qemu/hw/ppc/spapr.c
<<
>>
Prefs
   1/*
   2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
   3 *
   4 * Copyright (c) 2004-2007 Fabrice Bellard
   5 * Copyright (c) 2007 Jocelyn Mayer
   6 * Copyright (c) 2010 David Gibson, IBM Corporation.
   7 *
   8 * Permission is hereby granted, free of charge, to any person obtaining a copy
   9 * of this software and associated documentation files (the "Software"), to deal
  10 * in the Software without restriction, including without limitation the rights
  11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12 * copies of the Software, and to permit persons to whom the Software is
  13 * furnished to do so, subject to the following conditions:
  14 *
  15 * The above copyright notice and this permission notice shall be included in
  16 * all copies or substantial portions of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24 * THE SOFTWARE.
  25 */
  26
  27#include "qemu/osdep.h"
  28#include "qemu-common.h"
  29#include "qapi/error.h"
  30#include "qapi/visitor.h"
  31#include "sysemu/sysemu.h"
  32#include "sysemu/numa.h"
  33#include "sysemu/qtest.h"
  34#include "hw/hw.h"
  35#include "qemu/log.h"
  36#include "hw/fw-path-provider.h"
  37#include "elf.h"
  38#include "net/net.h"
  39#include "sysemu/device_tree.h"
  40#include "sysemu/cpus.h"
  41#include "sysemu/hw_accel.h"
  42#include "kvm_ppc.h"
  43#include "migration/misc.h"
  44#include "migration/global_state.h"
  45#include "migration/register.h"
  46#include "mmu-hash64.h"
  47#include "mmu-book3s-v3.h"
  48#include "cpu-models.h"
  49#include "qom/cpu.h"
  50
  51#include "hw/boards.h"
  52#include "hw/ppc/ppc.h"
  53#include "hw/loader.h"
  54
  55#include "hw/ppc/fdt.h"
  56#include "hw/ppc/spapr.h"
  57#include "hw/ppc/spapr_vio.h"
  58#include "hw/pci-host/spapr.h"
  59#include "hw/pci/msi.h"
  60
  61#include "hw/pci/pci.h"
  62#include "hw/scsi/scsi.h"
  63#include "hw/virtio/virtio-scsi.h"
  64#include "hw/virtio/vhost-scsi-common.h"
  65
  66#include "exec/address-spaces.h"
  67#include "exec/ram_addr.h"
  68#include "hw/usb.h"
  69#include "qemu/config-file.h"
  70#include "qemu/error-report.h"
  71#include "trace.h"
  72#include "hw/nmi.h"
  73#include "hw/intc/intc.h"
  74
  75#include "qemu/cutils.h"
  76#include "hw/ppc/spapr_cpu_core.h"
  77#include "hw/mem/memory-device.h"
  78
  79#include <libfdt.h>
  80
  81/* SLOF memory layout:
  82 *
  83 * SLOF raw image loaded at 0, copies its romfs right below the flat
  84 * device-tree, then position SLOF itself 31M below that
  85 *
  86 * So we set FW_OVERHEAD to 40MB which should account for all of that
  87 * and more
  88 *
  89 * We load our kernel at 4M, leaving space for SLOF initial image
  90 */
  91#define FDT_MAX_SIZE            0x100000
  92#define RTAS_MAX_SIZE           0x10000
  93#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
  94#define FW_MAX_SIZE             0x400000
  95#define FW_FILE_NAME            "slof.bin"
  96#define FW_OVERHEAD             0x2800000
  97#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
  98
  99#define MIN_RMA_SLOF            128UL
 100
 101#define PHANDLE_INTC            0x00001111
 102
 103/* These two functions implement the VCPU id numbering: one to compute them
 104 * all and one to identify thread 0 of a VCORE. Any change to the first one
 105 * is likely to have an impact on the second one, so let's keep them close.
 106 */
 107static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
 108{
 109    MachineState *ms = MACHINE(spapr);
 110    unsigned int smp_threads = ms->smp.threads;
 111
 112    assert(spapr->vsmt);
 113    return
 114        (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
 115}
 116static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
 117                                      PowerPCCPU *cpu)
 118{
 119    assert(spapr->vsmt);
 120    return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
 121}
 122
 123static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
 124{
 125    /* Dummy entries correspond to unused ICPState objects in older QEMUs,
 126     * and newer QEMUs don't even have them. In both cases, we don't want
 127     * to send anything on the wire.
 128     */
 129    return false;
 130}
 131
 132static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
 133    .name = "icp/server",
 134    .version_id = 1,
 135    .minimum_version_id = 1,
 136    .needed = pre_2_10_vmstate_dummy_icp_needed,
 137    .fields = (VMStateField[]) {
 138        VMSTATE_UNUSED(4), /* uint32_t xirr */
 139        VMSTATE_UNUSED(1), /* uint8_t pending_priority */
 140        VMSTATE_UNUSED(1), /* uint8_t mfrr */
 141        VMSTATE_END_OF_LIST()
 142    },
 143};
 144
 145static void pre_2_10_vmstate_register_dummy_icp(int i)
 146{
 147    vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
 148                     (void *)(uintptr_t) i);
 149}
 150
 151static void pre_2_10_vmstate_unregister_dummy_icp(int i)
 152{
 153    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
 154                       (void *)(uintptr_t) i);
 155}
 156
 157int spapr_max_server_number(SpaprMachineState *spapr)
 158{
 159    MachineState *ms = MACHINE(spapr);
 160
 161    assert(spapr->vsmt);
 162    return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
 163}
 164
 165static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
 166                                  int smt_threads)
 167{
 168    int i, ret = 0;
 169    uint32_t servers_prop[smt_threads];
 170    uint32_t gservers_prop[smt_threads * 2];
 171    int index = spapr_get_vcpu_id(cpu);
 172
 173    if (cpu->compat_pvr) {
 174        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
 175        if (ret < 0) {
 176            return ret;
 177        }
 178    }
 179
 180    /* Build interrupt servers and gservers properties */
 181    for (i = 0; i < smt_threads; i++) {
 182        servers_prop[i] = cpu_to_be32(index + i);
 183        /* Hack, direct the group queues back to cpu 0 */
 184        gservers_prop[i*2] = cpu_to_be32(index + i);
 185        gservers_prop[i*2 + 1] = 0;
 186    }
 187    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
 188                      servers_prop, sizeof(servers_prop));
 189    if (ret < 0) {
 190        return ret;
 191    }
 192    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
 193                      gservers_prop, sizeof(gservers_prop));
 194
 195    return ret;
 196}
 197
 198static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
 199{
 200    int index = spapr_get_vcpu_id(cpu);
 201    uint32_t associativity[] = {cpu_to_be32(0x5),
 202                                cpu_to_be32(0x0),
 203                                cpu_to_be32(0x0),
 204                                cpu_to_be32(0x0),
 205                                cpu_to_be32(cpu->node_id),
 206                                cpu_to_be32(index)};
 207
 208    /* Advertise NUMA via ibm,associativity */
 209    return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
 210                          sizeof(associativity));
 211}
 212
 213/* Populate the "ibm,pa-features" property */
 214static void spapr_populate_pa_features(SpaprMachineState *spapr,
 215                                       PowerPCCPU *cpu,
 216                                       void *fdt, int offset,
 217                                       bool legacy_guest)
 218{
 219    uint8_t pa_features_206[] = { 6, 0,
 220        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
 221    uint8_t pa_features_207[] = { 24, 0,
 222        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
 223        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
 224        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
 225        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
 226    uint8_t pa_features_300[] = { 66, 0,
 227        /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
 228        /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
 229        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
 230        /* 6: DS207 */
 231        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
 232        /* 16: Vector */
 233        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
 234        /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
 235        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
 236        /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
 237        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
 238        /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
 239        0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
 240        /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
 241        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
 242        /* 42: PM, 44: PC RA, 46: SC vec'd */
 243        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
 244        /* 48: SIMD, 50: QP BFP, 52: String */
 245        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
 246        /* 54: DecFP, 56: DecI, 58: SHA */
 247        0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
 248        /* 60: NM atomic, 62: RNG */
 249        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
 250    };
 251    uint8_t *pa_features = NULL;
 252    size_t pa_size;
 253
 254    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
 255        pa_features = pa_features_206;
 256        pa_size = sizeof(pa_features_206);
 257    }
 258    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
 259        pa_features = pa_features_207;
 260        pa_size = sizeof(pa_features_207);
 261    }
 262    if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
 263        pa_features = pa_features_300;
 264        pa_size = sizeof(pa_features_300);
 265    }
 266    if (!pa_features) {
 267        return;
 268    }
 269
 270    if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
 271        /*
 272         * Note: we keep CI large pages off by default because a 64K capable
 273         * guest provisioned with large pages might otherwise try to map a qemu
 274         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
 275         * even if that qemu runs on a 4k host.
 276         * We dd this bit back here if we are confident this is not an issue
 277         */
 278        pa_features[3] |= 0x20;
 279    }
 280    if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
 281        pa_features[24] |= 0x80;    /* Transactional memory support */
 282    }
 283    if (legacy_guest && pa_size > 40) {
 284        /* Workaround for broken kernels that attempt (guest) radix
 285         * mode when they can't handle it, if they see the radix bit set
 286         * in pa-features. So hide it from them. */
 287        pa_features[40 + 2] &= ~0x80; /* Radix MMU */
 288    }
 289
 290    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
 291}
 292
 293static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
 294{
 295    MachineState *ms = MACHINE(spapr);
 296    int ret = 0, offset, cpus_offset;
 297    CPUState *cs;
 298    char cpu_model[32];
 299    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 300
 301    CPU_FOREACH(cs) {
 302        PowerPCCPU *cpu = POWERPC_CPU(cs);
 303        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 304        int index = spapr_get_vcpu_id(cpu);
 305        int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
 306
 307        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 308            continue;
 309        }
 310
 311        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
 312
 313        cpus_offset = fdt_path_offset(fdt, "/cpus");
 314        if (cpus_offset < 0) {
 315            cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 316            if (cpus_offset < 0) {
 317                return cpus_offset;
 318            }
 319        }
 320        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
 321        if (offset < 0) {
 322            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
 323            if (offset < 0) {
 324                return offset;
 325            }
 326        }
 327
 328        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
 329                          pft_size_prop, sizeof(pft_size_prop));
 330        if (ret < 0) {
 331            return ret;
 332        }
 333
 334        if (nb_numa_nodes > 1) {
 335            ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
 336            if (ret < 0) {
 337                return ret;
 338            }
 339        }
 340
 341        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
 342        if (ret < 0) {
 343            return ret;
 344        }
 345
 346        spapr_populate_pa_features(spapr, cpu, fdt, offset,
 347                                   spapr->cas_legacy_guest_workaround);
 348    }
 349    return ret;
 350}
 351
 352static hwaddr spapr_node0_size(MachineState *machine)
 353{
 354    if (nb_numa_nodes) {
 355        int i;
 356        for (i = 0; i < nb_numa_nodes; ++i) {
 357            if (numa_info[i].node_mem) {
 358                return MIN(pow2floor(numa_info[i].node_mem),
 359                           machine->ram_size);
 360            }
 361        }
 362    }
 363    return machine->ram_size;
 364}
 365
 366static void add_str(GString *s, const gchar *s1)
 367{
 368    g_string_append_len(s, s1, strlen(s1) + 1);
 369}
 370
 371static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
 372                                       hwaddr size)
 373{
 374    uint32_t associativity[] = {
 375        cpu_to_be32(0x4), /* length */
 376        cpu_to_be32(0x0), cpu_to_be32(0x0),
 377        cpu_to_be32(0x0), cpu_to_be32(nodeid)
 378    };
 379    char mem_name[32];
 380    uint64_t mem_reg_property[2];
 381    int off;
 382
 383    mem_reg_property[0] = cpu_to_be64(start);
 384    mem_reg_property[1] = cpu_to_be64(size);
 385
 386    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
 387    off = fdt_add_subnode(fdt, 0, mem_name);
 388    _FDT(off);
 389    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
 390    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
 391                      sizeof(mem_reg_property))));
 392    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
 393                      sizeof(associativity))));
 394    return off;
 395}
 396
 397static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
 398{
 399    MachineState *machine = MACHINE(spapr);
 400    hwaddr mem_start, node_size;
 401    int i, nb_nodes = nb_numa_nodes;
 402    NodeInfo *nodes = numa_info;
 403    NodeInfo ramnode;
 404
 405    /* No NUMA nodes, assume there is just one node with whole RAM */
 406    if (!nb_numa_nodes) {
 407        nb_nodes = 1;
 408        ramnode.node_mem = machine->ram_size;
 409        nodes = &ramnode;
 410    }
 411
 412    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
 413        if (!nodes[i].node_mem) {
 414            continue;
 415        }
 416        if (mem_start >= machine->ram_size) {
 417            node_size = 0;
 418        } else {
 419            node_size = nodes[i].node_mem;
 420            if (node_size > machine->ram_size - mem_start) {
 421                node_size = machine->ram_size - mem_start;
 422            }
 423        }
 424        if (!mem_start) {
 425            /* spapr_machine_init() checks for rma_size <= node0_size
 426             * already */
 427            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
 428            mem_start += spapr->rma_size;
 429            node_size -= spapr->rma_size;
 430        }
 431        for ( ; node_size; ) {
 432            hwaddr sizetmp = pow2floor(node_size);
 433
 434            /* mem_start != 0 here */
 435            if (ctzl(mem_start) < ctzl(sizetmp)) {
 436                sizetmp = 1ULL << ctzl(mem_start);
 437            }
 438
 439            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
 440            node_size -= sizetmp;
 441            mem_start += sizetmp;
 442        }
 443    }
 444
 445    return 0;
 446}
 447
 448static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
 449                                  SpaprMachineState *spapr)
 450{
 451    MachineState *ms = MACHINE(spapr);
 452    PowerPCCPU *cpu = POWERPC_CPU(cs);
 453    CPUPPCState *env = &cpu->env;
 454    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
 455    int index = spapr_get_vcpu_id(cpu);
 456    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
 457                       0xffffffff, 0xffffffff};
 458    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
 459        : SPAPR_TIMEBASE_FREQ;
 460    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
 461    uint32_t page_sizes_prop[64];
 462    size_t page_sizes_prop_size;
 463    unsigned int smp_threads = ms->smp.threads;
 464    uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
 465    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
 466    int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
 467    SpaprDrc *drc;
 468    int drc_index;
 469    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
 470    int i;
 471
 472    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
 473    if (drc) {
 474        drc_index = spapr_drc_index(drc);
 475        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
 476    }
 477
 478    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
 479    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
 480
 481    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
 482    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
 483                           env->dcache_line_size)));
 484    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
 485                           env->dcache_line_size)));
 486    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
 487                           env->icache_line_size)));
 488    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
 489                           env->icache_line_size)));
 490
 491    if (pcc->l1_dcache_size) {
 492        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
 493                               pcc->l1_dcache_size)));
 494    } else {
 495        warn_report("Unknown L1 dcache size for cpu");
 496    }
 497    if (pcc->l1_icache_size) {
 498        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
 499                               pcc->l1_icache_size)));
 500    } else {
 501        warn_report("Unknown L1 icache size for cpu");
 502    }
 503
 504    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
 505    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
 506    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
 507    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
 508    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
 509    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
 510
 511    if (env->spr_cb[SPR_PURR].oea_read) {
 512        _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
 513    }
 514    if (env->spr_cb[SPR_SPURR].oea_read) {
 515        _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
 516    }
 517
 518    if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
 519        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
 520                          segs, sizeof(segs))));
 521    }
 522
 523    /* Advertise VSX (vector extensions) if available
 524     *   1               == VMX / Altivec available
 525     *   2               == VSX available
 526     *
 527     * Only CPUs for which we create core types in spapr_cpu_core.c
 528     * are possible, and all of those have VMX */
 529    if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
 530        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
 531    } else {
 532        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
 533    }
 534
 535    /* Advertise DFP (Decimal Floating Point) if available
 536     *   0 / no property == no DFP
 537     *   1               == DFP available */
 538    if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
 539        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
 540    }
 541
 542    page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
 543                                                      sizeof(page_sizes_prop));
 544    if (page_sizes_prop_size) {
 545        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
 546                          page_sizes_prop, page_sizes_prop_size)));
 547    }
 548
 549    spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
 550
 551    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
 552                           cs->cpu_index / vcpus_per_socket)));
 553
 554    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
 555                      pft_size_prop, sizeof(pft_size_prop))));
 556
 557    if (nb_numa_nodes > 1) {
 558        _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
 559    }
 560
 561    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
 562
 563    if (pcc->radix_page_info) {
 564        for (i = 0; i < pcc->radix_page_info->count; i++) {
 565            radix_AP_encodings[i] =
 566                cpu_to_be32(pcc->radix_page_info->entries[i]);
 567        }
 568        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
 569                          radix_AP_encodings,
 570                          pcc->radix_page_info->count *
 571                          sizeof(radix_AP_encodings[0]))));
 572    }
 573
 574    /*
 575     * We set this property to let the guest know that it can use the large
 576     * decrementer and its width in bits.
 577     */
 578    if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
 579        _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
 580                              pcc->lrg_decr_bits)));
 581}
 582
 583static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
 584{
 585    CPUState **rev;
 586    CPUState *cs;
 587    int n_cpus;
 588    int cpus_offset;
 589    char *nodename;
 590    int i;
 591
 592    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
 593    _FDT(cpus_offset);
 594    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
 595    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
 596
 597    /*
 598     * We walk the CPUs in reverse order to ensure that CPU DT nodes
 599     * created by fdt_add_subnode() end up in the right order in FDT
 600     * for the guest kernel the enumerate the CPUs correctly.
 601     *
 602     * The CPU list cannot be traversed in reverse order, so we need
 603     * to do extra work.
 604     */
 605    n_cpus = 0;
 606    rev = NULL;
 607    CPU_FOREACH(cs) {
 608        rev = g_renew(CPUState *, rev, n_cpus + 1);
 609        rev[n_cpus++] = cs;
 610    }
 611
 612    for (i = n_cpus - 1; i >= 0; i--) {
 613        CPUState *cs = rev[i];
 614        PowerPCCPU *cpu = POWERPC_CPU(cs);
 615        int index = spapr_get_vcpu_id(cpu);
 616        DeviceClass *dc = DEVICE_GET_CLASS(cs);
 617        int offset;
 618
 619        if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
 620            continue;
 621        }
 622
 623        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
 624        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
 625        g_free(nodename);
 626        _FDT(offset);
 627        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
 628    }
 629
 630    g_free(rev);
 631}
 632
 633static int spapr_rng_populate_dt(void *fdt)
 634{
 635    int node;
 636    int ret;
 637
 638    node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
 639    if (node <= 0) {
 640        return -1;
 641    }
 642    ret = fdt_setprop_string(fdt, node, "device_type",
 643                             "ibm,platform-facilities");
 644    ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
 645    ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
 646
 647    node = fdt_add_subnode(fdt, node, "ibm,random-v1");
 648    if (node <= 0) {
 649        return -1;
 650    }
 651    ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
 652
 653    return ret ? -1 : 0;
 654}
 655
 656static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
 657{
 658    MemoryDeviceInfoList *info;
 659
 660    for (info = list; info; info = info->next) {
 661        MemoryDeviceInfo *value = info->value;
 662
 663        if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
 664            PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
 665
 666            if (addr >= pcdimm_info->addr &&
 667                addr < (pcdimm_info->addr + pcdimm_info->size)) {
 668                return pcdimm_info->node;
 669            }
 670        }
 671    }
 672
 673    return -1;
 674}
 675
 676struct sPAPRDrconfCellV2 {
 677     uint32_t seq_lmbs;
 678     uint64_t base_addr;
 679     uint32_t drc_index;
 680     uint32_t aa_index;
 681     uint32_t flags;
 682} QEMU_PACKED;
 683
 684typedef struct DrconfCellQueue {
 685    struct sPAPRDrconfCellV2 cell;
 686    QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
 687} DrconfCellQueue;
 688
 689static DrconfCellQueue *
 690spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
 691                      uint32_t drc_index, uint32_t aa_index,
 692                      uint32_t flags)
 693{
 694    DrconfCellQueue *elem;
 695
 696    elem = g_malloc0(sizeof(*elem));
 697    elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
 698    elem->cell.base_addr = cpu_to_be64(base_addr);
 699    elem->cell.drc_index = cpu_to_be32(drc_index);
 700    elem->cell.aa_index = cpu_to_be32(aa_index);
 701    elem->cell.flags = cpu_to_be32(flags);
 702
 703    return elem;
 704}
 705
 706/* ibm,dynamic-memory-v2 */
 707static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
 708                                   int offset, MemoryDeviceInfoList *dimms)
 709{
 710    MachineState *machine = MACHINE(spapr);
 711    uint8_t *int_buf, *cur_index;
 712    int ret;
 713    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 714    uint64_t addr, cur_addr, size;
 715    uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
 716    uint64_t mem_end = machine->device_memory->base +
 717                       memory_region_size(&machine->device_memory->mr);
 718    uint32_t node, buf_len, nr_entries = 0;
 719    SpaprDrc *drc;
 720    DrconfCellQueue *elem, *next;
 721    MemoryDeviceInfoList *info;
 722    QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
 723        = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
 724
 725    /* Entry to cover RAM and the gap area */
 726    elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
 727                                 SPAPR_LMB_FLAGS_RESERVED |
 728                                 SPAPR_LMB_FLAGS_DRC_INVALID);
 729    QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 730    nr_entries++;
 731
 732    cur_addr = machine->device_memory->base;
 733    for (info = dimms; info; info = info->next) {
 734        PCDIMMDeviceInfo *di = info->value->u.dimm.data;
 735
 736        addr = di->addr;
 737        size = di->size;
 738        node = di->node;
 739
 740        /* Entry for hot-pluggable area */
 741        if (cur_addr < addr) {
 742            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 743            g_assert(drc);
 744            elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
 745                                         cur_addr, spapr_drc_index(drc), -1, 0);
 746            QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 747            nr_entries++;
 748        }
 749
 750        /* Entry for DIMM */
 751        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
 752        g_assert(drc);
 753        elem = spapr_get_drconf_cell(size / lmb_size, addr,
 754                                     spapr_drc_index(drc), node,
 755                                     SPAPR_LMB_FLAGS_ASSIGNED);
 756        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 757        nr_entries++;
 758        cur_addr = addr + size;
 759    }
 760
 761    /* Entry for remaining hotpluggable area */
 762    if (cur_addr < mem_end) {
 763        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
 764        g_assert(drc);
 765        elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
 766                                     cur_addr, spapr_drc_index(drc), -1, 0);
 767        QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
 768        nr_entries++;
 769    }
 770
 771    buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
 772    int_buf = cur_index = g_malloc0(buf_len);
 773    *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
 774    cur_index += sizeof(nr_entries);
 775
 776    QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
 777        memcpy(cur_index, &elem->cell, sizeof(elem->cell));
 778        cur_index += sizeof(elem->cell);
 779        QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
 780        g_free(elem);
 781    }
 782
 783    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
 784    g_free(int_buf);
 785    if (ret < 0) {
 786        return -1;
 787    }
 788    return 0;
 789}
 790
 791/* ibm,dynamic-memory */
 792static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
 793                                   int offset, MemoryDeviceInfoList *dimms)
 794{
 795    MachineState *machine = MACHINE(spapr);
 796    int i, ret;
 797    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 798    uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
 799    uint32_t nr_lmbs = (machine->device_memory->base +
 800                       memory_region_size(&machine->device_memory->mr)) /
 801                       lmb_size;
 802    uint32_t *int_buf, *cur_index, buf_len;
 803
 804    /*
 805     * Allocate enough buffer size to fit in ibm,dynamic-memory
 806     */
 807    buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
 808    cur_index = int_buf = g_malloc0(buf_len);
 809    int_buf[0] = cpu_to_be32(nr_lmbs);
 810    cur_index++;
 811    for (i = 0; i < nr_lmbs; i++) {
 812        uint64_t addr = i * lmb_size;
 813        uint32_t *dynamic_memory = cur_index;
 814
 815        if (i >= device_lmb_start) {
 816            SpaprDrc *drc;
 817
 818            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
 819            g_assert(drc);
 820
 821            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 822            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 823            dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
 824            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 825            dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
 826            if (memory_region_present(get_system_memory(), addr)) {
 827                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
 828            } else {
 829                dynamic_memory[5] = cpu_to_be32(0);
 830            }
 831        } else {
 832            /*
 833             * LMB information for RMA, boot time RAM and gap b/n RAM and
 834             * device memory region -- all these are marked as reserved
 835             * and as having no valid DRC.
 836             */
 837            dynamic_memory[0] = cpu_to_be32(addr >> 32);
 838            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
 839            dynamic_memory[2] = cpu_to_be32(0);
 840            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
 841            dynamic_memory[4] = cpu_to_be32(-1);
 842            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
 843                                            SPAPR_LMB_FLAGS_DRC_INVALID);
 844        }
 845
 846        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
 847    }
 848    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
 849    g_free(int_buf);
 850    if (ret < 0) {
 851        return -1;
 852    }
 853    return 0;
 854}
 855
 856/*
 857 * Adds ibm,dynamic-reconfiguration-memory node.
 858 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 859 * of this device tree node.
 860 */
 861static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
 862{
 863    MachineState *machine = MACHINE(spapr);
 864    int ret, i, offset;
 865    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
 866    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
 867    uint32_t *int_buf, *cur_index, buf_len;
 868    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
 869    MemoryDeviceInfoList *dimms = NULL;
 870
 871    /*
 872     * Don't create the node if there is no device memory
 873     */
 874    if (machine->ram_size == machine->maxram_size) {
 875        return 0;
 876    }
 877
 878    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
 879
 880    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
 881                    sizeof(prop_lmb_size));
 882    if (ret < 0) {
 883        return ret;
 884    }
 885
 886    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
 887    if (ret < 0) {
 888        return ret;
 889    }
 890
 891    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
 892    if (ret < 0) {
 893        return ret;
 894    }
 895
 896    /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
 897    dimms = qmp_memory_device_list();
 898    if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
 899        ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
 900    } else {
 901        ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
 902    }
 903    qapi_free_MemoryDeviceInfoList(dimms);
 904
 905    if (ret < 0) {
 906        return ret;
 907    }
 908
 909    /* ibm,associativity-lookup-arrays */
 910    buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
 911    cur_index = int_buf = g_malloc0(buf_len);
 912    int_buf[0] = cpu_to_be32(nr_nodes);
 913    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
 914    cur_index += 2;
 915    for (i = 0; i < nr_nodes; i++) {
 916        uint32_t associativity[] = {
 917            cpu_to_be32(0x0),
 918            cpu_to_be32(0x0),
 919            cpu_to_be32(0x0),
 920            cpu_to_be32(i)
 921        };
 922        memcpy(cur_index, associativity, sizeof(associativity));
 923        cur_index += 4;
 924    }
 925    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
 926            (cur_index - int_buf) * sizeof(uint32_t));
 927    g_free(int_buf);
 928
 929    return ret;
 930}
 931
 932static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
 933                                SpaprOptionVector *ov5_updates)
 934{
 935    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
 936    int ret = 0, offset;
 937
 938    /* Generate ibm,dynamic-reconfiguration-memory node if required */
 939    if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
 940        g_assert(smc->dr_lmb_enabled);
 941        ret = spapr_populate_drconf_memory(spapr, fdt);
 942        if (ret) {
 943            goto out;
 944        }
 945    }
 946
 947    offset = fdt_path_offset(fdt, "/chosen");
 948    if (offset < 0) {
 949        offset = fdt_add_subnode(fdt, 0, "chosen");
 950        if (offset < 0) {
 951            return offset;
 952        }
 953    }
 954    ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
 955                                 "ibm,architecture-vec-5");
 956
 957out:
 958    return ret;
 959}
 960
 961static bool spapr_hotplugged_dev_before_cas(void)
 962{
 963    Object *drc_container, *obj;
 964    ObjectProperty *prop;
 965    ObjectPropertyIterator iter;
 966
 967    drc_container = container_get(object_get_root(), "/dr-connector");
 968    object_property_iter_init(&iter, drc_container);
 969    while ((prop = object_property_iter_next(&iter))) {
 970        if (!strstart(prop->type, "link<", NULL)) {
 971            continue;
 972        }
 973        obj = object_property_get_link(drc_container, prop->name, NULL);
 974        if (spapr_drc_needed(obj)) {
 975            return true;
 976        }
 977    }
 978    return false;
 979}
 980
 981int spapr_h_cas_compose_response(SpaprMachineState *spapr,
 982                                 target_ulong addr, target_ulong size,
 983                                 SpaprOptionVector *ov5_updates)
 984{
 985    void *fdt, *fdt_skel;
 986    SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
 987
 988    if (spapr_hotplugged_dev_before_cas()) {
 989        return 1;
 990    }
 991
 992    if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
 993        error_report("SLOF provided an unexpected CAS buffer size "
 994                     TARGET_FMT_lu " (min: %zu, max: %u)",
 995                     size, sizeof(hdr), FW_MAX_SIZE);
 996        exit(EXIT_FAILURE);
 997    }
 998
 999    size -= sizeof(hdr);
1000
1001    /* Create skeleton */
1002    fdt_skel = g_malloc0(size);
1003    _FDT((fdt_create(fdt_skel, size)));
1004    _FDT((fdt_finish_reservemap(fdt_skel)));
1005    _FDT((fdt_begin_node(fdt_skel, "")));
1006    _FDT((fdt_end_node(fdt_skel)));
1007    _FDT((fdt_finish(fdt_skel)));
1008    fdt = g_malloc0(size);
1009    _FDT((fdt_open_into(fdt_skel, fdt, size)));
1010    g_free(fdt_skel);
1011
1012    /* Fixup cpu nodes */
1013    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1014
1015    if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1016        return -1;
1017    }
1018
1019    /* Pack resulting tree */
1020    _FDT((fdt_pack(fdt)));
1021
1022    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1023        trace_spapr_cas_failed(size);
1024        return -1;
1025    }
1026
1027    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1028    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1029    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1030    g_free(fdt);
1031
1032    return 0;
1033}
1034
1035static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1036{
1037    MachineState *ms = MACHINE(spapr);
1038    int rtas;
1039    GString *hypertas = g_string_sized_new(256);
1040    GString *qemu_hypertas = g_string_sized_new(256);
1041    uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1042    uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1043        memory_region_size(&MACHINE(spapr)->device_memory->mr);
1044    uint32_t lrdr_capacity[] = {
1045        cpu_to_be32(max_device_addr >> 32),
1046        cpu_to_be32(max_device_addr & 0xffffffff),
1047        0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1048        cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1049    };
1050    uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1051    uint32_t maxdomains[] = {
1052        cpu_to_be32(4),
1053        maxdomain,
1054        maxdomain,
1055        maxdomain,
1056        cpu_to_be32(spapr->gpu_numa_id),
1057    };
1058
1059    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1060
1061    /* hypertas */
1062    add_str(hypertas, "hcall-pft");
1063    add_str(hypertas, "hcall-term");
1064    add_str(hypertas, "hcall-dabr");
1065    add_str(hypertas, "hcall-interrupt");
1066    add_str(hypertas, "hcall-tce");
1067    add_str(hypertas, "hcall-vio");
1068    add_str(hypertas, "hcall-splpar");
1069    add_str(hypertas, "hcall-bulk");
1070    add_str(hypertas, "hcall-set-mode");
1071    add_str(hypertas, "hcall-sprg0");
1072    add_str(hypertas, "hcall-copy");
1073    add_str(hypertas, "hcall-debug");
1074    add_str(hypertas, "hcall-vphn");
1075    add_str(qemu_hypertas, "hcall-memop1");
1076
1077    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1078        add_str(hypertas, "hcall-multi-tce");
1079    }
1080
1081    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1082        add_str(hypertas, "hcall-hpt-resize");
1083    }
1084
1085    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1086                     hypertas->str, hypertas->len));
1087    g_string_free(hypertas, TRUE);
1088    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1089                     qemu_hypertas->str, qemu_hypertas->len));
1090    g_string_free(qemu_hypertas, TRUE);
1091
1092    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1093                     refpoints, sizeof(refpoints)));
1094
1095    _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1096                     maxdomains, sizeof(maxdomains)));
1097
1098    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1099                          RTAS_ERROR_LOG_MAX));
1100    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1101                          RTAS_EVENT_SCAN_RATE));
1102
1103    g_assert(msi_nonbroken);
1104    _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1105
1106    /*
1107     * According to PAPR, rtas ibm,os-term does not guarantee a return
1108     * back to the guest cpu.
1109     *
1110     * While an additional ibm,extended-os-term property indicates
1111     * that rtas call return will always occur. Set this property.
1112     */
1113    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1114
1115    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1116                     lrdr_capacity, sizeof(lrdr_capacity)));
1117
1118    spapr_dt_rtas_tokens(fdt, rtas);
1119}
1120
1121/*
1122 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1123 * and the XIVE features that the guest may request and thus the valid
1124 * values for bytes 23..26 of option vector 5:
1125 */
1126static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1127                                          int chosen)
1128{
1129    PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1130
1131    char val[2 * 4] = {
1132        23, spapr->irq->ov5, /* Xive mode. */
1133        24, 0x00, /* Hash/Radix, filled in below. */
1134        25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1135        26, 0x40, /* Radix options: GTSE == yes. */
1136    };
1137
1138    if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1139                          first_ppc_cpu->compat_pvr)) {
1140        /*
1141         * If we're in a pre POWER9 compat mode then the guest should
1142         * do hash and use the legacy interrupt mode
1143         */
1144        val[1] = 0x00; /* XICS */
1145        val[3] = 0x00; /* Hash */
1146    } else if (kvm_enabled()) {
1147        if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1148            val[3] = 0x80; /* OV5_MMU_BOTH */
1149        } else if (kvmppc_has_cap_mmu_radix()) {
1150            val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1151        } else {
1152            val[3] = 0x00; /* Hash */
1153        }
1154    } else {
1155        /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1156        val[3] = 0xC0;
1157    }
1158    _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1159                     val, sizeof(val)));
1160}
1161
1162static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1163{
1164    MachineState *machine = MACHINE(spapr);
1165    int chosen;
1166    const char *boot_device = machine->boot_order;
1167    char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1168    size_t cb = 0;
1169    char *bootlist = get_boot_devices_list(&cb);
1170
1171    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1172
1173    _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1174    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1175                          spapr->initrd_base));
1176    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1177                          spapr->initrd_base + spapr->initrd_size));
1178
1179    if (spapr->kernel_size) {
1180        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1181                              cpu_to_be64(spapr->kernel_size) };
1182
1183        _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1184                         &kprop, sizeof(kprop)));
1185        if (spapr->kernel_le) {
1186            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1187        }
1188    }
1189    if (boot_menu) {
1190        _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1191    }
1192    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1193    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1194    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1195
1196    if (cb && bootlist) {
1197        int i;
1198
1199        for (i = 0; i < cb; i++) {
1200            if (bootlist[i] == '\n') {
1201                bootlist[i] = ' ';
1202            }
1203        }
1204        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1205    }
1206
1207    if (boot_device && strlen(boot_device)) {
1208        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1209    }
1210
1211    if (!spapr->has_graphics && stdout_path) {
1212        /*
1213         * "linux,stdout-path" and "stdout" properties are deprecated by linux
1214         * kernel. New platforms should only use the "stdout-path" property. Set
1215         * the new property and continue using older property to remain
1216         * compatible with the existing firmware.
1217         */
1218        _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1219        _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1220    }
1221
1222    spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1223
1224    g_free(stdout_path);
1225    g_free(bootlist);
1226}
1227
1228static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1229{
1230    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1231     * KVM to work under pHyp with some guest co-operation */
1232    int hypervisor;
1233    uint8_t hypercall[16];
1234
1235    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1236    /* indicate KVM hypercall interface */
1237    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1238    if (kvmppc_has_cap_fixup_hcalls()) {
1239        /*
1240         * Older KVM versions with older guest kernels were broken
1241         * with the magic page, don't allow the guest to map it.
1242         */
1243        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1244                                  sizeof(hypercall))) {
1245            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1246                             hypercall, sizeof(hypercall)));
1247        }
1248    }
1249}
1250
1251static void *spapr_build_fdt(SpaprMachineState *spapr)
1252{
1253    MachineState *machine = MACHINE(spapr);
1254    MachineClass *mc = MACHINE_GET_CLASS(machine);
1255    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1256    int ret;
1257    void *fdt;
1258    SpaprPhbState *phb;
1259    char *buf;
1260
1261    fdt = g_malloc0(FDT_MAX_SIZE);
1262    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1263
1264    /* Root node */
1265    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1266    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1267    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1268
1269    /* Guest UUID & Name*/
1270    buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1271    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1272    if (qemu_uuid_set) {
1273        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1274    }
1275    g_free(buf);
1276
1277    if (qemu_get_vm_name()) {
1278        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1279                                qemu_get_vm_name()));
1280    }
1281
1282    /* Host Model & Serial Number */
1283    if (spapr->host_model) {
1284        _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1285    } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1286        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1287        g_free(buf);
1288    }
1289
1290    if (spapr->host_serial) {
1291        _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1292    } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1293        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1294        g_free(buf);
1295    }
1296
1297    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1298    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1299
1300    /* /interrupt controller */
1301    spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1302                          PHANDLE_INTC);
1303
1304    ret = spapr_populate_memory(spapr, fdt);
1305    if (ret < 0) {
1306        error_report("couldn't setup memory nodes in fdt");
1307        exit(1);
1308    }
1309
1310    /* /vdevice */
1311    spapr_dt_vdevice(spapr->vio_bus, fdt);
1312
1313    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1314        ret = spapr_rng_populate_dt(fdt);
1315        if (ret < 0) {
1316            error_report("could not set up rng device in the fdt");
1317            exit(1);
1318        }
1319    }
1320
1321    QLIST_FOREACH(phb, &spapr->phbs, list) {
1322        ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1323        if (ret < 0) {
1324            error_report("couldn't setup PCI devices in fdt");
1325            exit(1);
1326        }
1327    }
1328
1329    /* cpus */
1330    spapr_populate_cpus_dt_node(fdt, spapr);
1331
1332    if (smc->dr_lmb_enabled) {
1333        _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1334    }
1335
1336    if (mc->has_hotpluggable_cpus) {
1337        int offset = fdt_path_offset(fdt, "/cpus");
1338        ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1339        if (ret < 0) {
1340            error_report("Couldn't set up CPU DR device tree properties");
1341            exit(1);
1342        }
1343    }
1344
1345    /* /event-sources */
1346    spapr_dt_events(spapr, fdt);
1347
1348    /* /rtas */
1349    spapr_dt_rtas(spapr, fdt);
1350
1351    /* /chosen */
1352    spapr_dt_chosen(spapr, fdt);
1353
1354    /* /hypervisor */
1355    if (kvm_enabled()) {
1356        spapr_dt_hypervisor(spapr, fdt);
1357    }
1358
1359    /* Build memory reserve map */
1360    if (spapr->kernel_size) {
1361        _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1362    }
1363    if (spapr->initrd_size) {
1364        _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1365    }
1366
1367    /* ibm,client-architecture-support updates */
1368    ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1369    if (ret < 0) {
1370        error_report("couldn't setup CAS properties fdt");
1371        exit(1);
1372    }
1373
1374    if (smc->dr_phb_enabled) {
1375        ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1376        if (ret < 0) {
1377            error_report("Couldn't set up PHB DR device tree properties");
1378            exit(1);
1379        }
1380    }
1381
1382    return fdt;
1383}
1384
1385static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1386{
1387    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1388}
1389
1390static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1391                                    PowerPCCPU *cpu)
1392{
1393    CPUPPCState *env = &cpu->env;
1394
1395    /* The TCG path should also be holding the BQL at this point */
1396    g_assert(qemu_mutex_iothread_locked());
1397
1398    if (msr_pr) {
1399        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1400        env->gpr[3] = H_PRIVILEGE;
1401    } else {
1402        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1403    }
1404}
1405
1406struct LPCRSyncState {
1407    target_ulong value;
1408    target_ulong mask;
1409};
1410
1411static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1412{
1413    struct LPCRSyncState *s = arg.host_ptr;
1414    PowerPCCPU *cpu = POWERPC_CPU(cs);
1415    CPUPPCState *env = &cpu->env;
1416    target_ulong lpcr;
1417
1418    cpu_synchronize_state(cs);
1419    lpcr = env->spr[SPR_LPCR];
1420    lpcr &= ~s->mask;
1421    lpcr |= s->value;
1422    ppc_store_lpcr(cpu, lpcr);
1423}
1424
1425void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1426{
1427    CPUState *cs;
1428    struct LPCRSyncState s = {
1429        .value = value,
1430        .mask = mask
1431    };
1432    CPU_FOREACH(cs) {
1433        run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1434    }
1435}
1436
1437static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1438{
1439    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1440
1441    /* Copy PATE1:GR into PATE0:HR */
1442    entry->dw0 = spapr->patb_entry & PATE0_HR;
1443    entry->dw1 = spapr->patb_entry;
1444}
1445
1446#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1447#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1448#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1449#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1450#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1451
1452/*
1453 * Get the fd to access the kernel htab, re-opening it if necessary
1454 */
1455static int get_htab_fd(SpaprMachineState *spapr)
1456{
1457    Error *local_err = NULL;
1458
1459    if (spapr->htab_fd >= 0) {
1460        return spapr->htab_fd;
1461    }
1462
1463    spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1464    if (spapr->htab_fd < 0) {
1465        error_report_err(local_err);
1466    }
1467
1468    return spapr->htab_fd;
1469}
1470
1471void close_htab_fd(SpaprMachineState *spapr)
1472{
1473    if (spapr->htab_fd >= 0) {
1474        close(spapr->htab_fd);
1475    }
1476    spapr->htab_fd = -1;
1477}
1478
1479static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1480{
1481    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1482
1483    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1484}
1485
1486static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1487{
1488    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1489
1490    assert(kvm_enabled());
1491
1492    if (!spapr->htab) {
1493        return 0;
1494    }
1495
1496    return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1497}
1498
1499static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1500                                                hwaddr ptex, int n)
1501{
1502    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1503    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1504
1505    if (!spapr->htab) {
1506        /*
1507         * HTAB is controlled by KVM. Fetch into temporary buffer
1508         */
1509        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1510        kvmppc_read_hptes(hptes, ptex, n);
1511        return hptes;
1512    }
1513
1514    /*
1515     * HTAB is controlled by QEMU. Just point to the internally
1516     * accessible PTEG.
1517     */
1518    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1519}
1520
1521static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1522                              const ppc_hash_pte64_t *hptes,
1523                              hwaddr ptex, int n)
1524{
1525    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1526
1527    if (!spapr->htab) {
1528        g_free((void *)hptes);
1529    }
1530
1531    /* Nothing to do for qemu managed HPT */
1532}
1533
1534void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1535                      uint64_t pte0, uint64_t pte1)
1536{
1537    SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1538    hwaddr offset = ptex * HASH_PTE_SIZE_64;
1539
1540    if (!spapr->htab) {
1541        kvmppc_write_hpte(ptex, pte0, pte1);
1542    } else {
1543        if (pte0 & HPTE64_V_VALID) {
1544            stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1545            /*
1546             * When setting valid, we write PTE1 first. This ensures
1547             * proper synchronization with the reading code in
1548             * ppc_hash64_pteg_search()
1549             */
1550            smp_wmb();
1551            stq_p(spapr->htab + offset, pte0);
1552        } else {
1553            stq_p(spapr->htab + offset, pte0);
1554            /*
1555             * When clearing it we set PTE0 first. This ensures proper
1556             * synchronization with the reading code in
1557             * ppc_hash64_pteg_search()
1558             */
1559            smp_wmb();
1560            stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1561        }
1562    }
1563}
1564
1565static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1566                             uint64_t pte1)
1567{
1568    hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1569    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1570
1571    if (!spapr->htab) {
1572        /* There should always be a hash table when this is called */
1573        error_report("spapr_hpte_set_c called with no hash table !");
1574        return;
1575    }
1576
1577    /* The HW performs a non-atomic byte update */
1578    stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1579}
1580
1581static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1582                             uint64_t pte1)
1583{
1584    hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1585    SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1586
1587    if (!spapr->htab) {
1588        /* There should always be a hash table when this is called */
1589        error_report("spapr_hpte_set_r called with no hash table !");
1590        return;
1591    }
1592
1593    /* The HW performs a non-atomic byte update */
1594    stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1595}
1596
1597int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1598{
1599    int shift;
1600
1601    /* We aim for a hash table of size 1/128 the size of RAM (rounded
1602     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1603     * that's much more than is needed for Linux guests */
1604    shift = ctz64(pow2ceil(ramsize)) - 7;
1605    shift = MAX(shift, 18); /* Minimum architected size */
1606    shift = MIN(shift, 46); /* Maximum architected size */
1607    return shift;
1608}
1609
1610void spapr_free_hpt(SpaprMachineState *spapr)
1611{
1612    g_free(spapr->htab);
1613    spapr->htab = NULL;
1614    spapr->htab_shift = 0;
1615    close_htab_fd(spapr);
1616}
1617
1618void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1619                          Error **errp)
1620{
1621    long rc;
1622
1623    /* Clean up any HPT info from a previous boot */
1624    spapr_free_hpt(spapr);
1625
1626    rc = kvmppc_reset_htab(shift);
1627    if (rc < 0) {
1628        /* kernel-side HPT needed, but couldn't allocate one */
1629        error_setg_errno(errp, errno,
1630                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1631                         shift);
1632        /* This is almost certainly fatal, but if the caller really
1633         * wants to carry on with shift == 0, it's welcome to try */
1634    } else if (rc > 0) {
1635        /* kernel-side HPT allocated */
1636        if (rc != shift) {
1637            error_setg(errp,
1638                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1639                       shift, rc);
1640        }
1641
1642        spapr->htab_shift = shift;
1643        spapr->htab = NULL;
1644    } else {
1645        /* kernel-side HPT not needed, allocate in userspace instead */
1646        size_t size = 1ULL << shift;
1647        int i;
1648
1649        spapr->htab = qemu_memalign(size, size);
1650        if (!spapr->htab) {
1651            error_setg_errno(errp, errno,
1652                             "Could not allocate HPT of order %d", shift);
1653            return;
1654        }
1655
1656        memset(spapr->htab, 0, size);
1657        spapr->htab_shift = shift;
1658
1659        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1660            DIRTY_HPTE(HPTE(spapr->htab, i));
1661        }
1662    }
1663    /* We're setting up a hash table, so that means we're not radix */
1664    spapr->patb_entry = 0;
1665    spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1666}
1667
1668void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1669{
1670    int hpt_shift;
1671
1672    if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1673        || (spapr->cas_reboot
1674            && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1675        hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1676    } else {
1677        uint64_t current_ram_size;
1678
1679        current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1680        hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1681    }
1682    spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1683
1684    if (spapr->vrma_adjust) {
1685        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1686                                          spapr->htab_shift);
1687    }
1688}
1689
1690static int spapr_reset_drcs(Object *child, void *opaque)
1691{
1692    SpaprDrc *drc =
1693        (SpaprDrc *) object_dynamic_cast(child,
1694                                                 TYPE_SPAPR_DR_CONNECTOR);
1695
1696    if (drc) {
1697        spapr_drc_reset(drc);
1698    }
1699
1700    return 0;
1701}
1702
1703static void spapr_machine_reset(MachineState *machine)
1704{
1705    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1706    PowerPCCPU *first_ppc_cpu;
1707    uint32_t rtas_limit;
1708    hwaddr rtas_addr, fdt_addr;
1709    void *fdt;
1710    int rc;
1711
1712    spapr_caps_apply(spapr);
1713
1714    first_ppc_cpu = POWERPC_CPU(first_cpu);
1715    if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1716        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1717                              spapr->max_compat_pvr)) {
1718        /*
1719         * If using KVM with radix mode available, VCPUs can be started
1720         * without a HPT because KVM will start them in radix mode.
1721         * Set the GR bit in PATE so that we know there is no HPT.
1722         */
1723        spapr->patb_entry = PATE1_GR;
1724        spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1725    } else {
1726        spapr_setup_hpt_and_vrma(spapr);
1727    }
1728
1729    /*
1730     * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1731     * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1732     * called from vPHB reset handler so we initialize the counter here.
1733     * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1734     * must be equally distant from any other node.
1735     * The final value of spapr->gpu_numa_id is going to be written to
1736     * max-associativity-domains in spapr_build_fdt().
1737     */
1738    spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1739    qemu_devices_reset();
1740
1741    /*
1742     * If this reset wasn't generated by CAS, we should reset our
1743     * negotiated options and start from scratch
1744     */
1745    if (!spapr->cas_reboot) {
1746        spapr_ovec_cleanup(spapr->ov5_cas);
1747        spapr->ov5_cas = spapr_ovec_new();
1748
1749        ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1750    }
1751
1752    if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1753        spapr_irq_msi_reset(spapr);
1754    }
1755
1756    /*
1757     * This is fixing some of the default configuration of the XIVE
1758     * devices. To be called after the reset of the machine devices.
1759     */
1760    spapr_irq_reset(spapr, &error_fatal);
1761
1762    /*
1763     * There is no CAS under qtest. Simulate one to please the code that
1764     * depends on spapr->ov5_cas. This is especially needed to test device
1765     * unplug, so we do that before resetting the DRCs.
1766     */
1767    if (qtest_enabled()) {
1768        spapr_ovec_cleanup(spapr->ov5_cas);
1769        spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1770    }
1771
1772    /* DRC reset may cause a device to be unplugged. This will cause troubles
1773     * if this device is used by another device (eg, a running vhost backend
1774     * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1775     * situations, we reset DRCs after all devices have been reset.
1776     */
1777    object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1778
1779    spapr_clear_pending_events(spapr);
1780
1781    /*
1782     * We place the device tree and RTAS just below either the top of the RMA,
1783     * or just below 2GB, whichever is lower, so that it can be
1784     * processed with 32-bit real mode code if necessary
1785     */
1786    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1787    rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1788    fdt_addr = rtas_addr - FDT_MAX_SIZE;
1789
1790    fdt = spapr_build_fdt(spapr);
1791
1792    spapr_load_rtas(spapr, fdt, rtas_addr);
1793
1794    rc = fdt_pack(fdt);
1795
1796    /* Should only fail if we've built a corrupted tree */
1797    assert(rc == 0);
1798
1799    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1800        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1801                     fdt_totalsize(fdt), FDT_MAX_SIZE);
1802        exit(1);
1803    }
1804
1805    /* Load the fdt */
1806    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1807    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1808    g_free(spapr->fdt_blob);
1809    spapr->fdt_size = fdt_totalsize(fdt);
1810    spapr->fdt_initial_size = spapr->fdt_size;
1811    spapr->fdt_blob = fdt;
1812
1813    /* Set up the entry state */
1814    spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1815    first_ppc_cpu->env.gpr[5] = 0;
1816
1817    spapr->cas_reboot = false;
1818}
1819
1820static void spapr_create_nvram(SpaprMachineState *spapr)
1821{
1822    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1823    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1824
1825    if (dinfo) {
1826        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1827                            &error_fatal);
1828    }
1829
1830    qdev_init_nofail(dev);
1831
1832    spapr->nvram = (struct SpaprNvram *)dev;
1833}
1834
1835static void spapr_rtc_create(SpaprMachineState *spapr)
1836{
1837    object_initialize_child(OBJECT(spapr), "rtc",
1838                            &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1839                            &error_fatal, NULL);
1840    object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1841                              &error_fatal);
1842    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1843                              "date", &error_fatal);
1844}
1845
1846/* Returns whether we want to use VGA or not */
1847static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1848{
1849    switch (vga_interface_type) {
1850    case VGA_NONE:
1851        return false;
1852    case VGA_DEVICE:
1853        return true;
1854    case VGA_STD:
1855    case VGA_VIRTIO:
1856    case VGA_CIRRUS:
1857        return pci_vga_init(pci_bus) != NULL;
1858    default:
1859        error_setg(errp,
1860                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1861        return false;
1862    }
1863}
1864
1865static int spapr_pre_load(void *opaque)
1866{
1867    int rc;
1868
1869    rc = spapr_caps_pre_load(opaque);
1870    if (rc) {
1871        return rc;
1872    }
1873
1874    return 0;
1875}
1876
1877static int spapr_post_load(void *opaque, int version_id)
1878{
1879    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1880    int err = 0;
1881
1882    err = spapr_caps_post_migration(spapr);
1883    if (err) {
1884        return err;
1885    }
1886
1887    /*
1888     * In earlier versions, there was no separate qdev for the PAPR
1889     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1890     * So when migrating from those versions, poke the incoming offset
1891     * value into the RTC device
1892     */
1893    if (version_id < 3) {
1894        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1895        if (err) {
1896            return err;
1897        }
1898    }
1899
1900    if (kvm_enabled() && spapr->patb_entry) {
1901        PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1902        bool radix = !!(spapr->patb_entry & PATE1_GR);
1903        bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1904
1905        /*
1906         * Update LPCR:HR and UPRT as they may not be set properly in
1907         * the stream
1908         */
1909        spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1910                            LPCR_HR | LPCR_UPRT);
1911
1912        err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1913        if (err) {
1914            error_report("Process table config unsupported by the host");
1915            return -EINVAL;
1916        }
1917    }
1918
1919    err = spapr_irq_post_load(spapr, version_id);
1920    if (err) {
1921        return err;
1922    }
1923
1924    return err;
1925}
1926
1927static int spapr_pre_save(void *opaque)
1928{
1929    int rc;
1930
1931    rc = spapr_caps_pre_save(opaque);
1932    if (rc) {
1933        return rc;
1934    }
1935
1936    return 0;
1937}
1938
1939static bool version_before_3(void *opaque, int version_id)
1940{
1941    return version_id < 3;
1942}
1943
1944static bool spapr_pending_events_needed(void *opaque)
1945{
1946    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1947    return !QTAILQ_EMPTY(&spapr->pending_events);
1948}
1949
1950static const VMStateDescription vmstate_spapr_event_entry = {
1951    .name = "spapr_event_log_entry",
1952    .version_id = 1,
1953    .minimum_version_id = 1,
1954    .fields = (VMStateField[]) {
1955        VMSTATE_UINT32(summary, SpaprEventLogEntry),
1956        VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1957        VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1958                                     NULL, extended_length),
1959        VMSTATE_END_OF_LIST()
1960    },
1961};
1962
1963static const VMStateDescription vmstate_spapr_pending_events = {
1964    .name = "spapr_pending_events",
1965    .version_id = 1,
1966    .minimum_version_id = 1,
1967    .needed = spapr_pending_events_needed,
1968    .fields = (VMStateField[]) {
1969        VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1970                         vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1971        VMSTATE_END_OF_LIST()
1972    },
1973};
1974
1975static bool spapr_ov5_cas_needed(void *opaque)
1976{
1977    SpaprMachineState *spapr = opaque;
1978    SpaprOptionVector *ov5_mask = spapr_ovec_new();
1979    SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1980    SpaprOptionVector *ov5_removed = spapr_ovec_new();
1981    bool cas_needed;
1982
1983    /* Prior to the introduction of SpaprOptionVector, we had two option
1984     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1985     * Both of these options encode machine topology into the device-tree
1986     * in such a way that the now-booted OS should still be able to interact
1987     * appropriately with QEMU regardless of what options were actually
1988     * negotiatied on the source side.
1989     *
1990     * As such, we can avoid migrating the CAS-negotiated options if these
1991     * are the only options available on the current machine/platform.
1992     * Since these are the only options available for pseries-2.7 and
1993     * earlier, this allows us to maintain old->new/new->old migration
1994     * compatibility.
1995     *
1996     * For QEMU 2.8+, there are additional CAS-negotiatable options available
1997     * via default pseries-2.8 machines and explicit command-line parameters.
1998     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1999     * of the actual CAS-negotiated values to continue working properly. For
2000     * example, availability of memory unplug depends on knowing whether
2001     * OV5_HP_EVT was negotiated via CAS.
2002     *
2003     * Thus, for any cases where the set of available CAS-negotiatable
2004     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2005     * include the CAS-negotiated options in the migration stream, unless
2006     * if they affect boot time behaviour only.
2007     */
2008    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2009    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2010    spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2011
2012    /* spapr_ovec_diff returns true if bits were removed. we avoid using
2013     * the mask itself since in the future it's possible "legacy" bits may be
2014     * removed via machine options, which could generate a false positive
2015     * that breaks migration.
2016     */
2017    spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2018    cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2019
2020    spapr_ovec_cleanup(ov5_mask);
2021    spapr_ovec_cleanup(ov5_legacy);
2022    spapr_ovec_cleanup(ov5_removed);
2023
2024    return cas_needed;
2025}
2026
2027static const VMStateDescription vmstate_spapr_ov5_cas = {
2028    .name = "spapr_option_vector_ov5_cas",
2029    .version_id = 1,
2030    .minimum_version_id = 1,
2031    .needed = spapr_ov5_cas_needed,
2032    .fields = (VMStateField[]) {
2033        VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2034                                 vmstate_spapr_ovec, SpaprOptionVector),
2035        VMSTATE_END_OF_LIST()
2036    },
2037};
2038
2039static bool spapr_patb_entry_needed(void *opaque)
2040{
2041    SpaprMachineState *spapr = opaque;
2042
2043    return !!spapr->patb_entry;
2044}
2045
2046static const VMStateDescription vmstate_spapr_patb_entry = {
2047    .name = "spapr_patb_entry",
2048    .version_id = 1,
2049    .minimum_version_id = 1,
2050    .needed = spapr_patb_entry_needed,
2051    .fields = (VMStateField[]) {
2052        VMSTATE_UINT64(patb_entry, SpaprMachineState),
2053        VMSTATE_END_OF_LIST()
2054    },
2055};
2056
2057static bool spapr_irq_map_needed(void *opaque)
2058{
2059    SpaprMachineState *spapr = opaque;
2060
2061    return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2062}
2063
2064static const VMStateDescription vmstate_spapr_irq_map = {
2065    .name = "spapr_irq_map",
2066    .version_id = 1,
2067    .minimum_version_id = 1,
2068    .needed = spapr_irq_map_needed,
2069    .fields = (VMStateField[]) {
2070        VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2071        VMSTATE_END_OF_LIST()
2072    },
2073};
2074
2075static bool spapr_dtb_needed(void *opaque)
2076{
2077    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2078
2079    return smc->update_dt_enabled;
2080}
2081
2082static int spapr_dtb_pre_load(void *opaque)
2083{
2084    SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2085
2086    g_free(spapr->fdt_blob);
2087    spapr->fdt_blob = NULL;
2088    spapr->fdt_size = 0;
2089
2090    return 0;
2091}
2092
2093static const VMStateDescription vmstate_spapr_dtb = {
2094    .name = "spapr_dtb",
2095    .version_id = 1,
2096    .minimum_version_id = 1,
2097    .needed = spapr_dtb_needed,
2098    .pre_load = spapr_dtb_pre_load,
2099    .fields = (VMStateField[]) {
2100        VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2101        VMSTATE_UINT32(fdt_size, SpaprMachineState),
2102        VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2103                                     fdt_size),
2104        VMSTATE_END_OF_LIST()
2105    },
2106};
2107
2108static const VMStateDescription vmstate_spapr = {
2109    .name = "spapr",
2110    .version_id = 3,
2111    .minimum_version_id = 1,
2112    .pre_load = spapr_pre_load,
2113    .post_load = spapr_post_load,
2114    .pre_save = spapr_pre_save,
2115    .fields = (VMStateField[]) {
2116        /* used to be @next_irq */
2117        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2118
2119        /* RTC offset */
2120        VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2121
2122        VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2123        VMSTATE_END_OF_LIST()
2124    },
2125    .subsections = (const VMStateDescription*[]) {
2126        &vmstate_spapr_ov5_cas,
2127        &vmstate_spapr_patb_entry,
2128        &vmstate_spapr_pending_events,
2129        &vmstate_spapr_cap_htm,
2130        &vmstate_spapr_cap_vsx,
2131        &vmstate_spapr_cap_dfp,
2132        &vmstate_spapr_cap_cfpc,
2133        &vmstate_spapr_cap_sbbc,
2134        &vmstate_spapr_cap_ibs,
2135        &vmstate_spapr_cap_hpt_maxpagesize,
2136        &vmstate_spapr_irq_map,
2137        &vmstate_spapr_cap_nested_kvm_hv,
2138        &vmstate_spapr_dtb,
2139        &vmstate_spapr_cap_large_decr,
2140        &vmstate_spapr_cap_ccf_assist,
2141        NULL
2142    }
2143};
2144
2145static int htab_save_setup(QEMUFile *f, void *opaque)
2146{
2147    SpaprMachineState *spapr = opaque;
2148
2149    /* "Iteration" header */
2150    if (!spapr->htab_shift) {
2151        qemu_put_be32(f, -1);
2152    } else {
2153        qemu_put_be32(f, spapr->htab_shift);
2154    }
2155
2156    if (spapr->htab) {
2157        spapr->htab_save_index = 0;
2158        spapr->htab_first_pass = true;
2159    } else {
2160        if (spapr->htab_shift) {
2161            assert(kvm_enabled());
2162        }
2163    }
2164
2165
2166    return 0;
2167}
2168
2169static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2170                            int chunkstart, int n_valid, int n_invalid)
2171{
2172    qemu_put_be32(f, chunkstart);
2173    qemu_put_be16(f, n_valid);
2174    qemu_put_be16(f, n_invalid);
2175    qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2176                    HASH_PTE_SIZE_64 * n_valid);
2177}
2178
2179static void htab_save_end_marker(QEMUFile *f)
2180{
2181    qemu_put_be32(f, 0);
2182    qemu_put_be16(f, 0);
2183    qemu_put_be16(f, 0);
2184}
2185
2186static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2187                                 int64_t max_ns)
2188{
2189    bool has_timeout = max_ns != -1;
2190    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2191    int index = spapr->htab_save_index;
2192    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2193
2194    assert(spapr->htab_first_pass);
2195
2196    do {
2197        int chunkstart;
2198
2199        /* Consume invalid HPTEs */
2200        while ((index < htabslots)
2201               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2202            CLEAN_HPTE(HPTE(spapr->htab, index));
2203            index++;
2204        }
2205
2206        /* Consume valid HPTEs */
2207        chunkstart = index;
2208        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2209               && HPTE_VALID(HPTE(spapr->htab, index))) {
2210            CLEAN_HPTE(HPTE(spapr->htab, index));
2211            index++;
2212        }
2213
2214        if (index > chunkstart) {
2215            int n_valid = index - chunkstart;
2216
2217            htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2218
2219            if (has_timeout &&
2220                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2221                break;
2222            }
2223        }
2224    } while ((index < htabslots) && !qemu_file_rate_limit(f));
2225
2226    if (index >= htabslots) {
2227        assert(index == htabslots);
2228        index = 0;
2229        spapr->htab_first_pass = false;
2230    }
2231    spapr->htab_save_index = index;
2232}
2233
2234static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2235                                int64_t max_ns)
2236{
2237    bool final = max_ns < 0;
2238    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2239    int examined = 0, sent = 0;
2240    int index = spapr->htab_save_index;
2241    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2242
2243    assert(!spapr->htab_first_pass);
2244
2245    do {
2246        int chunkstart, invalidstart;
2247
2248        /* Consume non-dirty HPTEs */
2249        while ((index < htabslots)
2250               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2251            index++;
2252            examined++;
2253        }
2254
2255        chunkstart = index;
2256        /* Consume valid dirty HPTEs */
2257        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2258               && HPTE_DIRTY(HPTE(spapr->htab, index))
2259               && HPTE_VALID(HPTE(spapr->htab, index))) {
2260            CLEAN_HPTE(HPTE(spapr->htab, index));
2261            index++;
2262            examined++;
2263        }
2264
2265        invalidstart = index;
2266        /* Consume invalid dirty HPTEs */
2267        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2268               && HPTE_DIRTY(HPTE(spapr->htab, index))
2269               && !HPTE_VALID(HPTE(spapr->htab, index))) {
2270            CLEAN_HPTE(HPTE(spapr->htab, index));
2271            index++;
2272            examined++;
2273        }
2274
2275        if (index > chunkstart) {
2276            int n_valid = invalidstart - chunkstart;
2277            int n_invalid = index - invalidstart;
2278
2279            htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2280            sent += index - chunkstart;
2281
2282            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2283                break;
2284            }
2285        }
2286
2287        if (examined >= htabslots) {
2288            break;
2289        }
2290
2291        if (index >= htabslots) {
2292            assert(index == htabslots);
2293            index = 0;
2294        }
2295    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2296
2297    if (index >= htabslots) {
2298        assert(index == htabslots);
2299        index = 0;
2300    }
2301
2302    spapr->htab_save_index = index;
2303
2304    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2305}
2306
2307#define MAX_ITERATION_NS    5000000 /* 5 ms */
2308#define MAX_KVM_BUF_SIZE    2048
2309
2310static int htab_save_iterate(QEMUFile *f, void *opaque)
2311{
2312    SpaprMachineState *spapr = opaque;
2313    int fd;
2314    int rc = 0;
2315
2316    /* Iteration header */
2317    if (!spapr->htab_shift) {
2318        qemu_put_be32(f, -1);
2319        return 1;
2320    } else {
2321        qemu_put_be32(f, 0);
2322    }
2323
2324    if (!spapr->htab) {
2325        assert(kvm_enabled());
2326
2327        fd = get_htab_fd(spapr);
2328        if (fd < 0) {
2329            return fd;
2330        }
2331
2332        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2333        if (rc < 0) {
2334            return rc;
2335        }
2336    } else  if (spapr->htab_first_pass) {
2337        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2338    } else {
2339        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2340    }
2341
2342    htab_save_end_marker(f);
2343
2344    return rc;
2345}
2346
2347static int htab_save_complete(QEMUFile *f, void *opaque)
2348{
2349    SpaprMachineState *spapr = opaque;
2350    int fd;
2351
2352    /* Iteration header */
2353    if (!spapr->htab_shift) {
2354        qemu_put_be32(f, -1);
2355        return 0;
2356    } else {
2357        qemu_put_be32(f, 0);
2358    }
2359
2360    if (!spapr->htab) {
2361        int rc;
2362
2363        assert(kvm_enabled());
2364
2365        fd = get_htab_fd(spapr);
2366        if (fd < 0) {
2367            return fd;
2368        }
2369
2370        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2371        if (rc < 0) {
2372            return rc;
2373        }
2374    } else {
2375        if (spapr->htab_first_pass) {
2376            htab_save_first_pass(f, spapr, -1);
2377        }
2378        htab_save_later_pass(f, spapr, -1);
2379    }
2380
2381    /* End marker */
2382    htab_save_end_marker(f);
2383
2384    return 0;
2385}
2386
2387static int htab_load(QEMUFile *f, void *opaque, int version_id)
2388{
2389    SpaprMachineState *spapr = opaque;
2390    uint32_t section_hdr;
2391    int fd = -1;
2392    Error *local_err = NULL;
2393
2394    if (version_id < 1 || version_id > 1) {
2395        error_report("htab_load() bad version");
2396        return -EINVAL;
2397    }
2398
2399    section_hdr = qemu_get_be32(f);
2400
2401    if (section_hdr == -1) {
2402        spapr_free_hpt(spapr);
2403        return 0;
2404    }
2405
2406    if (section_hdr) {
2407        /* First section gives the htab size */
2408        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2409        if (local_err) {
2410            error_report_err(local_err);
2411            return -EINVAL;
2412        }
2413        return 0;
2414    }
2415
2416    if (!spapr->htab) {
2417        assert(kvm_enabled());
2418
2419        fd = kvmppc_get_htab_fd(true, 0, &local_err);
2420        if (fd < 0) {
2421            error_report_err(local_err);
2422            return fd;
2423        }
2424    }
2425
2426    while (true) {
2427        uint32_t index;
2428        uint16_t n_valid, n_invalid;
2429
2430        index = qemu_get_be32(f);
2431        n_valid = qemu_get_be16(f);
2432        n_invalid = qemu_get_be16(f);
2433
2434        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2435            /* End of Stream */
2436            break;
2437        }
2438
2439        if ((index + n_valid + n_invalid) >
2440            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2441            /* Bad index in stream */
2442            error_report(
2443                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2444                index, n_valid, n_invalid, spapr->htab_shift);
2445            return -EINVAL;
2446        }
2447
2448        if (spapr->htab) {
2449            if (n_valid) {
2450                qemu_get_buffer(f, HPTE(spapr->htab, index),
2451                                HASH_PTE_SIZE_64 * n_valid);
2452            }
2453            if (n_invalid) {
2454                memset(HPTE(spapr->htab, index + n_valid), 0,
2455                       HASH_PTE_SIZE_64 * n_invalid);
2456            }
2457        } else {
2458            int rc;
2459
2460            assert(fd >= 0);
2461
2462            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2463            if (rc < 0) {
2464                return rc;
2465            }
2466        }
2467    }
2468
2469    if (!spapr->htab) {
2470        assert(fd >= 0);
2471        close(fd);
2472    }
2473
2474    return 0;
2475}
2476
2477static void htab_save_cleanup(void *opaque)
2478{
2479    SpaprMachineState *spapr = opaque;
2480
2481    close_htab_fd(spapr);
2482}
2483
2484static SaveVMHandlers savevm_htab_handlers = {
2485    .save_setup = htab_save_setup,
2486    .save_live_iterate = htab_save_iterate,
2487    .save_live_complete_precopy = htab_save_complete,
2488    .save_cleanup = htab_save_cleanup,
2489    .load_state = htab_load,
2490};
2491
2492static void spapr_boot_set(void *opaque, const char *boot_device,
2493                           Error **errp)
2494{
2495    MachineState *machine = MACHINE(opaque);
2496    machine->boot_order = g_strdup(boot_device);
2497}
2498
2499static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2500{
2501    MachineState *machine = MACHINE(spapr);
2502    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2503    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2504    int i;
2505
2506    for (i = 0; i < nr_lmbs; i++) {
2507        uint64_t addr;
2508
2509        addr = i * lmb_size + machine->device_memory->base;
2510        spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2511                               addr / lmb_size);
2512    }
2513}
2514
2515/*
2516 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2517 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2518 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2519 */
2520static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2521{
2522    int i;
2523
2524    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2525        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2526                   " is not aligned to %" PRIu64 " MiB",
2527                   machine->ram_size,
2528                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2529        return;
2530    }
2531
2532    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2533        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2534                   " is not aligned to %" PRIu64 " MiB",
2535                   machine->ram_size,
2536                   SPAPR_MEMORY_BLOCK_SIZE / MiB);
2537        return;
2538    }
2539
2540    for (i = 0; i < nb_numa_nodes; i++) {
2541        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2542            error_setg(errp,
2543                       "Node %d memory size 0x%" PRIx64
2544                       " is not aligned to %" PRIu64 " MiB",
2545                       i, numa_info[i].node_mem,
2546                       SPAPR_MEMORY_BLOCK_SIZE / MiB);
2547            return;
2548        }
2549    }
2550}
2551
2552/* find cpu slot in machine->possible_cpus by core_id */
2553static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2554{
2555    int index = id / ms->smp.threads;
2556
2557    if (index >= ms->possible_cpus->len) {
2558        return NULL;
2559    }
2560    if (idx) {
2561        *idx = index;
2562    }
2563    return &ms->possible_cpus->cpus[index];
2564}
2565
2566static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2567{
2568    MachineState *ms = MACHINE(spapr);
2569    Error *local_err = NULL;
2570    bool vsmt_user = !!spapr->vsmt;
2571    int kvm_smt = kvmppc_smt_threads();
2572    int ret;
2573    unsigned int smp_threads = ms->smp.threads;
2574
2575    if (!kvm_enabled() && (smp_threads > 1)) {
2576        error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2577                     "on a pseries machine");
2578        goto out;
2579    }
2580    if (!is_power_of_2(smp_threads)) {
2581        error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2582                     "machine because it must be a power of 2", smp_threads);
2583        goto out;
2584    }
2585
2586    /* Detemine the VSMT mode to use: */
2587    if (vsmt_user) {
2588        if (spapr->vsmt < smp_threads) {
2589            error_setg(&local_err, "Cannot support VSMT mode %d"
2590                         " because it must be >= threads/core (%d)",
2591                         spapr->vsmt, smp_threads);
2592            goto out;
2593        }
2594        /* In this case, spapr->vsmt has been set by the command line */
2595    } else {
2596        /*
2597         * Default VSMT value is tricky, because we need it to be as
2598         * consistent as possible (for migration), but this requires
2599         * changing it for at least some existing cases.  We pick 8 as
2600         * the value that we'd get with KVM on POWER8, the
2601         * overwhelmingly common case in production systems.
2602         */
2603        spapr->vsmt = MAX(8, smp_threads);
2604    }
2605
2606    /* KVM: If necessary, set the SMT mode: */
2607    if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2608        ret = kvmppc_set_smt_threads(spapr->vsmt);
2609        if (ret) {
2610            /* Looks like KVM isn't able to change VSMT mode */
2611            error_setg(&local_err,
2612                       "Failed to set KVM's VSMT mode to %d (errno %d)",
2613                       spapr->vsmt, ret);
2614            /* We can live with that if the default one is big enough
2615             * for the number of threads, and a submultiple of the one
2616             * we want.  In this case we'll waste some vcpu ids, but
2617             * behaviour will be correct */
2618            if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2619                warn_report_err(local_err);
2620                local_err = NULL;
2621                goto out;
2622            } else {
2623                if (!vsmt_user) {
2624                    error_append_hint(&local_err,
2625                                      "On PPC, a VM with %d threads/core"
2626                                      " on a host with %d threads/core"
2627                                      " requires the use of VSMT mode %d.\n",
2628                                      smp_threads, kvm_smt, spapr->vsmt);
2629                }
2630                kvmppc_hint_smt_possible(&local_err);
2631                goto out;
2632            }
2633        }
2634    }
2635    /* else TCG: nothing to do currently */
2636out:
2637    error_propagate(errp, local_err);
2638}
2639
2640static void spapr_init_cpus(SpaprMachineState *spapr)
2641{
2642    MachineState *machine = MACHINE(spapr);
2643    MachineClass *mc = MACHINE_GET_CLASS(machine);
2644    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2645    const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2646    const CPUArchIdList *possible_cpus;
2647    unsigned int smp_cpus = machine->smp.cpus;
2648    unsigned int smp_threads = machine->smp.threads;
2649    unsigned int max_cpus = machine->smp.max_cpus;
2650    int boot_cores_nr = smp_cpus / smp_threads;
2651    int i;
2652
2653    possible_cpus = mc->possible_cpu_arch_ids(machine);
2654    if (mc->has_hotpluggable_cpus) {
2655        if (smp_cpus % smp_threads) {
2656            error_report("smp_cpus (%u) must be multiple of threads (%u)",
2657                         smp_cpus, smp_threads);
2658            exit(1);
2659        }
2660        if (max_cpus % smp_threads) {
2661            error_report("max_cpus (%u) must be multiple of threads (%u)",
2662                         max_cpus, smp_threads);
2663            exit(1);
2664        }
2665    } else {
2666        if (max_cpus != smp_cpus) {
2667            error_report("This machine version does not support CPU hotplug");
2668            exit(1);
2669        }
2670        boot_cores_nr = possible_cpus->len;
2671    }
2672
2673    if (smc->pre_2_10_has_unused_icps) {
2674        int i;
2675
2676        for (i = 0; i < spapr_max_server_number(spapr); i++) {
2677            /* Dummy entries get deregistered when real ICPState objects
2678             * are registered during CPU core hotplug.
2679             */
2680            pre_2_10_vmstate_register_dummy_icp(i);
2681        }
2682    }
2683
2684    for (i = 0; i < possible_cpus->len; i++) {
2685        int core_id = i * smp_threads;
2686
2687        if (mc->has_hotpluggable_cpus) {
2688            spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2689                                   spapr_vcpu_id(spapr, core_id));
2690        }
2691
2692        if (i < boot_cores_nr) {
2693            Object *core  = object_new(type);
2694            int nr_threads = smp_threads;
2695
2696            /* Handle the partially filled core for older machine types */
2697            if ((i + 1) * smp_threads >= smp_cpus) {
2698                nr_threads = smp_cpus - i * smp_threads;
2699            }
2700
2701            object_property_set_int(core, nr_threads, "nr-threads",
2702                                    &error_fatal);
2703            object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2704                                    &error_fatal);
2705            object_property_set_bool(core, true, "realized", &error_fatal);
2706
2707            object_unref(core);
2708        }
2709    }
2710}
2711
2712static PCIHostState *spapr_create_default_phb(void)
2713{
2714    DeviceState *dev;
2715
2716    dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2717    qdev_prop_set_uint32(dev, "index", 0);
2718    qdev_init_nofail(dev);
2719
2720    return PCI_HOST_BRIDGE(dev);
2721}
2722
2723/* pSeries LPAR / sPAPR hardware init */
2724static void spapr_machine_init(MachineState *machine)
2725{
2726    SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2727    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2728    const char *kernel_filename = machine->kernel_filename;
2729    const char *initrd_filename = machine->initrd_filename;
2730    PCIHostState *phb;
2731    int i;
2732    MemoryRegion *sysmem = get_system_memory();
2733    MemoryRegion *ram = g_new(MemoryRegion, 1);
2734    hwaddr node0_size = spapr_node0_size(machine);
2735    long load_limit, fw_size;
2736    char *filename;
2737    Error *resize_hpt_err = NULL;
2738
2739    msi_nonbroken = true;
2740
2741    QLIST_INIT(&spapr->phbs);
2742    QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2743
2744    /* Determine capabilities to run with */
2745    spapr_caps_init(spapr);
2746
2747    kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2748    if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2749        /*
2750         * If the user explicitly requested a mode we should either
2751         * supply it, or fail completely (which we do below).  But if
2752         * it's not set explicitly, we reset our mode to something
2753         * that works
2754         */
2755        if (resize_hpt_err) {
2756            spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2757            error_free(resize_hpt_err);
2758            resize_hpt_err = NULL;
2759        } else {
2760            spapr->resize_hpt = smc->resize_hpt_default;
2761        }
2762    }
2763
2764    assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2765
2766    if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2767        /*
2768         * User requested HPT resize, but this host can't supply it.  Bail out
2769         */
2770        error_report_err(resize_hpt_err);
2771        exit(1);
2772    }
2773
2774    spapr->rma_size = node0_size;
2775
2776    /* With KVM, we don't actually know whether KVM supports an
2777     * unbounded RMA (PR KVM) or is limited by the hash table size
2778     * (HV KVM using VRMA), so we always assume the latter
2779     *
2780     * In that case, we also limit the initial allocations for RTAS
2781     * etc... to 256M since we have no way to know what the VRMA size
2782     * is going to be as it depends on the size of the hash table
2783     * which isn't determined yet.
2784     */
2785    if (kvm_enabled()) {
2786        spapr->vrma_adjust = 1;
2787        spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2788    }
2789
2790    /* Actually we don't support unbounded RMA anymore since we added
2791     * proper emulation of HV mode. The max we can get is 16G which
2792     * also happens to be what we configure for PAPR mode so make sure
2793     * we don't do anything bigger than that
2794     */
2795    spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2796
2797    if (spapr->rma_size > node0_size) {
2798        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2799                     spapr->rma_size);
2800        exit(1);
2801    }
2802
2803    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2804    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2805
2806    /*
2807     * VSMT must be set in order to be able to compute VCPU ids, ie to
2808     * call spapr_max_server_number() or spapr_vcpu_id().
2809     */
2810    spapr_set_vsmt_mode(spapr, &error_fatal);
2811
2812    /* Set up Interrupt Controller before we create the VCPUs */
2813    spapr_irq_init(spapr, &error_fatal);
2814
2815    /* Set up containers for ibm,client-architecture-support negotiated options
2816     */
2817    spapr->ov5 = spapr_ovec_new();
2818    spapr->ov5_cas = spapr_ovec_new();
2819
2820    if (smc->dr_lmb_enabled) {
2821        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2822        spapr_validate_node_memory(machine, &error_fatal);
2823    }
2824
2825    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2826
2827    /* advertise support for dedicated HP event source to guests */
2828    if (spapr->use_hotplug_event_source) {
2829        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2830    }
2831
2832    /* advertise support for HPT resizing */
2833    if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2834        spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2835    }
2836
2837    /* advertise support for ibm,dyamic-memory-v2 */
2838    spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2839
2840    /* advertise XIVE on POWER9 machines */
2841    if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2842        spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2843    }
2844
2845    /* init CPUs */
2846    spapr_init_cpus(spapr);
2847
2848    if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2849        ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2850                              spapr->max_compat_pvr)) {
2851        /* KVM and TCG always allow GTSE with radix... */
2852        spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2853    }
2854    /* ... but not with hash (currently). */
2855
2856    if (kvm_enabled()) {
2857        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2858        kvmppc_enable_logical_ci_hcalls();
2859        kvmppc_enable_set_mode_hcall();
2860
2861        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2862        kvmppc_enable_clear_ref_mod_hcalls();
2863
2864        /* Enable H_PAGE_INIT */
2865        kvmppc_enable_h_page_init();
2866    }
2867
2868    /* allocate RAM */
2869    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2870                                         machine->ram_size);
2871    memory_region_add_subregion(sysmem, 0, ram);
2872
2873    /* always allocate the device memory information */
2874    machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2875
2876    /* initialize hotplug memory address space */
2877    if (machine->ram_size < machine->maxram_size) {
2878        ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2879        /*
2880         * Limit the number of hotpluggable memory slots to half the number
2881         * slots that KVM supports, leaving the other half for PCI and other
2882         * devices. However ensure that number of slots doesn't drop below 32.
2883         */
2884        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2885                           SPAPR_MAX_RAM_SLOTS;
2886
2887        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2888            max_memslots = SPAPR_MAX_RAM_SLOTS;
2889        }
2890        if (machine->ram_slots > max_memslots) {
2891            error_report("Specified number of memory slots %"
2892                         PRIu64" exceeds max supported %d",
2893                         machine->ram_slots, max_memslots);
2894            exit(1);
2895        }
2896
2897        machine->device_memory->base = ROUND_UP(machine->ram_size,
2898                                                SPAPR_DEVICE_MEM_ALIGN);
2899        memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2900                           "device-memory", device_mem_size);
2901        memory_region_add_subregion(sysmem, machine->device_memory->base,
2902                                    &machine->device_memory->mr);
2903    }
2904
2905    if (smc->dr_lmb_enabled) {
2906        spapr_create_lmb_dr_connectors(spapr);
2907    }
2908
2909    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2910    if (!filename) {
2911        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2912        exit(1);
2913    }
2914    spapr->rtas_size = get_image_size(filename);
2915    if (spapr->rtas_size < 0) {
2916        error_report("Could not get size of LPAR rtas '%s'", filename);
2917        exit(1);
2918    }
2919    spapr->rtas_blob = g_malloc(spapr->rtas_size);
2920    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2921        error_report("Could not load LPAR rtas '%s'", filename);
2922        exit(1);
2923    }
2924    if (spapr->rtas_size > RTAS_MAX_SIZE) {
2925        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2926                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2927        exit(1);
2928    }
2929    g_free(filename);
2930
2931    /* Set up RTAS event infrastructure */
2932    spapr_events_init(spapr);
2933
2934    /* Set up the RTC RTAS interfaces */
2935    spapr_rtc_create(spapr);
2936
2937    /* Set up VIO bus */
2938    spapr->vio_bus = spapr_vio_bus_init();
2939
2940    for (i = 0; i < serial_max_hds(); i++) {
2941        if (serial_hd(i)) {
2942            spapr_vty_create(spapr->vio_bus, serial_hd(i));
2943        }
2944    }
2945
2946    /* We always have at least the nvram device on VIO */
2947    spapr_create_nvram(spapr);
2948
2949    /*
2950     * Setup hotplug / dynamic-reconfiguration connectors. top-level
2951     * connectors (described in root DT node's "ibm,drc-types" property)
2952     * are pre-initialized here. additional child connectors (such as
2953     * connectors for a PHBs PCI slots) are added as needed during their
2954     * parent's realization.
2955     */
2956    if (smc->dr_phb_enabled) {
2957        for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2958            spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2959        }
2960    }
2961
2962    /* Set up PCI */
2963    spapr_pci_rtas_init();
2964
2965    phb = spapr_create_default_phb();
2966
2967    for (i = 0; i < nb_nics; i++) {
2968        NICInfo *nd = &nd_table[i];
2969
2970        if (!nd->model) {
2971            nd->model = g_strdup("spapr-vlan");
2972        }
2973
2974        if (g_str_equal(nd->model, "spapr-vlan") ||
2975            g_str_equal(nd->model, "ibmveth")) {
2976            spapr_vlan_create(spapr->vio_bus, nd);
2977        } else {
2978            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2979        }
2980    }
2981
2982    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2983        spapr_vscsi_create(spapr->vio_bus);
2984    }
2985
2986    /* Graphics */
2987    if (spapr_vga_init(phb->bus, &error_fatal)) {
2988        spapr->has_graphics = true;
2989        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2990    }
2991
2992    if (machine->usb) {
2993        if (smc->use_ohci_by_default) {
2994            pci_create_simple(phb->bus, -1, "pci-ohci");
2995        } else {
2996            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2997        }
2998
2999        if (spapr->has_graphics) {
3000            USBBus *usb_bus = usb_bus_find(-1);
3001
3002            usb_create_simple(usb_bus, "usb-kbd");
3003            usb_create_simple(usb_bus, "usb-mouse");
3004        }
3005    }
3006
3007    if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3008        error_report(
3009            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3010            MIN_RMA_SLOF);
3011        exit(1);
3012    }
3013
3014    if (kernel_filename) {
3015        uint64_t lowaddr = 0;
3016
3017        spapr->kernel_size = load_elf(kernel_filename, NULL,
3018                                      translate_kernel_address, NULL,
3019                                      NULL, &lowaddr, NULL, 1,
3020                                      PPC_ELF_MACHINE, 0, 0);
3021        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3022            spapr->kernel_size = load_elf(kernel_filename, NULL,
3023                                          translate_kernel_address, NULL, NULL,
3024                                          &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3025                                          0, 0);
3026            spapr->kernel_le = spapr->kernel_size > 0;
3027        }
3028        if (spapr->kernel_size < 0) {
3029            error_report("error loading %s: %s", kernel_filename,
3030                         load_elf_strerror(spapr->kernel_size));
3031            exit(1);
3032        }
3033
3034        /* load initrd */
3035        if (initrd_filename) {
3036            /* Try to locate the initrd in the gap between the kernel
3037             * and the firmware. Add a bit of space just in case
3038             */
3039            spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3040                                  + 0x1ffff) & ~0xffff;
3041            spapr->initrd_size = load_image_targphys(initrd_filename,
3042                                                     spapr->initrd_base,
3043                                                     load_limit
3044                                                     - spapr->initrd_base);
3045            if (spapr->initrd_size < 0) {
3046                error_report("could not load initial ram disk '%s'",
3047                             initrd_filename);
3048                exit(1);
3049            }
3050        }
3051    }
3052
3053    if (bios_name == NULL) {
3054        bios_name = FW_FILE_NAME;
3055    }
3056    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3057    if (!filename) {
3058        error_report("Could not find LPAR firmware '%s'", bios_name);
3059        exit(1);
3060    }
3061    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3062    if (fw_size <= 0) {
3063        error_report("Could not load LPAR firmware '%s'", filename);
3064        exit(1);
3065    }
3066    g_free(filename);
3067
3068    /* FIXME: Should register things through the MachineState's qdev
3069     * interface, this is a legacy from the sPAPREnvironment structure
3070     * which predated MachineState but had a similar function */
3071    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3072    register_savevm_live(NULL, "spapr/htab", -1, 1,
3073                         &savevm_htab_handlers, spapr);
3074
3075    qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3076                             &error_fatal);
3077
3078    qemu_register_boot_set(spapr_boot_set, spapr);
3079
3080    if (kvm_enabled()) {
3081        /* to stop and start vmclock */
3082        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3083                                         &spapr->tb);
3084
3085        kvmppc_spapr_enable_inkernel_multitce();
3086    }
3087}
3088
3089static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3090{
3091    if (!vm_type) {
3092        return 0;
3093    }
3094
3095    if (!strcmp(vm_type, "HV")) {
3096        return 1;
3097    }
3098
3099    if (!strcmp(vm_type, "PR")) {
3100        return 2;
3101    }
3102
3103    error_report("Unknown kvm-type specified '%s'", vm_type);
3104    exit(1);
3105}
3106
3107/*
3108 * Implementation of an interface to adjust firmware path
3109 * for the bootindex property handling.
3110 */
3111static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3112                                   DeviceState *dev)
3113{
3114#define CAST(type, obj, name) \
3115    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3116    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3117    SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3118    VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3119
3120    if (d) {
3121        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3122        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3123        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3124
3125        if (spapr) {
3126            /*
3127             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3128             * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3129             * 0x8000 | (target << 8) | (bus << 5) | lun
3130             * (see the "Logical unit addressing format" table in SAM5)
3131             */
3132            unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3133            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3134                                   (uint64_t)id << 48);
3135        } else if (virtio) {
3136            /*
3137             * We use SRP luns of the form 01000000 | (target << 8) | lun
3138             * in the top 32 bits of the 64-bit LUN
3139             * Note: the quote above is from SLOF and it is wrong,
3140             * the actual binding is:
3141             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3142             */
3143            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3144            if (d->lun >= 256) {
3145                /* Use the LUN "flat space addressing method" */
3146                id |= 0x4000;
3147            }
3148            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3149                                   (uint64_t)id << 32);
3150        } else if (usb) {
3151            /*
3152             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3153             * in the top 32 bits of the 64-bit LUN
3154             */
3155            unsigned usb_port = atoi(usb->port->path);
3156            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3157            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3158                                   (uint64_t)id << 32);
3159        }
3160    }
3161
3162    /*
3163     * SLOF probes the USB devices, and if it recognizes that the device is a
3164     * storage device, it changes its name to "storage" instead of "usb-host",
3165     * and additionally adds a child node for the SCSI LUN, so the correct
3166     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3167     */
3168    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3169        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3170        if (usb_host_dev_is_scsi_storage(usbdev)) {
3171            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3172        }
3173    }
3174
3175    if (phb) {
3176        /* Replace "pci" with "pci@800000020000000" */
3177        return g_strdup_printf("pci@%"PRIX64, phb->buid);
3178    }
3179
3180    if (vsc) {
3181        /* Same logic as virtio above */
3182        unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3183        return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3184    }
3185
3186    if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3187        /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3188        PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3189        return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3190    }
3191
3192    return NULL;
3193}
3194
3195static char *spapr_get_kvm_type(Object *obj, Error **errp)
3196{
3197    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3198
3199    return g_strdup(spapr->kvm_type);
3200}
3201
3202static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3203{
3204    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3205
3206    g_free(spapr->kvm_type);
3207    spapr->kvm_type = g_strdup(value);
3208}
3209
3210static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3211{
3212    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3213
3214    return spapr->use_hotplug_event_source;
3215}
3216
3217static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3218                                            Error **errp)
3219{
3220    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3221
3222    spapr->use_hotplug_event_source = value;
3223}
3224
3225static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3226{
3227    return true;
3228}
3229
3230static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3231{
3232    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3233
3234    switch (spapr->resize_hpt) {
3235    case SPAPR_RESIZE_HPT_DEFAULT:
3236        return g_strdup("default");
3237    case SPAPR_RESIZE_HPT_DISABLED:
3238        return g_strdup("disabled");
3239    case SPAPR_RESIZE_HPT_ENABLED:
3240        return g_strdup("enabled");
3241    case SPAPR_RESIZE_HPT_REQUIRED:
3242        return g_strdup("required");
3243    }
3244    g_assert_not_reached();
3245}
3246
3247static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3248{
3249    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3250
3251    if (strcmp(value, "default") == 0) {
3252        spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3253    } else if (strcmp(value, "disabled") == 0) {
3254        spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3255    } else if (strcmp(value, "enabled") == 0) {
3256        spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3257    } else if (strcmp(value, "required") == 0) {
3258        spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3259    } else {
3260        error_setg(errp, "Bad value for \"resize-hpt\" property");
3261    }
3262}
3263
3264static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3265                                   void *opaque, Error **errp)
3266{
3267    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3268}
3269
3270static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3271                                   void *opaque, Error **errp)
3272{
3273    visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3274}
3275
3276static char *spapr_get_ic_mode(Object *obj, Error **errp)
3277{
3278    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3279
3280    if (spapr->irq == &spapr_irq_xics_legacy) {
3281        return g_strdup("legacy");
3282    } else if (spapr->irq == &spapr_irq_xics) {
3283        return g_strdup("xics");
3284    } else if (spapr->irq == &spapr_irq_xive) {
3285        return g_strdup("xive");
3286    } else if (spapr->irq == &spapr_irq_dual) {
3287        return g_strdup("dual");
3288    }
3289    g_assert_not_reached();
3290}
3291
3292static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3293{
3294    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3295
3296    if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3297        error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3298        return;
3299    }
3300
3301    /* The legacy IRQ backend can not be set */
3302    if (strcmp(value, "xics") == 0) {
3303        spapr->irq = &spapr_irq_xics;
3304    } else if (strcmp(value, "xive") == 0) {
3305        spapr->irq = &spapr_irq_xive;
3306    } else if (strcmp(value, "dual") == 0) {
3307        spapr->irq = &spapr_irq_dual;
3308    } else {
3309        error_setg(errp, "Bad value for \"ic-mode\" property");
3310    }
3311}
3312
3313static char *spapr_get_host_model(Object *obj, Error **errp)
3314{
3315    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3316
3317    return g_strdup(spapr->host_model);
3318}
3319
3320static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3321{
3322    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3323
3324    g_free(spapr->host_model);
3325    spapr->host_model = g_strdup(value);
3326}
3327
3328static char *spapr_get_host_serial(Object *obj, Error **errp)
3329{
3330    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3331
3332    return g_strdup(spapr->host_serial);
3333}
3334
3335static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3336{
3337    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3338
3339    g_free(spapr->host_serial);
3340    spapr->host_serial = g_strdup(value);
3341}
3342
3343static void spapr_instance_init(Object *obj)
3344{
3345    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3346    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3347
3348    spapr->htab_fd = -1;
3349    spapr->use_hotplug_event_source = true;
3350    object_property_add_str(obj, "kvm-type",
3351                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3352    object_property_set_description(obj, "kvm-type",
3353                                    "Specifies the KVM virtualization mode (HV, PR)",
3354                                    NULL);
3355    object_property_add_bool(obj, "modern-hotplug-events",
3356                            spapr_get_modern_hotplug_events,
3357                            spapr_set_modern_hotplug_events,
3358                            NULL);
3359    object_property_set_description(obj, "modern-hotplug-events",
3360                                    "Use dedicated hotplug event mechanism in"
3361                                    " place of standard EPOW events when possible"
3362                                    " (required for memory hot-unplug support)",
3363                                    NULL);
3364    ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3365                            "Maximum permitted CPU compatibility mode",
3366                            &error_fatal);
3367
3368    object_property_add_str(obj, "resize-hpt",
3369                            spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3370    object_property_set_description(obj, "resize-hpt",
3371                                    "Resizing of the Hash Page Table (enabled, disabled, required)",
3372                                    NULL);
3373    object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3374                        spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3375    object_property_set_description(obj, "vsmt",
3376                                    "Virtual SMT: KVM behaves as if this were"
3377                                    " the host's SMT mode", &error_abort);
3378    object_property_add_bool(obj, "vfio-no-msix-emulation",
3379                             spapr_get_msix_emulation, NULL, NULL);
3380
3381    /* The machine class defines the default interrupt controller mode */
3382    spapr->irq = smc->irq;
3383    object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3384                            spapr_set_ic_mode, NULL);
3385    object_property_set_description(obj, "ic-mode",
3386                 "Specifies the interrupt controller mode (xics, xive, dual)",
3387                 NULL);
3388
3389    object_property_add_str(obj, "host-model",
3390        spapr_get_host_model, spapr_set_host_model,
3391        &error_abort);
3392    object_property_set_description(obj, "host-model",
3393        "Host model to advertise in guest device tree", &error_abort);
3394    object_property_add_str(obj, "host-serial",
3395        spapr_get_host_serial, spapr_set_host_serial,
3396        &error_abort);
3397    object_property_set_description(obj, "host-serial",
3398        "Host serial number to advertise in guest device tree", &error_abort);
3399}
3400
3401static void spapr_machine_finalizefn(Object *obj)
3402{
3403    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3404
3405    g_free(spapr->kvm_type);
3406}
3407
3408void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3409{
3410    cpu_synchronize_state(cs);
3411    ppc_cpu_do_system_reset(cs);
3412}
3413
3414static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3415{
3416    CPUState *cs;
3417
3418    CPU_FOREACH(cs) {
3419        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3420    }
3421}
3422
3423int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3424                          void *fdt, int *fdt_start_offset, Error **errp)
3425{
3426    uint64_t addr;
3427    uint32_t node;
3428
3429    addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3430    node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3431                                    &error_abort);
3432    *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3433                                                   SPAPR_MEMORY_BLOCK_SIZE);
3434    return 0;
3435}
3436
3437static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3438                           bool dedicated_hp_event_source, Error **errp)
3439{
3440    SpaprDrc *drc;
3441    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3442    int i;
3443    uint64_t addr = addr_start;
3444    bool hotplugged = spapr_drc_hotplugged(dev);
3445    Error *local_err = NULL;
3446
3447    for (i = 0; i < nr_lmbs; i++) {
3448        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3449                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3450        g_assert(drc);
3451
3452        spapr_drc_attach(drc, dev, &local_err);
3453        if (local_err) {
3454            while (addr > addr_start) {
3455                addr -= SPAPR_MEMORY_BLOCK_SIZE;
3456                drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3457                                      addr / SPAPR_MEMORY_BLOCK_SIZE);
3458                spapr_drc_detach(drc);
3459            }
3460            error_propagate(errp, local_err);
3461            return;
3462        }
3463        if (!hotplugged) {
3464            spapr_drc_reset(drc);
3465        }
3466        addr += SPAPR_MEMORY_BLOCK_SIZE;
3467    }
3468    /* send hotplug notification to the
3469     * guest only in case of hotplugged memory
3470     */
3471    if (hotplugged) {
3472        if (dedicated_hp_event_source) {
3473            drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3474                                  addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3475            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3476                                                   nr_lmbs,
3477                                                   spapr_drc_index(drc));
3478        } else {
3479            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3480                                           nr_lmbs);
3481        }
3482    }
3483}
3484
3485static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3486                              Error **errp)
3487{
3488    Error *local_err = NULL;
3489    SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3490    PCDIMMDevice *dimm = PC_DIMM(dev);
3491    uint64_t size, addr;
3492
3493    size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3494
3495    pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3496    if (local_err) {
3497        goto out;
3498    }
3499
3500    addr = object_property_get_uint(OBJECT(dimm),
3501                                    PC_DIMM_ADDR_PROP, &local_err);
3502    if (local_err) {
3503        goto out_unplug;
3504    }
3505
3506    spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3507                   &local_err);
3508    if (local_err) {
3509        goto out_unplug;
3510    }
3511
3512    return;
3513
3514out_unplug:
3515    pc_dimm_unplug(dimm, MACHINE(ms));
3516out:
3517    error_propagate(errp, local_err);
3518}
3519
3520static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3521                                  Error **errp)
3522{
3523    const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3524    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3525    PCDIMMDevice *dimm = PC_DIMM(dev);
3526    Error *local_err = NULL;
3527    uint64_t size;
3528    Object *memdev;
3529    hwaddr pagesize;
3530
3531    if (!smc->dr_lmb_enabled) {
3532        error_setg(errp, "Memory hotplug not supported for this machine");
3533        return;
3534    }
3535
3536    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3537    if (local_err) {
3538        error_propagate(errp, local_err);
3539        return;
3540    }
3541
3542    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3543        error_setg(errp, "Hotplugged memory size must be a multiple of "
3544                      "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3545        return;
3546    }
3547
3548    memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3549                                      &error_abort);
3550    pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3551    spapr_check_pagesize(spapr, pagesize, &local_err);
3552    if (local_err) {
3553        error_propagate(errp, local_err);
3554        return;
3555    }
3556
3557    pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3558}
3559
3560struct SpaprDimmState {
3561    PCDIMMDevice *dimm;
3562    uint32_t nr_lmbs;
3563    QTAILQ_ENTRY(SpaprDimmState) next;
3564};
3565
3566static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3567                                                       PCDIMMDevice *dimm)
3568{
3569    SpaprDimmState *dimm_state = NULL;
3570
3571    QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3572        if (dimm_state->dimm == dimm) {
3573            break;
3574        }
3575    }
3576    return dimm_state;
3577}
3578
3579static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3580                                                      uint32_t nr_lmbs,
3581                                                      PCDIMMDevice *dimm)
3582{
3583    SpaprDimmState *ds = NULL;
3584
3585    /*
3586     * If this request is for a DIMM whose removal had failed earlier
3587     * (due to guest's refusal to remove the LMBs), we would have this
3588     * dimm already in the pending_dimm_unplugs list. In that
3589     * case don't add again.
3590     */
3591    ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3592    if (!ds) {
3593        ds = g_malloc0(sizeof(SpaprDimmState));
3594        ds->nr_lmbs = nr_lmbs;
3595        ds->dimm = dimm;
3596        QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3597    }
3598    return ds;
3599}
3600
3601static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3602                                              SpaprDimmState *dimm_state)
3603{
3604    QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3605    g_free(dimm_state);
3606}
3607
3608static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3609                                                        PCDIMMDevice *dimm)
3610{
3611    SpaprDrc *drc;
3612    uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3613                                                  &error_abort);
3614    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3615    uint32_t avail_lmbs = 0;
3616    uint64_t addr_start, addr;
3617    int i;
3618
3619    addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3620                                         &error_abort);
3621
3622    addr = addr_start;
3623    for (i = 0; i < nr_lmbs; i++) {
3624        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3625                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3626        g_assert(drc);
3627        if (drc->dev) {
3628            avail_lmbs++;
3629        }
3630        addr += SPAPR_MEMORY_BLOCK_SIZE;
3631    }
3632
3633    return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3634}
3635
3636/* Callback to be called during DRC release. */
3637void spapr_lmb_release(DeviceState *dev)
3638{
3639    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3640    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3641    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3642
3643    /* This information will get lost if a migration occurs
3644     * during the unplug process. In this case recover it. */
3645    if (ds == NULL) {
3646        ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3647        g_assert(ds);
3648        /* The DRC being examined by the caller at least must be counted */
3649        g_assert(ds->nr_lmbs);
3650    }
3651
3652    if (--ds->nr_lmbs) {
3653        return;
3654    }
3655
3656    /*
3657     * Now that all the LMBs have been removed by the guest, call the
3658     * unplug handler chain. This can never fail.
3659     */
3660    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3661    object_unparent(OBJECT(dev));
3662}
3663
3664static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3665{
3666    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3667    SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3668
3669    pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3670    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3671    spapr_pending_dimm_unplugs_remove(spapr, ds);
3672}
3673
3674static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3675                                        DeviceState *dev, Error **errp)
3676{
3677    SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3678    Error *local_err = NULL;
3679    PCDIMMDevice *dimm = PC_DIMM(dev);
3680    uint32_t nr_lmbs;
3681    uint64_t size, addr_start, addr;
3682    int i;
3683    SpaprDrc *drc;
3684
3685    size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3686    nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3687
3688    addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3689                                         &local_err);
3690    if (local_err) {
3691        goto out;
3692    }
3693
3694    /*
3695     * An existing pending dimm state for this DIMM means that there is an
3696     * unplug operation in progress, waiting for the spapr_lmb_release
3697     * callback to complete the job (BQL can't cover that far). In this case,
3698     * bail out to avoid detaching DRCs that were already released.
3699     */
3700    if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3701        error_setg(&local_err,
3702                   "Memory unplug already in progress for device %s",
3703                   dev->id);
3704        goto out;
3705    }
3706
3707    spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3708
3709    addr = addr_start;
3710    for (i = 0; i < nr_lmbs; i++) {
3711        drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3712                              addr / SPAPR_MEMORY_BLOCK_SIZE);
3713        g_assert(drc);
3714
3715        spapr_drc_detach(drc);
3716        addr += SPAPR_MEMORY_BLOCK_SIZE;
3717    }
3718
3719    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3720                          addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3721    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3722                                              nr_lmbs, spapr_drc_index(drc));
3723out:
3724    error_propagate(errp, local_err);
3725}
3726
3727/* Callback to be called during DRC release. */
3728void spapr_core_release(DeviceState *dev)
3729{
3730    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3731
3732    /* Call the unplug handler chain. This can never fail. */
3733    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3734    object_unparent(OBJECT(dev));
3735}
3736
3737static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3738{
3739    MachineState *ms = MACHINE(hotplug_dev);
3740    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3741    CPUCore *cc = CPU_CORE(dev);
3742    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3743
3744    if (smc->pre_2_10_has_unused_icps) {
3745        SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3746        int i;
3747
3748        for (i = 0; i < cc->nr_threads; i++) {
3749            CPUState *cs = CPU(sc->threads[i]);
3750
3751            pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3752        }
3753    }
3754
3755    assert(core_slot);
3756    core_slot->cpu = NULL;
3757    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3758}
3759
3760static
3761void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3762                               Error **errp)
3763{
3764    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3765    int index;
3766    SpaprDrc *drc;
3767    CPUCore *cc = CPU_CORE(dev);
3768
3769    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3770        error_setg(errp, "Unable to find CPU core with core-id: %d",
3771                   cc->core_id);
3772        return;
3773    }
3774    if (index == 0) {
3775        error_setg(errp, "Boot CPU core may not be unplugged");
3776        return;
3777    }
3778
3779    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3780                          spapr_vcpu_id(spapr, cc->core_id));
3781    g_assert(drc);
3782
3783    spapr_drc_detach(drc);
3784
3785    spapr_hotplug_req_remove_by_index(drc);
3786}
3787
3788int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3789                           void *fdt, int *fdt_start_offset, Error **errp)
3790{
3791    SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3792    CPUState *cs = CPU(core->threads[0]);
3793    PowerPCCPU *cpu = POWERPC_CPU(cs);
3794    DeviceClass *dc = DEVICE_GET_CLASS(cs);
3795    int id = spapr_get_vcpu_id(cpu);
3796    char *nodename;
3797    int offset;
3798
3799    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3800    offset = fdt_add_subnode(fdt, 0, nodename);
3801    g_free(nodename);
3802
3803    spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3804
3805    *fdt_start_offset = offset;
3806    return 0;
3807}
3808
3809static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3810                            Error **errp)
3811{
3812    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3813    MachineClass *mc = MACHINE_GET_CLASS(spapr);
3814    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3815    SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3816    CPUCore *cc = CPU_CORE(dev);
3817    CPUState *cs;
3818    SpaprDrc *drc;
3819    Error *local_err = NULL;
3820    CPUArchId *core_slot;
3821    int index;
3822    bool hotplugged = spapr_drc_hotplugged(dev);
3823
3824    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3825    if (!core_slot) {
3826        error_setg(errp, "Unable to find CPU core with core-id: %d",
3827                   cc->core_id);
3828        return;
3829    }
3830    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3831                          spapr_vcpu_id(spapr, cc->core_id));
3832
3833    g_assert(drc || !mc->has_hotpluggable_cpus);
3834
3835    if (drc) {
3836        spapr_drc_attach(drc, dev, &local_err);
3837        if (local_err) {
3838            error_propagate(errp, local_err);
3839            return;
3840        }
3841
3842        if (hotplugged) {
3843            /*
3844             * Send hotplug notification interrupt to the guest only
3845             * in case of hotplugged CPUs.
3846             */
3847            spapr_hotplug_req_add_by_index(drc);
3848        } else {
3849            spapr_drc_reset(drc);
3850        }
3851    }
3852
3853    core_slot->cpu = OBJECT(dev);
3854
3855    if (smc->pre_2_10_has_unused_icps) {
3856        int i;
3857
3858        for (i = 0; i < cc->nr_threads; i++) {
3859            cs = CPU(core->threads[i]);
3860            pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3861        }
3862    }
3863}
3864
3865static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3866                                Error **errp)
3867{
3868    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3869    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3870    Error *local_err = NULL;
3871    CPUCore *cc = CPU_CORE(dev);
3872    const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3873    const char *type = object_get_typename(OBJECT(dev));
3874    CPUArchId *core_slot;
3875    int index;
3876    unsigned int smp_threads = machine->smp.threads;
3877
3878    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3879        error_setg(&local_err, "CPU hotplug not supported for this machine");
3880        goto out;
3881    }
3882
3883    if (strcmp(base_core_type, type)) {
3884        error_setg(&local_err, "CPU core type should be %s", base_core_type);
3885        goto out;
3886    }
3887
3888    if (cc->core_id % smp_threads) {
3889        error_setg(&local_err, "invalid core id %d", cc->core_id);
3890        goto out;
3891    }
3892
3893    /*
3894     * In general we should have homogeneous threads-per-core, but old
3895     * (pre hotplug support) machine types allow the last core to have
3896     * reduced threads as a compatibility hack for when we allowed
3897     * total vcpus not a multiple of threads-per-core.
3898     */
3899    if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3900        error_setg(&local_err, "invalid nr-threads %d, must be %d",
3901                   cc->nr_threads, smp_threads);
3902        goto out;
3903    }
3904
3905    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3906    if (!core_slot) {
3907        error_setg(&local_err, "core id %d out of range", cc->core_id);
3908        goto out;
3909    }
3910
3911    if (core_slot->cpu) {
3912        error_setg(&local_err, "core %d already populated", cc->core_id);
3913        goto out;
3914    }
3915
3916    numa_cpu_pre_plug(core_slot, dev, &local_err);
3917
3918out:
3919    error_propagate(errp, local_err);
3920}
3921
3922int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3923                          void *fdt, int *fdt_start_offset, Error **errp)
3924{
3925    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3926    int intc_phandle;
3927
3928    intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3929    if (intc_phandle <= 0) {
3930        return -1;
3931    }
3932
3933    if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3934                     fdt_start_offset)) {
3935        error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3936        return -1;
3937    }
3938
3939    /* generally SLOF creates these, for hotplug it's up to QEMU */
3940    _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3941
3942    return 0;
3943}
3944
3945static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3946                               Error **errp)
3947{
3948    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3949    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3950    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3951    const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3952
3953    if (dev->hotplugged && !smc->dr_phb_enabled) {
3954        error_setg(errp, "PHB hotplug not supported for this machine");
3955        return;
3956    }
3957
3958    if (sphb->index == (uint32_t)-1) {
3959        error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3960        return;
3961    }
3962
3963    /*
3964     * This will check that sphb->index doesn't exceed the maximum number of
3965     * PHBs for the current machine type.
3966     */
3967    smc->phb_placement(spapr, sphb->index,
3968                       &sphb->buid, &sphb->io_win_addr,
3969                       &sphb->mem_win_addr, &sphb->mem64_win_addr,
3970                       windows_supported, sphb->dma_liobn,
3971                       &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3972                       errp);
3973}
3974
3975static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3976                           Error **errp)
3977{
3978    SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3979    SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3980    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3981    SpaprDrc *drc;
3982    bool hotplugged = spapr_drc_hotplugged(dev);
3983    Error *local_err = NULL;
3984
3985    if (!smc->dr_phb_enabled) {
3986        return;
3987    }
3988
3989    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3990    /* hotplug hooks should check it's enabled before getting this far */
3991    assert(drc);
3992
3993    spapr_drc_attach(drc, DEVICE(dev), &local_err);
3994    if (local_err) {
3995        error_propagate(errp, local_err);
3996        return;
3997    }
3998
3999    if (hotplugged) {
4000        spapr_hotplug_req_add_by_index(drc);
4001    } else {
4002        spapr_drc_reset(drc);
4003    }
4004}
4005
4006void spapr_phb_release(DeviceState *dev)
4007{
4008    HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4009
4010    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4011    object_unparent(OBJECT(dev));
4012}
4013
4014static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4015{
4016    object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4017}
4018
4019static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4020                                     DeviceState *dev, Error **errp)
4021{
4022    SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4023    SpaprDrc *drc;
4024
4025    drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4026    assert(drc);
4027
4028    if (!spapr_drc_unplug_requested(drc)) {
4029        spapr_drc_detach(drc);
4030        spapr_hotplug_req_remove_by_index(drc);
4031    }
4032}
4033
4034static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4035                                      DeviceState *dev, Error **errp)
4036{
4037    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4038        spapr_memory_plug(hotplug_dev, dev, errp);
4039    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4040        spapr_core_plug(hotplug_dev, dev, errp);
4041    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4042        spapr_phb_plug(hotplug_dev, dev, errp);
4043    }
4044}
4045
4046static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4047                                        DeviceState *dev, Error **errp)
4048{
4049    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4050        spapr_memory_unplug(hotplug_dev, dev);
4051    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4052        spapr_core_unplug(hotplug_dev, dev);
4053    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4054        spapr_phb_unplug(hotplug_dev, dev);
4055    }
4056}
4057
4058static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4059                                                DeviceState *dev, Error **errp)
4060{
4061    SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4062    MachineClass *mc = MACHINE_GET_CLASS(sms);
4063    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4064
4065    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4066        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4067            spapr_memory_unplug_request(hotplug_dev, dev, errp);
4068        } else {
4069            /* NOTE: this means there is a window after guest reset, prior to
4070             * CAS negotiation, where unplug requests will fail due to the
4071             * capability not being detected yet. This is a bit different than
4072             * the case with PCI unplug, where the events will be queued and
4073             * eventually handled by the guest after boot
4074             */
4075            error_setg(errp, "Memory hot unplug not supported for this guest");
4076        }
4077    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4078        if (!mc->has_hotpluggable_cpus) {
4079            error_setg(errp, "CPU hot unplug not supported on this machine");
4080            return;
4081        }
4082        spapr_core_unplug_request(hotplug_dev, dev, errp);
4083    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4084        if (!smc->dr_phb_enabled) {
4085            error_setg(errp, "PHB hot unplug not supported on this machine");
4086            return;
4087        }
4088        spapr_phb_unplug_request(hotplug_dev, dev, errp);
4089    }
4090}
4091
4092static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4093                                          DeviceState *dev, Error **errp)
4094{
4095    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4096        spapr_memory_pre_plug(hotplug_dev, dev, errp);
4097    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4098        spapr_core_pre_plug(hotplug_dev, dev, errp);
4099    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4100        spapr_phb_pre_plug(hotplug_dev, dev, errp);
4101    }
4102}
4103
4104static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4105                                                 DeviceState *dev)
4106{
4107    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4108        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4109        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4110        return HOTPLUG_HANDLER(machine);
4111    }
4112    if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4113        PCIDevice *pcidev = PCI_DEVICE(dev);
4114        PCIBus *root = pci_device_root_bus(pcidev);
4115        SpaprPhbState *phb =
4116            (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4117                                                 TYPE_SPAPR_PCI_HOST_BRIDGE);
4118
4119        if (phb) {
4120            return HOTPLUG_HANDLER(phb);
4121        }
4122    }
4123    return NULL;
4124}
4125
4126static CpuInstanceProperties
4127spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4128{
4129    CPUArchId *core_slot;
4130    MachineClass *mc = MACHINE_GET_CLASS(machine);
4131
4132    /* make sure possible_cpu are intialized */
4133    mc->possible_cpu_arch_ids(machine);
4134    /* get CPU core slot containing thread that matches cpu_index */
4135    core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4136    assert(core_slot);
4137    return core_slot->props;
4138}
4139
4140static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4141{
4142    return idx / ms->smp.cores % nb_numa_nodes;
4143}
4144
4145static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4146{
4147    int i;
4148    unsigned int smp_threads = machine->smp.threads;
4149    unsigned int smp_cpus = machine->smp.cpus;
4150    const char *core_type;
4151    int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4152    MachineClass *mc = MACHINE_GET_CLASS(machine);
4153
4154    if (!mc->has_hotpluggable_cpus) {
4155        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4156    }
4157    if (machine->possible_cpus) {
4158        assert(machine->possible_cpus->len == spapr_max_cores);
4159        return machine->possible_cpus;
4160    }
4161
4162    core_type = spapr_get_cpu_core_type(machine->cpu_type);
4163    if (!core_type) {
4164        error_report("Unable to find sPAPR CPU Core definition");
4165        exit(1);
4166    }
4167
4168    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4169                             sizeof(CPUArchId) * spapr_max_cores);
4170    machine->possible_cpus->len = spapr_max_cores;
4171    for (i = 0; i < machine->possible_cpus->len; i++) {
4172        int core_id = i * smp_threads;
4173
4174        machine->possible_cpus->cpus[i].type = core_type;
4175        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4176        machine->possible_cpus->cpus[i].arch_id = core_id;
4177        machine->possible_cpus->cpus[i].props.has_core_id = true;
4178        machine->possible_cpus->cpus[i].props.core_id = core_id;
4179    }
4180    return machine->possible_cpus;
4181}
4182
4183static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4184                                uint64_t *buid, hwaddr *pio,
4185                                hwaddr *mmio32, hwaddr *mmio64,
4186                                unsigned n_dma, uint32_t *liobns,
4187                                hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4188{
4189    /*
4190     * New-style PHB window placement.
4191     *
4192     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4193     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4194     * windows.
4195     *
4196     * Some guest kernels can't work with MMIO windows above 1<<46
4197     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4198     *
4199     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4200     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4201     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4202     * 1TiB 64-bit MMIO windows for each PHB.
4203     */
4204    const uint64_t base_buid = 0x800000020000000ULL;
4205    int i;
4206
4207    /* Sanity check natural alignments */
4208    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4209    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4210    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4211    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4212    /* Sanity check bounds */
4213    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4214                      SPAPR_PCI_MEM32_WIN_SIZE);
4215    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4216                      SPAPR_PCI_MEM64_WIN_SIZE);
4217
4218    if (index >= SPAPR_MAX_PHBS) {
4219        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4220                   SPAPR_MAX_PHBS - 1);
4221        return;
4222    }
4223
4224    *buid = base_buid + index;
4225    for (i = 0; i < n_dma; ++i) {
4226        liobns[i] = SPAPR_PCI_LIOBN(index, i);
4227    }
4228
4229    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4230    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4231    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4232
4233    *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4234    *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4235}
4236
4237static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4238{
4239    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4240
4241    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4242}
4243
4244static void spapr_ics_resend(XICSFabric *dev)
4245{
4246    SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4247
4248    ics_resend(spapr->ics);
4249}
4250
4251static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4252{
4253    PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4254
4255    return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4256}
4257
4258static void spapr_pic_print_info(InterruptStatsProvider *obj,
4259                                 Monitor *mon)
4260{
4261    SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4262
4263    spapr->irq->print_info(spapr, mon);
4264}
4265
4266int spapr_get_vcpu_id(PowerPCCPU *cpu)
4267{
4268    return cpu->vcpu_id;
4269}
4270
4271void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4272{
4273    SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4274    MachineState *ms = MACHINE(spapr);
4275    int vcpu_id;
4276
4277    vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4278
4279    if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4280        error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4281        error_append_hint(errp, "Adjust the number of cpus to %d "
4282                          "or try to raise the number of threads per core\n",
4283                          vcpu_id * ms->smp.threads / spapr->vsmt);
4284        return;
4285    }
4286
4287    cpu->vcpu_id = vcpu_id;
4288}
4289
4290PowerPCCPU *spapr_find_cpu(int vcpu_id)
4291{
4292    CPUState *cs;
4293
4294    CPU_FOREACH(cs) {
4295        PowerPCCPU *cpu = POWERPC_CPU(cs);
4296
4297        if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4298            return cpu;
4299        }
4300    }
4301
4302    return NULL;
4303}
4304
4305static void spapr_machine_class_init(ObjectClass *oc, void *data)
4306{
4307    MachineClass *mc = MACHINE_CLASS(oc);
4308    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4309    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4310    NMIClass *nc = NMI_CLASS(oc);
4311    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4312    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4313    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4314    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4315
4316    mc->desc = "pSeries Logical Partition (PAPR compliant)";
4317    mc->ignore_boot_device_suffixes = true;
4318
4319    /*
4320     * We set up the default / latest behaviour here.  The class_init
4321     * functions for the specific versioned machine types can override
4322     * these details for backwards compatibility
4323     */
4324    mc->init = spapr_machine_init;
4325    mc->reset = spapr_machine_reset;
4326    mc->block_default_type = IF_SCSI;
4327    mc->max_cpus = 1024;
4328    mc->no_parallel = 1;
4329    mc->default_boot_order = "";
4330    mc->default_ram_size = 512 * MiB;
4331    mc->default_display = "std";
4332    mc->kvm_type = spapr_kvm_type;
4333    machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4334    mc->pci_allow_0_address = true;
4335    assert(!mc->get_hotplug_handler);
4336    mc->get_hotplug_handler = spapr_get_hotplug_handler;
4337    hc->pre_plug = spapr_machine_device_pre_plug;
4338    hc->plug = spapr_machine_device_plug;
4339    mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4340    mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4341    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4342    hc->unplug_request = spapr_machine_device_unplug_request;
4343    hc->unplug = spapr_machine_device_unplug;
4344
4345    smc->dr_lmb_enabled = true;
4346    smc->update_dt_enabled = true;
4347    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4348    mc->has_hotpluggable_cpus = true;
4349    smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4350    fwc->get_dev_path = spapr_get_fw_dev_path;
4351    nc->nmi_monitor_handler = spapr_nmi;
4352    smc->phb_placement = spapr_phb_placement;
4353    vhc->hypercall = emulate_spapr_hypercall;
4354    vhc->hpt_mask = spapr_hpt_mask;
4355    vhc->map_hptes = spapr_map_hptes;
4356    vhc->unmap_hptes = spapr_unmap_hptes;
4357    vhc->hpte_set_c = spapr_hpte_set_c;
4358    vhc->hpte_set_r = spapr_hpte_set_r;
4359    vhc->get_pate = spapr_get_pate;
4360    vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4361    xic->ics_get = spapr_ics_get;
4362    xic->ics_resend = spapr_ics_resend;
4363    xic->icp_get = spapr_icp_get;
4364    ispc->print_info = spapr_pic_print_info;
4365    /* Force NUMA node memory size to be a multiple of
4366     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4367     * in which LMBs are represented and hot-added
4368     */
4369    mc->numa_mem_align_shift = 28;
4370    mc->numa_mem_supported = true;
4371
4372    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4373    smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4374    smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4375    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4376    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4377    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4378    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4379    smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4380    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4381    smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4382    spapr_caps_add_properties(smc, &error_abort);
4383    smc->irq = &spapr_irq_dual;
4384    smc->dr_phb_enabled = true;
4385}
4386
4387static const TypeInfo spapr_machine_info = {
4388    .name          = TYPE_SPAPR_MACHINE,
4389    .parent        = TYPE_MACHINE,
4390    .abstract      = true,
4391    .instance_size = sizeof(SpaprMachineState),
4392    .instance_init = spapr_instance_init,
4393    .instance_finalize = spapr_machine_finalizefn,
4394    .class_size    = sizeof(SpaprMachineClass),
4395    .class_init    = spapr_machine_class_init,
4396    .interfaces = (InterfaceInfo[]) {
4397        { TYPE_FW_PATH_PROVIDER },
4398        { TYPE_NMI },
4399        { TYPE_HOTPLUG_HANDLER },
4400        { TYPE_PPC_VIRTUAL_HYPERVISOR },
4401        { TYPE_XICS_FABRIC },
4402        { TYPE_INTERRUPT_STATS_PROVIDER },
4403        { }
4404    },
4405};
4406
4407#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4408    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4409                                                    void *data)      \
4410    {                                                                \
4411        MachineClass *mc = MACHINE_CLASS(oc);                        \
4412        spapr_machine_##suffix##_class_options(mc);                  \
4413        if (latest) {                                                \
4414            mc->alias = "pseries";                                   \
4415            mc->is_default = 1;                                      \
4416        }                                                            \
4417    }                                                                \
4418    static const TypeInfo spapr_machine_##suffix##_info = {          \
4419        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4420        .parent = TYPE_SPAPR_MACHINE,                                \
4421        .class_init = spapr_machine_##suffix##_class_init,           \
4422    };                                                               \
4423    static void spapr_machine_register_##suffix(void)                \
4424    {                                                                \
4425        type_register(&spapr_machine_##suffix##_info);               \
4426    }                                                                \
4427    type_init(spapr_machine_register_##suffix)
4428
4429/*
4430 * pseries-4.1
4431 */
4432static void spapr_machine_4_1_class_options(MachineClass *mc)
4433{
4434    /* Defaults for the latest behaviour inherited from the base class */
4435}
4436
4437DEFINE_SPAPR_MACHINE(4_1, "4.1", true);
4438
4439/*
4440 * pseries-4.0
4441 */
4442static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4443                              uint64_t *buid, hwaddr *pio,
4444                              hwaddr *mmio32, hwaddr *mmio64,
4445                              unsigned n_dma, uint32_t *liobns,
4446                              hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4447{
4448    spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4449                        nv2gpa, nv2atsd, errp);
4450    *nv2gpa = 0;
4451    *nv2atsd = 0;
4452}
4453
4454static void spapr_machine_4_0_class_options(MachineClass *mc)
4455{
4456    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4457
4458    spapr_machine_4_1_class_options(mc);
4459    compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4460    smc->phb_placement = phb_placement_4_0;
4461    smc->irq = &spapr_irq_xics;
4462    smc->pre_4_1_migration = true;
4463}
4464
4465DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4466
4467/*
4468 * pseries-3.1
4469 */
4470static void spapr_machine_3_1_class_options(MachineClass *mc)
4471{
4472    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4473
4474    spapr_machine_4_0_class_options(mc);
4475    compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4476
4477    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4478    smc->update_dt_enabled = false;
4479    smc->dr_phb_enabled = false;
4480    smc->broken_host_serial_model = true;
4481    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4482    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4483    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4484    smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4485}
4486
4487DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4488
4489/*
4490 * pseries-3.0
4491 */
4492
4493static void spapr_machine_3_0_class_options(MachineClass *mc)
4494{
4495    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4496
4497    spapr_machine_3_1_class_options(mc);
4498    compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4499
4500    smc->legacy_irq_allocation = true;
4501    smc->irq = &spapr_irq_xics_legacy;
4502}
4503
4504DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4505
4506/*
4507 * pseries-2.12
4508 */
4509static void spapr_machine_2_12_class_options(MachineClass *mc)
4510{
4511    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4512    static GlobalProperty compat[] = {
4513        { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4514        { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4515    };
4516
4517    spapr_machine_3_0_class_options(mc);
4518    compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4519    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4520
4521    /* We depend on kvm_enabled() to choose a default value for the
4522     * hpt-max-page-size capability. Of course we can't do it here
4523     * because this is too early and the HW accelerator isn't initialzed
4524     * yet. Postpone this to machine init (see default_caps_with_cpu()).
4525     */
4526    smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4527}
4528
4529DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4530
4531static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4532{
4533    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4534
4535    spapr_machine_2_12_class_options(mc);
4536    smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4537    smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4538    smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4539}
4540
4541DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4542
4543/*
4544 * pseries-2.11
4545 */
4546
4547static void spapr_machine_2_11_class_options(MachineClass *mc)
4548{
4549    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4550
4551    spapr_machine_2_12_class_options(mc);
4552    smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4553    compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4554}
4555
4556DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4557
4558/*
4559 * pseries-2.10
4560 */
4561
4562static void spapr_machine_2_10_class_options(MachineClass *mc)
4563{
4564    spapr_machine_2_11_class_options(mc);
4565    compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4566}
4567
4568DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4569
4570/*
4571 * pseries-2.9
4572 */
4573
4574static void spapr_machine_2_9_class_options(MachineClass *mc)
4575{
4576    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4577    static GlobalProperty compat[] = {
4578        { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4579    };
4580
4581    spapr_machine_2_10_class_options(mc);
4582    compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4583    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4584    mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4585    smc->pre_2_10_has_unused_icps = true;
4586    smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4587}
4588
4589DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4590
4591/*
4592 * pseries-2.8
4593 */
4594
4595static void spapr_machine_2_8_class_options(MachineClass *mc)
4596{
4597    static GlobalProperty compat[] = {
4598        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4599    };
4600
4601    spapr_machine_2_9_class_options(mc);
4602    compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4603    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4604    mc->numa_mem_align_shift = 23;
4605}
4606
4607DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4608
4609/*
4610 * pseries-2.7
4611 */
4612
4613static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4614                              uint64_t *buid, hwaddr *pio,
4615                              hwaddr *mmio32, hwaddr *mmio64,
4616                              unsigned n_dma, uint32_t *liobns,
4617                              hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4618{
4619    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4620    const uint64_t base_buid = 0x800000020000000ULL;
4621    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4622    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4623    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4624    const uint32_t max_index = 255;
4625    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4626
4627    uint64_t ram_top = MACHINE(spapr)->ram_size;
4628    hwaddr phb0_base, phb_base;
4629    int i;
4630
4631    /* Do we have device memory? */
4632    if (MACHINE(spapr)->maxram_size > ram_top) {
4633        /* Can't just use maxram_size, because there may be an
4634         * alignment gap between normal and device memory regions
4635         */
4636        ram_top = MACHINE(spapr)->device_memory->base +
4637            memory_region_size(&MACHINE(spapr)->device_memory->mr);
4638    }
4639
4640    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4641
4642    if (index > max_index) {
4643        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4644                   max_index);
4645        return;
4646    }
4647
4648    *buid = base_buid + index;
4649    for (i = 0; i < n_dma; ++i) {
4650        liobns[i] = SPAPR_PCI_LIOBN(index, i);
4651    }
4652
4653    phb_base = phb0_base + index * phb_spacing;
4654    *pio = phb_base + pio_offset;
4655    *mmio32 = phb_base + mmio_offset;
4656    /*
4657     * We don't set the 64-bit MMIO window, relying on the PHB's
4658     * fallback behaviour of automatically splitting a large "32-bit"
4659     * window into contiguous 32-bit and 64-bit windows
4660     */
4661
4662    *nv2gpa = 0;
4663    *nv2atsd = 0;
4664}
4665
4666static void spapr_machine_2_7_class_options(MachineClass *mc)
4667{
4668    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4669    static GlobalProperty compat[] = {
4670        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4671        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4672        { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4673        { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4674    };
4675
4676    spapr_machine_2_8_class_options(mc);
4677    mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4678    mc->default_machine_opts = "modern-hotplug-events=off";
4679    compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4680    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4681    smc->phb_placement = phb_placement_2_7;
4682}
4683
4684DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4685
4686/*
4687 * pseries-2.6
4688 */
4689
4690static void spapr_machine_2_6_class_options(MachineClass *mc)
4691{
4692    static GlobalProperty compat[] = {
4693        { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4694    };
4695
4696    spapr_machine_2_7_class_options(mc);
4697    mc->has_hotpluggable_cpus = false;
4698    compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4699    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4700}
4701
4702DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4703
4704/*
4705 * pseries-2.5
4706 */
4707
4708static void spapr_machine_2_5_class_options(MachineClass *mc)
4709{
4710    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4711    static GlobalProperty compat[] = {
4712        { "spapr-vlan", "use-rx-buffer-pools", "off" },
4713    };
4714
4715    spapr_machine_2_6_class_options(mc);
4716    smc->use_ohci_by_default = true;
4717    compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4718    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4719}
4720
4721DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4722
4723/*
4724 * pseries-2.4
4725 */
4726
4727static void spapr_machine_2_4_class_options(MachineClass *mc)
4728{
4729    SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4730
4731    spapr_machine_2_5_class_options(mc);
4732    smc->dr_lmb_enabled = false;
4733    compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4734}
4735
4736DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4737
4738/*
4739 * pseries-2.3
4740 */
4741
4742static void spapr_machine_2_3_class_options(MachineClass *mc)
4743{
4744    static GlobalProperty compat[] = {
4745        { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4746    };
4747    spapr_machine_2_4_class_options(mc);
4748    compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4749    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4750}
4751DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4752
4753/*
4754 * pseries-2.2
4755 */
4756
4757static void spapr_machine_2_2_class_options(MachineClass *mc)
4758{
4759    static GlobalProperty compat[] = {
4760        { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4761    };
4762
4763    spapr_machine_2_3_class_options(mc);
4764    compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4765    compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4766    mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4767}
4768DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4769
4770/*
4771 * pseries-2.1
4772 */
4773
4774static void spapr_machine_2_1_class_options(MachineClass *mc)
4775{
4776    spapr_machine_2_2_class_options(mc);
4777    compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4778}
4779DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4780
4781static void spapr_machine_register_types(void)
4782{
4783    type_register_static(&spapr_machine_info);
4784}
4785
4786type_init(spapr_machine_register_types)
4787