531    if (size != 2) {
 532        return omap_badwidth_read16(opaque, addr);
 533    }
 534
 535    switch (addr) {
 536    case 0x14:  /* IT_STATUS */
 537        ret = s->ulpd_pm_regs[addr >> 2];
 538        s->ulpd_pm_regs[addr >> 2] = 0;
 539        qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
 540        return ret;
 541
 542    case 0x18:  /* Reserved */
 543    case 0x1c:  /* Reserved */
 544    case 0x20:  /* Reserved */
 545    case 0x28:  /* Reserved */
 546    case 0x2c:  /* Reserved */
 547        OMAP_BAD_REG(addr);
 548        /* fall through */
 549    case 0x00:  /* COUNTER_32_LSB */
 550    case 0x04:  /* COUNTER_32_MSB */
 551    case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
 552    case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
 553    case 0x10:  /* GAUGING_CTRL */
 554    case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
 555    case 0x30:  /* CLOCK_CTRL */
 556    case 0x34:  /* SOFT_REQ */
 557    case 0x38:  /* COUNTER_32_FIQ */
 558    case 0x3c:  /* DPLL_CTRL */
 559    case 0x40:  /* STATUS_REQ */
 560        /* XXX: check clk::usecount state for every clock */
 561    case 0x48:  /* LOCL_TIME */
 562    case 0x4c:  /* APLL_CTRL */
 563    case 0x50:  /* POWER_CTRL */
 564        return s->ulpd_pm_regs[addr >> 2];
 565    }
 566
 567    OMAP_BAD_REG(addr);
 568    return 0;
 569}
 570
 571static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
 572                uint16_t diff, uint16_t value)
 573{
 574    if (diff & (1 << 4))                                /* USB_MCLK_EN */
 575        omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
 576    if (diff & (1 << 5))                                /* DIS_USB_PVCI_CLK */
 577        omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
 578}
 579
 580static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
 581                uint16_t diff, uint16_t value)
 582{
 583    if (diff & (1 << 0))                                /* SOFT_DPLL_REQ */
 584        omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
 585    if (diff & (1 << 1))                                /* SOFT_COM_REQ */
 586        omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
 587    if (diff & (1 << 2))                                /* SOFT_SDW_REQ */
 588        omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
 589    if (diff & (1 << 3))                                /* SOFT_USB_REQ */
 590        omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
 591}
 592
 593static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
 594                               uint64_t value, unsigned size)
 595{
 596    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 597    int64_t now, ticks;
 598    int div, mult;
 599    static const int bypass_div[4] = { 1, 2, 4, 4 };
 600    uint16_t diff;
 601
 602    if (size != 2) {
 603        omap_badwidth_write16(opaque, addr, value);
 604        return;
 605    }
 606
 607    switch (addr) {
 608    case 0x00:  /* COUNTER_32_LSB */
 609    case 0x04:  /* COUNTER_32_MSB */
 610    case 0x08:  /* COUNTER_HIGH_FREQ_LSB */
 611    case 0x0c:  /* COUNTER_HIGH_FREQ_MSB */
 612    case 0x14:  /* IT_STATUS */
 613    case 0x40:  /* STATUS_REQ */
 614        OMAP_RO_REG(addr);
 615        break;
 616
 617    case 0x10:  /* GAUGING_CTRL */
 618        /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
 619        if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
 620            now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 621
 622            if (value & 1)
 623                s->ulpd_gauge_start = now;
 624            else {
 625                now -= s->ulpd_gauge_start;
 626
 627                /* 32-kHz ticks */
 628                ticks = muldiv64(now, 32768, NANOSECONDS_PER_SECOND);
 629                s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
 630                s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
 631                if (ticks >> 32)        /* OVERFLOW_32K */
 632                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
 633
 634                /* High frequency ticks */
 635                ticks = muldiv64(now, 12000000, NANOSECONDS_PER_SECOND);
 636                s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
 637                s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
 638                if (ticks >> 32)        /* OVERFLOW_HI_FREQ */
 639                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
 640
 641                s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;   /* IT_GAUGING */
 642                qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
 643            }
 644        }
 645        s->ulpd_pm_regs[addr >> 2] = value;
 646        break;
 647
 648    case 0x18:  /* Reserved */
 649    case 0x1c:  /* Reserved */
 650    case 0x20:  /* Reserved */
 651    case 0x28:  /* Reserved */
 652    case 0x2c:  /* Reserved */
 653        OMAP_BAD_REG(addr);
 654        /* fall through */
 655    case 0x24:  /* SETUP_ANALOG_CELL3_ULPD1 */
 656    case 0x38:  /* COUNTER_32_FIQ */
 657    case 0x48:  /* LOCL_TIME */
 658    case 0x50:  /* POWER_CTRL */
 659        s->ulpd_pm_regs[addr >> 2] = value;
 660        break;
 661
 662    case 0x30:  /* CLOCK_CTRL */
 663        diff = s->ulpd_pm_regs[addr >> 2] ^ value;
 664        s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
 665        omap_ulpd_clk_update(s, diff, value);
 666        break;
 667
 668    case 0x34:  /* SOFT_REQ */
 669        diff = s->ulpd_pm_regs[addr >> 2] ^ value;
 670        s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
 671        omap_ulpd_req_update(s, diff, value);
 672        break;
 673
 674    case 0x3c:  /* DPLL_CTRL */
 675        /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
 676         * omitted altogether, probably a typo.  */
 677        /* This register has identical semantics with DPLL(1:3) control
 678         * registers, see omap_dpll_write() */
 679        diff = s->ulpd_pm_regs[addr >> 2] & value;
 680        s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
 681        if (diff & (0x3ff << 2)) {
 682            if (value & (1 << 4)) {                     /* PLL_ENABLE */
 683                div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
 684                mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
 685            } else {
 686                div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
 687                mult = 1;
 688            }
 689            omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
 690        }
 691
 692        /* Enter the desired mode.  */
 693        s->ulpd_pm_regs[addr >> 2] =
 694                (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
 695                ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
 696
 697        /* Act as if the lock is restored.  */
 698        s->ulpd_pm_regs[addr >> 2] |= 2;
 699        break;
 700
 701    case 0x4c:  /* APLL_CTRL */
 702        diff = s->ulpd_pm_regs[addr >> 2] & value;
 703        s->ulpd_pm_regs[addr >> 2] = value & 0xf;
 704        if (diff & (1 << 0))                            /* APLL_NDPLL_SWITCH */
 705            omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
 706                                    (value & (1 << 0)) ? "apll" : "dpll4"));
 707        break;
 708
 709    default:
 710        OMAP_BAD_REG(addr);
 711    }
 712}
 713
 714static const MemoryRegionOps omap_ulpd_pm_ops = {
 715    .read = omap_ulpd_pm_read,
 716    .write = omap_ulpd_pm_write,
 717    .endianness = DEVICE_NATIVE_ENDIAN,
 718};
 719
 720static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
 721{
 722    mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
 723    mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
 724    mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
 725    mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
 726    mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
 727    mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
 728    mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
 729    mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
 730    mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
 731    mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
 732    mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
 733    omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
 734    mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
 735    omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
 736    mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
 737    mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
 738    mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
 739    mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
 740    mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
 741    mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
 742    mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
 743    omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
 744    omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
 745}
 746
 747static void omap_ulpd_pm_init(MemoryRegion *system_memory,
 748                hwaddr base,
 749                struct omap_mpu_state_s *mpu)
 750{
 751    memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
 752                          "omap-ulpd-pm", 0x800);
 753    memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
 754    omap_ulpd_pm_reset(mpu);
 755}
 756
 757/* OMAP Pin Configuration */
 758static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
 759                                  unsigned size)
 760{
 761    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 762
 763    if (size != 4) {
 764        return omap_badwidth_read32(opaque, addr);
 765    }
 766
 767    switch (addr) {
 768    case 0x00:  /* FUNC_MUX_CTRL_0 */
 769    case 0x04:  /* FUNC_MUX_CTRL_1 */
 770    case 0x08:  /* FUNC_MUX_CTRL_2 */
 771        return s->func_mux_ctrl[addr >> 2];
 772
 773    case 0x0c:  /* COMP_MODE_CTRL_0 */
 774        return s->comp_mode_ctrl[0];
 775
 776    case 0x10:  /* FUNC_MUX_CTRL_3 */
 777    case 0x14:  /* FUNC_MUX_CTRL_4 */
 778    case 0x18:  /* FUNC_MUX_CTRL_5 */
 779    case 0x1c:  /* FUNC_MUX_CTRL_6 */
 780    case 0x20:  /* FUNC_MUX_CTRL_7 */
 781    case 0x24:  /* FUNC_MUX_CTRL_8 */
 782    case 0x28:  /* FUNC_MUX_CTRL_9 */
 783    case 0x2c:  /* FUNC_MUX_CTRL_A */
 784    case 0x30:  /* FUNC_MUX_CTRL_B */
 785    case 0x34:  /* FUNC_MUX_CTRL_C */
 786    case 0x38:  /* FUNC_MUX_CTRL_D */
 787        return s->func_mux_ctrl[(addr >> 2) - 1];
 788
 789    case 0x40:  /* PULL_DWN_CTRL_0 */
 790    case 0x44:  /* PULL_DWN_CTRL_1 */
 791    case 0x48:  /* PULL_DWN_CTRL_2 */
 792    case 0x4c:  /* PULL_DWN_CTRL_3 */
 793        return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
 794
 795    case 0x50:  /* GATE_INH_CTRL_0 */
 796        return s->gate_inh_ctrl[0];
 797
 798    case 0x60:  /* VOLTAGE_CTRL_0 */
 799        return s->voltage_ctrl[0];
 800
 801    case 0x70:  /* TEST_DBG_CTRL_0 */
 802        return s->test_dbg_ctrl[0];
 803
 804    case 0x80:  /* MOD_CONF_CTRL_0 */
 805        return s->mod_conf_ctrl[0];
 806    }
 807
 808    OMAP_BAD_REG(addr);
 809    return 0;
 810}
 811
 812static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
 813                uint32_t diff, uint32_t value)
 814{
 815    if (s->compat1509) {
 816        if (diff & (1 << 9))                    /* BLUETOOTH */
 817            omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
 818                            (~value >> 9) & 1);
 819        if (diff & (1 << 7))                    /* USB.CLKO */
 820            omap_clk_onoff(omap_findclk(s, "usb.clko"),
 821                            (value >> 7) & 1);
 822    }
 823}
 824
 825static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
 826                uint32_t diff, uint32_t value)
 827{
 828    if (s->compat1509) {
 829        if (diff & (1U << 31)) {
 830            /* MCBSP3_CLK_HIZ_DI */
 831            omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
 832        }
 833        if (diff & (1 << 1)) {
 834            /* CLK32K */
 835            omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
 836        }
 837    }
 838}
 839
 840static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
 841                uint32_t diff, uint32_t value)
 842{
 843    if (diff & (1U << 31)) {
 844        /* CONF_MOD_UART3_CLK_MODE_R */
 845        omap_clk_reparent(omap_findclk(s, "uart3_ck"),
 846                          omap_findclk(s, ((value >> 31) & 1) ?
 847                                       "ck_48m" : "armper_ck"));
 848    }
 849    if (diff & (1 << 30))                       /* CONF_MOD_UART2_CLK_MODE_R */
 850         omap_clk_reparent(omap_findclk(s, "uart2_ck"),
 851                         omap_findclk(s, ((value >> 30) & 1) ?
 852                                 "ck_48m" : "armper_ck"));
 853    if (diff & (1 << 29))                       /* CONF_MOD_UART1_CLK_MODE_R */
 854         omap_clk_reparent(omap_findclk(s, "uart1_ck"),
 855                         omap_findclk(s, ((value >> 29) & 1) ?
 856                                 "ck_48m" : "armper_ck"));
 857    if (diff & (1 << 23))                       /* CONF_MOD_MMC_SD_CLK_REQ_R */
 858         omap_clk_reparent(omap_findclk(s, "mmc_ck"),
 859                         omap_findclk(s, ((value >> 23) & 1) ?
 860                                 "ck_48m" : "armper_ck"));
 861    if (diff & (1 << 12))                       /* CONF_MOD_COM_MCLK_12_48_S */
 862         omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
 863                         omap_findclk(s, ((value >> 12) & 1) ?
 864                                 "ck_48m" : "armper_ck"));
 865    if (diff & (1 << 9))                        /* CONF_MOD_USB_HOST_HHC_UHO */
 866         omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
 867}
 868
 869static void omap_pin_cfg_write(void *opaque, hwaddr addr,
 870                               uint64_t value, unsigned size)
 871{
 872    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 873    uint32_t diff;
 874
 875    if (size != 4) {
 876        omap_badwidth_write32(opaque, addr, value);
 877        return;
 878    }
 879
 880    switch (addr) {
 881    case 0x00:  /* FUNC_MUX_CTRL_0 */
 882        diff = s->func_mux_ctrl[addr >> 2] ^ value;
 883        s->func_mux_ctrl[addr >> 2] = value;
 884        omap_pin_funcmux0_update(s, diff, value);
 885        return;
 886
 887    case 0x04:  /* FUNC_MUX_CTRL_1 */
 888        diff = s->func_mux_ctrl[addr >> 2] ^ value;
 889        s->func_mux_ctrl[addr >> 2] = value;
 890        omap_pin_funcmux1_update(s, diff, value);
 891        return;
 892
 893    case 0x08:  /* FUNC_MUX_CTRL_2 */
 894        s->func_mux_ctrl[addr >> 2] = value;
 895        return;
 896
 897    case 0x0c:  /* COMP_MODE_CTRL_0 */
 898        s->comp_mode_ctrl[0] = value;
 899        s->compat1509 = (value != 0x0000eaef);
 900        omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
 901        omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
 902        return;
 903
 904    case 0x10:  /* FUNC_MUX_CTRL_3 */
 905    case 0x14:  /* FUNC_MUX_CTRL_4 */
 906    case 0x18:  /* FUNC_MUX_CTRL_5 */
 907    case 0x1c:  /* FUNC_MUX_CTRL_6 */
 908    case 0x20:  /* FUNC_MUX_CTRL_7 */
 909    case 0x24:  /* FUNC_MUX_CTRL_8 */
 910    case 0x28:  /* FUNC_MUX_CTRL_9 */
 911    case 0x2c:  /* FUNC_MUX_CTRL_A */
 912    case 0x30:  /* FUNC_MUX_CTRL_B */
 913    case 0x34:  /* FUNC_MUX_CTRL_C */
 914    case 0x38:  /* FUNC_MUX_CTRL_D */
 915        s->func_mux_ctrl[(addr >> 2) - 1] = value;
 916        return;
 917
 918    case 0x40:  /* PULL_DWN_CTRL_0 */
 919    case 0x44:  /* PULL_DWN_CTRL_1 */
 920    case 0x48:  /* PULL_DWN_CTRL_2 */
 921    case 0x4c:  /* PULL_DWN_CTRL_3 */
 922        s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
 923        return;
 924
 925    case 0x50:  /* GATE_INH_CTRL_0 */
 926        s->gate_inh_ctrl[0] = value;
 927        return;
 928
 929    case 0x60:  /* VOLTAGE_CTRL_0 */
 930        s->voltage_ctrl[0] = value;
 931        return;
 932
 933    case 0x70:  /* TEST_DBG_CTRL_0 */
 934        s->test_dbg_ctrl[0] = value;
 935        return;
 936
 937    case 0x80:  /* MOD_CONF_CTRL_0 */
 938        diff = s->mod_conf_ctrl[0] ^ value;
 939        s->mod_conf_ctrl[0] = value;
 940        omap_pin_modconf1_update(s, diff, value);
 941        return;
 942
 943    default:
 944        OMAP_BAD_REG(addr);
 945    }
 946}
 947
 948static const MemoryRegionOps omap_pin_cfg_ops = {
 949    .read = omap_pin_cfg_read,
 950    .write = omap_pin_cfg_write,
 951    .endianness = DEVICE_NATIVE_ENDIAN,
 952};
 953
 954static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
 955{
 956    /* Start in Compatibility Mode.  */
 957    mpu->compat1509 = 1;
 958    omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
 959    omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
 960    omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
 961    memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
 962    memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
 963    memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
 964    memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
 965    memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
 966    memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
 967    memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
 968}
 969
 970static void omap_pin_cfg_init(MemoryRegion *system_memory,
 971                hwaddr base,
 972                struct omap_mpu_state_s *mpu)
 973{
 974    memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
 975                          "omap-pin-cfg", 0x800);
 976    memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
 977    omap_pin_cfg_reset(mpu);
 978}
 979
 980/* Device Identification, Die Identification */
 981static uint64_t omap_id_read(void *opaque, hwaddr addr,
 982                             unsigned size)
 983{
 984    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
 985
 986    if (size != 4) {
 987        return omap_badwidth_read32(opaque, addr);
 988    }
 989
 990    switch (addr) {
 991    case 0xfffe1800:    /* DIE_ID_LSB */
 992        return 0xc9581f0e;
 993    case 0xfffe1804:    /* DIE_ID_MSB */
 994        return 0xa8858bfa;
 995
 996    case 0xfffe2000:    /* PRODUCT_ID_LSB */
 997        return 0x00aaaafc;
 998    case 0xfffe2004:    /* PRODUCT_ID_MSB */
 999        return 0xcafeb574;
1000
1001    case 0xfffed400:    /* JTAG_ID_LSB */
1002        switch (s->mpu_model) {
1003        case omap310:
1004            return 0x03310315;
1005        case omap1510:
1006            return 0x03310115;
1007        default:
1008            hw_error("%s: bad mpu model\n", __func__);
1009        }
1010        break;
1011
1012    case 0xfffed404:    /* JTAG_ID_MSB */
1013        switch (s->mpu_model) {
1014        case omap310:
1015            return 0xfb57402f;
1016        case omap1510:
1017            return 0xfb47002f;
1018        default:
1019            hw_error("%s: bad mpu model\n", __func__);
1020        }
1021        break;
1022    }
1023
1024    OMAP_BAD_REG(addr);
1025    return 0;
1026}
1027
1028static void omap_id_write(void *opaque, hwaddr addr,
1029                          uint64_t value, unsigned size)
1030{
1031    if (size != 4) {
1032        omap_badwidth_write32(opaque, addr, value);
1033        return;
1034    }
1035
1036    OMAP_BAD_REG(addr);
1037}
1038
1039static const MemoryRegionOps omap_id_ops = {
1040    .read = omap_id_read,
1041    .write = omap_id_write,
1042    .endianness = DEVICE_NATIVE_ENDIAN,
1043};
1044
1045static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1046{
1047    memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1048                          "omap-id", 0x100000000ULL);
1049    memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1050                             0xfffe1800, 0x800);
1051    memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1052    memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1053                             0xfffed400, 0x100);
1054    memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1055    if (!cpu_is_omap15xx(mpu)) {
1056        memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1057                                 &mpu->id_iomem, 0xfffe2000, 0x800);
1058        memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1059    }
1060}
1061
1062/* MPUI Control (Dummy) */
1063static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1064                               unsigned size)
1065{
1066    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1067
1068    if (size != 4) {
1069        return omap_badwidth_read32(opaque, addr);
1070    }
1071
1072    switch (addr) {
1073    case 0x00:  /* CTRL */
1074        return s->mpui_ctrl;
1075    case 0x04:  /* DEBUG_ADDR */
1076        return 0x01ffffff;
1077    case 0x08:  /* DEBUG_DATA */
1078        return 0xffffffff;
1079    case 0x0c:  /* DEBUG_FLAG */
1080        return 0x00000800;
1081    case 0x10:  /* STATUS */
1082        return 0x00000000;
1083
1084    /* Not in OMAP310 */
1085    case 0x14:  /* DSP_STATUS */
1086    case 0x18:  /* DSP_BOOT_CONFIG */
1087        return 0x00000000;
1088    case 0x1c:  /* DSP_MPUI_CONFIG */
1089        return 0x0000ffff;
1090    }
1091
1092    OMAP_BAD_REG(addr);
1093    return 0;
1094}
1095
1096static void omap_mpui_write(void *opaque, hwaddr addr,
1097                            uint64_t value, unsigned size)
1098{
1099    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1100
1101    if (size != 4) {
1102        omap_badwidth_write32(opaque, addr, value);
1103        return;
1104    }
1105
1106    switch (addr) {
1107    case 0x00:  /* CTRL */
1108        s->mpui_ctrl = value & 0x007fffff;
1109        break;
1110
1111    case 0x04:  /* DEBUG_ADDR */
1112    case 0x08:  /* DEBUG_DATA */
1113    case 0x0c:  /* DEBUG_FLAG */
1114    case 0x10:  /* STATUS */
1115    /* Not in OMAP310 */
1116    case 0x14:  /* DSP_STATUS */
1117        OMAP_RO_REG(addr);
1118        break;
1119    case 0x18:  /* DSP_BOOT_CONFIG */
1120    case 0x1c:  /* DSP_MPUI_CONFIG */
1121        break;
1122
1123    default:
1124        OMAP_BAD_REG(addr);
1125    }
1126}
1127
1128static const MemoryRegionOps omap_mpui_ops = {
1129    .read = omap_mpui_read,
1130    .write = omap_mpui_write,
1131    .endianness = DEVICE_NATIVE_ENDIAN,
1132};
1133
1134static void omap_mpui_reset(struct omap_mpu_state_s *s)
1135{
1136    s->mpui_ctrl = 0x0003ff1b;
1137}
1138
1139static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1140                struct omap_mpu_state_s *mpu)
1141{
1142    memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1143                          "omap-mpui", 0x100);
1144    memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1145
1146    omap_mpui_reset(mpu);
1147}
1148
1149/* TIPB Bridges */
1150struct omap_tipb_bridge_s {
1151    qemu_irq abort;
1152    MemoryRegion iomem;
1153
1154    int width_intr;
1155    uint16_t control;
1156    uint16_t alloc;
1157    uint16_t buffer;
1158    uint16_t enh_control;
1159};
1160
1161static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1162                                      unsigned size)
1163{
1164    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1165
1166    if (size < 2) {
1167        return omap_badwidth_read16(opaque, addr);
1168    }
1169
1170    switch (addr) {
1171    case 0x00:  /* TIPB_CNTL */
1172        return s->control;
1173    case 0x04:  /* TIPB_BUS_ALLOC */
1174        return s->alloc;
1175    case 0x08:  /* MPU_TIPB_CNTL */
1176        return s->buffer;
1177    case 0x0c:  /* ENHANCED_TIPB_CNTL */
1178        return s->enh_control;
1179    case 0x10:  /* ADDRESS_DBG */
1180    case 0x14:  /* DATA_DEBUG_LOW */
1181    case 0x18:  /* DATA_DEBUG_HIGH */
1182        return 0xffff;
1183    case 0x1c:  /* DEBUG_CNTR_SIG */
1184        return 0x00f8;
1185    }
1186
1187    OMAP_BAD_REG(addr);
1188    return 0;
1189}
1190
1191static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1192                                   uint64_t value, unsigned size)
1193{
1194    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1195
1196    if (size < 2) {
1197        omap_badwidth_write16(opaque, addr, value);
1198        return;
1199    }
1200
1201    switch (addr) {
1202    case 0x00:  /* TIPB_CNTL */
1203        s->control = value & 0xffff;
1204        break;
1205
1206    case 0x04:  /* TIPB_BUS_ALLOC */
1207        s->alloc = value & 0x003f;
1208        break;
1209
1210    case 0x08:  /* MPU_TIPB_CNTL */
1211        s->buffer = value & 0x0003;
1212        break;
1213
1214    case 0x0c:  /* ENHANCED_TIPB_CNTL */
1215        s->width_intr = !(value & 2);
1216        s->enh_control = value & 0x000f;
1217        break;
1218
1219    case 0x10:  /* ADDRESS_DBG */
1220    case 0x14:  /* DATA_DEBUG_LOW */
1221    case 0x18:  /* DATA_DEBUG_HIGH */
1222    case 0x1c:  /* DEBUG_CNTR_SIG */
1223        OMAP_RO_REG(addr);
1224        break;
1225
1226    default:
1227        OMAP_BAD_REG(addr);
1228    }
1229}
1230
1231static const MemoryRegionOps omap_tipb_bridge_ops = {
1232    .read = omap_tipb_bridge_read,
1233    .write = omap_tipb_bridge_write,
1234    .endianness = DEVICE_NATIVE_ENDIAN,
1235};
1236
1237static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1238{
1239    s->control = 0xffff;
1240    s->alloc = 0x0009;
1241    s->buffer = 0x0000;
1242    s->enh_control = 0x000f;
1243}
1244
1245static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1246    MemoryRegion *memory, hwaddr base,
1247    qemu_irq abort_irq, omap_clk clk)
1248{
1249    struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1250
1251    s->abort = abort_irq;
1252    omap_tipb_bridge_reset(s);
1253
1254    memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1255                          "omap-tipb-bridge", 0x100);
1256    memory_region_add_subregion(memory, base, &s->iomem);
1257
1258    return s;
1259}
1260
1261/* Dummy Traffic Controller's Memory Interface */
1262static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1263                               unsigned size)
1264{
1265    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1266    uint32_t ret;
1267
1268    if (size != 4) {
1269        return omap_badwidth_read32(opaque, addr);
1270    }
1271
1272    switch (addr) {
1273    case 0x00:  /* IMIF_PRIO */
1274    case 0x04:  /* EMIFS_PRIO */
1275    case 0x08:  /* EMIFF_PRIO */
1276    case 0x0c:  /* EMIFS_CONFIG */
1277    case 0x10:  /* EMIFS_CS0_CONFIG */
1278    case 0x14:  /* EMIFS_CS1_CONFIG */
1279    case 0x18:  /* EMIFS_CS2_CONFIG */
1280    case 0x1c:  /* EMIFS_CS3_CONFIG */
1281    case 0x24:  /* EMIFF_MRS */
1282    case 0x28:  /* TIMEOUT1 */
1283    case 0x2c:  /* TIMEOUT2 */
1284    case 0x30:  /* TIMEOUT3 */
1285    case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1286    case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1287        return s->tcmi_regs[addr >> 2];
1288
1289    case 0x20:  /* EMIFF_SDRAM_CONFIG */
1290        ret = s->tcmi_regs[addr >> 2];
1291        s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1292        /* XXX: We can try using the VGA_DIRTY flag for this */
1293        return ret;
1294    }
1295
1296    OMAP_BAD_REG(addr);
1297    return 0;
1298}
1299
1300static void omap_tcmi_write(void *opaque, hwaddr addr,
1301                            uint64_t value, unsigned size)
1302{
1303    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1304
1305    if (size != 4) {
1306        omap_badwidth_write32(opaque, addr, value);
1307        return;
1308    }
1309
1310    switch (addr) {
1311    case 0x00:  /* IMIF_PRIO */
1312    case 0x04:  /* EMIFS_PRIO */
1313    case 0x08:  /* EMIFF_PRIO */
1314    case 0x10:  /* EMIFS_CS0_CONFIG */
1315    case 0x14:  /* EMIFS_CS1_CONFIG */
1316    case 0x18:  /* EMIFS_CS2_CONFIG */
1317    case 0x1c:  /* EMIFS_CS3_CONFIG */
1318    case 0x20:  /* EMIFF_SDRAM_CONFIG */
1319    case 0x24:  /* EMIFF_MRS */
1320    case 0x28:  /* TIMEOUT1 */
1321    case 0x2c:  /* TIMEOUT2 */
1322    case 0x30:  /* TIMEOUT3 */
1323    case 0x3c:  /* EMIFF_SDRAM_CONFIG_2 */
1324    case 0x40:  /* EMIFS_CFG_DYN_WAIT */
1325        s->tcmi_regs[addr >> 2] = value;
1326        break;
1327    case 0x0c:  /* EMIFS_CONFIG */
1328        s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1329        break;
1330
1331    default:
1332        OMAP_BAD_REG(addr);
1333    }
1334}
1335
1336static const MemoryRegionOps omap_tcmi_ops = {
1337    .read = omap_tcmi_read,
1338    .write = omap_tcmi_write,
1339    .endianness = DEVICE_NATIVE_ENDIAN,
1340};
1341
1342static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1343{
1344    mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1345    mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1346    mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1347    mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1348    mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1349    mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1350    mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1351    mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1352    mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1353    mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1354    mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1355    mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1356    mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1357    mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1358    mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1359}
1360
1361static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1362                struct omap_mpu_state_s *mpu)
1363{
1364    memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1365                          "omap-tcmi", 0x100);
1366    memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1367    omap_tcmi_reset(mpu);
1368}
1369
1370/* Digital phase-locked loops control */
1371struct dpll_ctl_s {
1372    MemoryRegion iomem;
1373    uint16_t mode;
1374    omap_clk dpll;
1375};
1376
1377static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1378                               unsigned size)
1379{
1380    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1381
1382    if (size != 2) {
1383        return omap_badwidth_read16(opaque, addr);
1384    }
1385
1386    if (addr == 0x00)   /* CTL_REG */
1387        return s->mode;
1388
1389    OMAP_BAD_REG(addr);
1390    return 0;
1391}
1392
1393static void omap_dpll_write(void *opaque, hwaddr addr,
1394                            uint64_t value, unsigned size)
1395{
1396    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1397    uint16_t diff;
1398    static const int bypass_div[4] = { 1, 2, 4, 4 };
1399    int div, mult;
1400
1401    if (size != 2) {
1402        omap_badwidth_write16(opaque, addr, value);
1403        return;
1404    }
1405
1406    if (addr == 0x00) { /* CTL_REG */
1407        /* See omap_ulpd_pm_write() too */
1408        diff = s->mode & value;
1409        s->mode = value & 0x2fff;
1410        if (diff & (0x3ff << 2)) {
1411            if (value & (1 << 4)) {                     /* PLL_ENABLE */
1412                div = ((value >> 5) & 3) + 1;           /* PLL_DIV */
1413                mult = MIN((value >> 7) & 0x1f, 1);     /* PLL_MULT */
1414            } else {
1415                div = bypass_div[((value >> 2) & 3)];   /* BYPASS_DIV */
1416                mult = 1;
1417            }
1418            omap_clk_setrate(s->dpll, div, mult);
1419        }
1420
1421        /* Enter the desired mode.  */
1422        s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1423
1424        /* Act as if the lock is restored.  */
1425        s->mode |= 2;
1426    } else {
1427        OMAP_BAD_REG(addr);
1428    }
1429}
1430
1431static const MemoryRegionOps omap_dpll_ops = {
1432    .read = omap_dpll_read,
1433    .write = omap_dpll_write,
1434    .endianness = DEVICE_NATIVE_ENDIAN,
1435};
1436
1437static void omap_dpll_reset(struct dpll_ctl_s *s)
1438{
1439    s->mode = 0x2002;
1440    omap_clk_setrate(s->dpll, 1, 1);
1441}
1442
1443static struct dpll_ctl_s  *omap_dpll_init(MemoryRegion *memory,
1444                           hwaddr base, omap_clk clk)
1445{
1446    struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1447    memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1448
1449    s->dpll = clk;
1450    omap_dpll_reset(s);
1451
1452    memory_region_add_subregion(memory, base, &s->iomem);
1453    return s;
1454}
1455
1456/* MPU Clock/Reset/Power Mode Control */
1457static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1458                               unsigned size)
1459{
1460    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1461
1462    if (size != 2) {
1463        return omap_badwidth_read16(opaque, addr);
1464    }
1465
1466    switch (addr) {
1467    case 0x00:  /* ARM_CKCTL */
1468        return s->clkm.arm_ckctl;
1469
1470    case 0x04:  /* ARM_IDLECT1 */
1471        return s->clkm.arm_idlect1;
1472
1473    case 0x08:  /* ARM_IDLECT2 */
1474        return s->clkm.arm_idlect2;
1475
1476    case 0x0c:  /* ARM_EWUPCT */
1477        return s->clkm.arm_ewupct;
1478
1479    case 0x10:  /* ARM_RSTCT1 */
1480        return s->clkm.arm_rstct1;
1481
1482    case 0x14:  /* ARM_RSTCT2 */
1483        return s->clkm.arm_rstct2;
1484
1485    case 0x18:  /* ARM_SYSST */
1486        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1487
1488    case 0x1c:  /* ARM_CKOUT1 */
1489        return s->clkm.arm_ckout1;
1490
1491    case 0x20:  /* ARM_CKOUT2 */
1492        break;
1493    }
1494
1495    OMAP_BAD_REG(addr);
1496    return 0;
1497}
1498
1499static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1500                uint16_t diff, uint16_t value)
1501{
1502    omap_clk clk;
1503
1504    if (diff & (1 << 14)) {                             /* ARM_INTHCK_SEL */
1505        if (value & (1 << 14))
1506            /* Reserved */;
1507        else {
1508            clk = omap_findclk(s, "arminth_ck");
1509            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1510        }
1511    }
1512    if (diff & (1 << 12)) {                             /* ARM_TIMXO */
1513        clk = omap_findclk(s, "armtim_ck");
1514        if (value & (1 << 12))
1515            omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1516        else
1517            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1518    }
1519    /* XXX: en_dspck */
1520    if (diff & (3 << 10)) {                             /* DSPMMUDIV */
1521        clk = omap_findclk(s, "dspmmu_ck");
1522        omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1523    }
1524    if (diff & (3 << 8)) {                              /* TCDIV */
1525        clk = omap_findclk(s, "tc_ck");
1526        omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1527    }
1528    if (diff & (3 << 6)) {                              /* DSPDIV */
1529        clk = omap_findclk(s, "dsp_ck");
1530        omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1531    }
1532    if (diff & (3 << 4)) {                              /* ARMDIV */
1533        clk = omap_findclk(s, "arm_ck");
1534        omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1535    }
1536    if (diff & (3 << 2)) {                              /* LCDDIV */
1537        clk = omap_findclk(s, "lcd_ck");
1538        omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1539    }
1540    if (diff & (3 << 0)) {                              /* PERDIV */
1541        clk = omap_findclk(s, "armper_ck");
1542        omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1543    }
1544}
1545
1546static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1547                uint16_t diff, uint16_t value)
1548{
1549    omap_clk clk;
1550
1551    if (value & (1 << 11)) {                            /* SETARM_IDLE */
1552        cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1553    }
1554    if (!(value & (1 << 10))) {                         /* WKUP_MODE */
1555        /* XXX: disable wakeup from IRQ */
1556        qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
1557    }
1558
1559#define SET_CANIDLE(clock, bit)                         \
1560    if (diff & (1 << bit)) {                            \
1561        clk = omap_findclk(s, clock);                   \
1562        omap_clk_canidle(clk, (value >> bit) & 1);      \
1563    }
1564    SET_CANIDLE("mpuwd_ck", 0)                          /* IDLWDT_ARM */
1565    SET_CANIDLE("armxor_ck", 1)                         /* IDLXORP_ARM */
1566    SET_CANIDLE("mpuper_ck", 2)                         /* IDLPER_ARM */
1567    SET_CANIDLE("lcd_ck", 3)                            /* IDLLCD_ARM */
1568    SET_CANIDLE("lb_ck", 4)                             /* IDLLB_ARM */
1569    SET_CANIDLE("hsab_ck", 5)                           /* IDLHSAB_ARM */
1570    SET_CANIDLE("tipb_ck", 6)                           /* IDLIF_ARM */
1571    SET_CANIDLE("dma_ck", 6)                            /* IDLIF_ARM */
1572    SET_CANIDLE("tc_ck", 6)                             /* IDLIF_ARM */
1573    SET_CANIDLE("dpll1", 7)                             /* IDLDPLL_ARM */
1574    SET_CANIDLE("dpll2", 7)                             /* IDLDPLL_ARM */
1575    SET_CANIDLE("dpll3", 7)                             /* IDLDPLL_ARM */
1576    SET_CANIDLE("mpui_ck", 8)                           /* IDLAPI_ARM */
1577    SET_CANIDLE("armtim_ck", 9)                         /* IDLTIM_ARM */
1578}
1579
1580static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1581                uint16_t diff, uint16_t value)
1582{
1583    omap_clk clk;
1584
1585#define SET_ONOFF(clock, bit)                           \
1586    if (diff & (1 << bit)) {                            \
1587        clk = omap_findclk(s, clock);                   \
1588        omap_clk_onoff(clk, (value >> bit) & 1);        \
1589    }
1590    SET_ONOFF("mpuwd_ck", 0)                            /* EN_WDTCK */
1591    SET_ONOFF("armxor_ck", 1)                           /* EN_XORPCK */
1592    SET_ONOFF("mpuper_ck", 2)                           /* EN_PERCK */
1593    SET_ONOFF("lcd_ck", 3)                              /* EN_LCDCK */
1594    SET_ONOFF("lb_ck", 4)                               /* EN_LBCK */
1595    SET_ONOFF("hsab_ck", 5)                             /* EN_HSABCK */
1596    SET_ONOFF("mpui_ck", 6)                             /* EN_APICK */
1597    SET_ONOFF("armtim_ck", 7)                           /* EN_TIMCK */
1598    SET_CANIDLE("dma_ck", 8)                            /* DMACK_REQ */
1599    SET_ONOFF("arm_gpio_ck", 9)                         /* EN_GPIOCK */
1600    SET_ONOFF("lbfree_ck", 10)                          /* EN_LBFREECK */
1601}
1602
1603static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1604                uint16_t diff, uint16_t value)
1605{
1606    omap_clk clk;
1607
1608    if (diff & (3 << 4)) {                              /* TCLKOUT */
1609        clk = omap_findclk(s, "tclk_out");
1610        switch ((value >> 4) & 3) {
1611        case 1:
1612            omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1613            omap_clk_onoff(clk, 1);
1614            break;
1615        case 2:
1616            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1617            omap_clk_onoff(clk, 1);
1618            break;
1619        default:
1620            omap_clk_onoff(clk, 0);
1621        }
1622    }
1623    if (diff & (3 << 2)) {                              /* DCLKOUT */
1624        clk = omap_findclk(s, "dclk_out");
1625        switch ((value >> 2) & 3) {
1626        case 0:
1627            omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1628            break;
1629        case 1:
1630            omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1631            break;
1632        case 2:
1633            omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1634            break;
1635        case 3:
1636            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1637            break;
1638        }
1639    }
1640    if (diff & (3 << 0)) {                              /* ACLKOUT */
1641        clk = omap_findclk(s, "aclk_out");
1642        switch ((value >> 0) & 3) {
1643        case 1:
1644            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1645            omap_clk_onoff(clk, 1);
1646            break;
1647        case 2:
1648            omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1649            omap_clk_onoff(clk, 1);
1650            break;
1651        case 3:
1652            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1653            omap_clk_onoff(clk, 1);
1654            break;
1655        default:
1656            omap_clk_onoff(clk, 0);
1657        }
1658    }
1659}
1660
1661static void omap_clkm_write(void *opaque, hwaddr addr,
1662                            uint64_t value, unsigned size)
1663{
1664    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1665    uint16_t diff;
1666    omap_clk clk;
1667    static const char *clkschemename[8] = {
1668        "fully synchronous", "fully asynchronous", "synchronous scalable",
1669        "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1670    };
1671
1672    if (size != 2) {
1673        omap_badwidth_write16(opaque, addr, value);
1674        return;
1675    }
1676
1677    switch (addr) {
1678    case 0x00:  /* ARM_CKCTL */
1679        diff = s->clkm.arm_ckctl ^ value;
1680        s->clkm.arm_ckctl = value & 0x7fff;
1681        omap_clkm_ckctl_update(s, diff, value);
1682        return;
1683
1684    case 0x04:  /* ARM_IDLECT1 */
1685        diff = s->clkm.arm_idlect1 ^ value;
1686        s->clkm.arm_idlect1 = value & 0x0fff;
1687        omap_clkm_idlect1_update(s, diff, value);
1688        return;
1689
1690    case 0x08:  /* ARM_IDLECT2 */
1691        diff = s->clkm.arm_idlect2 ^ value;
1692        s->clkm.arm_idlect2 = value & 0x07ff;
1693        omap_clkm_idlect2_update(s, diff, value);
1694        return;
1695
1696    case 0x0c:  /* ARM_EWUPCT */
1697        s->clkm.arm_ewupct = value & 0x003f;
1698        return;
1699
1700    case 0x10:  /* ARM_RSTCT1 */
1701        diff = s->clkm.arm_rstct1 ^ value;
1702        s->clkm.arm_rstct1 = value & 0x0007;
1703        if (value & 9) {
1704            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1705            s->clkm.cold_start = 0xa;
1706        }
1707        if (diff & ~value & 4) {                                /* DSP_RST */
1708            omap_mpui_reset(s);
1709            omap_tipb_bridge_reset(s->private_tipb);
1710            omap_tipb_bridge_reset(s->public_tipb);
1711        }
1712        if (diff & 2) {                                         /* DSP_EN */
1713            clk = omap_findclk(s, "dsp_ck");
1714            omap_clk_canidle(clk, (~value >> 1) & 1);
1715        }
1716        return;
1717
1718    case 0x14:  /* ARM_RSTCT2 */
1719        s->clkm.arm_rstct2 = value & 0x0001;
1720        return;
1721
1722    case 0x18:  /* ARM_SYSST */
1723        if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1724            s->clkm.clocking_scheme = (value >> 11) & 7;
1725            printf("%s: clocking scheme set to %s\n", __func__,
1726                   clkschemename[s->clkm.clocking_scheme]);
1727        }
1728        s->clkm.cold_start &= value & 0x3f;
1729        return;
1730
1731    case 0x1c:  /* ARM_CKOUT1 */
1732        diff = s->clkm.arm_ckout1 ^ value;
1733        s->clkm.arm_ckout1 = value & 0x003f;
1734        omap_clkm_ckout1_update(s, diff, value);
1735        return;
1736
1737    case 0x20:  /* ARM_CKOUT2 */
1738    default:
1739        OMAP_BAD_REG(addr);
1740    }
1741}
1742
1743static const MemoryRegionOps omap_clkm_ops = {
1744    .read = omap_clkm_read,
1745    .write = omap_clkm_write,
1746    .endianness = DEVICE_NATIVE_ENDIAN,
1747};
1748
1749static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1750                                 unsigned size)
1751{
1752    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1753    CPUState *cpu = CPU(s->cpu);
1754
1755    if (size != 2) {
1756        return omap_badwidth_read16(opaque, addr);
1757    }
1758
1759    switch (addr) {
1760    case 0x04:  /* DSP_IDLECT1 */
1761        return s->clkm.dsp_idlect1;
1762
1763    case 0x08:  /* DSP_IDLECT2 */
1764        return s->clkm.dsp_idlect2;
1765
1766    case 0x14:  /* DSP_RSTCT2 */
1767        return s->clkm.dsp_rstct2;
1768
1769    case 0x18:  /* DSP_SYSST */
1770        cpu = CPU(s->cpu);
1771        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1772                (cpu->halted << 6);      /* Quite useless... */
1773    }
1774
1775    OMAP_BAD_REG(addr);
1776    return 0;
1777}
1778
1779static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1780                uint16_t diff, uint16_t value)
1781{
1782    omap_clk clk;
1783
1784    SET_CANIDLE("dspxor_ck", 1);                        /* IDLXORP_DSP */
1785}
1786
1787static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1788                uint16_t diff, uint16_t value)
1789{
1790    omap_clk clk;
1791
1792    SET_ONOFF("dspxor_ck", 1);                          /* EN_XORPCK */
1793}
1794
1795static void omap_clkdsp_write(void *opaque, hwaddr addr,
1796                              uint64_t value, unsigned size)
1797{
1798    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1799    uint16_t diff;
1800
1801    if (size != 2) {
1802        omap_badwidth_write16(opaque, addr, value);
1803        return;
1804    }
1805
1806    switch (addr) {
1807    case 0x04:  /* DSP_IDLECT1 */
1808        diff = s->clkm.dsp_idlect1 ^ value;
1809        s->clkm.dsp_idlect1 = value & 0x01f7;
1810        omap_clkdsp_idlect1_update(s, diff, value);
1811        break;
1812
1813    case 0x08:  /* DSP_IDLECT2 */
1814        s->clkm.dsp_idlect2 = value & 0x0037;
1815        diff = s->clkm.dsp_idlect1 ^ value;
1816        omap_clkdsp_idlect2_update(s, diff, value);
1817        break;
1818
1819    case 0x14:  /* DSP_RSTCT2 */
1820        s->clkm.dsp_rstct2 = value & 0x0001;
1821        break;
1822
1823    case 0x18:  /* DSP_SYSST */
1824        s->clkm.cold_start &= value & 0x3f;
1825        break;
1826
1827    default:
1828        OMAP_BAD_REG(addr);
1829    }
1830}
1831
1832static const MemoryRegionOps omap_clkdsp_ops = {
1833    .read = omap_clkdsp_read,
1834    .write = omap_clkdsp_write,
1835    .endianness = DEVICE_NATIVE_ENDIAN,
1836};
1837
1838static void omap_clkm_reset(struct omap_mpu_state_s *s)
1839{
1840    if (s->wdt && s->wdt->reset)
1841        s->clkm.cold_start = 0x6;
1842    s->clkm.clocking_scheme = 0;
1843    omap_clkm_ckctl_update(s, ~0, 0x3000);
1844    s->clkm.arm_ckctl = 0x3000;
1845    omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1846    s->clkm.arm_idlect1 = 0x0400;
1847    omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1848    s->clkm.arm_idlect2 = 0x0100;
1849    s->clkm.arm_ewupct = 0x003f;
1850    s->clkm.arm_rstct1 = 0x0000;
1851    s->clkm.arm_rstct2 = 0x0000;
1852    s->clkm.arm_ckout1 = 0x0015;
1853    s->clkm.dpll1_mode = 0x2002;
1854    omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1855    s->clkm.dsp_idlect1 = 0x0040;
1856    omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1857    s->clkm.dsp_idlect2 = 0x0000;
1858    s->clkm.dsp_rstct2 = 0x0000;
1859}
1860
1861static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1862                hwaddr dsp_base, struct omap_mpu_state_s *s)
1863{
1864    memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1865                          "omap-clkm", 0x100);
1866    memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1867                          "omap-clkdsp", 0x1000);
1868
1869    s->clkm.arm_idlect1 = 0x03ff;
1870    s->clkm.arm_idlect2 = 0x0100;
1871    s->clkm.dsp_idlect1 = 0x0002;
1872    omap_clkm_reset(s);
1873    s->clkm.cold_start = 0x3a;
1874
1875    memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1876    memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1877}
1878
1879/* MPU I/O */
1880struct omap_mpuio_s {
1881    qemu_irq irq;
1882    qemu_irq kbd_irq;
1883    qemu_irq *in;
1884    qemu_irq handler[16];
1885    qemu_irq wakeup;
1886    MemoryRegion iomem;
1887
1888    uint16_t inputs;
1889    uint16_t outputs;
1890    uint16_t dir;
1891    uint16_t edge;
1892    uint16_t mask;
1893    uint16_t ints;
1894
1895    uint16_t debounce;
1896    uint16_t latch;
1897    uint8_t event;
1898
1899    uint8_t buttons[5];
1900    uint8_t row_latch;
1901    uint8_t cols;
1902    int kbd_mask;
1903    int clk;
1904};
1905
1906static void omap_mpuio_set(void *opaque, int line, int level)
1907{
1908    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1909    uint16_t prev = s->inputs;
1910
1911    if (level)
1912        s->inputs |= 1 << line;
1913    else
1914        s->inputs &= ~(1 << line);
1915
1916    if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1917        if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1918            s->ints |= 1 << line;
1919            qemu_irq_raise(s->irq);
1920            /* TODO: wakeup */
1921        }
1922        if ((s->event & (1 << 0)) &&            /* SET_GPIO_EVENT_MODE */
1923                (s->event >> 1) == line)        /* PIN_SELECT */
1924            s->latch = s->inputs;
1925    }
1926}
1927
1928static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1929{
1930    int i;
1931    uint8_t *row, rows = 0, cols = ~s->cols;
1932
1933    for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1934        if (*row & cols)
1935            rows |= i;
1936
1937    qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1938    s->row_latch = ~rows;
1939}
1940
1941static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1942                                unsigned size)
1943{
1944    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1945    int offset = addr & OMAP_MPUI_REG_MASK;
1946    uint16_t ret;
1947
1948    if (size != 2) {
1949        return omap_badwidth_read16(opaque, addr);
1950    }
1951
1952    switch (offset) {
1953    case 0x00:  /* INPUT_LATCH */
1954        return s->inputs;
1955
1956    case 0x04:  /* OUTPUT_REG */
1957        return s->outputs;
1958
1959    case 0x08:  /* IO_CNTL */
1960        return s->dir;
1961
1962    case 0x10:  /* KBR_LATCH */
1963        return s->row_latch;
1964
1965    case 0x14:  /* KBC_REG */
1966        return s->cols;
1967
1968    case 0x18:  /* GPIO_EVENT_MODE_REG */
1969        return s->event;
1970
1971    case 0x1c:  /* GPIO_INT_EDGE_REG */
1972        return s->edge;
1973
1974    case 0x20:  /* KBD_INT */
1975        return (~s->row_latch & 0x1f) && !s->kbd_mask;
1976
1977    case 0x24:  /* GPIO_INT */
1978        ret = s->ints;
1979        s->ints &= s->mask;
1980        if (ret)
1981            qemu_irq_lower(s->irq);
1982        return ret;
1983
1984    case 0x28:  /* KBD_MASKIT */
1985        return s->kbd_mask;
1986
1987    case 0x2c:  /* GPIO_MASKIT */
1988        return s->mask;
1989
1990    case 0x30:  /* GPIO_DEBOUNCING_REG */
1991        return s->debounce;
1992
1993    case 0x34:  /* GPIO_LATCH_REG */
1994        return s->latch;
1995    }
1996
1997    OMAP_BAD_REG(addr);
1998    return 0;
1999}
2000
2001static void omap_mpuio_write(void *opaque, hwaddr addr,
2002                             uint64_t value, unsigned size)
2003{
2004    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2005    int offset = addr & OMAP_MPUI_REG_MASK;
2006    uint16_t diff;
2007    int ln;
2008
2009    if (size != 2) {
2010        omap_badwidth_write16(opaque, addr, value);
2011        return;
2012    }
2013
2014    switch (offset) {
2015    case 0x04:  /* OUTPUT_REG */
2016        diff = (s->outputs ^ value) & ~s->dir;
2017        s->outputs = value;
2018        while ((ln = ctz32(diff)) != 32) {
2019            if (s->handler[ln])
2020                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2021            diff &= ~(1 << ln);
2022        }
2023        break;
2024
2025    case 0x08:  /* IO_CNTL */
2026        diff = s->outputs & (s->dir ^ value);
2027        s->dir = value;
2028
2029        value = s->outputs & ~s->dir;
2030        while ((ln = ctz32(diff)) != 32) {
2031            if (s->handler[ln])
2032                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2033            diff &= ~(1 << ln);
2034        }
2035        break;
2036
2037    case 0x14:  /* KBC_REG */
2038        s->cols = value;
2039        omap_mpuio_kbd_update(s);
2040        break;
2041
2042    case 0x18:  /* GPIO_EVENT_MODE_REG */
2043        s->event = value & 0x1f;
2044        break;
2045
2046    case 0x1c:  /* GPIO_INT_EDGE_REG */
2047        s->edge = value;
2048        break;
2049
2050    case 0x28:  /* KBD_MASKIT */
2051        s->kbd_mask = value & 1;
2052        omap_mpuio_kbd_update(s);
2053        break;
2054
2055    case 0x2c:  /* GPIO_MASKIT */
2056        s->mask = value;
2057        break;
2058
2059    case 0x30:  /* GPIO_DEBOUNCING_REG */
2060        s->debounce = value & 0x1ff;
2061        break;
2062
2063    case 0x00:  /* INPUT_LATCH */
2064    case 0x10:  /* KBR_LATCH */
2065    case 0x20:  /* KBD_INT */
2066    case 0x24:  /* GPIO_INT */
2067    case 0x34:  /* GPIO_LATCH_REG */
2068        OMAP_RO_REG(addr);
2069        return;
2070
2071    default:
2072        OMAP_BAD_REG(addr);
2073        return;
2074    }
2075}
2076
2077static const MemoryRegionOps omap_mpuio_ops  = {
2078    .read = omap_mpuio_read,
2079    .write = omap_mpuio_write,
2080    .endianness = DEVICE_NATIVE_ENDIAN,
2081};
2082
2083static void omap_mpuio_reset(struct omap_mpuio_s *s)
2084{
2085    s->inputs = 0;
2086    s->outputs = 0;
2087    s->dir = ~0;
2088    s->event = 0;
2089    s->edge = 0;
2090    s->kbd_mask = 0;
2091    s->mask = 0;
2092    s->debounce = 0;
2093    s->latch = 0;
2094    s->ints = 0;
2095    s->row_latch = 0x1f;
2096    s->clk = 1;
2097}
2098
2099static void omap_mpuio_onoff(void *opaque, int line, int on)
2100{
2101    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2102
2103    s->clk = on;
2104    if (on)
2105        omap_mpuio_kbd_update(s);
2106}
2107
2108static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2109                hwaddr base,
2110                qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2111                omap_clk clk)
2112{
2113    struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2114
2115    s->irq = gpio_int;
2116    s->kbd_irq = kbd_int;
2117    s->wakeup = wakeup;
2118    s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2119    omap_mpuio_reset(s);
2120
2121    memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2122                          "omap-mpuio", 0x800);
2123    memory_region_add_subregion(memory, base, &s->iomem);
2124
2125    omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2126
2127    return s;
2128}
2129
2130qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2131{
2132    return s->in;
2133}
2134
2135void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2136{
2137    if (line >= 16 || line < 0)
2138        hw_error("%s: No GPIO line %i\n", __func__, line);
2139    s->handler[line] = handler;
2140}
2141
2142void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2143{
2144    if (row >= 5 || row < 0)
2145        hw_error("%s: No key %i-%i\n", __func__, col, row);
2146
2147    if (down)
2148        s->buttons[row] |= 1 << col;
2149    else
2150        s->buttons[row] &= ~(1 << col);
2151
2152    omap_mpuio_kbd_update(s);
2153}
2154
2155/* MicroWire Interface */
2156struct omap_uwire_s {
2157    MemoryRegion iomem;
2158    qemu_irq txirq;
2159    qemu_irq rxirq;
2160    qemu_irq txdrq;
2161
2162    uint16_t txbuf;
2163    uint16_t rxbuf;
2164    uint16_t control;
2165    uint16_t setup[5];
2166
2167    uWireSlave *chip[4];
2168};
2169
2170static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2171{
2172    int chipselect = (s->control >> 10) & 3;            /* INDEX */
2173    uWireSlave *slave = s->chip[chipselect];
2174
2175    if ((s->control >> 5) & 0x1f) {                     /* NB_BITS_WR */
2176        if (s->control & (1 << 12))                     /* CS_CMD */
2177            if (slave && slave->send)
2178                slave->send(slave->opaque,
2179                                s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2180        s->control &= ~(1 << 14);                       /* CSRB */
2181        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2182         * a DRQ.  When is the level IRQ supposed to be reset?  */
2183    }
2184
2185    if ((s->control >> 0) & 0x1f) {                     /* NB_BITS_RD */
2186        if (s->control & (1 << 12))                     /* CS_CMD */
2187            if (slave && slave->receive)
2188                s->rxbuf = slave->receive(slave->opaque);
2189        s->control |= 1 << 15;                          /* RDRB */
2190        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2191         * a DRQ.  When is the level IRQ supposed to be reset?  */
2192    }
2193}
2194
2195static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2196                                unsigned size)
2197{
2198    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2199    int offset = addr & OMAP_MPUI_REG_MASK;
2200
2201    if (size != 2) {
2202        return omap_badwidth_read16(opaque, addr);
2203    }
2204
2205    switch (offset) {
2206    case 0x00:  /* RDR */
2207        s->control &= ~(1 << 15);                       /* RDRB */
2208        return s->rxbuf;
2209
2210    case 0x04:  /* CSR */
2211        return s->control;
2212
2213    case 0x08:  /* SR1 */
2214        return s->setup[0];
2215    case 0x0c:  /* SR2 */
2216        return s->setup[1];
2217    case 0x10:  /* SR3 */
2218        return s->setup[2];
2219    case 0x14:  /* SR4 */
2220        return s->setup[3];
2221    case 0x18:  /* SR5 */
2222        return s->setup[4];
2223    }
2224
2225    OMAP_BAD_REG(addr);
2226    return 0;
2227}
2228
2229static void omap_uwire_write(void *opaque, hwaddr addr,
2230                             uint64_t value, unsigned size)
2231{
2232    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2233    int offset = addr & OMAP_MPUI_REG_MASK;
2234
2235    if (size != 2) {
2236        omap_badwidth_write16(opaque, addr, value);
2237        return;
2238    }
2239
2240    switch (offset) {
2241    case 0x00:  /* TDR */
2242        s->txbuf = value;                               /* TD */
2243        if ((s->setup[4] & (1 << 2)) &&                 /* AUTO_TX_EN */
2244                        ((s->setup[4] & (1 << 3)) ||    /* CS_TOGGLE_TX_EN */
2245                         (s->control & (1 << 12)))) {   /* CS_CMD */
2246            s->control |= 1 << 14;                      /* CSRB */
2247            omap_uwire_transfer_start(s);
2248        }
2249        break;
2250
2251    case 0x04:  /* CSR */
2252        s->control = value & 0x1fff;
2253        if (value & (1 << 13))                          /* START */
2254            omap_uwire_transfer_start(s);
2255        break;
2256
2257    case 0x08:  /* SR1 */
2258        s->setup[0] = value & 0x003f;
2259        break;
2260
2261    case 0x0c:  /* SR2 */
2262        s->setup[1] = value & 0x0fc0;
2263        break;
2264
2265    case 0x10:  /* SR3 */
2266        s->setup[2] = value & 0x0003;
2267        break;
2268
2269    case 0x14:  /* SR4 */
2270        s->setup[3] = value & 0x0001;
2271        break;
2272
2273    case 0x18:  /* SR5 */
2274        s->setup[4] = value & 0x000f;
2275        break;
2276
2277    default:
2278        OMAP_BAD_REG(addr);
2279        return;
2280    }
2281}
2282
2283static const MemoryRegionOps omap_uwire_ops = {
2284    .read = omap_uwire_read,
2285    .write = omap_uwire_write,
2286    .endianness = DEVICE_NATIVE_ENDIAN,
2287};
2288
2289static void omap_uwire_reset(struct omap_uwire_s *s)
2290{
2291    s->control = 0;
2292    s->setup[0] = 0;
2293    s->setup[1] = 0;
2294    s->setup[2] = 0;
2295    s->setup[3] = 0;
2296    s->setup[4] = 0;
2297}
2298
2299static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2300                                            hwaddr base,
2301                                            qemu_irq txirq, qemu_irq rxirq,
2302                                            qemu_irq dma,
2303                                            omap_clk clk)
2304{
2305    struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2306
2307    s->txirq = txirq;
2308    s->rxirq = rxirq;
2309    s->txdrq = dma;
2310    omap_uwire_reset(s);
2311
2312    memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2313    memory_region_add_subregion(system_memory, base, &s->iomem);
2314
2315    return s;
2316}
2317
2318void omap_uwire_attach(struct omap_uwire_s *s,
2319                uWireSlave *slave, int chipselect)
2320{
2321    if (chipselect < 0 || chipselect > 3) {
2322        error_report("%s: Bad chipselect %i", __func__, chipselect);
2323        exit(-1);
2324    }
2325
2326    s->chip[chipselect] = slave;
2327}
2328
2329/* Pseudonoise Pulse-Width Light Modulator */
2330struct omap_pwl_s {
2331    MemoryRegion iomem;
2332    uint8_t output;
2333    uint8_t level;
2334    uint8_t enable;
2335    int clk;
2336};
2337
2338static void omap_pwl_update(struct omap_pwl_s *s)
2339{
2340    int output = (s->clk && s->enable) ? s->level : 0;
2341
2342    if (output != s->output) {
2343        s->output = output;
2344        printf("%s: Backlight now at %i/256\n", __func__, output);
2345    }
2346}
2347
2348static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2349                              unsigned size)
2350{
2351    struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2352    int offset = addr & OMAP_MPUI_REG_MASK;
2353
2354    if (size != 1) {
2355        return omap_badwidth_read8(opaque, addr);
2356    }
2357
2358    switch (offset) {
2359    case 0x00:  /* PWL_LEVEL */
2360        return s->level;
2361    case 0x04:  /* PWL_CTRL */
2362        return s->enable;
2363    }
2364    OMAP_BAD_REG(addr);
2365    return 0;
2366}
2367
2368static void omap_pwl_write(void *opaque, hwaddr addr,
2369                           uint64_t value, unsigned size)
2370{
2371    struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2372    int offset = addr & OMAP_MPUI_REG_MASK;
2373
2374    if (size != 1) {
2375        omap_badwidth_write8(opaque, addr, value);
2376        return;
2377    }
2378
2379    switch (offset) {
2380    case 0x00:  /* PWL_LEVEL */
2381        s->level = value;
2382        omap_pwl_update(s);
2383        break;
2384    case 0x04:  /* PWL_CTRL */
2385        s->enable = value & 1;
2386        omap_pwl_update(s);
2387        break;
2388    default:
2389        OMAP_BAD_REG(addr);
2390        return;
2391    }
2392}
2393
2394static const MemoryRegionOps omap_pwl_ops = {
2395    .read = omap_pwl_read,
2396    .write = omap_pwl_write,
2397    .endianness = DEVICE_NATIVE_ENDIAN,
2398};
2399
2400static void omap_pwl_reset(struct omap_pwl_s *s)
2401{
2402    s->output = 0;
2403    s->level = 0;
2404    s->enable = 0;
2405    s->clk = 1;
2406    omap_pwl_update(s);
2407}
2408
2409static void omap_pwl_clk_update(void *opaque, int line, int on)
2410{
2411    struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2412
2413    s->clk = on;
2414    omap_pwl_update(s);
2415}
2416
2417static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2418                                        hwaddr base,
2419                                        omap_clk clk)
2420{
2421    struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2422
2423    omap_pwl_reset(s);
2424
2425    memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2426                          "omap-pwl", 0x800);
2427    memory_region_add_subregion(system_memory, base, &s->iomem);
2428
2429    omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2430    return s;
2431}
2432
2433/* Pulse-Width Tone module */
2434struct omap_pwt_s {
2435    MemoryRegion iomem;
2436    uint8_t frc;
2437    uint8_t vrc;
2438    uint8_t gcr;
2439    omap_clk clk;
2440};
2441
2442static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2443                              unsigned size)
2444{
2445    struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2446    int offset = addr & OMAP_MPUI_REG_MASK;
2447
2448    if (size != 1) {
2449        return omap_badwidth_read8(opaque, addr);
2450    }
2451
2452    switch (offset) {
2453    case 0x00:  /* FRC */
2454        return s->frc;
2455    case 0x04:  /* VCR */
2456        return s->vrc;
2457    case 0x08:  /* GCR */
2458        return s->gcr;
2459    }
2460    OMAP_BAD_REG(addr);
2461    return 0;
2462}
2463
2464static void omap_pwt_write(void *opaque, hwaddr addr,
2465                           uint64_t value, unsigned size)
2466{
2467    struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2468    int offset = addr & OMAP_MPUI_REG_MASK;
2469
2470    if (size != 1) {
2471        omap_badwidth_write8(opaque, addr, value);
2472        return;
2473    }
2474
2475    switch (offset) {
2476    case 0x00:  /* FRC */
2477        s->frc = value & 0x3f;
2478        break;
2479    case 0x04:  /* VRC */
2480        if ((value ^ s->vrc) & 1) {
2481            if (value & 1)
2482                printf("%s: %iHz buzz on\n", __func__, (int)
2483                                /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2484                                ((omap_clk_getrate(s->clk) >> 3) /
2485                                 /* Pre-multiplexer divider */
2486                                 ((s->gcr & 2) ? 1 : 154) /
2487                                 /* Octave multiplexer */
2488                                 (2 << (value & 3)) *
2489                                 /* 101/107 divider */
2490                                 ((value & (1 << 2)) ? 101 : 107) *
2491                                 /*  49/55 divider */
2492                                 ((value & (1 << 3)) ?  49 : 55) *
2493                                 /*  50/63 divider */
2494                                 ((value & (1 << 4)) ?  50 : 63) *
2495                                 /*  80/127 divider */
2496                                 ((value & (1 << 5)) ?  80 : 127) /
2497                                 (107 * 55 * 63 * 127)));
2498            else
2499                printf("%s: silence!\n", __func__);
2500        }
2501        s->vrc = value & 0x7f;
2502        break;
2503    case 0x08:  /* GCR */
2504        s->gcr = value & 3;
2505        break;
2506    default:
2507        OMAP_BAD_REG(addr);
2508        return;
2509    }
2510}
2511
2512static const MemoryRegionOps omap_pwt_ops = {
2513    .read =omap_pwt_read,
2514    .write = omap_pwt_write,
2515    .endianness = DEVICE_NATIVE_ENDIAN,
2516};
2517
2518static void omap_pwt_reset(struct omap_pwt_s *s)
2519{
2520    s->frc = 0;
2521    s->vrc = 0;
2522    s->gcr = 0;
2523}
2524
2525static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2526                                        hwaddr base,
2527                                        omap_clk clk)
2528{
2529    struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2530    s->clk = clk;
2531    omap_pwt_reset(s);
2532
2533    memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2534                          "omap-pwt", 0x800);
2535    memory_region_add_subregion(system_memory, base, &s->iomem);
2536    return s;
2537}
2538
2539/* Real-time Clock module */
2540struct omap_rtc_s {
2541    MemoryRegion iomem;
2542    qemu_irq irq;
2543    qemu_irq alarm;
2544    QEMUTimer *clk;
2545
2546    uint8_t interrupts;
2547    uint8_t status;
2548    int16_t comp_reg;
2549    int running;
2550    int pm_am;
2551    int auto_comp;
2552    int round;
2553    struct tm alarm_tm;
2554    time_t alarm_ti;
2555
2556    struct tm current_tm;
2557    time_t ti;
2558    uint64_t tick;
2559};
2560
2561static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2562{
2563    /* s->alarm is level-triggered */
2564    qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2565}
2566
2567static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2568{
2569    s->alarm_ti = mktimegm(&s->alarm_tm);
2570    if (s->alarm_ti == -1)
2571        printf("%s: conversion failed\n", __func__);
2572}
2573
2574static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2575                              unsigned size)
2576{
2577    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2578    int offset = addr & OMAP_MPUI_REG_MASK;
2579    uint8_t i;
2580
2581    if (size != 1) {
2582        return omap_badwidth_read8(opaque, addr);
2583    }
2584
2585    switch (offset) {
2586    case 0x00:  /* SECONDS_REG */
2587        return to_bcd(s->current_tm.tm_sec);
2588
2589    case 0x04:  /* MINUTES_REG */
2590        return to_bcd(s->current_tm.tm_min);
2591
2592    case 0x08:  /* HOURS_REG */
2593        if (s->pm_am)
2594            return ((s->current_tm.tm_hour > 11) << 7) |
2595                    to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2596        else
2597            return to_bcd(s->current_tm.tm_hour);
2598
2599    case 0x0c:  /* DAYS_REG */
2600        return to_bcd(s->current_tm.tm_mday);
2601
2602    case 0x10:  /* MONTHS_REG */
2603        return to_bcd(s->current_tm.tm_mon + 1);
2604
2605    case 0x14:  /* YEARS_REG */
2606        return to_bcd(s->current_tm.tm_year % 100);
2607
2608    case 0x18:  /* WEEK_REG */
2609        return s->current_tm.tm_wday;
2610
2611    case 0x20:  /* ALARM_SECONDS_REG */
2612        return to_bcd(s->alarm_tm.tm_sec);
2613
2614    case 0x24:  /* ALARM_MINUTES_REG */
2615        return to_bcd(s->alarm_tm.tm_min);
2616
2617    case 0x28:  /* ALARM_HOURS_REG */
2618        if (s->pm_am)
2619            return ((s->alarm_tm.tm_hour > 11) << 7) |
2620                    to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2621        else
2622            return to_bcd(s->alarm_tm.tm_hour);
2623
2624    case 0x2c:  /* ALARM_DAYS_REG */
2625        return to_bcd(s->alarm_tm.tm_mday);
2626
2627    case 0x30:  /* ALARM_MONTHS_REG */
2628        return to_bcd(s->alarm_tm.tm_mon + 1);
2629
2630    case 0x34:  /* ALARM_YEARS_REG */
2631        return to_bcd(s->alarm_tm.tm_year % 100);
2632
2633    case 0x40:  /* RTC_CTRL_REG */
2634        return (s->pm_am << 3) | (s->auto_comp << 2) |
2635                (s->round << 1) | s->running;
2636
2637    case 0x44:  /* RTC_STATUS_REG */
2638        i = s->status;
2639        s->status &= ~0x3d;
2640        return i;
2641
2642    case 0x48:  /* RTC_INTERRUPTS_REG */
2643        return s->interrupts;
2644
2645    case 0x4c:  /* RTC_COMP_LSB_REG */
2646        return ((uint16_t) s->comp_reg) & 0xff;
2647
2648    case 0x50:  /* RTC_COMP_MSB_REG */
2649        return ((uint16_t) s->comp_reg) >> 8;
2650    }
2651
2652    OMAP_BAD_REG(addr);
2653    return 0;
2654}
2655
2656static void omap_rtc_write(void *opaque, hwaddr addr,
2657                           uint64_t value, unsigned size)
2658{
2659    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2660    int offset = addr & OMAP_MPUI_REG_MASK;
2661    struct tm new_tm;
2662    time_t ti[2];
2663
2664    if (size != 1) {
2665        omap_badwidth_write8(opaque, addr, value);
2666        return;
2667    }
2668
2669    switch (offset) {
2670    case 0x00:  /* SECONDS_REG */
2671#ifdef ALMDEBUG
2672        printf("RTC SEC_REG <-- %02x\n", value);
2673#endif
2674        s->ti -= s->current_tm.tm_sec;
2675        s->ti += from_bcd(value);
2676        return;
2677
2678    case 0x04:  /* MINUTES_REG */
2679#ifdef ALMDEBUG
2680        printf("RTC MIN_REG <-- %02x\n", value);
2681#endif
2682        s->ti -= s->current_tm.tm_min * 60;
2683        s->ti += from_bcd(value) * 60;
2684        return;
2685
2686    case 0x08:  /* HOURS_REG */
2687#ifdef ALMDEBUG
2688        printf("RTC HRS_REG <-- %02x\n", value);
2689#endif
2690        s->ti -= s->current_tm.tm_hour * 3600;
2691        if (s->pm_am) {
2692            s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2693            s->ti += ((value >> 7) & 1) * 43200;
2694        } else
2695            s->ti += from_bcd(value & 0x3f) * 3600;
2696        return;
2697
2698    case 0x0c:  /* DAYS_REG */
2699#ifdef ALMDEBUG
2700        printf("RTC DAY_REG <-- %02x\n", value);
2701#endif
2702        s->ti -= s->current_tm.tm_mday * 86400;
2703        s->ti += from_bcd(value) * 86400;
2704        return;
2705
2706    case 0x10:  /* MONTHS_REG */
2707#ifdef ALMDEBUG
2708        printf("RTC MTH_REG <-- %02x\n", value);
2709#endif
2710        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2711        new_tm.tm_mon = from_bcd(value);
2712        ti[0] = mktimegm(&s->current_tm);
2713        ti[1] = mktimegm(&new_tm);
2714
2715        if (ti[0] != -1 && ti[1] != -1) {
2716            s->ti -= ti[0];
2717            s->ti += ti[1];
2718        } else {
2719            /* A less accurate version */
2720            s->ti -= s->current_tm.tm_mon * 2592000;
2721            s->ti += from_bcd(value) * 2592000;
2722        }
2723        return;
2724
2725    case 0x14:  /* YEARS_REG */
2726#ifdef ALMDEBUG
2727        printf("RTC YRS_REG <-- %02x\n", value);
2728#endif
2729        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2730        new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2731        ti[0] = mktimegm(&s->current_tm);
2732        ti[1] = mktimegm(&new_tm);
2733
2734        if (ti[0] != -1 && ti[1] != -1) {
2735            s->ti -= ti[0];
2736            s->ti += ti[1];
2737        } else {
2738            /* A less accurate version */
2739            s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2740            s->ti += (time_t)from_bcd(value) * 31536000;
2741        }
2742        return;
2743
2744    case 0x18:  /* WEEK_REG */
2745        return; /* Ignored */
2746
2747    case 0x20:  /* ALARM_SECONDS_REG */
2748#ifdef ALMDEBUG
2749        printf("ALM SEC_REG <-- %02x\n", value);
2750#endif
2751        s->alarm_tm.tm_sec = from_bcd(value);
2752        omap_rtc_alarm_update(s);
2753        return;
2754
2755    case 0x24:  /* ALARM_MINUTES_REG */
2756#ifdef ALMDEBUG
2757        printf("ALM MIN_REG <-- %02x\n", value);
2758#endif
2759        s->alarm_tm.tm_min = from_bcd(value);
2760        omap_rtc_alarm_update(s);
2761        return;
2762
2763    case 0x28:  /* ALARM_HOURS_REG */
2764#ifdef ALMDEBUG
2765        printf("ALM HRS_REG <-- %02x\n", value);
2766#endif
2767        if (s->pm_am)
2768            s->alarm_tm.tm_hour =
2769                    ((from_bcd(value & 0x3f)) % 12) +
2770                    ((value >> 7) & 1) * 12;
2771        else
2772            s->alarm_tm.tm_hour = from_bcd(value);
2773        omap_rtc_alarm_update(s);
2774        return;
2775
2776    case 0x2c:  /* ALARM_DAYS_REG */
2777#ifdef ALMDEBUG
2778        printf("ALM DAY_REG <-- %02x\n", value);
2779#endif
2780        s->alarm_tm.tm_mday = from_bcd(value);
2781        omap_rtc_alarm_update(s);
2782        return;
2783
2784    case 0x30:  /* ALARM_MONTHS_REG */
2785#ifdef ALMDEBUG
2786        printf("ALM MON_REG <-- %02x\n", value);
2787#endif
2788        s->alarm_tm.tm_mon = from_bcd(value);
2789        omap_rtc_alarm_update(s);
2790        return;
2791
2792    case 0x34:  /* ALARM_YEARS_REG */
2793#ifdef ALMDEBUG
2794        printf("ALM YRS_REG <-- %02x\n", value);
2795#endif
2796        s->alarm_tm.tm_year = from_bcd(value);
2797        omap_rtc_alarm_update(s);
2798        return;
2799
2800    case 0x40:  /* RTC_CTRL_REG */
2801#ifdef ALMDEBUG
2802        printf("RTC CONTROL <-- %02x\n", value);
2803#endif
2804        s->pm_am = (value >> 3) & 1;
2805        s->auto_comp = (value >> 2) & 1;
2806        s->round = (value >> 1) & 1;
2807        s->running = value & 1;
2808        s->status &= 0xfd;
2809        s->status |= s->running << 1;
2810        return;
2811
2812    case 0x44:  /* RTC_STATUS_REG */
2813#ifdef ALMDEBUG
2814        printf("RTC STATUSL <-- %02x\n", value);
2815#endif
2816        s->status &= ~((value & 0xc0) ^ 0x80);
2817        omap_rtc_interrupts_update(s);
2818        return;
2819
2820    case 0x48:  /* RTC_INTERRUPTS_REG */
2821#ifdef ALMDEBUG
2822        printf("RTC INTRS <-- %02x\n", value);
2823#endif
2824        s->interrupts = value;
2825        return;
2826
2827    case 0x4c:  /* RTC_COMP_LSB_REG */
2828#ifdef ALMDEBUG
2829        printf("RTC COMPLSB <-- %02x\n", value);
2830#endif
2831        s->comp_reg &= 0xff00;
2832        s->comp_reg |= 0x00ff & value;
2833        return;
2834
2835    case 0x50:  /* RTC_COMP_MSB_REG */
2836#ifdef ALMDEBUG
2837        printf("RTC COMPMSB <-- %02x\n", value);
2838#endif
2839        s->comp_reg &= 0x00ff;
2840        s->comp_reg |= 0xff00 & (value << 8);
2841        return;
2842
2843    default:
2844        OMAP_BAD_REG(addr);
2845        return;
2846    }
2847}
2848
2849static const MemoryRegionOps omap_rtc_ops = {
2850    .read = omap_rtc_read,
2851    .write = omap_rtc_write,
2852    .endianness = DEVICE_NATIVE_ENDIAN,
2853};
2854
2855static void omap_rtc_tick(void *opaque)
2856{
2857    struct omap_rtc_s *s = opaque;
2858
2859    if (s->round) {
2860        /* Round to nearest full minute.  */
2861        if (s->current_tm.tm_sec < 30)
2862            s->ti -= s->current_tm.tm_sec;
2863        else
2864            s->ti += 60 - s->current_tm.tm_sec;
2865
2866        s->round = 0;
2867    }
2868
2869    localtime_r(&s->ti, &s->current_tm);
2870
2871    if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2872        s->status |= 0x40;
2873        omap_rtc_interrupts_update(s);
2874    }
2875
2876    if (s->interrupts & 0x04)
2877        switch (s->interrupts & 3) {
2878        case 0:
2879            s->status |= 0x04;
2880            qemu_irq_pulse(s->irq);
2881            break;
2882        case 1:
2883            if (s->current_tm.tm_sec)
2884                break;
2885            s->status |= 0x08;
2886            qemu_irq_pulse(s->irq);
2887            break;
2888        case 2:
2889            if (s->current_tm.tm_sec || s->current_tm.tm_min)
2890                break;
2891            s->status |= 0x10;
2892            qemu_irq_pulse(s->irq);
2893            break;
2894        case 3:
2895            if (s->current_tm.tm_sec ||
2896                            s->current_tm.tm_min || s->current_tm.tm_hour)
2897                break;
2898            s->status |= 0x20;
2899            qemu_irq_pulse(s->irq);
2900            break;
2901        }
2902
2903    /* Move on */
2904    if (s->running)
2905        s->ti ++;
2906    s->tick += 1000;
2907
2908    /*
2909     * Every full hour add a rough approximation of the compensation
2910     * register to the 32kHz Timer (which drives the RTC) value. 
2911     */
2912    if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2913        s->tick += s->comp_reg * 1000 / 32768;
2914
2915    timer_mod(s->clk, s->tick);
2916}
2917
2918static void omap_rtc_reset(struct omap_rtc_s *s)
2919{
2920    struct tm tm;
2921
2922    s->interrupts = 0;
2923    s->comp_reg = 0;
2924    s->running = 0;
2925    s->pm_am = 0;
2926    s->auto_comp = 0;
2927    s->round = 0;
2928    s->tick = qemu_clock_get_ms(rtc_clock);
2929    memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2930    s->alarm_tm.tm_mday = 0x01;
2931    s->status = 1 << 7;
2932    qemu_get_timedate(&tm, 0);
2933    s->ti = mktimegm(&tm);
2934
2935    omap_rtc_alarm_update(s);
2936    omap_rtc_tick(s);
2937}
2938
2939static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2940                                        hwaddr base,
2941                                        qemu_irq timerirq, qemu_irq alarmirq,
2942                                        omap_clk clk)
2943{
2944    struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2945
2946    s->irq = timerirq;
2947    s->alarm = alarmirq;
2948    s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2949
2950    omap_rtc_reset(s);
2951
2952    memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2953                          "omap-rtc", 0x800);
2954    memory_region_add_subregion(system_memory, base, &s->iomem);
2955
2956    return s;
2957}
2958
2959/* Multi-channel Buffered Serial Port interfaces */
2960struct omap_mcbsp_s {
2961    MemoryRegion iomem;
2962    qemu_irq txirq;
2963    qemu_irq rxirq;
2964    qemu_irq txdrq;
2965    qemu_irq rxdrq;
2966
2967    uint16_t spcr[2];
2968    uint16_t rcr[2];
2969    uint16_t xcr[2];
2970    uint16_t srgr[2];
2971    uint16_t mcr[2];
2972    uint16_t pcr;
2973    uint16_t rcer[8];
2974    uint16_t xcer[8];
2975    int tx_rate;
2976    int rx_rate;
2977    int tx_req;
2978    int rx_req;
2979
2980    I2SCodec *codec;
2981    QEMUTimer *source_timer;
2982    QEMUTimer *sink_timer;
2983};
2984
2985static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2986{
2987    int irq;
2988
2989    switch ((s->spcr[0] >> 4) & 3) {                    /* RINTM */
2990    case 0:
2991        irq = (s->spcr[0] >> 1) & 1;                    /* RRDY */
2992        break;
2993    case 3:
2994        irq = (s->spcr[0] >> 3) & 1;                    /* RSYNCERR */
2995        break;
2996    default:
2997        irq = 0;
2998        break;
2999    }
3000
3001    if (irq)
3002        qemu_irq_pulse(s->rxirq);
3003
3004    switch ((s->spcr[1] >> 4) & 3) {                    /* XINTM */
3005    case 0:
3006        irq = (s->spcr[1] >> 1) & 1;                    /* XRDY */
3007        break;
3008    case 3:
3009        irq = (s->spcr[1] >> 3) & 1;                    /* XSYNCERR */
3010        break;
3011    default:
3012        irq = 0;
3013        break;
3014    }
3015
3016    if (irq)
3017        qemu_irq_pulse(s->txirq);
3018}
3019
3020static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3021{
3022    if ((s->spcr[0] >> 1) & 1)                          /* RRDY */
3023        s->spcr[0] |= 1 << 2;                           /* RFULL */
3024    s->spcr[0] |= 1 << 1;                               /* RRDY */
3025    qemu_irq_raise(s->rxdrq);
3026    omap_mcbsp_intr_update(s);
3027}
3028
3029static void omap_mcbsp_source_tick(void *opaque)
3030{
3031    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3032    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3033
3034    if (!s->rx_rate)
3035        return;
3036    if (s->rx_req)
3037        printf("%s: Rx FIFO overrun\n", __func__);
3038
3039    s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3040
3041    omap_mcbsp_rx_newdata(s);
3042    timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3043                   NANOSECONDS_PER_SECOND);
3044}
3045
3046static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3047{
3048    if (!s->codec || !s->codec->rts)
3049        omap_mcbsp_source_tick(s);
3050    else if (s->codec->in.len) {
3051        s->rx_req = s->codec->in.len;
3052        omap_mcbsp_rx_newdata(s);
3053    }
3054}
3055
3056static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3057{
3058    timer_del(s->source_timer);
3059}
3060
3061static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3062{
3063    s->spcr[0] &= ~(1 << 1);                            /* RRDY */
3064    qemu_irq_lower(s->rxdrq);
3065    omap_mcbsp_intr_update(s);
3066}
3067
3068static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3069{
3070    s->spcr[1] |= 1 << 1;                               /* XRDY */
3071    qemu_irq_raise(s->txdrq);
3072    omap_mcbsp_intr_update(s);
3073}
3074
3075static void omap_mcbsp_sink_tick(void *opaque)
3076{
3077    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3078    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3079
3080    if (!s->tx_rate)
3081        return;
3082    if (s->tx_req)
3083        printf("%s: Tx FIFO underrun\n", __func__);
3084
3085    s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3086
3087    omap_mcbsp_tx_newdata(s);
3088    timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3089                   NANOSECONDS_PER_SECOND);
3090}
3091
3092static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3093{
3094    if (!s->codec || !s->codec->cts)
3095        omap_mcbsp_sink_tick(s);
3096    else if (s->codec->out.size) {
3097        s->tx_req = s->codec->out.size;
3098        omap_mcbsp_tx_newdata(s);
3099    }
3100}
3101
3102static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3103{
3104    s->spcr[1] &= ~(1 << 1);                            /* XRDY */
3105    qemu_irq_lower(s->txdrq);
3106    omap_mcbsp_intr_update(s);
3107    if (s->codec && s->codec->cts)
3108        s->codec->tx_swallow(s->codec->opaque);
3109}
3110
3111static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3112{
3113    s->tx_req = 0;
3114    omap_mcbsp_tx_done(s);
3115    timer_del(s->sink_timer);
3116}
3117
3118static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3119{
3120    int prev_rx_rate, prev_tx_rate;
3121    int rx_rate = 0, tx_rate = 0;
3122    int cpu_rate = 1500000;     /* XXX */
3123
3124    /* TODO: check CLKSTP bit */
3125    if (s->spcr[1] & (1 << 6)) {                        /* GRST */
3126        if (s->spcr[0] & (1 << 0)) {                    /* RRST */
3127            if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3128                            (s->pcr & (1 << 8))) {      /* CLKRM */
3129                if (~s->pcr & (1 << 7))                 /* SCLKME */
3130                    rx_rate = cpu_rate /
3131                            ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3132            } else
3133                if (s->codec)
3134                    rx_rate = s->codec->rx_rate;
3135        }
3136
3137        if (s->spcr[1] & (1 << 0)) {                    /* XRST */
3138            if ((s->srgr[1] & (1 << 13)) &&             /* CLKSM */
3139                            (s->pcr & (1 << 9))) {      /* CLKXM */
3140                if (~s->pcr & (1 << 7))                 /* SCLKME */
3141                    tx_rate = cpu_rate /
3142                            ((s->srgr[0] & 0xff) + 1);  /* CLKGDV */
3143            } else
3144                if (s->codec)
3145                    tx_rate = s->codec->tx_rate;
3146        }
3147    }
3148    prev_tx_rate = s->tx_rate;
3149    prev_rx_rate = s->rx_rate;
3150    s->tx_rate = tx_rate;
3151    s->rx_rate = rx_rate;
3152
3153    if (s->codec)
3154        s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3155
3156    if (!prev_tx_rate && tx_rate)
3157        omap_mcbsp_tx_start(s);
3158    else if (s->tx_rate && !tx_rate)
3159        omap_mcbsp_tx_stop(s);
3160
3161    if (!prev_rx_rate && rx_rate)
3162        omap_mcbsp_rx_start(s);
3163    else if (prev_tx_rate && !tx_rate)
3164        omap_mcbsp_rx_stop(s);
3165}
3166
3167static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3168                                unsigned size)
3169{
3170    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3171    int offset = addr & OMAP_MPUI_REG_MASK;
3172    uint16_t ret;
3173
3174    if (size != 2) {
3175        return omap_badwidth_read16(opaque, addr);
3176    }
3177
3178    switch (offset) {
3179    case 0x00:  /* DRR2 */
3180        if (((s->rcr[0] >> 5) & 7) < 3)                 /* RWDLEN1 */
3181            return 0x0000;
3182        /* Fall through.  */
3183    case 0x02:  /* DRR1 */
3184        if (s->rx_req < 2) {
3185            printf("%s: Rx FIFO underrun\n", __func__);
3186            omap_mcbsp_rx_done(s);
3187        } else {
3188            s->tx_req -= 2;
3189            if (s->codec && s->codec->in.len >= 2) {
3190                ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3191                ret |= s->codec->in.fifo[s->codec->in.start ++];
3192                s->codec->in.len -= 2;
3193            } else
3194                ret = 0x0000;
3195            if (!s->tx_req)
3196                omap_mcbsp_rx_done(s);
3197            return ret;
3198        }
3199        return 0x0000;
3200
3201    case 0x04:  /* DXR2 */
3202    case 0x06:  /* DXR1 */
3203        return 0x0000;
3204
3205    case 0x08:  /* SPCR2 */
3206        return s->spcr[1];
3207    case 0x0a:  /* SPCR1 */
3208        return s->spcr[0];
3209    case 0x0c:  /* RCR2 */
3210        return s->rcr[1];
3211    case 0x0e:  /* RCR1 */
3212        return s->rcr[0];
3213    case 0x10:  /* XCR2 */
3214        return s->xcr[1];
3215    case 0x12:  /* XCR1 */
3216        return s->xcr[0];
3217    case 0x14:  /* SRGR2 */
3218        return s->srgr[1];
3219    case 0x16:  /* SRGR1 */
3220        return s->srgr[0];
3221    case 0x18:  /* MCR2 */
3222        return s->mcr[1];
3223    case 0x1a:  /* MCR1 */
3224        return s->mcr[0];
3225    case 0x1c:  /* RCERA */
3226        return s->rcer[0];
3227    case 0x1e:  /* RCERB */
3228        return s->rcer[1];
3229    case 0x20:  /* XCERA */
3230        return s->xcer[0];
3231    case 0x22:  /* XCERB */
3232        return s->xcer[1];
3233    case 0x24:  /* PCR0 */
3234        return s->pcr;
3235    case 0x26:  /* RCERC */
3236        return s->rcer[2];
3237    case 0x28:  /* RCERD */
3238        return s->rcer[3];
3239    case 0x2a:  /* XCERC */
3240        return s->xcer[2];
3241    case 0x2c:  /* XCERD */
3242        return s->xcer[3];
3243    case 0x2e:  /* RCERE */
3244        return s->rcer[4];
3245    case 0x30:  /* RCERF */
3246        return s->rcer[5];
3247    case 0x32:  /* XCERE */
3248        return s->xcer[4];
3249    case 0x34:  /* XCERF */
3250        return s->xcer[5];
3251    case 0x36:  /* RCERG */
3252        return s->rcer[6];
3253    case 0x38:  /* RCERH */
3254        return s->rcer[7];
3255    case 0x3a:  /* XCERG */
3256        return s->xcer[6];
3257    case 0x3c:  /* XCERH */
3258        return s->xcer[7];
3259    }
3260
3261    OMAP_BAD_REG(addr);
3262    return 0;
3263}
3264
3265static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3266                uint32_t value)
3267{
3268    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3269    int offset = addr & OMAP_MPUI_REG_MASK;
3270
3271    switch (offset) {
3272    case 0x00:  /* DRR2 */
3273    case 0x02:  /* DRR1 */
3274        OMAP_RO_REG(addr);
3275        return;
3276
3277    case 0x04:  /* DXR2 */
3278        if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3279            return;
3280        /* Fall through.  */
3281    case 0x06:  /* DXR1 */
3282        if (s->tx_req > 1) {
3283            s->tx_req -= 2;
3284            if (s->codec && s->codec->cts) {
3285                s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3286                s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3287            }
3288            if (s->tx_req < 2)
3289                omap_mcbsp_tx_done(s);
3290        } else
3291            printf("%s: Tx FIFO overrun\n", __func__);
3292        return;
3293
3294    case 0x08:  /* SPCR2 */
3295        s->spcr[1] &= 0x0002;
3296        s->spcr[1] |= 0x03f9 & value;
3297        s->spcr[1] |= 0x0004 & (value << 2);            /* XEMPTY := XRST */
3298        if (~value & 1)                                 /* XRST */
3299            s->spcr[1] &= ~6;
3300        omap_mcbsp_req_update(s);
3301        return;
3302    case 0x0a:  /* SPCR1 */
3303        s->spcr[0] &= 0x0006;
3304        s->spcr[0] |= 0xf8f9 & value;
3305        if (value & (1 << 15))                          /* DLB */
3306            printf("%s: Digital Loopback mode enable attempt\n", __func__);
3307        if (~value & 1) {                               /* RRST */
3308            s->spcr[0] &= ~6;
3309            s->rx_req = 0;
3310            omap_mcbsp_rx_done(s);
3311        }
3312        omap_mcbsp_req_update(s);
3313        return;
3314
3315    case 0x0c:  /* RCR2 */
3316        s->rcr[1] = value & 0xffff;
3317        return;
3318    case 0x0e:  /* RCR1 */
3319        s->rcr[0] = value & 0x7fe0;
3320        return;
3321    case 0x10:  /* XCR2 */
3322        s->xcr[1] = value & 0xffff;
3323        return;
3324    case 0x12:  /* XCR1 */
3325        s->xcr[0] = value & 0x7fe0;
3326        return;
3327    case 0x14:  /* SRGR2 */
3328        s->srgr[1] = value & 0xffff;
3329        omap_mcbsp_req_update(s);
3330        return;
3331    case 0x16:  /* SRGR1 */
3332        s->srgr[0] = value & 0xffff;
3333        omap_mcbsp_req_update(s);
3334        return;
3335    case 0x18:  /* MCR2 */
3336        s->mcr[1] = value & 0x03e3;
3337        if (value & 3)                                  /* XMCM */
3338            printf("%s: Tx channel selection mode enable attempt\n", __func__);
3339        return;
3340    case 0x1a:  /* MCR1 */
3341        s->mcr[0] = value & 0x03e1;
3342        if (value & 1)                                  /* RMCM */
3343            printf("%s: Rx channel selection mode enable attempt\n", __func__);
3344        return;
3345    case 0x1c:  /* RCERA */
3346        s->rcer[0] = value & 0xffff;
3347        return;
3348    case 0x1e:  /* RCERB */
3349        s->rcer[1] = value & 0xffff;
3350        return;
3351    case 0x20:  /* XCERA */
3352        s->xcer[0] = value & 0xffff;
3353        return;
3354    case 0x22:  /* XCERB */
3355        s->xcer[1] = value & 0xffff;
3356        return;
3357    case 0x24:  /* PCR0 */
3358        s->pcr = value & 0x7faf;
3359        return;
3360    case 0x26:  /* RCERC */
3361        s->rcer[2] = value & 0xffff;
3362        return;
3363    case 0x28:  /* RCERD */
3364        s->rcer[3] = value & 0xffff;
3365        return;
3366    case 0x2a:  /* XCERC */
3367        s->xcer[2] = value & 0xffff;
3368        return;
3369    case 0x2c:  /* XCERD */
3370        s->xcer[3] = value & 0xffff;
3371        return;
3372    case 0x2e:  /* RCERE */
3373        s->rcer[4] = value & 0xffff;
3374        return;
3375    case 0x30:  /* RCERF */
3376        s->rcer[5] = value & 0xffff;
3377        return;
3378    case 0x32:  /* XCERE */
3379        s->xcer[4] = value & 0xffff;
3380        return;
3381    case 0x34:  /* XCERF */
3382        s->xcer[5] = value & 0xffff;
3383        return;
3384    case 0x36:  /* RCERG */
3385        s->rcer[6] = value & 0xffff;
3386        return;
3387    case 0x38:  /* RCERH */
3388        s->rcer[7] = value & 0xffff;
3389        return;
3390    case 0x3a:  /* XCERG */
3391        s->xcer[6] = value & 0xffff;
3392        return;
3393    case 0x3c:  /* XCERH */
3394        s->xcer[7] = value & 0xffff;
3395        return;
3396    }
3397
3398    OMAP_BAD_REG(addr);
3399}
3400
3401static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3402                uint32_t value)
3403{
3404    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3405    int offset = addr & OMAP_MPUI_REG_MASK;
3406
3407    if (offset == 0x04) {                               /* DXR */
3408        if (((s->xcr[0] >> 5) & 7) < 3)                 /* XWDLEN1 */
3409            return;
3410        if (s->tx_req > 3) {
3411            s->tx_req -= 4;
3412            if (s->codec && s->codec->cts) {
3413                s->codec->out.fifo[s->codec->out.len ++] =
3414                        (value >> 24) & 0xff;
3415                s->codec->out.fifo[s->codec->out.len ++] =
3416                        (value >> 16) & 0xff;
3417                s->codec->out.fifo[s->codec->out.len ++] =
3418                        (value >> 8) & 0xff;
3419                s->codec->out.fifo[s->codec->out.len ++] =
3420                        (value >> 0) & 0xff;
3421            }
3422            if (s->tx_req < 4)
3423                omap_mcbsp_tx_done(s);
3424        } else
3425            printf("%s: Tx FIFO overrun\n", __func__);
3426        return;
3427    }
3428
3429    omap_badwidth_write16(opaque, addr, value);
3430}
3431
3432static void omap_mcbsp_write(void *opaque, hwaddr addr,
3433                             uint64_t value, unsigned size)
3434{
3435    switch (size) {
3436    case 2:
3437        omap_mcbsp_writeh(opaque, addr, value);
3438        break;
3439    case 4:
3440        omap_mcbsp_writew(opaque, addr, value);
3441        break;
3442    default:
3443        omap_badwidth_write16(opaque, addr, value);
3444    }
3445}
3446
3447static const MemoryRegionOps omap_mcbsp_ops = {
3448    .read = omap_mcbsp_read,
3449    .write = omap_mcbsp_write,
3450    .endianness = DEVICE_NATIVE_ENDIAN,
3451};
3452
3453static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3454{
3455    memset(&s->spcr, 0, sizeof(s->spcr));
3456    memset(&s->rcr, 0, sizeof(s->rcr));
3457    memset(&s->xcr, 0, sizeof(s->xcr));
3458    s->srgr[0] = 0x0001;
3459    s->srgr[1] = 0x2000;
3460    memset(&s->mcr, 0, sizeof(s->mcr));
3461    memset(&s->pcr, 0, sizeof(s->pcr));
3462    memset(&s->rcer, 0, sizeof(s->rcer));
3463    memset(&s->xcer, 0, sizeof(s->xcer));
3464    s->tx_req = 0;
3465    s->rx_req = 0;
3466    s->tx_rate = 0;
3467    s->rx_rate = 0;
3468    timer_del(s->source_timer);
3469    timer_del(s->sink_timer);
3470}
3471
3472static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3473                                            hwaddr base,
3474                                            qemu_irq txirq, qemu_irq rxirq,
3475                                            qemu_irq *dma, omap_clk clk)
3476{
3477    struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3478
3479    s->txirq = txirq;
3480    s->rxirq = rxirq;
3481    s->txdrq = dma[0];
3482    s->rxdrq = dma[1];
3483    s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3484    s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3485    omap_mcbsp_reset(s);
3486
3487    memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3488    memory_region_add_subregion(system_memory, base, &s->iomem);
3489
3490    return s;
3491}
3492
3493static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3494{
3495    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3496
3497    if (s->rx_rate) {
3498        s->rx_req = s->codec->in.len;
3499        omap_mcbsp_rx_newdata(s);
3500    }
3501}
3502
3503static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3504{
3505    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3506
3507    if (s->tx_rate) {
3508        s->tx_req = s->codec->out.size;
3509        omap_mcbsp_tx_newdata(s);
3510    }
3511}
3512
3513void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3514{
3515    s->codec = slave;
3516    slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3517    slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3518}
3519
3520/* LED Pulse Generators */
3521struct omap_lpg_s {
3522    MemoryRegion iomem;
3523    QEMUTimer *tm;
3524
3525    uint8_t control;
3526    uint8_t power;
3527    int64_t on;
3528    int64_t period;
3529    int clk;
3530    int cycle;
3531};
3532
3533static void omap_lpg_tick(void *opaque)
3534{
3535    struct omap_lpg_s *s = opaque;
3536
3537    if (s->cycle)
3538        timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3539    else
3540        timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3541
3542    s->cycle = !s->cycle;
3543    printf("%s: LED is %s\n", __func__, s->cycle ? "on" : "off");
3544}
3545
3546static void omap_lpg_update(struct omap_lpg_s *s)
3547{
3548    int64_t on, period = 1, ticks = 1000;
3549    static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3550
3551    if (~s->control & (1 << 6))                                 /* LPGRES */
3552        on = 0;
3553    else if (s->control & (1 << 7))                             /* PERM_ON */
3554        on = period;
3555    else {
3556        period = muldiv64(ticks, per[s->control & 7],           /* PERCTRL */
3557                        256 / 32);
3558        on = (s->clk && s->power) ? muldiv64(ticks,
3559                        per[(s->control >> 3) & 7], 256) : 0;   /* ONCTRL */
3560    }
3561
3562    timer_del(s->tm);
3563    if (on == period && s->on < s->period)
3564        printf("%s: LED is on\n", __func__);
3565    else if (on == 0 && s->on)
3566        printf("%s: LED is off\n", __func__);
3567    else if (on && (on != s->on || period != s->period)) {
3568        s->cycle = 0;
3569        s->on = on;
3570        s->period = period;
3571        omap_lpg_tick(s);
3572        return;
3573    }
3574
3575    s->on = on;
3576    s->period = period;
3577}
3578
3579static void omap_lpg_reset(struct omap_lpg_s *s)
3580{
3581    s->control = 0x00;
3582    s->power = 0x00;
3583    s->clk = 1;
3584    omap_lpg_update(s);
3585}
3586
3587static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3588                              unsigned size)
3589{
3590    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3591    int offset = addr & OMAP_MPUI_REG_MASK;
3592
3593    if (size != 1) {
3594        return omap_badwidth_read8(opaque, addr);
3595    }
3596
3597    switch (offset) {
3598    case 0x00:  /* LCR */
3599        return s->control;
3600
3601    case 0x04:  /* PMR */
3602        return s->power;
3603    }
3604
3605    OMAP_BAD_REG(addr);
3606    return 0;
3607}
3608
3609static void omap_lpg_write(void *opaque, hwaddr addr,
3610                           uint64_t value, unsigned size)
3611{
3612    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3613    int offset = addr & OMAP_MPUI_REG_MASK;
3614
3615    if (size != 1) {
3616        omap_badwidth_write8(opaque, addr, value);
3617        return;
3618    }
3619
3620    switch (offset) {
3621    case 0x00:  /* LCR */
3622        if (~value & (1 << 6))                                  /* LPGRES */
3623            omap_lpg_reset(s);
3624        s->control = value & 0xff;
3625        omap_lpg_update(s);
3626        return;
3627
3628    case 0x04:  /* PMR */
3629        s->power = value & 0x01;
3630        omap_lpg_update(s);
3631        return;
3632
3633    default:
3634        OMAP_BAD_REG(addr);
3635        return;
3636    }
3637}
3638
3639static const MemoryRegionOps omap_lpg_ops = {
3640    .read = omap_lpg_read,
3641    .write = omap_lpg_write,
3642    .endianness = DEVICE_NATIVE_ENDIAN,
3643};
3644
3645static void omap_lpg_clk_update(void *opaque, int line, int on)
3646{
3647    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3648
3649    s->clk = on;
3650    omap_lpg_update(s);
3651}
3652
3653static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3654                                        hwaddr base, omap_clk clk)
3655{
3656    struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3657
3658    s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3659
3660    omap_lpg_reset(s);
3661
3662    memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3663    memory_region_add_subregion(system_memory, base, &s->iomem);
3664
3665    omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3666
3667    return s;
3668}
3669
3670/* MPUI Peripheral Bridge configuration */
3671static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3672                                  unsigned size)
3673{
3674    if (size != 2) {
3675        return omap_badwidth_read16(opaque, addr);
3676    }
3677
3678    if (addr == OMAP_MPUI_BASE) /* CMR */
3679        return 0xfe4d;
3680
3681    OMAP_BAD_REG(addr);
3682    return 0;
3683}
3684
3685static void omap_mpui_io_write(void *opaque, hwaddr addr,
3686                               uint64_t value, unsigned size)
3687{
3688    /* FIXME: infinite loop */
3689    omap_badwidth_write16(opaque, addr, value);
3690}
3691
3692static const MemoryRegionOps omap_mpui_io_ops = {
3693    .read = omap_mpui_io_read,
3694    .write = omap_mpui_io_write,
3695    .endianness = DEVICE_NATIVE_ENDIAN,
3696};
3697
3698static void omap_setup_mpui_io(MemoryRegion *system_memory,
3699                               struct omap_mpu_state_s *mpu)
3700{
3701    memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3702                          "omap-mpui-io", 0x7fff);
3703    memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3704                                &mpu->mpui_io_iomem);
3705}
3706
3707/* General chip reset */
3708static void omap1_mpu_reset(void *opaque)
3709{
3710    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3711
3712    omap_dma_reset(mpu->dma);
3713    omap_mpu_timer_reset(mpu->timer[0]);
3714    omap_mpu_timer_reset(mpu->timer[1]);
3715    omap_mpu_timer_reset(mpu->timer[2]);
3716    omap_wd_timer_reset(mpu->wdt);
3717    omap_os_timer_reset(mpu->os_timer);
3718    omap_lcdc_reset(mpu->lcd);
3719    omap_ulpd_pm_reset(mpu);
3720    omap_pin_cfg_reset(mpu);
3721    omap_mpui_reset(mpu);
3722    omap_tipb_bridge_reset(mpu->private_tipb);
3723    omap_tipb_bridge_reset(mpu->public_tipb);
3724    omap_dpll_reset(mpu->dpll[0]);
3725    omap_dpll_reset(mpu->dpll[1]);
3726    omap_dpll_reset(mpu->dpll[2]);
3727    omap_uart_reset(mpu->uart[0]);
3728    omap_uart_reset(mpu->uart[1]);
3729    omap_uart_reset(mpu->uart[2]);
3730    omap_mmc_reset(mpu->mmc);
3731    omap_mpuio_reset(mpu->mpuio);
3732    omap_uwire_reset(mpu->microwire);
3733    omap_pwl_reset(mpu->pwl);
3734    omap_pwt_reset(mpu->pwt);
3735    omap_rtc_reset(mpu->rtc);
3736    omap_mcbsp_reset(mpu->mcbsp1);
3737    omap_mcbsp_reset(mpu->mcbsp2);
3738    omap_mcbsp_reset(mpu->mcbsp3);
3739    omap_lpg_reset(mpu->led[0]);
3740    omap_lpg_reset(mpu->led[1]);
3741    omap_clkm_reset(mpu);
3742    cpu_reset(CPU(mpu->cpu));
3743}
3744
3745static const struct omap_map_s {
3746    hwaddr phys_dsp;
3747    hwaddr phys_mpu;
3748    uint32_t size;
3749    const char *name;
3750} omap15xx_dsp_mm[] = {
3751    /* Strobe 0 */
3752    { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },              /* CS0 */
3753    { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },             /* CS1 */
3754    { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },          /* CS3 */
3755    { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },   /* CS4 */
3756    { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },        /* CS5 */
3757    { 0xe1013000, 0xfffb3000, 0x800, "uWire" },                 /* CS6 */
3758    { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },                  /* CS7 */
3759    { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },              /* CS8 */
3760    { 0xe1014800, 0xfffb4800, 0x800, "RTC" },                   /* CS9 */
3761    { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },                 /* CS10 */
3762    { 0xe1015800, 0xfffb5800, 0x800, "PWL" },                   /* CS11 */
3763    { 0xe1016000, 0xfffb6000, 0x800, "PWT" },                   /* CS12 */
3764    { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },                /* CS14 */
3765    { 0xe1017800, 0xfffb7800, 0x800, "MMC" },                   /* CS15 */
3766    { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },          /* CS18 */
3767    { 0xe1019800, 0xfffb9800, 0x800, "UART3" },                 /* CS19 */
3768    { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },         /* CS25 */
3769    /* Strobe 1 */
3770    { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },                 /* CS28 */
3771
3772    { 0 }
3773};
3774
3775static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3776                                   const struct omap_map_s *map)
3777{
3778    MemoryRegion *io;
3779
3780    for (; map->phys_dsp; map ++) {
3781        io = g_new(MemoryRegion, 1);
3782        memory_region_init_alias(io, NULL, map->name,
3783                                 system_memory, map->phys_mpu, map->size);
3784        memory_region_add_subregion(system_memory, map->phys_dsp, io);
3785    }
3786}
3787
3788void omap_mpu_wakeup(void *opaque, int irq, int req)
3789{
3790    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3791    CPUState *cpu = CPU(mpu->cpu);
3792
3793    if (cpu->halted) {
3794        cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3795    }
3796}
3797
3798static const struct dma_irq_map omap1_dma_irq_map[] = {
3799    { 0, OMAP_INT_DMA_CH0_6 },
3800    { 0, OMAP_INT_DMA_CH1_7 },
3801    { 0, OMAP_INT_DMA_CH2_8 },
3802    { 0, OMAP_INT_DMA_CH3 },
3803    { 0, OMAP_INT_DMA_CH4 },
3804    { 0, OMAP_INT_DMA_CH5 },
3805    { 1, OMAP_INT_1610_DMA_CH6 },
3806    { 1, OMAP_INT_1610_DMA_CH7 },
3807    { 1, OMAP_INT_1610_DMA_CH8 },
3808    { 1, OMAP_INT_1610_DMA_CH9 },
3809    { 1, OMAP_INT_1610_DMA_CH10 },
3810    { 1, OMAP_INT_1610_DMA_CH11 },
3811    { 1, OMAP_INT_1610_DMA_CH12 },
3812    { 1, OMAP_INT_1610_DMA_CH13 },
3813    { 1, OMAP_INT_1610_DMA_CH14 },
3814    { 1, OMAP_INT_1610_DMA_CH15 }
3815};
3816
3817/* DMA ports for OMAP1 */
3818static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3819                hwaddr addr)
3820{
3821    return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3822}
3823
3824static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3825                hwaddr addr)
3826{
3827    return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3828                             addr);
3829}
3830
3831static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3832                hwaddr addr)
3833{
3834    return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3835}
3836
3837static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3838                hwaddr addr)
3839{
3840    return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3841}
3842
3843static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3844                hwaddr addr)
3845{
3846    return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3847}
3848
3849static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3850                hwaddr addr)
3851{
3852    return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3853}
3854
3855struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3856                unsigned long sdram_size,
3857                const char *cpu_type)
3858{
3859    int i;
3860    struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3861    qemu_irq dma_irqs[6];
3862    DriveInfo *dinfo;
3863    SysBusDevice *busdev;
3864
3865    /* Core */
3866    s->mpu_model = omap310;
3867    s->cpu = ARM_CPU(cpu_create(cpu_type));
3868    s->sdram_size = sdram_size;
3869    s->sram_size = OMAP15XX_SRAM_SIZE;
3870
3871    s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3872
3873    /* Clocks */
3874    omap_clk_init(s);
3875
3876    /* Memory-mapped stuff */
3877    memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3878                                         s->sdram_size);
3879    memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3880    memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3881                           &error_fatal);
3882    memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3883
3884    omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3885
3886    s->ih[0] = qdev_create(NULL, "omap-intc");
3887    qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3888    qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3889    qdev_init_nofail(s->ih[0]);
3890    busdev = SYS_BUS_DEVICE(s->ih[0]);
3891    sysbus_connect_irq(busdev, 0,
3892                       qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3893    sysbus_connect_irq(busdev, 1,
3894                       qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3895    sysbus_mmio_map(busdev, 0, 0xfffecb00);
3896    s->ih[1] = qdev_create(NULL, "omap-intc");
3897    qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3898    qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3899    qdev_init_nofail(s->ih[1]);
3900    busdev = SYS_BUS_DEVICE(s->ih[1]);
3901    sysbus_connect_irq(busdev, 0,
3902                       qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3903    /* The second interrupt controller's FIQ output is not wired up */
3904    sysbus_mmio_map(busdev, 0, 0xfffe0000);
3905
3906    for (i = 0; i < 6; i++) {
3907        dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3908                                       omap1_dma_irq_map[i].intr);
3909    }
3910    s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3911                           qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3912                           s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3913
3914    s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
3915    s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
3916    s->port[imif     ].addr_valid = omap_validate_imif_addr;
3917    s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
3918    s->port[local    ].addr_valid = omap_validate_local_addr;
3919    s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3920
3921    /* Register SDRAM and SRAM DMA ports for fast transfers.  */
3922    soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3923                         OMAP_EMIFF_BASE, s->sdram_size);
3924    soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3925                         OMAP_IMIF_BASE, s->sram_size);
3926
3927    s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3928                    qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3929                    omap_findclk(s, "mputim_ck"));
3930    s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3931                    qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3932                    omap_findclk(s, "mputim_ck"));
3933    s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3934                    qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3935                    omap_findclk(s, "mputim_ck"));
3936
3937    s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3938                    qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3939                    omap_findclk(s, "armwdt_ck"));
3940
3941    s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3942                    qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3943                    omap_findclk(s, "clk32-kHz"));
3944
3945    s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3946                            qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3947                            omap_dma_get_lcdch(s->dma),
3948                            omap_findclk(s, "lcd_ck"));
3949
3950    omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3951    omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3952    omap_id_init(system_memory, s);
3953
3954    omap_mpui_init(system_memory, 0xfffec900, s);
3955
3956    s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3957                    qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3958                    omap_findclk(s, "tipb_ck"));
3959    s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3960                    qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3961                    omap_findclk(s, "tipb_ck"));
3962
3963    omap_tcmi_init(system_memory, 0xfffecc00, s);
3964
3965    s->uart[0] = omap_uart_init(0xfffb0000,
3966                                qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3967                    omap_findclk(s, "uart1_ck"),
3968                    omap_findclk(s, "uart1_ck"),
3969                    s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3970                    "uart1",
3971                    serial_hd(0));
3972    s->uart[1] = omap_uart_init(0xfffb0800,
3973                                qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3974                    omap_findclk(s, "uart2_ck"),
3975                    omap_findclk(s, "uart2_ck"),
3976                    s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3977                    "uart2",
3978                    serial_hd(0) ? serial_hd(1) : NULL);
3979    s->uart[2] = omap_uart_init(0xfffb9800,
3980                                qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3981                    omap_findclk(s, "uart3_ck"),
3982                    omap_findclk(s, "uart3_ck"),
3983                    s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3984                    "uart3",
3985                    serial_hd(0) && serial_hd(1) ? serial_hd(2) : NULL);
3986
3987    s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3988                                omap_findclk(s, "dpll1"));
3989    s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3990                                omap_findclk(s, "dpll2"));
3991    s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3992                                omap_findclk(s, "dpll3"));
3993
3994    dinfo = drive_get(IF_SD, 0, 0);
3995    if (!dinfo && !qtest_enabled()) {
3996        warn_report("missing SecureDigital device");
3997    }
3998    s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3999                           dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
4000                           qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
4001                           &s->drq[OMAP_DMA_MMC_TX],
4002                    omap_findclk(s, "mmc_ck"));
4003
4004    s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4005                               qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4006                               qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4007                               s->wakeup, omap_findclk(s, "clk32-kHz"));
4008
4009    s->gpio = qdev_create(NULL, "omap-gpio");
4010    qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4011    qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4012    qdev_init_nofail(s->gpio);
4013    sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4014                       qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4015    sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4016
4017    s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4018                                   qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4019                                   qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4020                    s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4021
4022    s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4023                           omap_findclk(s, "armxor_ck"));
4024    s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4025                           omap_findclk(s, "armxor_ck"));
4026
4027    s->i2c[0] = qdev_create(NULL, "omap_i2c");
4028    qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4029    qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4030    qdev_init_nofail(s->i2c[0]);
4031    busdev = SYS_BUS_DEVICE(s->i2c[0]);
4032    sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4033    sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4034    sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4035    sysbus_mmio_map(busdev, 0, 0xfffb3800);
4036
4037    s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4038                           qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4039                           qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4040                    omap_findclk(s, "clk32-kHz"));
4041
4042    s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4043                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4044                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4045                    &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4046    s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4047                                qdev_get_gpio_in(s->ih[0],
4048                                                 OMAP_INT_310_McBSP2_TX),
4049                                qdev_get_gpio_in(s->ih[0],
4050                                                 OMAP_INT_310_McBSP2_RX),
4051                    &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4052    s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4053                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4054                                qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4055                    &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4056
4057    s->led[0] = omap_lpg_init(system_memory,
4058                              0xfffbd000, omap_findclk(s, "clk32-kHz"));
4059    s->led[1] = omap_lpg_init(system_memory,
4060                              0xfffbd800, omap_findclk(s, "clk32-kHz"));
4061
4062    /* Register mappings not currenlty implemented:
4063     * MCSI2 Comm       fffb2000 - fffb27ff (not mapped on OMAP310)
4064     * MCSI1 Bluetooth  fffb2800 - fffb2fff (not mapped on OMAP310)
4065     * USB W2FC         fffb4000 - fffb47ff
4066     * Camera Interface fffb6800 - fffb6fff
4067     * USB Host         fffba000 - fffba7ff
4068     * FAC              fffba800 - fffbafff
4069     * HDQ/1-Wire       fffbc000 - fffbc7ff
4070     * TIPB switches    fffbc800 - fffbcfff
4071     * Mailbox          fffcf000 - fffcf7ff
4072     * Local bus IF     fffec100 - fffec1ff
4073     * Local bus MMU    fffec200 - fffec2ff
4074     * DSP MMU          fffed200 - fffed2ff
4075     */
4076
4077    omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4078    omap_setup_mpui_io(system_memory, s);
4079
4080    qemu_register_reset(omap1_mpu_reset, s);
4081
4082    return s;
4083}
4084