qemu/hw/net/mcf_fec.c
<<
>>
Prefs
   1/*
   2 * ColdFire Fast Ethernet Controller emulation.
   3 *
   4 * Copyright (c) 2007 CodeSourcery.
   5 *
   6 * This code is licensed under the GPL
   7 */
   8
   9#include "qemu/osdep.h"
  10#include "hw/hw.h"
  11#include "net/net.h"
  12#include "qemu/module.h"
  13#include "hw/m68k/mcf.h"
  14#include "hw/m68k/mcf_fec.h"
  15#include "hw/net/mii.h"
  16#include "hw/sysbus.h"
  17/* For crc32 */
  18#include <zlib.h>
  19
  20//#define DEBUG_FEC 1
  21
  22#ifdef DEBUG_FEC
  23#define DPRINTF(fmt, ...) \
  24do { printf("mcf_fec: " fmt , ## __VA_ARGS__); } while (0)
  25#else
  26#define DPRINTF(fmt, ...) do {} while(0)
  27#endif
  28
  29#define FEC_MAX_DESC 1024
  30#define FEC_MAX_FRAME_SIZE 2032
  31#define FEC_MIB_SIZE 64
  32
  33typedef struct {
  34    SysBusDevice parent_obj;
  35
  36    MemoryRegion iomem;
  37    qemu_irq irq[FEC_NUM_IRQ];
  38    NICState *nic;
  39    NICConf conf;
  40    uint32_t irq_state;
  41    uint32_t eir;
  42    uint32_t eimr;
  43    int rx_enabled;
  44    uint32_t rx_descriptor;
  45    uint32_t tx_descriptor;
  46    uint32_t ecr;
  47    uint32_t mmfr;
  48    uint32_t mscr;
  49    uint32_t rcr;
  50    uint32_t tcr;
  51    uint32_t tfwr;
  52    uint32_t rfsr;
  53    uint32_t erdsr;
  54    uint32_t etdsr;
  55    uint32_t emrbr;
  56    uint32_t mib[FEC_MIB_SIZE];
  57} mcf_fec_state;
  58
  59#define FEC_INT_HB   0x80000000
  60#define FEC_INT_BABR 0x40000000
  61#define FEC_INT_BABT 0x20000000
  62#define FEC_INT_GRA  0x10000000
  63#define FEC_INT_TXF  0x08000000
  64#define FEC_INT_TXB  0x04000000
  65#define FEC_INT_RXF  0x02000000
  66#define FEC_INT_RXB  0x01000000
  67#define FEC_INT_MII  0x00800000
  68#define FEC_INT_EB   0x00400000
  69#define FEC_INT_LC   0x00200000
  70#define FEC_INT_RL   0x00100000
  71#define FEC_INT_UN   0x00080000
  72
  73#define FEC_EN      2
  74#define FEC_RESET   1
  75
  76/* Map interrupt flags onto IRQ lines.  */
  77static const uint32_t mcf_fec_irq_map[FEC_NUM_IRQ] = {
  78    FEC_INT_TXF,
  79    FEC_INT_TXB,
  80    FEC_INT_UN,
  81    FEC_INT_RL,
  82    FEC_INT_RXF,
  83    FEC_INT_RXB,
  84    FEC_INT_MII,
  85    FEC_INT_LC,
  86    FEC_INT_HB,
  87    FEC_INT_GRA,
  88    FEC_INT_EB,
  89    FEC_INT_BABT,
  90    FEC_INT_BABR
  91};
  92
  93/* Buffer Descriptor.  */
  94typedef struct {
  95    uint16_t flags;
  96    uint16_t length;
  97    uint32_t data;
  98} mcf_fec_bd;
  99
 100#define FEC_BD_R    0x8000
 101#define FEC_BD_E    0x8000
 102#define FEC_BD_O1   0x4000
 103#define FEC_BD_W    0x2000
 104#define FEC_BD_O2   0x1000
 105#define FEC_BD_L    0x0800
 106#define FEC_BD_TC   0x0400
 107#define FEC_BD_ABC  0x0200
 108#define FEC_BD_M    0x0100
 109#define FEC_BD_BC   0x0080
 110#define FEC_BD_MC   0x0040
 111#define FEC_BD_LG   0x0020
 112#define FEC_BD_NO   0x0010
 113#define FEC_BD_CR   0x0004
 114#define FEC_BD_OV   0x0002
 115#define FEC_BD_TR   0x0001
 116
 117#define MIB_RMON_T_DROP         0
 118#define MIB_RMON_T_PACKETS      1
 119#define MIB_RMON_T_BC_PKT       2
 120#define MIB_RMON_T_MC_PKT       3
 121#define MIB_RMON_T_CRC_ALIGN    4
 122#define MIB_RMON_T_UNDERSIZE    5
 123#define MIB_RMON_T_OVERSIZE     6
 124#define MIB_RMON_T_FRAG         7
 125#define MIB_RMON_T_JAB          8
 126#define MIB_RMON_T_COL          9
 127#define MIB_RMON_T_P64          10
 128#define MIB_RMON_T_P65TO127     11
 129#define MIB_RMON_T_P128TO255    12
 130#define MIB_RMON_T_P256TO511    13
 131#define MIB_RMON_T_P512TO1023   14
 132#define MIB_RMON_T_P1024TO2047  15
 133#define MIB_RMON_T_P_GTE2048    16
 134#define MIB_RMON_T_OCTETS       17
 135#define MIB_IEEE_T_DROP         18
 136#define MIB_IEEE_T_FRAME_OK     19
 137#define MIB_IEEE_T_1COL         20
 138#define MIB_IEEE_T_MCOL         21
 139#define MIB_IEEE_T_DEF          22
 140#define MIB_IEEE_T_LCOL         23
 141#define MIB_IEEE_T_EXCOL        24
 142#define MIB_IEEE_T_MACERR       25
 143#define MIB_IEEE_T_CSERR        26
 144#define MIB_IEEE_T_SQE          27
 145#define MIB_IEEE_T_FDXFC        28
 146#define MIB_IEEE_T_OCTETS_OK    29
 147
 148#define MIB_RMON_R_DROP         32
 149#define MIB_RMON_R_PACKETS      33
 150#define MIB_RMON_R_BC_PKT       34
 151#define MIB_RMON_R_MC_PKT       35
 152#define MIB_RMON_R_CRC_ALIGN    36
 153#define MIB_RMON_R_UNDERSIZE    37
 154#define MIB_RMON_R_OVERSIZE     38
 155#define MIB_RMON_R_FRAG         39
 156#define MIB_RMON_R_JAB          40
 157#define MIB_RMON_R_RESVD_0      41
 158#define MIB_RMON_R_P64          42
 159#define MIB_RMON_R_P65TO127     43
 160#define MIB_RMON_R_P128TO255    44
 161#define MIB_RMON_R_P256TO511    45
 162#define MIB_RMON_R_P512TO1023   46
 163#define MIB_RMON_R_P1024TO2047  47
 164#define MIB_RMON_R_P_GTE2048    48
 165#define MIB_RMON_R_OCTETS       49
 166#define MIB_IEEE_R_DROP         50
 167#define MIB_IEEE_R_FRAME_OK     51
 168#define MIB_IEEE_R_CRC          52
 169#define MIB_IEEE_R_ALIGN        53
 170#define MIB_IEEE_R_MACERR       54
 171#define MIB_IEEE_R_FDXFC        55
 172#define MIB_IEEE_R_OCTETS_OK    56
 173
 174static void mcf_fec_read_bd(mcf_fec_bd *bd, uint32_t addr)
 175{
 176    cpu_physical_memory_read(addr, bd, sizeof(*bd));
 177    be16_to_cpus(&bd->flags);
 178    be16_to_cpus(&bd->length);
 179    be32_to_cpus(&bd->data);
 180}
 181
 182static void mcf_fec_write_bd(mcf_fec_bd *bd, uint32_t addr)
 183{
 184    mcf_fec_bd tmp;
 185    tmp.flags = cpu_to_be16(bd->flags);
 186    tmp.length = cpu_to_be16(bd->length);
 187    tmp.data = cpu_to_be32(bd->data);
 188    cpu_physical_memory_write(addr, &tmp, sizeof(tmp));
 189}
 190
 191static void mcf_fec_update(mcf_fec_state *s)
 192{
 193    uint32_t active;
 194    uint32_t changed;
 195    uint32_t mask;
 196    int i;
 197
 198    active = s->eir & s->eimr;
 199    changed = active ^s->irq_state;
 200    for (i = 0; i < FEC_NUM_IRQ; i++) {
 201        mask = mcf_fec_irq_map[i];
 202        if (changed & mask) {
 203            DPRINTF("IRQ %d = %d\n", i, (active & mask) != 0);
 204            qemu_set_irq(s->irq[i], (active & mask) != 0);
 205        }
 206    }
 207    s->irq_state = active;
 208}
 209
 210static void mcf_fec_tx_stats(mcf_fec_state *s, int size)
 211{
 212    s->mib[MIB_RMON_T_PACKETS]++;
 213    s->mib[MIB_RMON_T_OCTETS] += size;
 214    if (size < 64) {
 215        s->mib[MIB_RMON_T_FRAG]++;
 216    } else if (size == 64) {
 217        s->mib[MIB_RMON_T_P64]++;
 218    } else if (size < 128) {
 219        s->mib[MIB_RMON_T_P65TO127]++;
 220    } else if (size < 256) {
 221        s->mib[MIB_RMON_T_P128TO255]++;
 222    } else if (size < 512) {
 223        s->mib[MIB_RMON_T_P256TO511]++;
 224    } else if (size < 1024) {
 225        s->mib[MIB_RMON_T_P512TO1023]++;
 226    } else if (size < 2048) {
 227        s->mib[MIB_RMON_T_P1024TO2047]++;
 228    } else {
 229        s->mib[MIB_RMON_T_P_GTE2048]++;
 230    }
 231    s->mib[MIB_IEEE_T_FRAME_OK]++;
 232    s->mib[MIB_IEEE_T_OCTETS_OK] += size;
 233}
 234
 235static void mcf_fec_do_tx(mcf_fec_state *s)
 236{
 237    uint32_t addr;
 238    mcf_fec_bd bd;
 239    int frame_size;
 240    int len, descnt = 0;
 241    uint8_t frame[FEC_MAX_FRAME_SIZE];
 242    uint8_t *ptr;
 243
 244    DPRINTF("do_tx\n");
 245    ptr = frame;
 246    frame_size = 0;
 247    addr = s->tx_descriptor;
 248    while (descnt++ < FEC_MAX_DESC) {
 249        mcf_fec_read_bd(&bd, addr);
 250        DPRINTF("tx_bd %x flags %04x len %d data %08x\n",
 251                addr, bd.flags, bd.length, bd.data);
 252        if ((bd.flags & FEC_BD_R) == 0) {
 253            /* Run out of descriptors to transmit.  */
 254            break;
 255        }
 256        len = bd.length;
 257        if (frame_size + len > FEC_MAX_FRAME_SIZE) {
 258            len = FEC_MAX_FRAME_SIZE - frame_size;
 259            s->eir |= FEC_INT_BABT;
 260        }
 261        cpu_physical_memory_read(bd.data, ptr, len);
 262        ptr += len;
 263        frame_size += len;
 264        if (bd.flags & FEC_BD_L) {
 265            /* Last buffer in frame.  */
 266            DPRINTF("Sending packet\n");
 267            qemu_send_packet(qemu_get_queue(s->nic), frame, frame_size);
 268            mcf_fec_tx_stats(s, frame_size);
 269            ptr = frame;
 270            frame_size = 0;
 271            s->eir |= FEC_INT_TXF;
 272        }
 273        s->eir |= FEC_INT_TXB;
 274        bd.flags &= ~FEC_BD_R;
 275        /* Write back the modified descriptor.  */
 276        mcf_fec_write_bd(&bd, addr);
 277        /* Advance to the next descriptor.  */
 278        if ((bd.flags & FEC_BD_W) != 0) {
 279            addr = s->etdsr;
 280        } else {
 281            addr += 8;
 282        }
 283    }
 284    s->tx_descriptor = addr;
 285}
 286
 287static void mcf_fec_enable_rx(mcf_fec_state *s)
 288{
 289    NetClientState *nc = qemu_get_queue(s->nic);
 290    mcf_fec_bd bd;
 291
 292    mcf_fec_read_bd(&bd, s->rx_descriptor);
 293    s->rx_enabled = ((bd.flags & FEC_BD_E) != 0);
 294    if (s->rx_enabled) {
 295        qemu_flush_queued_packets(nc);
 296    }
 297}
 298
 299static void mcf_fec_reset(DeviceState *dev)
 300{
 301    mcf_fec_state *s = MCF_FEC_NET(dev);
 302
 303    s->eir = 0;
 304    s->eimr = 0;
 305    s->rx_enabled = 0;
 306    s->ecr = 0;
 307    s->mscr = 0;
 308    s->rcr = 0x05ee0001;
 309    s->tcr = 0;
 310    s->tfwr = 0;
 311    s->rfsr = 0x500;
 312}
 313
 314#define MMFR_WRITE_OP   (1 << 28)
 315#define MMFR_READ_OP    (2 << 28)
 316#define MMFR_PHYADDR(v) (((v) >> 23) & 0x1f)
 317#define MMFR_REGNUM(v)  (((v) >> 18) & 0x1f)
 318
 319static uint64_t mcf_fec_read_mdio(mcf_fec_state *s)
 320{
 321    uint64_t v;
 322
 323    if (s->mmfr & MMFR_WRITE_OP)
 324        return s->mmfr;
 325    if (MMFR_PHYADDR(s->mmfr) != 1)
 326        return s->mmfr |= 0xffff;
 327
 328    switch (MMFR_REGNUM(s->mmfr)) {
 329    case MII_BMCR:
 330        v = MII_BMCR_SPEED | MII_BMCR_AUTOEN | MII_BMCR_FD;
 331        break;
 332    case MII_BMSR:
 333        v = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
 334            MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AN_COMP |
 335            MII_BMSR_AUTONEG | MII_BMSR_LINK_ST;
 336        break;
 337    case MII_PHYID1:
 338        v = DP83848_PHYID1;
 339        break;
 340    case MII_PHYID2:
 341        v = DP83848_PHYID2;
 342        break;
 343    case MII_ANAR:
 344        v = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
 345            MII_ANAR_10 | MII_ANAR_CSMACD;
 346        break;
 347    case MII_ANLPAR:
 348        v = MII_ANLPAR_ACK | MII_ANLPAR_TXFD | MII_ANLPAR_TX |
 349            MII_ANLPAR_10FD | MII_ANLPAR_10 | MII_ANLPAR_CSMACD;
 350        break;
 351    default:
 352        v = 0xffff;
 353        break;
 354    }
 355    s->mmfr = (s->mmfr & ~0xffff) | v;
 356    return s->mmfr;
 357}
 358
 359static uint64_t mcf_fec_read(void *opaque, hwaddr addr,
 360                             unsigned size)
 361{
 362    mcf_fec_state *s = (mcf_fec_state *)opaque;
 363    switch (addr & 0x3ff) {
 364    case 0x004: return s->eir;
 365    case 0x008: return s->eimr;
 366    case 0x010: return s->rx_enabled ? (1 << 24) : 0; /* RDAR */
 367    case 0x014: return 0; /* TDAR */
 368    case 0x024: return s->ecr;
 369    case 0x040: return mcf_fec_read_mdio(s);
 370    case 0x044: return s->mscr;
 371    case 0x064: return 0; /* MIBC */
 372    case 0x084: return s->rcr;
 373    case 0x0c4: return s->tcr;
 374    case 0x0e4: /* PALR */
 375        return (s->conf.macaddr.a[0] << 24) | (s->conf.macaddr.a[1] << 16)
 376              | (s->conf.macaddr.a[2] << 8) | s->conf.macaddr.a[3];
 377        break;
 378    case 0x0e8: /* PAUR */
 379        return (s->conf.macaddr.a[4] << 24) | (s->conf.macaddr.a[5] << 16) | 0x8808;
 380    case 0x0ec: return 0x10000; /* OPD */
 381    case 0x118: return 0;
 382    case 0x11c: return 0;
 383    case 0x120: return 0;
 384    case 0x124: return 0;
 385    case 0x144: return s->tfwr;
 386    case 0x14c: return 0x600;
 387    case 0x150: return s->rfsr;
 388    case 0x180: return s->erdsr;
 389    case 0x184: return s->etdsr;
 390    case 0x188: return s->emrbr;
 391    case 0x200 ... 0x2e0: return s->mib[(addr & 0x1ff) / 4];
 392    default:
 393        hw_error("mcf_fec_read: Bad address 0x%x\n", (int)addr);
 394        return 0;
 395    }
 396}
 397
 398static void mcf_fec_write(void *opaque, hwaddr addr,
 399                          uint64_t value, unsigned size)
 400{
 401    mcf_fec_state *s = (mcf_fec_state *)opaque;
 402    switch (addr & 0x3ff) {
 403    case 0x004:
 404        s->eir &= ~value;
 405        break;
 406    case 0x008:
 407        s->eimr = value;
 408        break;
 409    case 0x010: /* RDAR */
 410        if ((s->ecr & FEC_EN) && !s->rx_enabled) {
 411            DPRINTF("RX enable\n");
 412            mcf_fec_enable_rx(s);
 413        }
 414        break;
 415    case 0x014: /* TDAR */
 416        if (s->ecr & FEC_EN) {
 417            mcf_fec_do_tx(s);
 418        }
 419        break;
 420    case 0x024:
 421        s->ecr = value;
 422        if (value & FEC_RESET) {
 423            DPRINTF("Reset\n");
 424            mcf_fec_reset(opaque);
 425        }
 426        if ((s->ecr & FEC_EN) == 0) {
 427            s->rx_enabled = 0;
 428        }
 429        break;
 430    case 0x040:
 431        s->mmfr = value;
 432        s->eir |= FEC_INT_MII;
 433        break;
 434    case 0x044:
 435        s->mscr = value & 0xfe;
 436        break;
 437    case 0x064:
 438        /* TODO: Implement MIB.  */
 439        break;
 440    case 0x084:
 441        s->rcr = value & 0x07ff003f;
 442        /* TODO: Implement LOOP mode.  */
 443        break;
 444    case 0x0c4: /* TCR */
 445        /* We transmit immediately, so raise GRA immediately.  */
 446        s->tcr = value;
 447        if (value & 1)
 448            s->eir |= FEC_INT_GRA;
 449        break;
 450    case 0x0e4: /* PALR */
 451        s->conf.macaddr.a[0] = value >> 24;
 452        s->conf.macaddr.a[1] = value >> 16;
 453        s->conf.macaddr.a[2] = value >> 8;
 454        s->conf.macaddr.a[3] = value;
 455        break;
 456    case 0x0e8: /* PAUR */
 457        s->conf.macaddr.a[4] = value >> 24;
 458        s->conf.macaddr.a[5] = value >> 16;
 459        break;
 460    case 0x0ec:
 461        /* OPD */
 462        break;
 463    case 0x118:
 464    case 0x11c:
 465    case 0x120:
 466    case 0x124:
 467        /* TODO: implement MAC hash filtering.  */
 468        break;
 469    case 0x144:
 470        s->tfwr = value & 3;
 471        break;
 472    case 0x14c:
 473        /* FRBR writes ignored.  */
 474        break;
 475    case 0x150:
 476        s->rfsr = (value & 0x3fc) | 0x400;
 477        break;
 478    case 0x180:
 479        s->erdsr = value & ~3;
 480        s->rx_descriptor = s->erdsr;
 481        break;
 482    case 0x184:
 483        s->etdsr = value & ~3;
 484        s->tx_descriptor = s->etdsr;
 485        break;
 486    case 0x188:
 487        s->emrbr = value > 0 ? value & 0x7F0 : 0x7F0;
 488        break;
 489    case 0x200 ... 0x2e0:
 490        s->mib[(addr & 0x1ff) / 4] = value;
 491        break;
 492    default:
 493        hw_error("mcf_fec_write Bad address 0x%x\n", (int)addr);
 494    }
 495    mcf_fec_update(s);
 496}
 497
 498static void mcf_fec_rx_stats(mcf_fec_state *s, int size)
 499{
 500    s->mib[MIB_RMON_R_PACKETS]++;
 501    s->mib[MIB_RMON_R_OCTETS] += size;
 502    if (size < 64) {
 503        s->mib[MIB_RMON_R_FRAG]++;
 504    } else if (size == 64) {
 505        s->mib[MIB_RMON_R_P64]++;
 506    } else if (size < 128) {
 507        s->mib[MIB_RMON_R_P65TO127]++;
 508    } else if (size < 256) {
 509        s->mib[MIB_RMON_R_P128TO255]++;
 510    } else if (size < 512) {
 511        s->mib[MIB_RMON_R_P256TO511]++;
 512    } else if (size < 1024) {
 513        s->mib[MIB_RMON_R_P512TO1023]++;
 514    } else if (size < 2048) {
 515        s->mib[MIB_RMON_R_P1024TO2047]++;
 516    } else {
 517        s->mib[MIB_RMON_R_P_GTE2048]++;
 518    }
 519    s->mib[MIB_IEEE_R_FRAME_OK]++;
 520    s->mib[MIB_IEEE_R_OCTETS_OK] += size;
 521}
 522
 523static int mcf_fec_have_receive_space(mcf_fec_state *s, size_t want)
 524{
 525    mcf_fec_bd bd;
 526    uint32_t addr;
 527
 528    /* Walk descriptor list to determine if we have enough buffer */
 529    addr = s->rx_descriptor;
 530    while (want > 0) {
 531        mcf_fec_read_bd(&bd, addr);
 532        if ((bd.flags & FEC_BD_E) == 0) {
 533            return 0;
 534        }
 535        if (want < s->emrbr) {
 536            return 1;
 537        }
 538        want -= s->emrbr;
 539        /* Advance to the next descriptor.  */
 540        if ((bd.flags & FEC_BD_W) != 0) {
 541            addr = s->erdsr;
 542        } else {
 543            addr += 8;
 544        }
 545    }
 546    return 0;
 547}
 548
 549static ssize_t mcf_fec_receive(NetClientState *nc, const uint8_t *buf, size_t size)
 550{
 551    mcf_fec_state *s = qemu_get_nic_opaque(nc);
 552    mcf_fec_bd bd;
 553    uint32_t flags = 0;
 554    uint32_t addr;
 555    uint32_t crc;
 556    uint32_t buf_addr;
 557    uint8_t *crc_ptr;
 558    unsigned int buf_len;
 559    size_t retsize;
 560
 561    DPRINTF("do_rx len %d\n", size);
 562    if (!s->rx_enabled) {
 563        return -1;
 564    }
 565    /* 4 bytes for the CRC.  */
 566    size += 4;
 567    crc = cpu_to_be32(crc32(~0, buf, size));
 568    crc_ptr = (uint8_t *)&crc;
 569    /* Huge frames are truncted.  */
 570    if (size > FEC_MAX_FRAME_SIZE) {
 571        size = FEC_MAX_FRAME_SIZE;
 572        flags |= FEC_BD_TR | FEC_BD_LG;
 573    }
 574    /* Frames larger than the user limit just set error flags.  */
 575    if (size > (s->rcr >> 16)) {
 576        flags |= FEC_BD_LG;
 577    }
 578    /* Check if we have enough space in current descriptors */
 579    if (!mcf_fec_have_receive_space(s, size)) {
 580        return 0;
 581    }
 582    addr = s->rx_descriptor;
 583    retsize = size;
 584    while (size > 0) {
 585        mcf_fec_read_bd(&bd, addr);
 586        buf_len = (size <= s->emrbr) ? size: s->emrbr;
 587        bd.length = buf_len;
 588        size -= buf_len;
 589        DPRINTF("rx_bd %x length %d\n", addr, bd.length);
 590        /* The last 4 bytes are the CRC.  */
 591        if (size < 4)
 592            buf_len += size - 4;
 593        buf_addr = bd.data;
 594        cpu_physical_memory_write(buf_addr, buf, buf_len);
 595        buf += buf_len;
 596        if (size < 4) {
 597            cpu_physical_memory_write(buf_addr + buf_len, crc_ptr, 4 - size);
 598            crc_ptr += 4 - size;
 599        }
 600        bd.flags &= ~FEC_BD_E;
 601        if (size == 0) {
 602            /* Last buffer in frame.  */
 603            bd.flags |= flags | FEC_BD_L;
 604            DPRINTF("rx frame flags %04x\n", bd.flags);
 605            s->eir |= FEC_INT_RXF;
 606        } else {
 607            s->eir |= FEC_INT_RXB;
 608        }
 609        mcf_fec_write_bd(&bd, addr);
 610        /* Advance to the next descriptor.  */
 611        if ((bd.flags & FEC_BD_W) != 0) {
 612            addr = s->erdsr;
 613        } else {
 614            addr += 8;
 615        }
 616    }
 617    s->rx_descriptor = addr;
 618    mcf_fec_rx_stats(s, retsize);
 619    mcf_fec_enable_rx(s);
 620    mcf_fec_update(s);
 621    return retsize;
 622}
 623
 624static const MemoryRegionOps mcf_fec_ops = {
 625    .read = mcf_fec_read,
 626    .write = mcf_fec_write,
 627    .endianness = DEVICE_NATIVE_ENDIAN,
 628};
 629
 630static NetClientInfo net_mcf_fec_info = {
 631    .type = NET_CLIENT_DRIVER_NIC,
 632    .size = sizeof(NICState),
 633    .receive = mcf_fec_receive,
 634};
 635
 636static void mcf_fec_realize(DeviceState *dev, Error **errp)
 637{
 638    mcf_fec_state *s = MCF_FEC_NET(dev);
 639
 640    s->nic = qemu_new_nic(&net_mcf_fec_info, &s->conf,
 641                          object_get_typename(OBJECT(dev)), dev->id, s);
 642    qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
 643}
 644
 645static void mcf_fec_instance_init(Object *obj)
 646{
 647    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 648    mcf_fec_state *s = MCF_FEC_NET(obj);
 649    int i;
 650
 651    memory_region_init_io(&s->iomem, obj, &mcf_fec_ops, s, "fec", 0x400);
 652    sysbus_init_mmio(sbd, &s->iomem);
 653    for (i = 0; i < FEC_NUM_IRQ; i++) {
 654        sysbus_init_irq(sbd, &s->irq[i]);
 655    }
 656}
 657
 658static Property mcf_fec_properties[] = {
 659    DEFINE_NIC_PROPERTIES(mcf_fec_state, conf),
 660    DEFINE_PROP_END_OF_LIST(),
 661};
 662
 663static void mcf_fec_class_init(ObjectClass *oc, void *data)
 664{
 665    DeviceClass *dc = DEVICE_CLASS(oc);
 666
 667    set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
 668    dc->realize = mcf_fec_realize;
 669    dc->desc = "MCF Fast Ethernet Controller network device";
 670    dc->reset = mcf_fec_reset;
 671    dc->props = mcf_fec_properties;
 672}
 673
 674static const TypeInfo mcf_fec_info = {
 675    .name          = TYPE_MCF_FEC_NET,
 676    .parent        = TYPE_SYS_BUS_DEVICE,
 677    .instance_size = sizeof(mcf_fec_state),
 678    .instance_init = mcf_fec_instance_init,
 679    .class_init    = mcf_fec_class_init,
 680};
 681
 682static void mcf_fec_register_types(void)
 683{
 684    type_register_static(&mcf_fec_info);
 685}
 686
 687type_init(mcf_fec_register_types)
 688