qemu/hw/block/nand.c
<<
>>
Prefs
   1/*
   2 * Flash NAND memory emulation.  Based on "16M x 8 Bit NAND Flash
   3 * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from
   4 * Samsung Electronic.
   5 *
   6 * Copyright (c) 2006 Openedhand Ltd.
   7 * Written by Andrzej Zaborowski <balrog@zabor.org>
   8 *
   9 * Support for additional features based on "MT29F2G16ABCWP 2Gx16"
  10 * datasheet from Micron Technology and "NAND02G-B2C" datasheet
  11 * from ST Microelectronics.
  12 *
  13 * This code is licensed under the GNU GPL v2.
  14 *
  15 * Contributions after 2012-01-13 are licensed under the terms of the
  16 * GNU GPL, version 2 or (at your option) any later version.
  17 */
  18
  19#ifndef NAND_IO
  20
  21#include "qemu/osdep.h"
  22#include "hw/hw.h"
  23#include "hw/block/flash.h"
  24#include "sysemu/block-backend.h"
  25#include "hw/qdev.h"
  26#include "qapi/error.h"
  27#include "qemu/error-report.h"
  28#include "qemu/module.h"
  29
  30# define NAND_CMD_READ0         0x00
  31# define NAND_CMD_READ1         0x01
  32# define NAND_CMD_READ2         0x50
  33# define NAND_CMD_LPREAD2       0x30
  34# define NAND_CMD_NOSERIALREAD2 0x35
  35# define NAND_CMD_RANDOMREAD1   0x05
  36# define NAND_CMD_RANDOMREAD2   0xe0
  37# define NAND_CMD_READID        0x90
  38# define NAND_CMD_RESET         0xff
  39# define NAND_CMD_PAGEPROGRAM1  0x80
  40# define NAND_CMD_PAGEPROGRAM2  0x10
  41# define NAND_CMD_CACHEPROGRAM2 0x15
  42# define NAND_CMD_BLOCKERASE1   0x60
  43# define NAND_CMD_BLOCKERASE2   0xd0
  44# define NAND_CMD_READSTATUS    0x70
  45# define NAND_CMD_COPYBACKPRG1  0x85
  46
  47# define NAND_IOSTATUS_ERROR    (1 << 0)
  48# define NAND_IOSTATUS_PLANE0   (1 << 1)
  49# define NAND_IOSTATUS_PLANE1   (1 << 2)
  50# define NAND_IOSTATUS_PLANE2   (1 << 3)
  51# define NAND_IOSTATUS_PLANE3   (1 << 4)
  52# define NAND_IOSTATUS_READY    (1 << 6)
  53# define NAND_IOSTATUS_UNPROTCT (1 << 7)
  54
  55# define MAX_PAGE               0x800
  56# define MAX_OOB                0x40
  57
  58typedef struct NANDFlashState NANDFlashState;
  59struct NANDFlashState {
  60    DeviceState parent_obj;
  61
  62    uint8_t manf_id, chip_id;
  63    uint8_t buswidth; /* in BYTES */
  64    int size, pages;
  65    int page_shift, oob_shift, erase_shift, addr_shift;
  66    uint8_t *storage;
  67    BlockBackend *blk;
  68    int mem_oob;
  69
  70    uint8_t cle, ale, ce, wp, gnd;
  71
  72    uint8_t io[MAX_PAGE + MAX_OOB + 0x400];
  73    uint8_t *ioaddr;
  74    int iolen;
  75
  76    uint32_t cmd;
  77    uint64_t addr;
  78    int addrlen;
  79    int status;
  80    int offset;
  81
  82    void (*blk_write)(NANDFlashState *s);
  83    void (*blk_erase)(NANDFlashState *s);
  84    void (*blk_load)(NANDFlashState *s, uint64_t addr, int offset);
  85
  86    uint32_t ioaddr_vmstate;
  87};
  88
  89#define TYPE_NAND "nand"
  90
  91#define NAND(obj) \
  92    OBJECT_CHECK(NANDFlashState, (obj), TYPE_NAND)
  93
  94static void mem_and(uint8_t *dest, const uint8_t *src, size_t n)
  95{
  96    /* Like memcpy() but we logical-AND the data into the destination */
  97    int i;
  98    for (i = 0; i < n; i++) {
  99        dest[i] &= src[i];
 100    }
 101}
 102
 103# define NAND_NO_AUTOINCR       0x00000001
 104# define NAND_BUSWIDTH_16       0x00000002
 105# define NAND_NO_PADDING        0x00000004
 106# define NAND_CACHEPRG          0x00000008
 107# define NAND_COPYBACK          0x00000010
 108# define NAND_IS_AND            0x00000020
 109# define NAND_4PAGE_ARRAY       0x00000040
 110# define NAND_NO_READRDY        0x00000100
 111# define NAND_SAMSUNG_LP        (NAND_NO_PADDING | NAND_COPYBACK)
 112
 113# define NAND_IO
 114
 115# define PAGE(addr)             ((addr) >> ADDR_SHIFT)
 116# define PAGE_START(page)       (PAGE(page) * (PAGE_SIZE + OOB_SIZE))
 117# define PAGE_MASK              ((1 << ADDR_SHIFT) - 1)
 118# define OOB_SHIFT              (PAGE_SHIFT - 5)
 119# define OOB_SIZE               (1 << OOB_SHIFT)
 120# define SECTOR(addr)           ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT))
 121# define SECTOR_OFFSET(addr)    ((addr) & ((511 >> PAGE_SHIFT) << 8))
 122
 123# define PAGE_SIZE              256
 124# define PAGE_SHIFT             8
 125# define PAGE_SECTORS           1
 126# define ADDR_SHIFT             8
 127# include "nand.c"
 128# define PAGE_SIZE              512
 129# define PAGE_SHIFT             9
 130# define PAGE_SECTORS           1
 131# define ADDR_SHIFT             8
 132# include "nand.c"
 133# define PAGE_SIZE              2048
 134# define PAGE_SHIFT             11
 135# define PAGE_SECTORS           4
 136# define ADDR_SHIFT             16
 137# include "nand.c"
 138
 139/* Information based on Linux drivers/mtd/nand/nand_ids.c */
 140static const struct {
 141    int size;
 142    int width;
 143    int page_shift;
 144    int erase_shift;
 145    uint32_t options;
 146} nand_flash_ids[0x100] = {
 147    [0 ... 0xff] = { 0 },
 148
 149    [0x6e] = { 1,       8,      8, 4, 0 },
 150    [0x64] = { 2,       8,      8, 4, 0 },
 151    [0x6b] = { 4,       8,      9, 4, 0 },
 152    [0xe8] = { 1,       8,      8, 4, 0 },
 153    [0xec] = { 1,       8,      8, 4, 0 },
 154    [0xea] = { 2,       8,      8, 4, 0 },
 155    [0xd5] = { 4,       8,      9, 4, 0 },
 156    [0xe3] = { 4,       8,      9, 4, 0 },
 157    [0xe5] = { 4,       8,      9, 4, 0 },
 158    [0xd6] = { 8,       8,      9, 4, 0 },
 159
 160    [0x39] = { 8,       8,      9, 4, 0 },
 161    [0xe6] = { 8,       8,      9, 4, 0 },
 162    [0x49] = { 8,       16,     9, 4, NAND_BUSWIDTH_16 },
 163    [0x59] = { 8,       16,     9, 4, NAND_BUSWIDTH_16 },
 164
 165    [0x33] = { 16,      8,      9, 5, 0 },
 166    [0x73] = { 16,      8,      9, 5, 0 },
 167    [0x43] = { 16,      16,     9, 5, NAND_BUSWIDTH_16 },
 168    [0x53] = { 16,      16,     9, 5, NAND_BUSWIDTH_16 },
 169
 170    [0x35] = { 32,      8,      9, 5, 0 },
 171    [0x75] = { 32,      8,      9, 5, 0 },
 172    [0x45] = { 32,      16,     9, 5, NAND_BUSWIDTH_16 },
 173    [0x55] = { 32,      16,     9, 5, NAND_BUSWIDTH_16 },
 174
 175    [0x36] = { 64,      8,      9, 5, 0 },
 176    [0x76] = { 64,      8,      9, 5, 0 },
 177    [0x46] = { 64,      16,     9, 5, NAND_BUSWIDTH_16 },
 178    [0x56] = { 64,      16,     9, 5, NAND_BUSWIDTH_16 },
 179
 180    [0x78] = { 128,     8,      9, 5, 0 },
 181    [0x39] = { 128,     8,      9, 5, 0 },
 182    [0x79] = { 128,     8,      9, 5, 0 },
 183    [0x72] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 184    [0x49] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 185    [0x74] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 186    [0x59] = { 128,     16,     9, 5, NAND_BUSWIDTH_16 },
 187
 188    [0x71] = { 256,     8,      9, 5, 0 },
 189
 190    /*
 191     * These are the new chips with large page size. The pagesize and the
 192     * erasesize is determined from the extended id bytes
 193     */
 194# define LP_OPTIONS     (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR)
 195# define LP_OPTIONS16   (LP_OPTIONS | NAND_BUSWIDTH_16)
 196
 197    /* 512 Megabit */
 198    [0xa2] = { 64,      8,      0, 0, LP_OPTIONS },
 199    [0xf2] = { 64,      8,      0, 0, LP_OPTIONS },
 200    [0xb2] = { 64,      16,     0, 0, LP_OPTIONS16 },
 201    [0xc2] = { 64,      16,     0, 0, LP_OPTIONS16 },
 202
 203    /* 1 Gigabit */
 204    [0xa1] = { 128,     8,      0, 0, LP_OPTIONS },
 205    [0xf1] = { 128,     8,      0, 0, LP_OPTIONS },
 206    [0xb1] = { 128,     16,     0, 0, LP_OPTIONS16 },
 207    [0xc1] = { 128,     16,     0, 0, LP_OPTIONS16 },
 208
 209    /* 2 Gigabit */
 210    [0xaa] = { 256,     8,      0, 0, LP_OPTIONS },
 211    [0xda] = { 256,     8,      0, 0, LP_OPTIONS },
 212    [0xba] = { 256,     16,     0, 0, LP_OPTIONS16 },
 213    [0xca] = { 256,     16,     0, 0, LP_OPTIONS16 },
 214
 215    /* 4 Gigabit */
 216    [0xac] = { 512,     8,      0, 0, LP_OPTIONS },
 217    [0xdc] = { 512,     8,      0, 0, LP_OPTIONS },
 218    [0xbc] = { 512,     16,     0, 0, LP_OPTIONS16 },
 219    [0xcc] = { 512,     16,     0, 0, LP_OPTIONS16 },
 220
 221    /* 8 Gigabit */
 222    [0xa3] = { 1024,    8,      0, 0, LP_OPTIONS },
 223    [0xd3] = { 1024,    8,      0, 0, LP_OPTIONS },
 224    [0xb3] = { 1024,    16,     0, 0, LP_OPTIONS16 },
 225    [0xc3] = { 1024,    16,     0, 0, LP_OPTIONS16 },
 226
 227    /* 16 Gigabit */
 228    [0xa5] = { 2048,    8,      0, 0, LP_OPTIONS },
 229    [0xd5] = { 2048,    8,      0, 0, LP_OPTIONS },
 230    [0xb5] = { 2048,    16,     0, 0, LP_OPTIONS16 },
 231    [0xc5] = { 2048,    16,     0, 0, LP_OPTIONS16 },
 232};
 233
 234static void nand_reset(DeviceState *dev)
 235{
 236    NANDFlashState *s = NAND(dev);
 237    s->cmd = NAND_CMD_READ0;
 238    s->addr = 0;
 239    s->addrlen = 0;
 240    s->iolen = 0;
 241    s->offset = 0;
 242    s->status &= NAND_IOSTATUS_UNPROTCT;
 243    s->status |= NAND_IOSTATUS_READY;
 244}
 245
 246static inline void nand_pushio_byte(NANDFlashState *s, uint8_t value)
 247{
 248    s->ioaddr[s->iolen++] = value;
 249    for (value = s->buswidth; --value;) {
 250        s->ioaddr[s->iolen++] = 0;
 251    }
 252}
 253
 254static void nand_command(NANDFlashState *s)
 255{
 256    unsigned int offset;
 257    switch (s->cmd) {
 258    case NAND_CMD_READ0:
 259        s->iolen = 0;
 260        break;
 261
 262    case NAND_CMD_READID:
 263        s->ioaddr = s->io;
 264        s->iolen = 0;
 265        nand_pushio_byte(s, s->manf_id);
 266        nand_pushio_byte(s, s->chip_id);
 267        nand_pushio_byte(s, 'Q'); /* Don't-care byte (often 0xa5) */
 268        if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
 269            /* Page Size, Block Size, Spare Size; bit 6 indicates
 270             * 8 vs 16 bit width NAND.
 271             */
 272            nand_pushio_byte(s, (s->buswidth == 2) ? 0x55 : 0x15);
 273        } else {
 274            nand_pushio_byte(s, 0xc0); /* Multi-plane */
 275        }
 276        break;
 277
 278    case NAND_CMD_RANDOMREAD2:
 279    case NAND_CMD_NOSERIALREAD2:
 280        if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP))
 281            break;
 282        offset = s->addr & ((1 << s->addr_shift) - 1);
 283        s->blk_load(s, s->addr, offset);
 284        if (s->gnd)
 285            s->iolen = (1 << s->page_shift) - offset;
 286        else
 287            s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
 288        break;
 289
 290    case NAND_CMD_RESET:
 291        nand_reset(DEVICE(s));
 292        break;
 293
 294    case NAND_CMD_PAGEPROGRAM1:
 295        s->ioaddr = s->io;
 296        s->iolen = 0;
 297        break;
 298
 299    case NAND_CMD_PAGEPROGRAM2:
 300        if (s->wp) {
 301            s->blk_write(s);
 302        }
 303        break;
 304
 305    case NAND_CMD_BLOCKERASE1:
 306        break;
 307
 308    case NAND_CMD_BLOCKERASE2:
 309        s->addr &= (1ull << s->addrlen * 8) - 1;
 310        s->addr <<= nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP ?
 311                                                                    16 : 8;
 312
 313        if (s->wp) {
 314            s->blk_erase(s);
 315        }
 316        break;
 317
 318    case NAND_CMD_READSTATUS:
 319        s->ioaddr = s->io;
 320        s->iolen = 0;
 321        nand_pushio_byte(s, s->status);
 322        break;
 323
 324    default:
 325        printf("%s: Unknown NAND command 0x%02x\n", __func__, s->cmd);
 326    }
 327}
 328
 329static int nand_pre_save(void *opaque)
 330{
 331    NANDFlashState *s = NAND(opaque);
 332
 333    s->ioaddr_vmstate = s->ioaddr - s->io;
 334
 335    return 0;
 336}
 337
 338static int nand_post_load(void *opaque, int version_id)
 339{
 340    NANDFlashState *s = NAND(opaque);
 341
 342    if (s->ioaddr_vmstate > sizeof(s->io)) {
 343        return -EINVAL;
 344    }
 345    s->ioaddr = s->io + s->ioaddr_vmstate;
 346
 347    return 0;
 348}
 349
 350static const VMStateDescription vmstate_nand = {
 351    .name = "nand",
 352    .version_id = 1,
 353    .minimum_version_id = 1,
 354    .pre_save = nand_pre_save,
 355    .post_load = nand_post_load,
 356    .fields = (VMStateField[]) {
 357        VMSTATE_UINT8(cle, NANDFlashState),
 358        VMSTATE_UINT8(ale, NANDFlashState),
 359        VMSTATE_UINT8(ce, NANDFlashState),
 360        VMSTATE_UINT8(wp, NANDFlashState),
 361        VMSTATE_UINT8(gnd, NANDFlashState),
 362        VMSTATE_BUFFER(io, NANDFlashState),
 363        VMSTATE_UINT32(ioaddr_vmstate, NANDFlashState),
 364        VMSTATE_INT32(iolen, NANDFlashState),
 365        VMSTATE_UINT32(cmd, NANDFlashState),
 366        VMSTATE_UINT64(addr, NANDFlashState),
 367        VMSTATE_INT32(addrlen, NANDFlashState),
 368        VMSTATE_INT32(status, NANDFlashState),
 369        VMSTATE_INT32(offset, NANDFlashState),
 370        /* XXX: do we want to save s->storage too? */
 371        VMSTATE_END_OF_LIST()
 372    }
 373};
 374
 375static void nand_realize(DeviceState *dev, Error **errp)
 376{
 377    int pagesize;
 378    NANDFlashState *s = NAND(dev);
 379    int ret;
 380
 381
 382    s->buswidth = nand_flash_ids[s->chip_id].width >> 3;
 383    s->size = nand_flash_ids[s->chip_id].size << 20;
 384    if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
 385        s->page_shift = 11;
 386        s->erase_shift = 6;
 387    } else {
 388        s->page_shift = nand_flash_ids[s->chip_id].page_shift;
 389        s->erase_shift = nand_flash_ids[s->chip_id].erase_shift;
 390    }
 391
 392    switch (1 << s->page_shift) {
 393    case 256:
 394        nand_init_256(s);
 395        break;
 396    case 512:
 397        nand_init_512(s);
 398        break;
 399    case 2048:
 400        nand_init_2048(s);
 401        break;
 402    default:
 403        error_setg(errp, "Unsupported NAND block size %#x",
 404                   1 << s->page_shift);
 405        return;
 406    }
 407
 408    pagesize = 1 << s->oob_shift;
 409    s->mem_oob = 1;
 410    if (s->blk) {
 411        if (blk_is_read_only(s->blk)) {
 412            error_setg(errp, "Can't use a read-only drive");
 413            return;
 414        }
 415        ret = blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
 416                           BLK_PERM_ALL, errp);
 417        if (ret < 0) {
 418            return;
 419        }
 420        if (blk_getlength(s->blk) >=
 421                (s->pages << s->page_shift) + (s->pages << s->oob_shift)) {
 422            pagesize = 0;
 423            s->mem_oob = 0;
 424        }
 425    } else {
 426        pagesize += 1 << s->page_shift;
 427    }
 428    if (pagesize) {
 429        s->storage = (uint8_t *) memset(g_malloc(s->pages * pagesize),
 430                        0xff, s->pages * pagesize);
 431    }
 432    /* Give s->ioaddr a sane value in case we save state before it is used. */
 433    s->ioaddr = s->io;
 434}
 435
 436static Property nand_properties[] = {
 437    DEFINE_PROP_UINT8("manufacturer_id", NANDFlashState, manf_id, 0),
 438    DEFINE_PROP_UINT8("chip_id", NANDFlashState, chip_id, 0),
 439    DEFINE_PROP_DRIVE("drive", NANDFlashState, blk),
 440    DEFINE_PROP_END_OF_LIST(),
 441};
 442
 443static void nand_class_init(ObjectClass *klass, void *data)
 444{
 445    DeviceClass *dc = DEVICE_CLASS(klass);
 446
 447    dc->realize = nand_realize;
 448    dc->reset = nand_reset;
 449    dc->vmsd = &vmstate_nand;
 450    dc->props = nand_properties;
 451}
 452
 453static const TypeInfo nand_info = {
 454    .name          = TYPE_NAND,
 455    .parent        = TYPE_DEVICE,
 456    .instance_size = sizeof(NANDFlashState),
 457    .class_init    = nand_class_init,
 458};
 459
 460static void nand_register_types(void)
 461{
 462    type_register_static(&nand_info);
 463}
 464
 465/*
 466 * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins.  Chip
 467 * outputs are R/B and eight I/O pins.
 468 *
 469 * CE, WP and R/B are active low.
 470 */
 471void nand_setpins(DeviceState *dev, uint8_t cle, uint8_t ale,
 472                  uint8_t ce, uint8_t wp, uint8_t gnd)
 473{
 474    NANDFlashState *s = NAND(dev);
 475
 476    s->cle = cle;
 477    s->ale = ale;
 478    s->ce = ce;
 479    s->wp = wp;
 480    s->gnd = gnd;
 481    if (wp) {
 482        s->status |= NAND_IOSTATUS_UNPROTCT;
 483    } else {
 484        s->status &= ~NAND_IOSTATUS_UNPROTCT;
 485    }
 486}
 487
 488void nand_getpins(DeviceState *dev, int *rb)
 489{
 490    *rb = 1;
 491}
 492
 493void nand_setio(DeviceState *dev, uint32_t value)
 494{
 495    int i;
 496    NANDFlashState *s = NAND(dev);
 497
 498    if (!s->ce && s->cle) {
 499        if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) {
 500            if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2)
 501                return;
 502            if (value == NAND_CMD_RANDOMREAD1) {
 503                s->addr &= ~((1 << s->addr_shift) - 1);
 504                s->addrlen = 0;
 505                return;
 506            }
 507        }
 508        if (value == NAND_CMD_READ0) {
 509            s->offset = 0;
 510        } else if (value == NAND_CMD_READ1) {
 511            s->offset = 0x100;
 512            value = NAND_CMD_READ0;
 513        } else if (value == NAND_CMD_READ2) {
 514            s->offset = 1 << s->page_shift;
 515            value = NAND_CMD_READ0;
 516        }
 517
 518        s->cmd = value;
 519
 520        if (s->cmd == NAND_CMD_READSTATUS ||
 521                s->cmd == NAND_CMD_PAGEPROGRAM2 ||
 522                s->cmd == NAND_CMD_BLOCKERASE1 ||
 523                s->cmd == NAND_CMD_BLOCKERASE2 ||
 524                s->cmd == NAND_CMD_NOSERIALREAD2 ||
 525                s->cmd == NAND_CMD_RANDOMREAD2 ||
 526                s->cmd == NAND_CMD_RESET) {
 527            nand_command(s);
 528        }
 529
 530        if (s->cmd != NAND_CMD_RANDOMREAD2) {
 531            s->addrlen = 0;
 532        }
 533    }
 534
 535    if (s->ale) {
 536        unsigned int shift = s->addrlen * 8;
 537        uint64_t mask = ~(0xffull << shift);
 538        uint64_t v = (uint64_t)value << shift;
 539
 540        s->addr = (s->addr & mask) | v;
 541        s->addrlen ++;
 542
 543        switch (s->addrlen) {
 544        case 1:
 545            if (s->cmd == NAND_CMD_READID) {
 546                nand_command(s);
 547            }
 548            break;
 549        case 2: /* fix cache address as a byte address */
 550            s->addr <<= (s->buswidth - 1);
 551            break;
 552        case 3:
 553            if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
 554                    (s->cmd == NAND_CMD_READ0 ||
 555                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
 556                nand_command(s);
 557            }
 558            break;
 559        case 4:
 560            if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
 561                    nand_flash_ids[s->chip_id].size < 256 && /* 1Gb or less */
 562                    (s->cmd == NAND_CMD_READ0 ||
 563                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
 564                nand_command(s);
 565            }
 566            break;
 567        case 5:
 568            if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) &&
 569                    nand_flash_ids[s->chip_id].size >= 256 && /* 2Gb or more */
 570                    (s->cmd == NAND_CMD_READ0 ||
 571                     s->cmd == NAND_CMD_PAGEPROGRAM1)) {
 572                nand_command(s);
 573            }
 574            break;
 575        default:
 576            break;
 577        }
 578    }
 579
 580    if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) {
 581        if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) {
 582            for (i = s->buswidth; i--; value >>= 8) {
 583                s->io[s->iolen ++] = (uint8_t) (value & 0xff);
 584            }
 585        }
 586    } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) {
 587        if ((s->addr & ((1 << s->addr_shift) - 1)) <
 588                (1 << s->page_shift) + (1 << s->oob_shift)) {
 589            for (i = s->buswidth; i--; s->addr++, value >>= 8) {
 590                s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] =
 591                    (uint8_t) (value & 0xff);
 592            }
 593        }
 594    }
 595}
 596
 597uint32_t nand_getio(DeviceState *dev)
 598{
 599    int offset;
 600    uint32_t x = 0;
 601    NANDFlashState *s = NAND(dev);
 602
 603    /* Allow sequential reading */
 604    if (!s->iolen && s->cmd == NAND_CMD_READ0) {
 605        offset = (int) (s->addr & ((1 << s->addr_shift) - 1)) + s->offset;
 606        s->offset = 0;
 607
 608        s->blk_load(s, s->addr, offset);
 609        if (s->gnd)
 610            s->iolen = (1 << s->page_shift) - offset;
 611        else
 612            s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset;
 613    }
 614
 615    if (s->ce || s->iolen <= 0) {
 616        return 0;
 617    }
 618
 619    for (offset = s->buswidth; offset--;) {
 620        x |= s->ioaddr[offset] << (offset << 3);
 621    }
 622    /* after receiving READ STATUS command all subsequent reads will
 623     * return the status register value until another command is issued
 624     */
 625    if (s->cmd != NAND_CMD_READSTATUS) {
 626        s->addr   += s->buswidth;
 627        s->ioaddr += s->buswidth;
 628        s->iolen  -= s->buswidth;
 629    }
 630    return x;
 631}
 632
 633uint32_t nand_getbuswidth(DeviceState *dev)
 634{
 635    NANDFlashState *s = (NANDFlashState *) dev;
 636    return s->buswidth << 3;
 637}
 638
 639DeviceState *nand_init(BlockBackend *blk, int manf_id, int chip_id)
 640{
 641    DeviceState *dev;
 642
 643    if (nand_flash_ids[chip_id].size == 0) {
 644        hw_error("%s: Unsupported NAND chip ID.\n", __func__);
 645    }
 646    dev = DEVICE(object_new(TYPE_NAND));
 647    qdev_prop_set_uint8(dev, "manufacturer_id", manf_id);
 648    qdev_prop_set_uint8(dev, "chip_id", chip_id);
 649    if (blk) {
 650        qdev_prop_set_drive(dev, "drive", blk, &error_fatal);
 651    }
 652
 653    qdev_init_nofail(dev);
 654    return dev;
 655}
 656
 657type_init(nand_register_types)
 658
 659#else
 660
 661/* Program a single page */
 662static void glue(nand_blk_write_, PAGE_SIZE)(NANDFlashState *s)
 663{
 664    uint64_t off, page, sector, soff;
 665    uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200];
 666    if (PAGE(s->addr) >= s->pages)
 667        return;
 668
 669    if (!s->blk) {
 670        mem_and(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) +
 671                        s->offset, s->io, s->iolen);
 672    } else if (s->mem_oob) {
 673        sector = SECTOR(s->addr);
 674        off = (s->addr & PAGE_MASK) + s->offset;
 675        soff = SECTOR_OFFSET(s->addr);
 676        if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 677                      PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
 678            printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
 679            return;
 680        }
 681
 682        mem_and(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off));
 683        if (off + s->iolen > PAGE_SIZE) {
 684            page = PAGE(s->addr);
 685            mem_and(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off,
 686                            MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE));
 687        }
 688
 689        if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 690                       PAGE_SECTORS << BDRV_SECTOR_BITS, 0) < 0) {
 691            printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
 692        }
 693    } else {
 694        off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset;
 695        sector = off >> 9;
 696        soff = off & 0x1ff;
 697        if (blk_pread(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 698                      (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
 699            printf("%s: read error in sector %" PRIu64 "\n", __func__, sector);
 700            return;
 701        }
 702
 703        mem_and(iobuf + soff, s->io, s->iolen);
 704
 705        if (blk_pwrite(s->blk, sector << BDRV_SECTOR_BITS, iobuf,
 706                       (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS, 0) < 0) {
 707            printf("%s: write error in sector %" PRIu64 "\n", __func__, sector);
 708        }
 709    }
 710    s->offset = 0;
 711}
 712
 713/* Erase a single block */
 714static void glue(nand_blk_erase_, PAGE_SIZE)(NANDFlashState *s)
 715{
 716    uint64_t i, page, addr;
 717    uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, };
 718    addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1);
 719
 720    if (PAGE(addr) >= s->pages) {
 721        return;
 722    }
 723
 724    if (!s->blk) {
 725        memset(s->storage + PAGE_START(addr),
 726                        0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift);
 727    } else if (s->mem_oob) {
 728        memset(s->storage + (PAGE(addr) << OOB_SHIFT),
 729                        0xff, OOB_SIZE << s->erase_shift);
 730        i = SECTOR(addr);
 731        page = SECTOR(addr + (1 << (ADDR_SHIFT + s->erase_shift)));
 732        for (; i < page; i ++)
 733            if (blk_pwrite(s->blk, i << BDRV_SECTOR_BITS, iobuf,
 734                           BDRV_SECTOR_SIZE, 0) < 0) {
 735                printf("%s: write error in sector %" PRIu64 "\n", __func__, i);
 736            }
 737    } else {
 738        addr = PAGE_START(addr);
 739        page = addr >> 9;
 740        if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 741                      BDRV_SECTOR_SIZE) < 0) {
 742            printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
 743        }
 744        memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1);
 745        if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 746                       BDRV_SECTOR_SIZE, 0) < 0) {
 747            printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
 748        }
 749
 750        memset(iobuf, 0xff, 0x200);
 751        i = (addr & ~0x1ff) + 0x200;
 752        for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200;
 753                        i < addr; i += 0x200) {
 754            if (blk_pwrite(s->blk, i, iobuf, BDRV_SECTOR_SIZE, 0) < 0) {
 755                printf("%s: write error in sector %" PRIu64 "\n",
 756                       __func__, i >> 9);
 757            }
 758        }
 759
 760        page = i >> 9;
 761        if (blk_pread(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 762                      BDRV_SECTOR_SIZE) < 0) {
 763            printf("%s: read error in sector %" PRIu64 "\n", __func__, page);
 764        }
 765        memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1);
 766        if (blk_pwrite(s->blk, page << BDRV_SECTOR_BITS, iobuf,
 767                       BDRV_SECTOR_SIZE, 0) < 0) {
 768            printf("%s: write error in sector %" PRIu64 "\n", __func__, page);
 769        }
 770    }
 771}
 772
 773static void glue(nand_blk_load_, PAGE_SIZE)(NANDFlashState *s,
 774                uint64_t addr, int offset)
 775{
 776    if (PAGE(addr) >= s->pages) {
 777        return;
 778    }
 779
 780    if (s->blk) {
 781        if (s->mem_oob) {
 782            if (blk_pread(s->blk, SECTOR(addr) << BDRV_SECTOR_BITS, s->io,
 783                          PAGE_SECTORS << BDRV_SECTOR_BITS) < 0) {
 784                printf("%s: read error in sector %" PRIu64 "\n",
 785                                __func__, SECTOR(addr));
 786            }
 787            memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE,
 788                            s->storage + (PAGE(s->addr) << OOB_SHIFT),
 789                            OOB_SIZE);
 790            s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset;
 791        } else {
 792            if (blk_pread(s->blk, PAGE_START(addr), s->io,
 793                          (PAGE_SECTORS + 2) << BDRV_SECTOR_BITS) < 0) {
 794                printf("%s: read error in sector %" PRIu64 "\n",
 795                                __func__, PAGE_START(addr) >> 9);
 796            }
 797            s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset;
 798        }
 799    } else {
 800        memcpy(s->io, s->storage + PAGE_START(s->addr) +
 801                        offset, PAGE_SIZE + OOB_SIZE - offset);
 802        s->ioaddr = s->io;
 803    }
 804}
 805
 806static void glue(nand_init_, PAGE_SIZE)(NANDFlashState *s)
 807{
 808    s->oob_shift = PAGE_SHIFT - 5;
 809    s->pages = s->size >> PAGE_SHIFT;
 810    s->addr_shift = ADDR_SHIFT;
 811
 812    s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE);
 813    s->blk_write = glue(nand_blk_write_, PAGE_SIZE);
 814    s->blk_load = glue(nand_blk_load_, PAGE_SIZE);
 815}
 816
 817# undef PAGE_SIZE
 818# undef PAGE_SHIFT
 819# undef PAGE_SECTORS
 820# undef ADDR_SHIFT
 821#endif  /* NAND_IO */
 822