qemu/linux-user/elfload.c
<<
>>
Prefs
   1/* This is the Linux kernel elf-loading code, ported into user space */
   2#include "qemu/osdep.h"
   3#include <sys/param.h>
   4
   5#include <sys/resource.h>
   6#include <sys/shm.h>
   7
   8#include "qemu.h"
   9#include "disas/disas.h"
  10#include "qemu/path.h"
  11#include "qemu/guest-random.h"
  12
  13#ifdef _ARCH_PPC64
  14#undef ARCH_DLINFO
  15#undef ELF_PLATFORM
  16#undef ELF_HWCAP
  17#undef ELF_HWCAP2
  18#undef ELF_CLASS
  19#undef ELF_DATA
  20#undef ELF_ARCH
  21#endif
  22
  23#define ELF_OSABI   ELFOSABI_SYSV
  24
  25/* from personality.h */
  26
  27/*
  28 * Flags for bug emulation.
  29 *
  30 * These occupy the top three bytes.
  31 */
  32enum {
  33    ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
  34    FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
  35                                           descriptors (signal handling) */
  36    MMAP_PAGE_ZERO =    0x0100000,
  37    ADDR_COMPAT_LAYOUT = 0x0200000,
  38    READ_IMPLIES_EXEC = 0x0400000,
  39    ADDR_LIMIT_32BIT =  0x0800000,
  40    SHORT_INODE =       0x1000000,
  41    WHOLE_SECONDS =     0x2000000,
  42    STICKY_TIMEOUTS =   0x4000000,
  43    ADDR_LIMIT_3GB =    0x8000000,
  44};
  45
  46/*
  47 * Personality types.
  48 *
  49 * These go in the low byte.  Avoid using the top bit, it will
  50 * conflict with error returns.
  51 */
  52enum {
  53    PER_LINUX =         0x0000,
  54    PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
  55    PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
  56    PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  57    PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
  58    PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
  59    PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
  60    PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
  61    PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
  62    PER_BSD =           0x0006,
  63    PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
  64    PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
  65    PER_LINUX32 =       0x0008,
  66    PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
  67    PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
  68    PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
  69    PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
  70    PER_RISCOS =        0x000c,
  71    PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
  72    PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
  73    PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
  74    PER_HPUX =          0x0010,
  75    PER_MASK =          0x00ff,
  76};
  77
  78/*
  79 * Return the base personality without flags.
  80 */
  81#define personality(pers)       (pers & PER_MASK)
  82
  83int info_is_fdpic(struct image_info *info)
  84{
  85    return info->personality == PER_LINUX_FDPIC;
  86}
  87
  88/* this flag is uneffective under linux too, should be deleted */
  89#ifndef MAP_DENYWRITE
  90#define MAP_DENYWRITE 0
  91#endif
  92
  93/* should probably go in elf.h */
  94#ifndef ELIBBAD
  95#define ELIBBAD 80
  96#endif
  97
  98#ifdef TARGET_WORDS_BIGENDIAN
  99#define ELF_DATA        ELFDATA2MSB
 100#else
 101#define ELF_DATA        ELFDATA2LSB
 102#endif
 103
 104#ifdef TARGET_ABI_MIPSN32
 105typedef abi_ullong      target_elf_greg_t;
 106#define tswapreg(ptr)   tswap64(ptr)
 107#else
 108typedef abi_ulong       target_elf_greg_t;
 109#define tswapreg(ptr)   tswapal(ptr)
 110#endif
 111
 112#ifdef USE_UID16
 113typedef abi_ushort      target_uid_t;
 114typedef abi_ushort      target_gid_t;
 115#else
 116typedef abi_uint        target_uid_t;
 117typedef abi_uint        target_gid_t;
 118#endif
 119typedef abi_int         target_pid_t;
 120
 121#ifdef TARGET_I386
 122
 123#define ELF_PLATFORM get_elf_platform()
 124
 125static const char *get_elf_platform(void)
 126{
 127    static char elf_platform[] = "i386";
 128    int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
 129    if (family > 6)
 130        family = 6;
 131    if (family >= 3)
 132        elf_platform[1] = '0' + family;
 133    return elf_platform;
 134}
 135
 136#define ELF_HWCAP get_elf_hwcap()
 137
 138static uint32_t get_elf_hwcap(void)
 139{
 140    X86CPU *cpu = X86_CPU(thread_cpu);
 141
 142    return cpu->env.features[FEAT_1_EDX];
 143}
 144
 145#ifdef TARGET_X86_64
 146#define ELF_START_MMAP 0x2aaaaab000ULL
 147
 148#define ELF_CLASS      ELFCLASS64
 149#define ELF_ARCH       EM_X86_64
 150
 151static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 152{
 153    regs->rax = 0;
 154    regs->rsp = infop->start_stack;
 155    regs->rip = infop->entry;
 156}
 157
 158#define ELF_NREG    27
 159typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 160
 161/*
 162 * Note that ELF_NREG should be 29 as there should be place for
 163 * TRAPNO and ERR "registers" as well but linux doesn't dump
 164 * those.
 165 *
 166 * See linux kernel: arch/x86/include/asm/elf.h
 167 */
 168static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 169{
 170    (*regs)[0] = env->regs[15];
 171    (*regs)[1] = env->regs[14];
 172    (*regs)[2] = env->regs[13];
 173    (*regs)[3] = env->regs[12];
 174    (*regs)[4] = env->regs[R_EBP];
 175    (*regs)[5] = env->regs[R_EBX];
 176    (*regs)[6] = env->regs[11];
 177    (*regs)[7] = env->regs[10];
 178    (*regs)[8] = env->regs[9];
 179    (*regs)[9] = env->regs[8];
 180    (*regs)[10] = env->regs[R_EAX];
 181    (*regs)[11] = env->regs[R_ECX];
 182    (*regs)[12] = env->regs[R_EDX];
 183    (*regs)[13] = env->regs[R_ESI];
 184    (*regs)[14] = env->regs[R_EDI];
 185    (*regs)[15] = env->regs[R_EAX]; /* XXX */
 186    (*regs)[16] = env->eip;
 187    (*regs)[17] = env->segs[R_CS].selector & 0xffff;
 188    (*regs)[18] = env->eflags;
 189    (*regs)[19] = env->regs[R_ESP];
 190    (*regs)[20] = env->segs[R_SS].selector & 0xffff;
 191    (*regs)[21] = env->segs[R_FS].selector & 0xffff;
 192    (*regs)[22] = env->segs[R_GS].selector & 0xffff;
 193    (*regs)[23] = env->segs[R_DS].selector & 0xffff;
 194    (*regs)[24] = env->segs[R_ES].selector & 0xffff;
 195    (*regs)[25] = env->segs[R_FS].selector & 0xffff;
 196    (*regs)[26] = env->segs[R_GS].selector & 0xffff;
 197}
 198
 199#else
 200
 201#define ELF_START_MMAP 0x80000000
 202
 203/*
 204 * This is used to ensure we don't load something for the wrong architecture.
 205 */
 206#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
 207
 208/*
 209 * These are used to set parameters in the core dumps.
 210 */
 211#define ELF_CLASS       ELFCLASS32
 212#define ELF_ARCH        EM_386
 213
 214static inline void init_thread(struct target_pt_regs *regs,
 215                               struct image_info *infop)
 216{
 217    regs->esp = infop->start_stack;
 218    regs->eip = infop->entry;
 219
 220    /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
 221       starts %edx contains a pointer to a function which might be
 222       registered using `atexit'.  This provides a mean for the
 223       dynamic linker to call DT_FINI functions for shared libraries
 224       that have been loaded before the code runs.
 225
 226       A value of 0 tells we have no such handler.  */
 227    regs->edx = 0;
 228}
 229
 230#define ELF_NREG    17
 231typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 232
 233/*
 234 * Note that ELF_NREG should be 19 as there should be place for
 235 * TRAPNO and ERR "registers" as well but linux doesn't dump
 236 * those.
 237 *
 238 * See linux kernel: arch/x86/include/asm/elf.h
 239 */
 240static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 241{
 242    (*regs)[0] = env->regs[R_EBX];
 243    (*regs)[1] = env->regs[R_ECX];
 244    (*regs)[2] = env->regs[R_EDX];
 245    (*regs)[3] = env->regs[R_ESI];
 246    (*regs)[4] = env->regs[R_EDI];
 247    (*regs)[5] = env->regs[R_EBP];
 248    (*regs)[6] = env->regs[R_EAX];
 249    (*regs)[7] = env->segs[R_DS].selector & 0xffff;
 250    (*regs)[8] = env->segs[R_ES].selector & 0xffff;
 251    (*regs)[9] = env->segs[R_FS].selector & 0xffff;
 252    (*regs)[10] = env->segs[R_GS].selector & 0xffff;
 253    (*regs)[11] = env->regs[R_EAX]; /* XXX */
 254    (*regs)[12] = env->eip;
 255    (*regs)[13] = env->segs[R_CS].selector & 0xffff;
 256    (*regs)[14] = env->eflags;
 257    (*regs)[15] = env->regs[R_ESP];
 258    (*regs)[16] = env->segs[R_SS].selector & 0xffff;
 259}
 260#endif
 261
 262#define USE_ELF_CORE_DUMP
 263#define ELF_EXEC_PAGESIZE       4096
 264
 265#endif
 266
 267#ifdef TARGET_ARM
 268
 269#ifndef TARGET_AARCH64
 270/* 32 bit ARM definitions */
 271
 272#define ELF_START_MMAP 0x80000000
 273
 274#define ELF_ARCH        EM_ARM
 275#define ELF_CLASS       ELFCLASS32
 276
 277static inline void init_thread(struct target_pt_regs *regs,
 278                               struct image_info *infop)
 279{
 280    abi_long stack = infop->start_stack;
 281    memset(regs, 0, sizeof(*regs));
 282
 283    regs->uregs[16] = ARM_CPU_MODE_USR;
 284    if (infop->entry & 1) {
 285        regs->uregs[16] |= CPSR_T;
 286    }
 287    regs->uregs[15] = infop->entry & 0xfffffffe;
 288    regs->uregs[13] = infop->start_stack;
 289    /* FIXME - what to for failure of get_user()? */
 290    get_user_ual(regs->uregs[2], stack + 8); /* envp */
 291    get_user_ual(regs->uregs[1], stack + 4); /* envp */
 292    /* XXX: it seems that r0 is zeroed after ! */
 293    regs->uregs[0] = 0;
 294    /* For uClinux PIC binaries.  */
 295    /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
 296    regs->uregs[10] = infop->start_data;
 297
 298    /* Support ARM FDPIC.  */
 299    if (info_is_fdpic(infop)) {
 300        /* As described in the ABI document, r7 points to the loadmap info
 301         * prepared by the kernel. If an interpreter is needed, r8 points
 302         * to the interpreter loadmap and r9 points to the interpreter
 303         * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
 304         * r9 points to the main program PT_DYNAMIC info.
 305         */
 306        regs->uregs[7] = infop->loadmap_addr;
 307        if (infop->interpreter_loadmap_addr) {
 308            /* Executable is dynamically loaded.  */
 309            regs->uregs[8] = infop->interpreter_loadmap_addr;
 310            regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
 311        } else {
 312            regs->uregs[8] = 0;
 313            regs->uregs[9] = infop->pt_dynamic_addr;
 314        }
 315    }
 316}
 317
 318#define ELF_NREG    18
 319typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 320
 321static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
 322{
 323    (*regs)[0] = tswapreg(env->regs[0]);
 324    (*regs)[1] = tswapreg(env->regs[1]);
 325    (*regs)[2] = tswapreg(env->regs[2]);
 326    (*regs)[3] = tswapreg(env->regs[3]);
 327    (*regs)[4] = tswapreg(env->regs[4]);
 328    (*regs)[5] = tswapreg(env->regs[5]);
 329    (*regs)[6] = tswapreg(env->regs[6]);
 330    (*regs)[7] = tswapreg(env->regs[7]);
 331    (*regs)[8] = tswapreg(env->regs[8]);
 332    (*regs)[9] = tswapreg(env->regs[9]);
 333    (*regs)[10] = tswapreg(env->regs[10]);
 334    (*regs)[11] = tswapreg(env->regs[11]);
 335    (*regs)[12] = tswapreg(env->regs[12]);
 336    (*regs)[13] = tswapreg(env->regs[13]);
 337    (*regs)[14] = tswapreg(env->regs[14]);
 338    (*regs)[15] = tswapreg(env->regs[15]);
 339
 340    (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
 341    (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
 342}
 343
 344#define USE_ELF_CORE_DUMP
 345#define ELF_EXEC_PAGESIZE       4096
 346
 347enum
 348{
 349    ARM_HWCAP_ARM_SWP       = 1 << 0,
 350    ARM_HWCAP_ARM_HALF      = 1 << 1,
 351    ARM_HWCAP_ARM_THUMB     = 1 << 2,
 352    ARM_HWCAP_ARM_26BIT     = 1 << 3,
 353    ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
 354    ARM_HWCAP_ARM_FPA       = 1 << 5,
 355    ARM_HWCAP_ARM_VFP       = 1 << 6,
 356    ARM_HWCAP_ARM_EDSP      = 1 << 7,
 357    ARM_HWCAP_ARM_JAVA      = 1 << 8,
 358    ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
 359    ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
 360    ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
 361    ARM_HWCAP_ARM_NEON      = 1 << 12,
 362    ARM_HWCAP_ARM_VFPv3     = 1 << 13,
 363    ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
 364    ARM_HWCAP_ARM_TLS       = 1 << 15,
 365    ARM_HWCAP_ARM_VFPv4     = 1 << 16,
 366    ARM_HWCAP_ARM_IDIVA     = 1 << 17,
 367    ARM_HWCAP_ARM_IDIVT     = 1 << 18,
 368    ARM_HWCAP_ARM_VFPD32    = 1 << 19,
 369    ARM_HWCAP_ARM_LPAE      = 1 << 20,
 370    ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
 371};
 372
 373enum {
 374    ARM_HWCAP2_ARM_AES      = 1 << 0,
 375    ARM_HWCAP2_ARM_PMULL    = 1 << 1,
 376    ARM_HWCAP2_ARM_SHA1     = 1 << 2,
 377    ARM_HWCAP2_ARM_SHA2     = 1 << 3,
 378    ARM_HWCAP2_ARM_CRC32    = 1 << 4,
 379};
 380
 381/* The commpage only exists for 32 bit kernels */
 382
 383/* Return 1 if the proposed guest space is suitable for the guest.
 384 * Return 0 if the proposed guest space isn't suitable, but another
 385 * address space should be tried.
 386 * Return -1 if there is no way the proposed guest space can be
 387 * valid regardless of the base.
 388 * The guest code may leave a page mapped and populate it if the
 389 * address is suitable.
 390 */
 391static int init_guest_commpage(unsigned long guest_base,
 392                               unsigned long guest_size)
 393{
 394    unsigned long real_start, test_page_addr;
 395
 396    /* We need to check that we can force a fault on access to the
 397     * commpage at 0xffff0fxx
 398     */
 399    test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
 400
 401    /* If the commpage lies within the already allocated guest space,
 402     * then there is no way we can allocate it.
 403     *
 404     * You may be thinking that that this check is redundant because
 405     * we already validated the guest size against MAX_RESERVED_VA;
 406     * but if qemu_host_page_mask is unusually large, then
 407     * test_page_addr may be lower.
 408     */
 409    if (test_page_addr >= guest_base
 410        && test_page_addr < (guest_base + guest_size)) {
 411        return -1;
 412    }
 413
 414    /* Note it needs to be writeable to let us initialise it */
 415    real_start = (unsigned long)
 416                 mmap((void *)test_page_addr, qemu_host_page_size,
 417                     PROT_READ | PROT_WRITE,
 418                     MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 419
 420    /* If we can't map it then try another address */
 421    if (real_start == -1ul) {
 422        return 0;
 423    }
 424
 425    if (real_start != test_page_addr) {
 426        /* OS didn't put the page where we asked - unmap and reject */
 427        munmap((void *)real_start, qemu_host_page_size);
 428        return 0;
 429    }
 430
 431    /* Leave the page mapped
 432     * Populate it (mmap should have left it all 0'd)
 433     */
 434
 435    /* Kernel helper versions */
 436    __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
 437
 438    /* Now it's populated make it RO */
 439    if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
 440        perror("Protecting guest commpage");
 441        exit(-1);
 442    }
 443
 444    return 1; /* All good */
 445}
 446
 447#define ELF_HWCAP get_elf_hwcap()
 448#define ELF_HWCAP2 get_elf_hwcap2()
 449
 450static uint32_t get_elf_hwcap(void)
 451{
 452    ARMCPU *cpu = ARM_CPU(thread_cpu);
 453    uint32_t hwcaps = 0;
 454
 455    hwcaps |= ARM_HWCAP_ARM_SWP;
 456    hwcaps |= ARM_HWCAP_ARM_HALF;
 457    hwcaps |= ARM_HWCAP_ARM_THUMB;
 458    hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
 459
 460    /* probe for the extra features */
 461#define GET_FEATURE(feat, hwcap) \
 462    do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
 463
 464#define GET_FEATURE_ID(feat, hwcap) \
 465    do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 466
 467    /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
 468    GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
 469    GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
 470    GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
 471    GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
 472    GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
 473    GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
 474    GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
 475    GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
 476    GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
 477    GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
 478    /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
 479     * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
 480     * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
 481     * to our VFP_FP16 feature bit.
 482     */
 483    GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
 484    GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
 485
 486    return hwcaps;
 487}
 488
 489static uint32_t get_elf_hwcap2(void)
 490{
 491    ARMCPU *cpu = ARM_CPU(thread_cpu);
 492    uint32_t hwcaps = 0;
 493
 494    GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
 495    GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
 496    GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
 497    GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
 498    GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
 499    return hwcaps;
 500}
 501
 502#undef GET_FEATURE
 503#undef GET_FEATURE_ID
 504
 505#define ELF_PLATFORM get_elf_platform()
 506
 507static const char *get_elf_platform(void)
 508{
 509    CPUARMState *env = thread_cpu->env_ptr;
 510
 511#ifdef TARGET_WORDS_BIGENDIAN
 512# define END  "b"
 513#else
 514# define END  "l"
 515#endif
 516
 517    if (arm_feature(env, ARM_FEATURE_V8)) {
 518        return "v8" END;
 519    } else if (arm_feature(env, ARM_FEATURE_V7)) {
 520        if (arm_feature(env, ARM_FEATURE_M)) {
 521            return "v7m" END;
 522        } else {
 523            return "v7" END;
 524        }
 525    } else if (arm_feature(env, ARM_FEATURE_V6)) {
 526        return "v6" END;
 527    } else if (arm_feature(env, ARM_FEATURE_V5)) {
 528        return "v5" END;
 529    } else {
 530        return "v4" END;
 531    }
 532
 533#undef END
 534}
 535
 536#else
 537/* 64 bit ARM definitions */
 538#define ELF_START_MMAP 0x80000000
 539
 540#define ELF_ARCH        EM_AARCH64
 541#define ELF_CLASS       ELFCLASS64
 542#ifdef TARGET_WORDS_BIGENDIAN
 543# define ELF_PLATFORM    "aarch64_be"
 544#else
 545# define ELF_PLATFORM    "aarch64"
 546#endif
 547
 548static inline void init_thread(struct target_pt_regs *regs,
 549                               struct image_info *infop)
 550{
 551    abi_long stack = infop->start_stack;
 552    memset(regs, 0, sizeof(*regs));
 553
 554    regs->pc = infop->entry & ~0x3ULL;
 555    regs->sp = stack;
 556}
 557
 558#define ELF_NREG    34
 559typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 560
 561static void elf_core_copy_regs(target_elf_gregset_t *regs,
 562                               const CPUARMState *env)
 563{
 564    int i;
 565
 566    for (i = 0; i < 32; i++) {
 567        (*regs)[i] = tswapreg(env->xregs[i]);
 568    }
 569    (*regs)[32] = tswapreg(env->pc);
 570    (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
 571}
 572
 573#define USE_ELF_CORE_DUMP
 574#define ELF_EXEC_PAGESIZE       4096
 575
 576enum {
 577    ARM_HWCAP_A64_FP            = 1 << 0,
 578    ARM_HWCAP_A64_ASIMD         = 1 << 1,
 579    ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
 580    ARM_HWCAP_A64_AES           = 1 << 3,
 581    ARM_HWCAP_A64_PMULL         = 1 << 4,
 582    ARM_HWCAP_A64_SHA1          = 1 << 5,
 583    ARM_HWCAP_A64_SHA2          = 1 << 6,
 584    ARM_HWCAP_A64_CRC32         = 1 << 7,
 585    ARM_HWCAP_A64_ATOMICS       = 1 << 8,
 586    ARM_HWCAP_A64_FPHP          = 1 << 9,
 587    ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
 588    ARM_HWCAP_A64_CPUID         = 1 << 11,
 589    ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
 590    ARM_HWCAP_A64_JSCVT         = 1 << 13,
 591    ARM_HWCAP_A64_FCMA          = 1 << 14,
 592    ARM_HWCAP_A64_LRCPC         = 1 << 15,
 593    ARM_HWCAP_A64_DCPOP         = 1 << 16,
 594    ARM_HWCAP_A64_SHA3          = 1 << 17,
 595    ARM_HWCAP_A64_SM3           = 1 << 18,
 596    ARM_HWCAP_A64_SM4           = 1 << 19,
 597    ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
 598    ARM_HWCAP_A64_SHA512        = 1 << 21,
 599    ARM_HWCAP_A64_SVE           = 1 << 22,
 600    ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
 601    ARM_HWCAP_A64_DIT           = 1 << 24,
 602    ARM_HWCAP_A64_USCAT         = 1 << 25,
 603    ARM_HWCAP_A64_ILRCPC        = 1 << 26,
 604    ARM_HWCAP_A64_FLAGM         = 1 << 27,
 605    ARM_HWCAP_A64_SSBS          = 1 << 28,
 606    ARM_HWCAP_A64_SB            = 1 << 29,
 607    ARM_HWCAP_A64_PACA          = 1 << 30,
 608    ARM_HWCAP_A64_PACG          = 1UL << 31,
 609};
 610
 611#define ELF_HWCAP get_elf_hwcap()
 612
 613static uint32_t get_elf_hwcap(void)
 614{
 615    ARMCPU *cpu = ARM_CPU(thread_cpu);
 616    uint32_t hwcaps = 0;
 617
 618    hwcaps |= ARM_HWCAP_A64_FP;
 619    hwcaps |= ARM_HWCAP_A64_ASIMD;
 620    hwcaps |= ARM_HWCAP_A64_CPUID;
 621
 622    /* probe for the extra features */
 623#define GET_FEATURE_ID(feat, hwcap) \
 624    do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 625
 626    GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
 627    GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
 628    GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
 629    GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
 630    GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
 631    GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
 632    GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
 633    GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
 634    GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
 635    GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
 636    GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
 637    GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
 638    GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
 639    GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
 640    GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
 641    GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
 642    GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
 643    GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
 644    GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
 645    GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
 646
 647#undef GET_FEATURE_ID
 648
 649    return hwcaps;
 650}
 651
 652#endif /* not TARGET_AARCH64 */
 653#endif /* TARGET_ARM */
 654
 655#ifdef TARGET_SPARC
 656#ifdef TARGET_SPARC64
 657
 658#define ELF_START_MMAP 0x80000000
 659#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 660                    | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
 661#ifndef TARGET_ABI32
 662#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
 663#else
 664#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
 665#endif
 666
 667#define ELF_CLASS   ELFCLASS64
 668#define ELF_ARCH    EM_SPARCV9
 669
 670#define STACK_BIAS              2047
 671
 672static inline void init_thread(struct target_pt_regs *regs,
 673                               struct image_info *infop)
 674{
 675#ifndef TARGET_ABI32
 676    regs->tstate = 0;
 677#endif
 678    regs->pc = infop->entry;
 679    regs->npc = regs->pc + 4;
 680    regs->y = 0;
 681#ifdef TARGET_ABI32
 682    regs->u_regs[14] = infop->start_stack - 16 * 4;
 683#else
 684    if (personality(infop->personality) == PER_LINUX32)
 685        regs->u_regs[14] = infop->start_stack - 16 * 4;
 686    else
 687        regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
 688#endif
 689}
 690
 691#else
 692#define ELF_START_MMAP 0x80000000
 693#define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 694                    | HWCAP_SPARC_MULDIV)
 695
 696#define ELF_CLASS   ELFCLASS32
 697#define ELF_ARCH    EM_SPARC
 698
 699static inline void init_thread(struct target_pt_regs *regs,
 700                               struct image_info *infop)
 701{
 702    regs->psr = 0;
 703    regs->pc = infop->entry;
 704    regs->npc = regs->pc + 4;
 705    regs->y = 0;
 706    regs->u_regs[14] = infop->start_stack - 16 * 4;
 707}
 708
 709#endif
 710#endif
 711
 712#ifdef TARGET_PPC
 713
 714#define ELF_MACHINE    PPC_ELF_MACHINE
 715#define ELF_START_MMAP 0x80000000
 716
 717#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 718
 719#define elf_check_arch(x) ( (x) == EM_PPC64 )
 720
 721#define ELF_CLASS       ELFCLASS64
 722
 723#else
 724
 725#define ELF_CLASS       ELFCLASS32
 726
 727#endif
 728
 729#define ELF_ARCH        EM_PPC
 730
 731/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
 732   See arch/powerpc/include/asm/cputable.h.  */
 733enum {
 734    QEMU_PPC_FEATURE_32 = 0x80000000,
 735    QEMU_PPC_FEATURE_64 = 0x40000000,
 736    QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
 737    QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
 738    QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
 739    QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
 740    QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
 741    QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
 742    QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
 743    QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
 744    QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
 745    QEMU_PPC_FEATURE_NO_TB = 0x00100000,
 746    QEMU_PPC_FEATURE_POWER4 = 0x00080000,
 747    QEMU_PPC_FEATURE_POWER5 = 0x00040000,
 748    QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
 749    QEMU_PPC_FEATURE_CELL = 0x00010000,
 750    QEMU_PPC_FEATURE_BOOKE = 0x00008000,
 751    QEMU_PPC_FEATURE_SMT = 0x00004000,
 752    QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
 753    QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
 754    QEMU_PPC_FEATURE_PA6T = 0x00000800,
 755    QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
 756    QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
 757    QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
 758    QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
 759    QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
 760
 761    QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
 762    QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
 763
 764    /* Feature definitions in AT_HWCAP2.  */
 765    QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
 766    QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
 767    QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
 768    QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
 769    QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
 770    QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
 771    QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
 772    QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
 773    QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
 774    QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
 775    QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
 776    QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
 777    QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
 778};
 779
 780#define ELF_HWCAP get_elf_hwcap()
 781
 782static uint32_t get_elf_hwcap(void)
 783{
 784    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 785    uint32_t features = 0;
 786
 787    /* We don't have to be terribly complete here; the high points are
 788       Altivec/FP/SPE support.  Anything else is just a bonus.  */
 789#define GET_FEATURE(flag, feature)                                      \
 790    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 791#define GET_FEATURE2(flags, feature) \
 792    do { \
 793        if ((cpu->env.insns_flags2 & flags) == flags) { \
 794            features |= feature; \
 795        } \
 796    } while (0)
 797    GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
 798    GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
 799    GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
 800    GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
 801    GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
 802    GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
 803    GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
 804    GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
 805    GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
 806    GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
 807    GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
 808                  PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
 809                  QEMU_PPC_FEATURE_ARCH_2_06);
 810#undef GET_FEATURE
 811#undef GET_FEATURE2
 812
 813    return features;
 814}
 815
 816#define ELF_HWCAP2 get_elf_hwcap2()
 817
 818static uint32_t get_elf_hwcap2(void)
 819{
 820    PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 821    uint32_t features = 0;
 822
 823#define GET_FEATURE(flag, feature)                                      \
 824    do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 825#define GET_FEATURE2(flag, feature)                                      \
 826    do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
 827
 828    GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
 829    GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
 830    GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
 831                  PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
 832                  QEMU_PPC_FEATURE2_VEC_CRYPTO);
 833    GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
 834                 QEMU_PPC_FEATURE2_DARN);
 835
 836#undef GET_FEATURE
 837#undef GET_FEATURE2
 838
 839    return features;
 840}
 841
 842/*
 843 * The requirements here are:
 844 * - keep the final alignment of sp (sp & 0xf)
 845 * - make sure the 32-bit value at the first 16 byte aligned position of
 846 *   AUXV is greater than 16 for glibc compatibility.
 847 *   AT_IGNOREPPC is used for that.
 848 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
 849 *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
 850 */
 851#define DLINFO_ARCH_ITEMS       5
 852#define ARCH_DLINFO                                     \
 853    do {                                                \
 854        PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
 855        /*                                              \
 856         * Handle glibc compatibility: these magic entries must \
 857         * be at the lowest addresses in the final auxv.        \
 858         */                                             \
 859        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 860        NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 861        NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
 862        NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
 863        NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
 864    } while (0)
 865
 866static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
 867{
 868    _regs->gpr[1] = infop->start_stack;
 869#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 870    if (get_ppc64_abi(infop) < 2) {
 871        uint64_t val;
 872        get_user_u64(val, infop->entry + 8);
 873        _regs->gpr[2] = val + infop->load_bias;
 874        get_user_u64(val, infop->entry);
 875        infop->entry = val + infop->load_bias;
 876    } else {
 877        _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
 878    }
 879#endif
 880    _regs->nip = infop->entry;
 881}
 882
 883/* See linux kernel: arch/powerpc/include/asm/elf.h.  */
 884#define ELF_NREG 48
 885typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 886
 887static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
 888{
 889    int i;
 890    target_ulong ccr = 0;
 891
 892    for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
 893        (*regs)[i] = tswapreg(env->gpr[i]);
 894    }
 895
 896    (*regs)[32] = tswapreg(env->nip);
 897    (*regs)[33] = tswapreg(env->msr);
 898    (*regs)[35] = tswapreg(env->ctr);
 899    (*regs)[36] = tswapreg(env->lr);
 900    (*regs)[37] = tswapreg(env->xer);
 901
 902    for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
 903        ccr |= env->crf[i] << (32 - ((i + 1) * 4));
 904    }
 905    (*regs)[38] = tswapreg(ccr);
 906}
 907
 908#define USE_ELF_CORE_DUMP
 909#define ELF_EXEC_PAGESIZE       4096
 910
 911#endif
 912
 913#ifdef TARGET_MIPS
 914
 915#define ELF_START_MMAP 0x80000000
 916
 917#ifdef TARGET_MIPS64
 918#define ELF_CLASS   ELFCLASS64
 919#else
 920#define ELF_CLASS   ELFCLASS32
 921#endif
 922#define ELF_ARCH    EM_MIPS
 923
 924#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
 925
 926static inline void init_thread(struct target_pt_regs *regs,
 927                               struct image_info *infop)
 928{
 929    regs->cp0_status = 2 << CP0St_KSU;
 930    regs->cp0_epc = infop->entry;
 931    regs->regs[29] = infop->start_stack;
 932}
 933
 934/* See linux kernel: arch/mips/include/asm/elf.h.  */
 935#define ELF_NREG 45
 936typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 937
 938/* See linux kernel: arch/mips/include/asm/reg.h.  */
 939enum {
 940#ifdef TARGET_MIPS64
 941    TARGET_EF_R0 = 0,
 942#else
 943    TARGET_EF_R0 = 6,
 944#endif
 945    TARGET_EF_R26 = TARGET_EF_R0 + 26,
 946    TARGET_EF_R27 = TARGET_EF_R0 + 27,
 947    TARGET_EF_LO = TARGET_EF_R0 + 32,
 948    TARGET_EF_HI = TARGET_EF_R0 + 33,
 949    TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
 950    TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
 951    TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
 952    TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
 953};
 954
 955/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 956static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
 957{
 958    int i;
 959
 960    for (i = 0; i < TARGET_EF_R0; i++) {
 961        (*regs)[i] = 0;
 962    }
 963    (*regs)[TARGET_EF_R0] = 0;
 964
 965    for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
 966        (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
 967    }
 968
 969    (*regs)[TARGET_EF_R26] = 0;
 970    (*regs)[TARGET_EF_R27] = 0;
 971    (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
 972    (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
 973    (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
 974    (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
 975    (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
 976    (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
 977}
 978
 979#define USE_ELF_CORE_DUMP
 980#define ELF_EXEC_PAGESIZE        4096
 981
 982/* See arch/mips/include/uapi/asm/hwcap.h.  */
 983enum {
 984    HWCAP_MIPS_R6           = (1 << 0),
 985    HWCAP_MIPS_MSA          = (1 << 1),
 986};
 987
 988#define ELF_HWCAP get_elf_hwcap()
 989
 990static uint32_t get_elf_hwcap(void)
 991{
 992    MIPSCPU *cpu = MIPS_CPU(thread_cpu);
 993    uint32_t hwcaps = 0;
 994
 995#define GET_FEATURE(flag, hwcap) \
 996    do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
 997
 998    GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
 999    GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
1000
1001#undef GET_FEATURE
1002
1003    return hwcaps;
1004}
1005
1006#endif /* TARGET_MIPS */
1007
1008#ifdef TARGET_MICROBLAZE
1009
1010#define ELF_START_MMAP 0x80000000
1011
1012#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1013
1014#define ELF_CLASS   ELFCLASS32
1015#define ELF_ARCH    EM_MICROBLAZE
1016
1017static inline void init_thread(struct target_pt_regs *regs,
1018                               struct image_info *infop)
1019{
1020    regs->pc = infop->entry;
1021    regs->r1 = infop->start_stack;
1022
1023}
1024
1025#define ELF_EXEC_PAGESIZE        4096
1026
1027#define USE_ELF_CORE_DUMP
1028#define ELF_NREG 38
1029typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1030
1031/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1032static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1033{
1034    int i, pos = 0;
1035
1036    for (i = 0; i < 32; i++) {
1037        (*regs)[pos++] = tswapreg(env->regs[i]);
1038    }
1039
1040    for (i = 0; i < 6; i++) {
1041        (*regs)[pos++] = tswapreg(env->sregs[i]);
1042    }
1043}
1044
1045#endif /* TARGET_MICROBLAZE */
1046
1047#ifdef TARGET_NIOS2
1048
1049#define ELF_START_MMAP 0x80000000
1050
1051#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1052
1053#define ELF_CLASS   ELFCLASS32
1054#define ELF_ARCH    EM_ALTERA_NIOS2
1055
1056static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1057{
1058    regs->ea = infop->entry;
1059    regs->sp = infop->start_stack;
1060    regs->estatus = 0x3;
1061}
1062
1063#define ELF_EXEC_PAGESIZE        4096
1064
1065#define USE_ELF_CORE_DUMP
1066#define ELF_NREG 49
1067typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1068
1069/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1070static void elf_core_copy_regs(target_elf_gregset_t *regs,
1071                               const CPUNios2State *env)
1072{
1073    int i;
1074
1075    (*regs)[0] = -1;
1076    for (i = 1; i < 8; i++)    /* r0-r7 */
1077        (*regs)[i] = tswapreg(env->regs[i + 7]);
1078
1079    for (i = 8; i < 16; i++)   /* r8-r15 */
1080        (*regs)[i] = tswapreg(env->regs[i - 8]);
1081
1082    for (i = 16; i < 24; i++)  /* r16-r23 */
1083        (*regs)[i] = tswapreg(env->regs[i + 7]);
1084    (*regs)[24] = -1;    /* R_ET */
1085    (*regs)[25] = -1;    /* R_BT */
1086    (*regs)[26] = tswapreg(env->regs[R_GP]);
1087    (*regs)[27] = tswapreg(env->regs[R_SP]);
1088    (*regs)[28] = tswapreg(env->regs[R_FP]);
1089    (*regs)[29] = tswapreg(env->regs[R_EA]);
1090    (*regs)[30] = -1;    /* R_SSTATUS */
1091    (*regs)[31] = tswapreg(env->regs[R_RA]);
1092
1093    (*regs)[32] = tswapreg(env->regs[R_PC]);
1094
1095    (*regs)[33] = -1; /* R_STATUS */
1096    (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1097
1098    for (i = 35; i < 49; i++)    /* ... */
1099        (*regs)[i] = -1;
1100}
1101
1102#endif /* TARGET_NIOS2 */
1103
1104#ifdef TARGET_OPENRISC
1105
1106#define ELF_START_MMAP 0x08000000
1107
1108#define ELF_ARCH EM_OPENRISC
1109#define ELF_CLASS ELFCLASS32
1110#define ELF_DATA  ELFDATA2MSB
1111
1112static inline void init_thread(struct target_pt_regs *regs,
1113                               struct image_info *infop)
1114{
1115    regs->pc = infop->entry;
1116    regs->gpr[1] = infop->start_stack;
1117}
1118
1119#define USE_ELF_CORE_DUMP
1120#define ELF_EXEC_PAGESIZE 8192
1121
1122/* See linux kernel arch/openrisc/include/asm/elf.h.  */
1123#define ELF_NREG 34 /* gprs and pc, sr */
1124typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1125
1126static void elf_core_copy_regs(target_elf_gregset_t *regs,
1127                               const CPUOpenRISCState *env)
1128{
1129    int i;
1130
1131    for (i = 0; i < 32; i++) {
1132        (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1133    }
1134    (*regs)[32] = tswapreg(env->pc);
1135    (*regs)[33] = tswapreg(cpu_get_sr(env));
1136}
1137#define ELF_HWCAP 0
1138#define ELF_PLATFORM NULL
1139
1140#endif /* TARGET_OPENRISC */
1141
1142#ifdef TARGET_SH4
1143
1144#define ELF_START_MMAP 0x80000000
1145
1146#define ELF_CLASS ELFCLASS32
1147#define ELF_ARCH  EM_SH
1148
1149static inline void init_thread(struct target_pt_regs *regs,
1150                               struct image_info *infop)
1151{
1152    /* Check other registers XXXXX */
1153    regs->pc = infop->entry;
1154    regs->regs[15] = infop->start_stack;
1155}
1156
1157/* See linux kernel: arch/sh/include/asm/elf.h.  */
1158#define ELF_NREG 23
1159typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1160
1161/* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1162enum {
1163    TARGET_REG_PC = 16,
1164    TARGET_REG_PR = 17,
1165    TARGET_REG_SR = 18,
1166    TARGET_REG_GBR = 19,
1167    TARGET_REG_MACH = 20,
1168    TARGET_REG_MACL = 21,
1169    TARGET_REG_SYSCALL = 22
1170};
1171
1172static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1173                                      const CPUSH4State *env)
1174{
1175    int i;
1176
1177    for (i = 0; i < 16; i++) {
1178        (*regs)[i] = tswapreg(env->gregs[i]);
1179    }
1180
1181    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1182    (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1183    (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1184    (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1185    (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1186    (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1187    (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1188}
1189
1190#define USE_ELF_CORE_DUMP
1191#define ELF_EXEC_PAGESIZE        4096
1192
1193enum {
1194    SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1195    SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1196    SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1197    SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1198    SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1199    SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1200    SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1201    SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1202    SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1203    SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1204};
1205
1206#define ELF_HWCAP get_elf_hwcap()
1207
1208static uint32_t get_elf_hwcap(void)
1209{
1210    SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1211    uint32_t hwcap = 0;
1212
1213    hwcap |= SH_CPU_HAS_FPU;
1214
1215    if (cpu->env.features & SH_FEATURE_SH4A) {
1216        hwcap |= SH_CPU_HAS_LLSC;
1217    }
1218
1219    return hwcap;
1220}
1221
1222#endif
1223
1224#ifdef TARGET_CRIS
1225
1226#define ELF_START_MMAP 0x80000000
1227
1228#define ELF_CLASS ELFCLASS32
1229#define ELF_ARCH  EM_CRIS
1230
1231static inline void init_thread(struct target_pt_regs *regs,
1232                               struct image_info *infop)
1233{
1234    regs->erp = infop->entry;
1235}
1236
1237#define ELF_EXEC_PAGESIZE        8192
1238
1239#endif
1240
1241#ifdef TARGET_M68K
1242
1243#define ELF_START_MMAP 0x80000000
1244
1245#define ELF_CLASS       ELFCLASS32
1246#define ELF_ARCH        EM_68K
1247
1248/* ??? Does this need to do anything?
1249   #define ELF_PLAT_INIT(_r) */
1250
1251static inline void init_thread(struct target_pt_regs *regs,
1252                               struct image_info *infop)
1253{
1254    regs->usp = infop->start_stack;
1255    regs->sr = 0;
1256    regs->pc = infop->entry;
1257}
1258
1259/* See linux kernel: arch/m68k/include/asm/elf.h.  */
1260#define ELF_NREG 20
1261typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1262
1263static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1264{
1265    (*regs)[0] = tswapreg(env->dregs[1]);
1266    (*regs)[1] = tswapreg(env->dregs[2]);
1267    (*regs)[2] = tswapreg(env->dregs[3]);
1268    (*regs)[3] = tswapreg(env->dregs[4]);
1269    (*regs)[4] = tswapreg(env->dregs[5]);
1270    (*regs)[5] = tswapreg(env->dregs[6]);
1271    (*regs)[6] = tswapreg(env->dregs[7]);
1272    (*regs)[7] = tswapreg(env->aregs[0]);
1273    (*regs)[8] = tswapreg(env->aregs[1]);
1274    (*regs)[9] = tswapreg(env->aregs[2]);
1275    (*regs)[10] = tswapreg(env->aregs[3]);
1276    (*regs)[11] = tswapreg(env->aregs[4]);
1277    (*regs)[12] = tswapreg(env->aregs[5]);
1278    (*regs)[13] = tswapreg(env->aregs[6]);
1279    (*regs)[14] = tswapreg(env->dregs[0]);
1280    (*regs)[15] = tswapreg(env->aregs[7]);
1281    (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1282    (*regs)[17] = tswapreg(env->sr);
1283    (*regs)[18] = tswapreg(env->pc);
1284    (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1285}
1286
1287#define USE_ELF_CORE_DUMP
1288#define ELF_EXEC_PAGESIZE       8192
1289
1290#endif
1291
1292#ifdef TARGET_ALPHA
1293
1294#define ELF_START_MMAP (0x30000000000ULL)
1295
1296#define ELF_CLASS      ELFCLASS64
1297#define ELF_ARCH       EM_ALPHA
1298
1299static inline void init_thread(struct target_pt_regs *regs,
1300                               struct image_info *infop)
1301{
1302    regs->pc = infop->entry;
1303    regs->ps = 8;
1304    regs->usp = infop->start_stack;
1305}
1306
1307#define ELF_EXEC_PAGESIZE        8192
1308
1309#endif /* TARGET_ALPHA */
1310
1311#ifdef TARGET_S390X
1312
1313#define ELF_START_MMAP (0x20000000000ULL)
1314
1315#define ELF_CLASS       ELFCLASS64
1316#define ELF_DATA        ELFDATA2MSB
1317#define ELF_ARCH        EM_S390
1318
1319#include "elf.h"
1320
1321#define ELF_HWCAP get_elf_hwcap()
1322
1323#define GET_FEATURE(_feat, _hwcap) \
1324    do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1325
1326static uint32_t get_elf_hwcap(void)
1327{
1328    /*
1329     * Let's assume we always have esan3 and zarch.
1330     * 31-bit processes can use 64-bit registers (high gprs).
1331     */
1332    uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1333
1334    GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1335    GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1336    GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1337    GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1338    if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1339        s390_has_feat(S390_FEAT_ETF3_ENH)) {
1340        hwcap |= HWCAP_S390_ETF3EH;
1341    }
1342    GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1343
1344    return hwcap;
1345}
1346
1347static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1348{
1349    regs->psw.addr = infop->entry;
1350    regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1351    regs->gprs[15] = infop->start_stack;
1352}
1353
1354#endif /* TARGET_S390X */
1355
1356#ifdef TARGET_TILEGX
1357
1358/* 42 bits real used address, a half for user mode */
1359#define ELF_START_MMAP (0x00000020000000000ULL)
1360
1361#define elf_check_arch(x) ((x) == EM_TILEGX)
1362
1363#define ELF_CLASS   ELFCLASS64
1364#define ELF_DATA    ELFDATA2LSB
1365#define ELF_ARCH    EM_TILEGX
1366
1367static inline void init_thread(struct target_pt_regs *regs,
1368                               struct image_info *infop)
1369{
1370    regs->pc = infop->entry;
1371    regs->sp = infop->start_stack;
1372
1373}
1374
1375#define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1376
1377#endif /* TARGET_TILEGX */
1378
1379#ifdef TARGET_RISCV
1380
1381#define ELF_START_MMAP 0x80000000
1382#define ELF_ARCH  EM_RISCV
1383
1384#ifdef TARGET_RISCV32
1385#define ELF_CLASS ELFCLASS32
1386#else
1387#define ELF_CLASS ELFCLASS64
1388#endif
1389
1390static inline void init_thread(struct target_pt_regs *regs,
1391                               struct image_info *infop)
1392{
1393    regs->sepc = infop->entry;
1394    regs->sp = infop->start_stack;
1395}
1396
1397#define ELF_EXEC_PAGESIZE 4096
1398
1399#endif /* TARGET_RISCV */
1400
1401#ifdef TARGET_HPPA
1402
1403#define ELF_START_MMAP  0x80000000
1404#define ELF_CLASS       ELFCLASS32
1405#define ELF_ARCH        EM_PARISC
1406#define ELF_PLATFORM    "PARISC"
1407#define STACK_GROWS_DOWN 0
1408#define STACK_ALIGNMENT  64
1409
1410static inline void init_thread(struct target_pt_regs *regs,
1411                               struct image_info *infop)
1412{
1413    regs->iaoq[0] = infop->entry;
1414    regs->iaoq[1] = infop->entry + 4;
1415    regs->gr[23] = 0;
1416    regs->gr[24] = infop->arg_start;
1417    regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1418    /* The top-of-stack contains a linkage buffer.  */
1419    regs->gr[30] = infop->start_stack + 64;
1420    regs->gr[31] = infop->entry;
1421}
1422
1423#endif /* TARGET_HPPA */
1424
1425#ifdef TARGET_XTENSA
1426
1427#define ELF_START_MMAP 0x20000000
1428
1429#define ELF_CLASS       ELFCLASS32
1430#define ELF_ARCH        EM_XTENSA
1431
1432static inline void init_thread(struct target_pt_regs *regs,
1433                               struct image_info *infop)
1434{
1435    regs->windowbase = 0;
1436    regs->windowstart = 1;
1437    regs->areg[1] = infop->start_stack;
1438    regs->pc = infop->entry;
1439}
1440
1441/* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1442#define ELF_NREG 128
1443typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1444
1445enum {
1446    TARGET_REG_PC,
1447    TARGET_REG_PS,
1448    TARGET_REG_LBEG,
1449    TARGET_REG_LEND,
1450    TARGET_REG_LCOUNT,
1451    TARGET_REG_SAR,
1452    TARGET_REG_WINDOWSTART,
1453    TARGET_REG_WINDOWBASE,
1454    TARGET_REG_THREADPTR,
1455    TARGET_REG_AR0 = 64,
1456};
1457
1458static void elf_core_copy_regs(target_elf_gregset_t *regs,
1459                               const CPUXtensaState *env)
1460{
1461    unsigned i;
1462
1463    (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1464    (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1465    (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1466    (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1467    (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1468    (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1469    (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1470    (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1471    (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1472    xtensa_sync_phys_from_window((CPUXtensaState *)env);
1473    for (i = 0; i < env->config->nareg; ++i) {
1474        (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1475    }
1476}
1477
1478#define USE_ELF_CORE_DUMP
1479#define ELF_EXEC_PAGESIZE       4096
1480
1481#endif /* TARGET_XTENSA */
1482
1483#ifndef ELF_PLATFORM
1484#define ELF_PLATFORM (NULL)
1485#endif
1486
1487#ifndef ELF_MACHINE
1488#define ELF_MACHINE ELF_ARCH
1489#endif
1490
1491#ifndef elf_check_arch
1492#define elf_check_arch(x) ((x) == ELF_ARCH)
1493#endif
1494
1495#ifndef ELF_HWCAP
1496#define ELF_HWCAP 0
1497#endif
1498
1499#ifndef STACK_GROWS_DOWN
1500#define STACK_GROWS_DOWN 1
1501#endif
1502
1503#ifndef STACK_ALIGNMENT
1504#define STACK_ALIGNMENT 16
1505#endif
1506
1507#ifdef TARGET_ABI32
1508#undef ELF_CLASS
1509#define ELF_CLASS ELFCLASS32
1510#undef bswaptls
1511#define bswaptls(ptr) bswap32s(ptr)
1512#endif
1513
1514#include "elf.h"
1515
1516struct exec
1517{
1518    unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1519    unsigned int a_text;   /* length of text, in bytes */
1520    unsigned int a_data;   /* length of data, in bytes */
1521    unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1522    unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1523    unsigned int a_entry;  /* start address */
1524    unsigned int a_trsize; /* length of relocation info for text, in bytes */
1525    unsigned int a_drsize; /* length of relocation info for data, in bytes */
1526};
1527
1528
1529#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1530#define OMAGIC 0407
1531#define NMAGIC 0410
1532#define ZMAGIC 0413
1533#define QMAGIC 0314
1534
1535/* Necessary parameters */
1536#define TARGET_ELF_EXEC_PAGESIZE \
1537        (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1538         TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1539#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1540#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1541                                 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1542#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1543
1544#define DLINFO_ITEMS 15
1545
1546static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1547{
1548    memcpy(to, from, n);
1549}
1550
1551#ifdef BSWAP_NEEDED
1552static void bswap_ehdr(struct elfhdr *ehdr)
1553{
1554    bswap16s(&ehdr->e_type);            /* Object file type */
1555    bswap16s(&ehdr->e_machine);         /* Architecture */
1556    bswap32s(&ehdr->e_version);         /* Object file version */
1557    bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1558    bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1559    bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1560    bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1561    bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1562    bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1563    bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1564    bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1565    bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1566    bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1567}
1568
1569static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1570{
1571    int i;
1572    for (i = 0; i < phnum; ++i, ++phdr) {
1573        bswap32s(&phdr->p_type);        /* Segment type */
1574        bswap32s(&phdr->p_flags);       /* Segment flags */
1575        bswaptls(&phdr->p_offset);      /* Segment file offset */
1576        bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1577        bswaptls(&phdr->p_paddr);       /* Segment physical address */
1578        bswaptls(&phdr->p_filesz);      /* Segment size in file */
1579        bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1580        bswaptls(&phdr->p_align);       /* Segment alignment */
1581    }
1582}
1583
1584static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1585{
1586    int i;
1587    for (i = 0; i < shnum; ++i, ++shdr) {
1588        bswap32s(&shdr->sh_name);
1589        bswap32s(&shdr->sh_type);
1590        bswaptls(&shdr->sh_flags);
1591        bswaptls(&shdr->sh_addr);
1592        bswaptls(&shdr->sh_offset);
1593        bswaptls(&shdr->sh_size);
1594        bswap32s(&shdr->sh_link);
1595        bswap32s(&shdr->sh_info);
1596        bswaptls(&shdr->sh_addralign);
1597        bswaptls(&shdr->sh_entsize);
1598    }
1599}
1600
1601static void bswap_sym(struct elf_sym *sym)
1602{
1603    bswap32s(&sym->st_name);
1604    bswaptls(&sym->st_value);
1605    bswaptls(&sym->st_size);
1606    bswap16s(&sym->st_shndx);
1607}
1608
1609#ifdef TARGET_MIPS
1610static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1611{
1612    bswap16s(&abiflags->version);
1613    bswap32s(&abiflags->ases);
1614    bswap32s(&abiflags->isa_ext);
1615    bswap32s(&abiflags->flags1);
1616    bswap32s(&abiflags->flags2);
1617}
1618#endif
1619#else
1620static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1621static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1622static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1623static inline void bswap_sym(struct elf_sym *sym) { }
1624#ifdef TARGET_MIPS
1625static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1626#endif
1627#endif
1628
1629#ifdef USE_ELF_CORE_DUMP
1630static int elf_core_dump(int, const CPUArchState *);
1631#endif /* USE_ELF_CORE_DUMP */
1632static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1633
1634/* Verify the portions of EHDR within E_IDENT for the target.
1635   This can be performed before bswapping the entire header.  */
1636static bool elf_check_ident(struct elfhdr *ehdr)
1637{
1638    return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1639            && ehdr->e_ident[EI_MAG1] == ELFMAG1
1640            && ehdr->e_ident[EI_MAG2] == ELFMAG2
1641            && ehdr->e_ident[EI_MAG3] == ELFMAG3
1642            && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1643            && ehdr->e_ident[EI_DATA] == ELF_DATA
1644            && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1645}
1646
1647/* Verify the portions of EHDR outside of E_IDENT for the target.
1648   This has to wait until after bswapping the header.  */
1649static bool elf_check_ehdr(struct elfhdr *ehdr)
1650{
1651    return (elf_check_arch(ehdr->e_machine)
1652            && ehdr->e_ehsize == sizeof(struct elfhdr)
1653            && ehdr->e_phentsize == sizeof(struct elf_phdr)
1654            && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1655}
1656
1657/*
1658 * 'copy_elf_strings()' copies argument/envelope strings from user
1659 * memory to free pages in kernel mem. These are in a format ready
1660 * to be put directly into the top of new user memory.
1661 *
1662 */
1663static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1664                                  abi_ulong p, abi_ulong stack_limit)
1665{
1666    char *tmp;
1667    int len, i;
1668    abi_ulong top = p;
1669
1670    if (!p) {
1671        return 0;       /* bullet-proofing */
1672    }
1673
1674    if (STACK_GROWS_DOWN) {
1675        int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1676        for (i = argc - 1; i >= 0; --i) {
1677            tmp = argv[i];
1678            if (!tmp) {
1679                fprintf(stderr, "VFS: argc is wrong");
1680                exit(-1);
1681            }
1682            len = strlen(tmp) + 1;
1683            tmp += len;
1684
1685            if (len > (p - stack_limit)) {
1686                return 0;
1687            }
1688            while (len) {
1689                int bytes_to_copy = (len > offset) ? offset : len;
1690                tmp -= bytes_to_copy;
1691                p -= bytes_to_copy;
1692                offset -= bytes_to_copy;
1693                len -= bytes_to_copy;
1694
1695                memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1696
1697                if (offset == 0) {
1698                    memcpy_to_target(p, scratch, top - p);
1699                    top = p;
1700                    offset = TARGET_PAGE_SIZE;
1701                }
1702            }
1703        }
1704        if (p != top) {
1705            memcpy_to_target(p, scratch + offset, top - p);
1706        }
1707    } else {
1708        int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1709        for (i = 0; i < argc; ++i) {
1710            tmp = argv[i];
1711            if (!tmp) {
1712                fprintf(stderr, "VFS: argc is wrong");
1713                exit(-1);
1714            }
1715            len = strlen(tmp) + 1;
1716            if (len > (stack_limit - p)) {
1717                return 0;
1718            }
1719            while (len) {
1720                int bytes_to_copy = (len > remaining) ? remaining : len;
1721
1722                memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1723
1724                tmp += bytes_to_copy;
1725                remaining -= bytes_to_copy;
1726                p += bytes_to_copy;
1727                len -= bytes_to_copy;
1728
1729                if (remaining == 0) {
1730                    memcpy_to_target(top, scratch, p - top);
1731                    top = p;
1732                    remaining = TARGET_PAGE_SIZE;
1733                }
1734            }
1735        }
1736        if (p != top) {
1737            memcpy_to_target(top, scratch, p - top);
1738        }
1739    }
1740
1741    return p;
1742}
1743
1744/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1745 * argument/environment space. Newer kernels (>2.6.33) allow more,
1746 * dependent on stack size, but guarantee at least 32 pages for
1747 * backwards compatibility.
1748 */
1749#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1750
1751static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1752                                 struct image_info *info)
1753{
1754    abi_ulong size, error, guard;
1755
1756    size = guest_stack_size;
1757    if (size < STACK_LOWER_LIMIT) {
1758        size = STACK_LOWER_LIMIT;
1759    }
1760    guard = TARGET_PAGE_SIZE;
1761    if (guard < qemu_real_host_page_size) {
1762        guard = qemu_real_host_page_size;
1763    }
1764
1765    error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1766                        MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1767    if (error == -1) {
1768        perror("mmap stack");
1769        exit(-1);
1770    }
1771
1772    /* We reserve one extra page at the top of the stack as guard.  */
1773    if (STACK_GROWS_DOWN) {
1774        target_mprotect(error, guard, PROT_NONE);
1775        info->stack_limit = error + guard;
1776        return info->stack_limit + size - sizeof(void *);
1777    } else {
1778        target_mprotect(error + size, guard, PROT_NONE);
1779        info->stack_limit = error + size;
1780        return error;
1781    }
1782}
1783
1784/* Map and zero the bss.  We need to explicitly zero any fractional pages
1785   after the data section (i.e. bss).  */
1786static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1787{
1788    uintptr_t host_start, host_map_start, host_end;
1789
1790    last_bss = TARGET_PAGE_ALIGN(last_bss);
1791
1792    /* ??? There is confusion between qemu_real_host_page_size and
1793       qemu_host_page_size here and elsewhere in target_mmap, which
1794       may lead to the end of the data section mapping from the file
1795       not being mapped.  At least there was an explicit test and
1796       comment for that here, suggesting that "the file size must
1797       be known".  The comment probably pre-dates the introduction
1798       of the fstat system call in target_mmap which does in fact
1799       find out the size.  What isn't clear is if the workaround
1800       here is still actually needed.  For now, continue with it,
1801       but merge it with the "normal" mmap that would allocate the bss.  */
1802
1803    host_start = (uintptr_t) g2h(elf_bss);
1804    host_end = (uintptr_t) g2h(last_bss);
1805    host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1806
1807    if (host_map_start < host_end) {
1808        void *p = mmap((void *)host_map_start, host_end - host_map_start,
1809                       prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1810        if (p == MAP_FAILED) {
1811            perror("cannot mmap brk");
1812            exit(-1);
1813        }
1814    }
1815
1816    /* Ensure that the bss page(s) are valid */
1817    if ((page_get_flags(last_bss-1) & prot) != prot) {
1818        page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1819    }
1820
1821    if (host_start < host_map_start) {
1822        memset((void *)host_start, 0, host_map_start - host_start);
1823    }
1824}
1825
1826#ifdef TARGET_ARM
1827static int elf_is_fdpic(struct elfhdr *exec)
1828{
1829    return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1830}
1831#else
1832/* Default implementation, always false.  */
1833static int elf_is_fdpic(struct elfhdr *exec)
1834{
1835    return 0;
1836}
1837#endif
1838
1839static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1840{
1841    uint16_t n;
1842    struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1843
1844    /* elf32_fdpic_loadseg */
1845    n = info->nsegs;
1846    while (n--) {
1847        sp -= 12;
1848        put_user_u32(loadsegs[n].addr, sp+0);
1849        put_user_u32(loadsegs[n].p_vaddr, sp+4);
1850        put_user_u32(loadsegs[n].p_memsz, sp+8);
1851    }
1852
1853    /* elf32_fdpic_loadmap */
1854    sp -= 4;
1855    put_user_u16(0, sp+0); /* version */
1856    put_user_u16(info->nsegs, sp+2); /* nsegs */
1857
1858    info->personality = PER_LINUX_FDPIC;
1859    info->loadmap_addr = sp;
1860
1861    return sp;
1862}
1863
1864static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1865                                   struct elfhdr *exec,
1866                                   struct image_info *info,
1867                                   struct image_info *interp_info)
1868{
1869    abi_ulong sp;
1870    abi_ulong u_argc, u_argv, u_envp, u_auxv;
1871    int size;
1872    int i;
1873    abi_ulong u_rand_bytes;
1874    uint8_t k_rand_bytes[16];
1875    abi_ulong u_platform;
1876    const char *k_platform;
1877    const int n = sizeof(elf_addr_t);
1878
1879    sp = p;
1880
1881    /* Needs to be before we load the env/argc/... */
1882    if (elf_is_fdpic(exec)) {
1883        /* Need 4 byte alignment for these structs */
1884        sp &= ~3;
1885        sp = loader_build_fdpic_loadmap(info, sp);
1886        info->other_info = interp_info;
1887        if (interp_info) {
1888            interp_info->other_info = info;
1889            sp = loader_build_fdpic_loadmap(interp_info, sp);
1890            info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1891            info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1892        } else {
1893            info->interpreter_loadmap_addr = 0;
1894            info->interpreter_pt_dynamic_addr = 0;
1895        }
1896    }
1897
1898    u_platform = 0;
1899    k_platform = ELF_PLATFORM;
1900    if (k_platform) {
1901        size_t len = strlen(k_platform) + 1;
1902        if (STACK_GROWS_DOWN) {
1903            sp -= (len + n - 1) & ~(n - 1);
1904            u_platform = sp;
1905            /* FIXME - check return value of memcpy_to_target() for failure */
1906            memcpy_to_target(sp, k_platform, len);
1907        } else {
1908            memcpy_to_target(sp, k_platform, len);
1909            u_platform = sp;
1910            sp += len + 1;
1911        }
1912    }
1913
1914    /* Provide 16 byte alignment for the PRNG, and basic alignment for
1915     * the argv and envp pointers.
1916     */
1917    if (STACK_GROWS_DOWN) {
1918        sp = QEMU_ALIGN_DOWN(sp, 16);
1919    } else {
1920        sp = QEMU_ALIGN_UP(sp, 16);
1921    }
1922
1923    /*
1924     * Generate 16 random bytes for userspace PRNG seeding.
1925     */
1926    qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1927    if (STACK_GROWS_DOWN) {
1928        sp -= 16;
1929        u_rand_bytes = sp;
1930        /* FIXME - check return value of memcpy_to_target() for failure */
1931        memcpy_to_target(sp, k_rand_bytes, 16);
1932    } else {
1933        memcpy_to_target(sp, k_rand_bytes, 16);
1934        u_rand_bytes = sp;
1935        sp += 16;
1936    }
1937
1938    size = (DLINFO_ITEMS + 1) * 2;
1939    if (k_platform)
1940        size += 2;
1941#ifdef DLINFO_ARCH_ITEMS
1942    size += DLINFO_ARCH_ITEMS * 2;
1943#endif
1944#ifdef ELF_HWCAP2
1945    size += 2;
1946#endif
1947    info->auxv_len = size * n;
1948
1949    size += envc + argc + 2;
1950    size += 1;  /* argc itself */
1951    size *= n;
1952
1953    /* Allocate space and finalize stack alignment for entry now.  */
1954    if (STACK_GROWS_DOWN) {
1955        u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1956        sp = u_argc;
1957    } else {
1958        u_argc = sp;
1959        sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1960    }
1961
1962    u_argv = u_argc + n;
1963    u_envp = u_argv + (argc + 1) * n;
1964    u_auxv = u_envp + (envc + 1) * n;
1965    info->saved_auxv = u_auxv;
1966    info->arg_start = u_argv;
1967    info->arg_end = u_argv + argc * n;
1968
1969    /* This is correct because Linux defines
1970     * elf_addr_t as Elf32_Off / Elf64_Off
1971     */
1972#define NEW_AUX_ENT(id, val) do {               \
1973        put_user_ual(id, u_auxv);  u_auxv += n; \
1974        put_user_ual(val, u_auxv); u_auxv += n; \
1975    } while(0)
1976
1977#ifdef ARCH_DLINFO
1978    /*
1979     * ARCH_DLINFO must come first so platform specific code can enforce
1980     * special alignment requirements on the AUXV if necessary (eg. PPC).
1981     */
1982    ARCH_DLINFO;
1983#endif
1984    /* There must be exactly DLINFO_ITEMS entries here, or the assert
1985     * on info->auxv_len will trigger.
1986     */
1987    NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1988    NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1989    NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1990    if ((info->alignment & ~qemu_host_page_mask) != 0) {
1991        /* Target doesn't support host page size alignment */
1992        NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1993    } else {
1994        NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1995                                               qemu_host_page_size)));
1996    }
1997    NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1998    NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1999    NEW_AUX_ENT(AT_ENTRY, info->entry);
2000    NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2001    NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2002    NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2003    NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2004    NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2005    NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2006    NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2007    NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2008
2009#ifdef ELF_HWCAP2
2010    NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2011#endif
2012
2013    if (u_platform) {
2014        NEW_AUX_ENT(AT_PLATFORM, u_platform);
2015    }
2016    NEW_AUX_ENT (AT_NULL, 0);
2017#undef NEW_AUX_ENT
2018
2019    /* Check that our initial calculation of the auxv length matches how much
2020     * we actually put into it.
2021     */
2022    assert(info->auxv_len == u_auxv - info->saved_auxv);
2023
2024    put_user_ual(argc, u_argc);
2025
2026    p = info->arg_strings;
2027    for (i = 0; i < argc; ++i) {
2028        put_user_ual(p, u_argv);
2029        u_argv += n;
2030        p += target_strlen(p) + 1;
2031    }
2032    put_user_ual(0, u_argv);
2033
2034    p = info->env_strings;
2035    for (i = 0; i < envc; ++i) {
2036        put_user_ual(p, u_envp);
2037        u_envp += n;
2038        p += target_strlen(p) + 1;
2039    }
2040    put_user_ual(0, u_envp);
2041
2042    return sp;
2043}
2044
2045unsigned long init_guest_space(unsigned long host_start,
2046                               unsigned long host_size,
2047                               unsigned long guest_start,
2048                               bool fixed)
2049{
2050    /* In order to use host shmat, we must be able to honor SHMLBA.  */
2051    unsigned long align = MAX(SHMLBA, qemu_host_page_size);
2052    unsigned long current_start, aligned_start;
2053    int flags;
2054
2055    assert(host_start || host_size);
2056
2057    /* If just a starting address is given, then just verify that
2058     * address.  */
2059    if (host_start && !host_size) {
2060#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2061        if (init_guest_commpage(host_start, host_size) != 1) {
2062            return (unsigned long)-1;
2063        }
2064#endif
2065        return host_start;
2066    }
2067
2068    /* Setup the initial flags and start address.  */
2069    current_start = host_start & -align;
2070    flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2071    if (fixed) {
2072        flags |= MAP_FIXED;
2073    }
2074
2075    /* Otherwise, a non-zero size region of memory needs to be mapped
2076     * and validated.  */
2077
2078#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2079    /* On 32-bit ARM, we need to map not just the usable memory, but
2080     * also the commpage.  Try to find a suitable place by allocating
2081     * a big chunk for all of it.  If host_start, then the naive
2082     * strategy probably does good enough.
2083     */
2084    if (!host_start) {
2085        unsigned long guest_full_size, host_full_size, real_start;
2086
2087        guest_full_size =
2088            (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2089        host_full_size = guest_full_size - guest_start;
2090        real_start = (unsigned long)
2091            mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2092        if (real_start == (unsigned long)-1) {
2093            if (host_size < host_full_size - qemu_host_page_size) {
2094                /* We failed to map a continous segment, but we're
2095                 * allowed to have a gap between the usable memory and
2096                 * the commpage where other things can be mapped.
2097                 * This sparseness gives us more flexibility to find
2098                 * an address range.
2099                 */
2100                goto naive;
2101            }
2102            return (unsigned long)-1;
2103        }
2104        munmap((void *)real_start, host_full_size);
2105        if (real_start & (align - 1)) {
2106            /* The same thing again, but with extra
2107             * so that we can shift around alignment.
2108             */
2109            unsigned long real_size = host_full_size + qemu_host_page_size;
2110            real_start = (unsigned long)
2111                mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2112            if (real_start == (unsigned long)-1) {
2113                if (host_size < host_full_size - qemu_host_page_size) {
2114                    goto naive;
2115                }
2116                return (unsigned long)-1;
2117            }
2118            munmap((void *)real_start, real_size);
2119            real_start = ROUND_UP(real_start, align);
2120        }
2121        current_start = real_start;
2122    }
2123 naive:
2124#endif
2125
2126    while (1) {
2127        unsigned long real_start, real_size, aligned_size;
2128        aligned_size = real_size = host_size;
2129
2130        /* Do not use mmap_find_vma here because that is limited to the
2131         * guest address space.  We are going to make the
2132         * guest address space fit whatever we're given.
2133         */
2134        real_start = (unsigned long)
2135            mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2136        if (real_start == (unsigned long)-1) {
2137            return (unsigned long)-1;
2138        }
2139
2140        /* Check to see if the address is valid.  */
2141        if (host_start && real_start != current_start) {
2142            goto try_again;
2143        }
2144
2145        /* Ensure the address is properly aligned.  */
2146        if (real_start & (align - 1)) {
2147            /* Ideally, we adjust like
2148             *
2149             *    pages: [  ][  ][  ][  ][  ]
2150             *      old:   [   real   ]
2151             *             [ aligned  ]
2152             *      new:   [     real     ]
2153             *               [ aligned  ]
2154             *
2155             * But if there is something else mapped right after it,
2156             * then obviously it won't have room to grow, and the
2157             * kernel will put the new larger real someplace else with
2158             * unknown alignment (if we made it to here, then
2159             * fixed=false).  Which is why we grow real by a full page
2160             * size, instead of by part of one; so that even if we get
2161             * moved, we can still guarantee alignment.  But this does
2162             * mean that there is a padding of < 1 page both before
2163             * and after the aligned range; the "after" could could
2164             * cause problems for ARM emulation where it could butt in
2165             * to where we need to put the commpage.
2166             */
2167            munmap((void *)real_start, host_size);
2168            real_size = aligned_size + qemu_host_page_size;
2169            real_start = (unsigned long)
2170                mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2171            if (real_start == (unsigned long)-1) {
2172                return (unsigned long)-1;
2173            }
2174            aligned_start = ROUND_UP(real_start, align);
2175        } else {
2176            aligned_start = real_start;
2177        }
2178
2179#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2180        /* On 32-bit ARM, we need to also be able to map the commpage.  */
2181        int valid = init_guest_commpage(aligned_start - guest_start,
2182                                        aligned_size + guest_start);
2183        if (valid == -1) {
2184            munmap((void *)real_start, real_size);
2185            return (unsigned long)-1;
2186        } else if (valid == 0) {
2187            goto try_again;
2188        }
2189#endif
2190
2191        /* If nothing has said `return -1` or `goto try_again` yet,
2192         * then the address we have is good.
2193         */
2194        break;
2195
2196    try_again:
2197        /* That address didn't work.  Unmap and try a different one.
2198         * The address the host picked because is typically right at
2199         * the top of the host address space and leaves the guest with
2200         * no usable address space.  Resort to a linear search.  We
2201         * already compensated for mmap_min_addr, so this should not
2202         * happen often.  Probably means we got unlucky and host
2203         * address space randomization put a shared library somewhere
2204         * inconvenient.
2205         *
2206         * This is probably a good strategy if host_start, but is
2207         * probably a bad strategy if not, which means we got here
2208         * because of trouble with ARM commpage setup.
2209         */
2210        munmap((void *)real_start, real_size);
2211        current_start += align;
2212        if (host_start == current_start) {
2213            /* Theoretically possible if host doesn't have any suitably
2214             * aligned areas.  Normally the first mmap will fail.
2215             */
2216            return (unsigned long)-1;
2217        }
2218    }
2219
2220    qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2221
2222    return aligned_start;
2223}
2224
2225static void probe_guest_base(const char *image_name,
2226                             abi_ulong loaddr, abi_ulong hiaddr)
2227{
2228    /* Probe for a suitable guest base address, if the user has not set
2229     * it explicitly, and set guest_base appropriately.
2230     * In case of error we will print a suitable message and exit.
2231     */
2232    const char *errmsg;
2233    if (!have_guest_base && !reserved_va) {
2234        unsigned long host_start, real_start, host_size;
2235
2236        /* Round addresses to page boundaries.  */
2237        loaddr &= qemu_host_page_mask;
2238        hiaddr = HOST_PAGE_ALIGN(hiaddr);
2239
2240        if (loaddr < mmap_min_addr) {
2241            host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2242        } else {
2243            host_start = loaddr;
2244            if (host_start != loaddr) {
2245                errmsg = "Address overflow loading ELF binary";
2246                goto exit_errmsg;
2247            }
2248        }
2249        host_size = hiaddr - loaddr;
2250
2251        /* Setup the initial guest memory space with ranges gleaned from
2252         * the ELF image that is being loaded.
2253         */
2254        real_start = init_guest_space(host_start, host_size, loaddr, false);
2255        if (real_start == (unsigned long)-1) {
2256            errmsg = "Unable to find space for application";
2257            goto exit_errmsg;
2258        }
2259        guest_base = real_start - loaddr;
2260
2261        qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2262                      TARGET_ABI_FMT_lx " to 0x%lx\n",
2263                      loaddr, real_start);
2264    }
2265    return;
2266
2267exit_errmsg:
2268    fprintf(stderr, "%s: %s\n", image_name, errmsg);
2269    exit(-1);
2270}
2271
2272
2273/* Load an ELF image into the address space.
2274
2275   IMAGE_NAME is the filename of the image, to use in error messages.
2276   IMAGE_FD is the open file descriptor for the image.
2277
2278   BPRM_BUF is a copy of the beginning of the file; this of course
2279   contains the elf file header at offset 0.  It is assumed that this
2280   buffer is sufficiently aligned to present no problems to the host
2281   in accessing data at aligned offsets within the buffer.
2282
2283   On return: INFO values will be filled in, as necessary or available.  */
2284
2285static void load_elf_image(const char *image_name, int image_fd,
2286                           struct image_info *info, char **pinterp_name,
2287                           char bprm_buf[BPRM_BUF_SIZE])
2288{
2289    struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2290    struct elf_phdr *phdr;
2291    abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2292    int i, retval;
2293    const char *errmsg;
2294
2295    /* First of all, some simple consistency checks */
2296    errmsg = "Invalid ELF image for this architecture";
2297    if (!elf_check_ident(ehdr)) {
2298        goto exit_errmsg;
2299    }
2300    bswap_ehdr(ehdr);
2301    if (!elf_check_ehdr(ehdr)) {
2302        goto exit_errmsg;
2303    }
2304
2305    i = ehdr->e_phnum * sizeof(struct elf_phdr);
2306    if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2307        phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2308    } else {
2309        phdr = (struct elf_phdr *) alloca(i);
2310        retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2311        if (retval != i) {
2312            goto exit_read;
2313        }
2314    }
2315    bswap_phdr(phdr, ehdr->e_phnum);
2316
2317    info->nsegs = 0;
2318    info->pt_dynamic_addr = 0;
2319
2320    mmap_lock();
2321
2322    /* Find the maximum size of the image and allocate an appropriate
2323       amount of memory to handle that.  */
2324    loaddr = -1, hiaddr = 0;
2325    info->alignment = 0;
2326    for (i = 0; i < ehdr->e_phnum; ++i) {
2327        if (phdr[i].p_type == PT_LOAD) {
2328            abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2329            if (a < loaddr) {
2330                loaddr = a;
2331            }
2332            a = phdr[i].p_vaddr + phdr[i].p_memsz;
2333            if (a > hiaddr) {
2334                hiaddr = a;
2335            }
2336            ++info->nsegs;
2337            info->alignment |= phdr[i].p_align;
2338        }
2339    }
2340
2341    load_addr = loaddr;
2342    if (ehdr->e_type == ET_DYN) {
2343        /* The image indicates that it can be loaded anywhere.  Find a
2344           location that can hold the memory space required.  If the
2345           image is pre-linked, LOADDR will be non-zero.  Since we do
2346           not supply MAP_FIXED here we'll use that address if and
2347           only if it remains available.  */
2348        load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2349                                MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2350                                -1, 0);
2351        if (load_addr == -1) {
2352            goto exit_perror;
2353        }
2354    } else if (pinterp_name != NULL) {
2355        /* This is the main executable.  Make sure that the low
2356           address does not conflict with MMAP_MIN_ADDR or the
2357           QEMU application itself.  */
2358        probe_guest_base(image_name, loaddr, hiaddr);
2359    }
2360    load_bias = load_addr - loaddr;
2361
2362    if (elf_is_fdpic(ehdr)) {
2363        struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2364            g_malloc(sizeof(*loadsegs) * info->nsegs);
2365
2366        for (i = 0; i < ehdr->e_phnum; ++i) {
2367            switch (phdr[i].p_type) {
2368            case PT_DYNAMIC:
2369                info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2370                break;
2371            case PT_LOAD:
2372                loadsegs->addr = phdr[i].p_vaddr + load_bias;
2373                loadsegs->p_vaddr = phdr[i].p_vaddr;
2374                loadsegs->p_memsz = phdr[i].p_memsz;
2375                ++loadsegs;
2376                break;
2377            }
2378        }
2379    }
2380
2381    info->load_bias = load_bias;
2382    info->load_addr = load_addr;
2383    info->entry = ehdr->e_entry + load_bias;
2384    info->start_code = -1;
2385    info->end_code = 0;
2386    info->start_data = -1;
2387    info->end_data = 0;
2388    info->brk = 0;
2389    info->elf_flags = ehdr->e_flags;
2390
2391    for (i = 0; i < ehdr->e_phnum; i++) {
2392        struct elf_phdr *eppnt = phdr + i;
2393        if (eppnt->p_type == PT_LOAD) {
2394            abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2395            int elf_prot = 0;
2396
2397            if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2398            if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2399            if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2400
2401            vaddr = load_bias + eppnt->p_vaddr;
2402            vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2403            vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2404            vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2405
2406            /*
2407             * Some segments may be completely empty without any backing file
2408             * segment, in that case just let zero_bss allocate an empty buffer
2409             * for it.
2410             */
2411            if (eppnt->p_filesz != 0) {
2412                error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2413                                    MAP_PRIVATE | MAP_FIXED,
2414                                    image_fd, eppnt->p_offset - vaddr_po);
2415
2416                if (error == -1) {
2417                    goto exit_perror;
2418                }
2419            }
2420
2421            vaddr_ef = vaddr + eppnt->p_filesz;
2422            vaddr_em = vaddr + eppnt->p_memsz;
2423
2424            /* If the load segment requests extra zeros (e.g. bss), map it.  */
2425            if (vaddr_ef < vaddr_em) {
2426                zero_bss(vaddr_ef, vaddr_em, elf_prot);
2427            }
2428
2429            /* Find the full program boundaries.  */
2430            if (elf_prot & PROT_EXEC) {
2431                if (vaddr < info->start_code) {
2432                    info->start_code = vaddr;
2433                }
2434                if (vaddr_ef > info->end_code) {
2435                    info->end_code = vaddr_ef;
2436                }
2437            }
2438            if (elf_prot & PROT_WRITE) {
2439                if (vaddr < info->start_data) {
2440                    info->start_data = vaddr;
2441                }
2442                if (vaddr_ef > info->end_data) {
2443                    info->end_data = vaddr_ef;
2444                }
2445                if (vaddr_em > info->brk) {
2446                    info->brk = vaddr_em;
2447                }
2448            }
2449        } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2450            char *interp_name;
2451
2452            if (*pinterp_name) {
2453                errmsg = "Multiple PT_INTERP entries";
2454                goto exit_errmsg;
2455            }
2456            interp_name = malloc(eppnt->p_filesz);
2457            if (!interp_name) {
2458                goto exit_perror;
2459            }
2460
2461            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2462                memcpy(interp_name, bprm_buf + eppnt->p_offset,
2463                       eppnt->p_filesz);
2464            } else {
2465                retval = pread(image_fd, interp_name, eppnt->p_filesz,
2466                               eppnt->p_offset);
2467                if (retval != eppnt->p_filesz) {
2468                    goto exit_perror;
2469                }
2470            }
2471            if (interp_name[eppnt->p_filesz - 1] != 0) {
2472                errmsg = "Invalid PT_INTERP entry";
2473                goto exit_errmsg;
2474            }
2475            *pinterp_name = interp_name;
2476#ifdef TARGET_MIPS
2477        } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2478            Mips_elf_abiflags_v0 abiflags;
2479            if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2480                errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2481                goto exit_errmsg;
2482            }
2483            if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2484                memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2485                       sizeof(Mips_elf_abiflags_v0));
2486            } else {
2487                retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2488                               eppnt->p_offset);
2489                if (retval != sizeof(Mips_elf_abiflags_v0)) {
2490                    goto exit_perror;
2491                }
2492            }
2493            bswap_mips_abiflags(&abiflags);
2494            info->fp_abi = abiflags.fp_abi;
2495#endif
2496        }
2497    }
2498
2499    if (info->end_data == 0) {
2500        info->start_data = info->end_code;
2501        info->end_data = info->end_code;
2502        info->brk = info->end_code;
2503    }
2504
2505    if (qemu_log_enabled()) {
2506        load_symbols(ehdr, image_fd, load_bias);
2507    }
2508
2509    mmap_unlock();
2510
2511    close(image_fd);
2512    return;
2513
2514 exit_read:
2515    if (retval >= 0) {
2516        errmsg = "Incomplete read of file header";
2517        goto exit_errmsg;
2518    }
2519 exit_perror:
2520    errmsg = strerror(errno);
2521 exit_errmsg:
2522    fprintf(stderr, "%s: %s\n", image_name, errmsg);
2523    exit(-1);
2524}
2525
2526static void load_elf_interp(const char *filename, struct image_info *info,
2527                            char bprm_buf[BPRM_BUF_SIZE])
2528{
2529    int fd, retval;
2530
2531    fd = open(path(filename), O_RDONLY);
2532    if (fd < 0) {
2533        goto exit_perror;
2534    }
2535
2536    retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2537    if (retval < 0) {
2538        goto exit_perror;
2539    }
2540    if (retval < BPRM_BUF_SIZE) {
2541        memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2542    }
2543
2544    load_elf_image(filename, fd, info, NULL, bprm_buf);
2545    return;
2546
2547 exit_perror:
2548    fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2549    exit(-1);
2550}
2551
2552static int symfind(const void *s0, const void *s1)
2553{
2554    target_ulong addr = *(target_ulong *)s0;
2555    struct elf_sym *sym = (struct elf_sym *)s1;
2556    int result = 0;
2557    if (addr < sym->st_value) {
2558        result = -1;
2559    } else if (addr >= sym->st_value + sym->st_size) {
2560        result = 1;
2561    }
2562    return result;
2563}
2564
2565static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2566{
2567#if ELF_CLASS == ELFCLASS32
2568    struct elf_sym *syms = s->disas_symtab.elf32;
2569#else
2570    struct elf_sym *syms = s->disas_symtab.elf64;
2571#endif
2572
2573    // binary search
2574    struct elf_sym *sym;
2575
2576    sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2577    if (sym != NULL) {
2578        return s->disas_strtab + sym->st_name;
2579    }
2580
2581    return "";
2582}
2583
2584/* FIXME: This should use elf_ops.h  */
2585static int symcmp(const void *s0, const void *s1)
2586{
2587    struct elf_sym *sym0 = (struct elf_sym *)s0;
2588    struct elf_sym *sym1 = (struct elf_sym *)s1;
2589    return (sym0->st_value < sym1->st_value)
2590        ? -1
2591        : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2592}
2593
2594/* Best attempt to load symbols from this ELF object. */
2595static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2596{
2597    int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2598    uint64_t segsz;
2599    struct elf_shdr *shdr;
2600    char *strings = NULL;
2601    struct syminfo *s = NULL;
2602    struct elf_sym *new_syms, *syms = NULL;
2603
2604    shnum = hdr->e_shnum;
2605    i = shnum * sizeof(struct elf_shdr);
2606    shdr = (struct elf_shdr *)alloca(i);
2607    if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2608        return;
2609    }
2610
2611    bswap_shdr(shdr, shnum);
2612    for (i = 0; i < shnum; ++i) {
2613        if (shdr[i].sh_type == SHT_SYMTAB) {
2614            sym_idx = i;
2615            str_idx = shdr[i].sh_link;
2616            goto found;
2617        }
2618    }
2619
2620    /* There will be no symbol table if the file was stripped.  */
2621    return;
2622
2623 found:
2624    /* Now know where the strtab and symtab are.  Snarf them.  */
2625    s = g_try_new(struct syminfo, 1);
2626    if (!s) {
2627        goto give_up;
2628    }
2629
2630    segsz = shdr[str_idx].sh_size;
2631    s->disas_strtab = strings = g_try_malloc(segsz);
2632    if (!strings ||
2633        pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2634        goto give_up;
2635    }
2636
2637    segsz = shdr[sym_idx].sh_size;
2638    syms = g_try_malloc(segsz);
2639    if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2640        goto give_up;
2641    }
2642
2643    if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2644        /* Implausibly large symbol table: give up rather than ploughing
2645         * on with the number of symbols calculation overflowing
2646         */
2647        goto give_up;
2648    }
2649    nsyms = segsz / sizeof(struct elf_sym);
2650    for (i = 0; i < nsyms; ) {
2651        bswap_sym(syms + i);
2652        /* Throw away entries which we do not need.  */
2653        if (syms[i].st_shndx == SHN_UNDEF
2654            || syms[i].st_shndx >= SHN_LORESERVE
2655            || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2656            if (i < --nsyms) {
2657                syms[i] = syms[nsyms];
2658            }
2659        } else {
2660#if defined(TARGET_ARM) || defined (TARGET_MIPS)
2661            /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2662            syms[i].st_value &= ~(target_ulong)1;
2663#endif
2664            syms[i].st_value += load_bias;
2665            i++;
2666        }
2667    }
2668
2669    /* No "useful" symbol.  */
2670    if (nsyms == 0) {
2671        goto give_up;
2672    }
2673
2674    /* Attempt to free the storage associated with the local symbols
2675       that we threw away.  Whether or not this has any effect on the
2676       memory allocation depends on the malloc implementation and how
2677       many symbols we managed to discard.  */
2678    new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2679    if (new_syms == NULL) {
2680        goto give_up;
2681    }
2682    syms = new_syms;
2683
2684    qsort(syms, nsyms, sizeof(*syms), symcmp);
2685
2686    s->disas_num_syms = nsyms;
2687#if ELF_CLASS == ELFCLASS32
2688    s->disas_symtab.elf32 = syms;
2689#else
2690    s->disas_symtab.elf64 = syms;
2691#endif
2692    s->lookup_symbol = lookup_symbolxx;
2693    s->next = syminfos;
2694    syminfos = s;
2695
2696    return;
2697
2698give_up:
2699    g_free(s);
2700    g_free(strings);
2701    g_free(syms);
2702}
2703
2704uint32_t get_elf_eflags(int fd)
2705{
2706    struct elfhdr ehdr;
2707    off_t offset;
2708    int ret;
2709
2710    /* Read ELF header */
2711    offset = lseek(fd, 0, SEEK_SET);
2712    if (offset == (off_t) -1) {
2713        return 0;
2714    }
2715    ret = read(fd, &ehdr, sizeof(ehdr));
2716    if (ret < sizeof(ehdr)) {
2717        return 0;
2718    }
2719    offset = lseek(fd, offset, SEEK_SET);
2720    if (offset == (off_t) -1) {
2721        return 0;
2722    }
2723
2724    /* Check ELF signature */
2725    if (!elf_check_ident(&ehdr)) {
2726        return 0;
2727    }
2728
2729    /* check header */
2730    bswap_ehdr(&ehdr);
2731    if (!elf_check_ehdr(&ehdr)) {
2732        return 0;
2733    }
2734
2735    /* return architecture id */
2736    return ehdr.e_flags;
2737}
2738
2739int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2740{
2741    struct image_info interp_info;
2742    struct elfhdr elf_ex;
2743    char *elf_interpreter = NULL;
2744    char *scratch;
2745
2746    memset(&interp_info, 0, sizeof(interp_info));
2747#ifdef TARGET_MIPS
2748    interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2749#endif
2750
2751    info->start_mmap = (abi_ulong)ELF_START_MMAP;
2752
2753    load_elf_image(bprm->filename, bprm->fd, info,
2754                   &elf_interpreter, bprm->buf);
2755
2756    /* ??? We need a copy of the elf header for passing to create_elf_tables.
2757       If we do nothing, we'll have overwritten this when we re-use bprm->buf
2758       when we load the interpreter.  */
2759    elf_ex = *(struct elfhdr *)bprm->buf;
2760
2761    /* Do this so that we can load the interpreter, if need be.  We will
2762       change some of these later */
2763    bprm->p = setup_arg_pages(bprm, info);
2764
2765    scratch = g_new0(char, TARGET_PAGE_SIZE);
2766    if (STACK_GROWS_DOWN) {
2767        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2768                                   bprm->p, info->stack_limit);
2769        info->file_string = bprm->p;
2770        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2771                                   bprm->p, info->stack_limit);
2772        info->env_strings = bprm->p;
2773        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2774                                   bprm->p, info->stack_limit);
2775        info->arg_strings = bprm->p;
2776    } else {
2777        info->arg_strings = bprm->p;
2778        bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2779                                   bprm->p, info->stack_limit);
2780        info->env_strings = bprm->p;
2781        bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2782                                   bprm->p, info->stack_limit);
2783        info->file_string = bprm->p;
2784        bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2785                                   bprm->p, info->stack_limit);
2786    }
2787
2788    g_free(scratch);
2789
2790    if (!bprm->p) {
2791        fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2792        exit(-1);
2793    }
2794
2795    if (elf_interpreter) {
2796        load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2797
2798        /* If the program interpreter is one of these two, then assume
2799           an iBCS2 image.  Otherwise assume a native linux image.  */
2800
2801        if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2802            || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2803            info->personality = PER_SVR4;
2804
2805            /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2806               and some applications "depend" upon this behavior.  Since
2807               we do not have the power to recompile these, we emulate
2808               the SVr4 behavior.  Sigh.  */
2809            target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2810                        MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2811        }
2812#ifdef TARGET_MIPS
2813        info->interp_fp_abi = interp_info.fp_abi;
2814#endif
2815    }
2816
2817    bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2818                                info, (elf_interpreter ? &interp_info : NULL));
2819    info->start_stack = bprm->p;
2820
2821    /* If we have an interpreter, set that as the program's entry point.
2822       Copy the load_bias as well, to help PPC64 interpret the entry
2823       point as a function descriptor.  Do this after creating elf tables
2824       so that we copy the original program entry point into the AUXV.  */
2825    if (elf_interpreter) {
2826        info->load_bias = interp_info.load_bias;
2827        info->entry = interp_info.entry;
2828        free(elf_interpreter);
2829    }
2830
2831#ifdef USE_ELF_CORE_DUMP
2832    bprm->core_dump = &elf_core_dump;
2833#endif
2834
2835    return 0;
2836}
2837
2838#ifdef USE_ELF_CORE_DUMP
2839/*
2840 * Definitions to generate Intel SVR4-like core files.
2841 * These mostly have the same names as the SVR4 types with "target_elf_"
2842 * tacked on the front to prevent clashes with linux definitions,
2843 * and the typedef forms have been avoided.  This is mostly like
2844 * the SVR4 structure, but more Linuxy, with things that Linux does
2845 * not support and which gdb doesn't really use excluded.
2846 *
2847 * Fields we don't dump (their contents is zero) in linux-user qemu
2848 * are marked with XXX.
2849 *
2850 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2851 *
2852 * Porting ELF coredump for target is (quite) simple process.  First you
2853 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2854 * the target resides):
2855 *
2856 * #define USE_ELF_CORE_DUMP
2857 *
2858 * Next you define type of register set used for dumping.  ELF specification
2859 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2860 *
2861 * typedef <target_regtype> target_elf_greg_t;
2862 * #define ELF_NREG <number of registers>
2863 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2864 *
2865 * Last step is to implement target specific function that copies registers
2866 * from given cpu into just specified register set.  Prototype is:
2867 *
2868 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2869 *                                const CPUArchState *env);
2870 *
2871 * Parameters:
2872 *     regs - copy register values into here (allocated and zeroed by caller)
2873 *     env - copy registers from here
2874 *
2875 * Example for ARM target is provided in this file.
2876 */
2877
2878/* An ELF note in memory */
2879struct memelfnote {
2880    const char *name;
2881    size_t     namesz;
2882    size_t     namesz_rounded;
2883    int        type;
2884    size_t     datasz;
2885    size_t     datasz_rounded;
2886    void       *data;
2887    size_t     notesz;
2888};
2889
2890struct target_elf_siginfo {
2891    abi_int    si_signo; /* signal number */
2892    abi_int    si_code;  /* extra code */
2893    abi_int    si_errno; /* errno */
2894};
2895
2896struct target_elf_prstatus {
2897    struct target_elf_siginfo pr_info;      /* Info associated with signal */
2898    abi_short          pr_cursig;    /* Current signal */
2899    abi_ulong          pr_sigpend;   /* XXX */
2900    abi_ulong          pr_sighold;   /* XXX */
2901    target_pid_t       pr_pid;
2902    target_pid_t       pr_ppid;
2903    target_pid_t       pr_pgrp;
2904    target_pid_t       pr_sid;
2905    struct target_timeval pr_utime;  /* XXX User time */
2906    struct target_timeval pr_stime;  /* XXX System time */
2907    struct target_timeval pr_cutime; /* XXX Cumulative user time */
2908    struct target_timeval pr_cstime; /* XXX Cumulative system time */
2909    target_elf_gregset_t      pr_reg;       /* GP registers */
2910    abi_int            pr_fpvalid;   /* XXX */
2911};
2912
2913#define ELF_PRARGSZ     (80) /* Number of chars for args */
2914
2915struct target_elf_prpsinfo {
2916    char         pr_state;       /* numeric process state */
2917    char         pr_sname;       /* char for pr_state */
2918    char         pr_zomb;        /* zombie */
2919    char         pr_nice;        /* nice val */
2920    abi_ulong    pr_flag;        /* flags */
2921    target_uid_t pr_uid;
2922    target_gid_t pr_gid;
2923    target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2924    /* Lots missing */
2925    char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
2926    char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2927};
2928
2929/* Here is the structure in which status of each thread is captured. */
2930struct elf_thread_status {
2931    QTAILQ_ENTRY(elf_thread_status)  ets_link;
2932    struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2933#if 0
2934    elf_fpregset_t fpu;             /* NT_PRFPREG */
2935    struct task_struct *thread;
2936    elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2937#endif
2938    struct memelfnote notes[1];
2939    int num_notes;
2940};
2941
2942struct elf_note_info {
2943    struct memelfnote   *notes;
2944    struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2945    struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2946
2947    QTAILQ_HEAD(, elf_thread_status) thread_list;
2948#if 0
2949    /*
2950     * Current version of ELF coredump doesn't support
2951     * dumping fp regs etc.
2952     */
2953    elf_fpregset_t *fpu;
2954    elf_fpxregset_t *xfpu;
2955    int thread_status_size;
2956#endif
2957    int notes_size;
2958    int numnote;
2959};
2960
2961struct vm_area_struct {
2962    target_ulong   vma_start;  /* start vaddr of memory region */
2963    target_ulong   vma_end;    /* end vaddr of memory region */
2964    abi_ulong      vma_flags;  /* protection etc. flags for the region */
2965    QTAILQ_ENTRY(vm_area_struct) vma_link;
2966};
2967
2968struct mm_struct {
2969    QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2970    int mm_count;           /* number of mappings */
2971};
2972
2973static struct mm_struct *vma_init(void);
2974static void vma_delete(struct mm_struct *);
2975static int vma_add_mapping(struct mm_struct *, target_ulong,
2976                           target_ulong, abi_ulong);
2977static int vma_get_mapping_count(const struct mm_struct *);
2978static struct vm_area_struct *vma_first(const struct mm_struct *);
2979static struct vm_area_struct *vma_next(struct vm_area_struct *);
2980static abi_ulong vma_dump_size(const struct vm_area_struct *);
2981static int vma_walker(void *priv, target_ulong start, target_ulong end,
2982                      unsigned long flags);
2983
2984static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2985static void fill_note(struct memelfnote *, const char *, int,
2986                      unsigned int, void *);
2987static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2988static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2989static void fill_auxv_note(struct memelfnote *, const TaskState *);
2990static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2991static size_t note_size(const struct memelfnote *);
2992static void free_note_info(struct elf_note_info *);
2993static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2994static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2995static int core_dump_filename(const TaskState *, char *, size_t);
2996
2997static int dump_write(int, const void *, size_t);
2998static int write_note(struct memelfnote *, int);
2999static int write_note_info(struct elf_note_info *, int);
3000
3001#ifdef BSWAP_NEEDED
3002static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3003{
3004    prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3005    prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3006    prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3007    prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3008    prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3009    prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3010    prstatus->pr_pid = tswap32(prstatus->pr_pid);
3011    prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3012    prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3013    prstatus->pr_sid = tswap32(prstatus->pr_sid);
3014    /* cpu times are not filled, so we skip them */
3015    /* regs should be in correct format already */
3016    prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3017}
3018
3019static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3020{
3021    psinfo->pr_flag = tswapal(psinfo->pr_flag);
3022    psinfo->pr_uid = tswap16(psinfo->pr_uid);
3023    psinfo->pr_gid = tswap16(psinfo->pr_gid);
3024    psinfo->pr_pid = tswap32(psinfo->pr_pid);
3025    psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3026    psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3027    psinfo->pr_sid = tswap32(psinfo->pr_sid);
3028}
3029
3030static void bswap_note(struct elf_note *en)
3031{
3032    bswap32s(&en->n_namesz);
3033    bswap32s(&en->n_descsz);
3034    bswap32s(&en->n_type);
3035}
3036#else
3037static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3038static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3039static inline void bswap_note(struct elf_note *en) { }
3040#endif /* BSWAP_NEEDED */
3041
3042/*
3043 * Minimal support for linux memory regions.  These are needed
3044 * when we are finding out what memory exactly belongs to
3045 * emulated process.  No locks needed here, as long as
3046 * thread that received the signal is stopped.
3047 */
3048
3049static struct mm_struct *vma_init(void)
3050{
3051    struct mm_struct *mm;
3052
3053    if ((mm = g_malloc(sizeof (*mm))) == NULL)
3054        return (NULL);
3055
3056    mm->mm_count = 0;
3057    QTAILQ_INIT(&mm->mm_mmap);
3058
3059    return (mm);
3060}
3061
3062static void vma_delete(struct mm_struct *mm)
3063{
3064    struct vm_area_struct *vma;
3065
3066    while ((vma = vma_first(mm)) != NULL) {
3067        QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3068        g_free(vma);
3069    }
3070    g_free(mm);
3071}
3072
3073static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3074                           target_ulong end, abi_ulong flags)
3075{
3076    struct vm_area_struct *vma;
3077
3078    if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3079        return (-1);
3080
3081    vma->vma_start = start;
3082    vma->vma_end = end;
3083    vma->vma_flags = flags;
3084
3085    QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3086    mm->mm_count++;
3087
3088    return (0);
3089}
3090
3091static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3092{
3093    return (QTAILQ_FIRST(&mm->mm_mmap));
3094}
3095
3096static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3097{
3098    return (QTAILQ_NEXT(vma, vma_link));
3099}
3100
3101static int vma_get_mapping_count(const struct mm_struct *mm)
3102{
3103    return (mm->mm_count);
3104}
3105
3106/*
3107 * Calculate file (dump) size of given memory region.
3108 */
3109static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3110{
3111    /* if we cannot even read the first page, skip it */
3112    if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3113        return (0);
3114
3115    /*
3116     * Usually we don't dump executable pages as they contain
3117     * non-writable code that debugger can read directly from
3118     * target library etc.  However, thread stacks are marked
3119     * also executable so we read in first page of given region
3120     * and check whether it contains elf header.  If there is
3121     * no elf header, we dump it.
3122     */
3123    if (vma->vma_flags & PROT_EXEC) {
3124        char page[TARGET_PAGE_SIZE];
3125
3126        copy_from_user(page, vma->vma_start, sizeof (page));
3127        if ((page[EI_MAG0] == ELFMAG0) &&
3128            (page[EI_MAG1] == ELFMAG1) &&
3129            (page[EI_MAG2] == ELFMAG2) &&
3130            (page[EI_MAG3] == ELFMAG3)) {
3131            /*
3132             * Mappings are possibly from ELF binary.  Don't dump
3133             * them.
3134             */
3135            return (0);
3136        }
3137    }
3138
3139    return (vma->vma_end - vma->vma_start);
3140}
3141
3142static int vma_walker(void *priv, target_ulong start, target_ulong end,
3143                      unsigned long flags)
3144{
3145    struct mm_struct *mm = (struct mm_struct *)priv;
3146
3147    vma_add_mapping(mm, start, end, flags);
3148    return (0);
3149}
3150
3151static void fill_note(struct memelfnote *note, const char *name, int type,
3152                      unsigned int sz, void *data)
3153{
3154    unsigned int namesz;
3155
3156    namesz = strlen(name) + 1;
3157    note->name = name;
3158    note->namesz = namesz;
3159    note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3160    note->type = type;
3161    note->datasz = sz;
3162    note->datasz_rounded = roundup(sz, sizeof (int32_t));
3163
3164    note->data = data;
3165
3166    /*
3167     * We calculate rounded up note size here as specified by
3168     * ELF document.
3169     */
3170    note->notesz = sizeof (struct elf_note) +
3171        note->namesz_rounded + note->datasz_rounded;
3172}
3173
3174static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3175                            uint32_t flags)
3176{
3177    (void) memset(elf, 0, sizeof(*elf));
3178
3179    (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3180    elf->e_ident[EI_CLASS] = ELF_CLASS;
3181    elf->e_ident[EI_DATA] = ELF_DATA;
3182    elf->e_ident[EI_VERSION] = EV_CURRENT;
3183    elf->e_ident[EI_OSABI] = ELF_OSABI;
3184
3185    elf->e_type = ET_CORE;
3186    elf->e_machine = machine;
3187    elf->e_version = EV_CURRENT;
3188    elf->e_phoff = sizeof(struct elfhdr);
3189    elf->e_flags = flags;
3190    elf->e_ehsize = sizeof(struct elfhdr);
3191    elf->e_phentsize = sizeof(struct elf_phdr);
3192    elf->e_phnum = segs;
3193
3194    bswap_ehdr(elf);
3195}
3196
3197static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3198{
3199    phdr->p_type = PT_NOTE;
3200    phdr->p_offset = offset;
3201    phdr->p_vaddr = 0;
3202    phdr->p_paddr = 0;
3203    phdr->p_filesz = sz;
3204    phdr->p_memsz = 0;
3205    phdr->p_flags = 0;
3206    phdr->p_align = 0;
3207
3208    bswap_phdr(phdr, 1);
3209}
3210
3211static size_t note_size(const struct memelfnote *note)
3212{
3213    return (note->notesz);
3214}
3215
3216static void fill_prstatus(struct target_elf_prstatus *prstatus,
3217                          const TaskState *ts, int signr)
3218{
3219    (void) memset(prstatus, 0, sizeof (*prstatus));
3220    prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3221    prstatus->pr_pid = ts->ts_tid;
3222    prstatus->pr_ppid = getppid();
3223    prstatus->pr_pgrp = getpgrp();
3224    prstatus->pr_sid = getsid(0);
3225
3226    bswap_prstatus(prstatus);
3227}
3228
3229static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3230{
3231    char *base_filename;
3232    unsigned int i, len;
3233
3234    (void) memset(psinfo, 0, sizeof (*psinfo));
3235
3236    len = ts->info->arg_end - ts->info->arg_start;
3237    if (len >= ELF_PRARGSZ)
3238        len = ELF_PRARGSZ - 1;
3239    if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3240        return -EFAULT;
3241    for (i = 0; i < len; i++)
3242        if (psinfo->pr_psargs[i] == 0)
3243            psinfo->pr_psargs[i] = ' ';
3244    psinfo->pr_psargs[len] = 0;
3245
3246    psinfo->pr_pid = getpid();
3247    psinfo->pr_ppid = getppid();
3248    psinfo->pr_pgrp = getpgrp();
3249    psinfo->pr_sid = getsid(0);
3250    psinfo->pr_uid = getuid();
3251    psinfo->pr_gid = getgid();
3252
3253    base_filename = g_path_get_basename(ts->bprm->filename);
3254    /*
3255     * Using strncpy here is fine: at max-length,
3256     * this field is not NUL-terminated.
3257     */
3258    (void) strncpy(psinfo->pr_fname, base_filename,
3259                   sizeof(psinfo->pr_fname));
3260
3261    g_free(base_filename);
3262    bswap_psinfo(psinfo);
3263    return (0);
3264}
3265
3266static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3267{
3268    elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3269    elf_addr_t orig_auxv = auxv;
3270    void *ptr;
3271    int len = ts->info->auxv_len;
3272
3273    /*
3274     * Auxiliary vector is stored in target process stack.  It contains
3275     * {type, value} pairs that we need to dump into note.  This is not
3276     * strictly necessary but we do it here for sake of completeness.
3277     */
3278
3279    /* read in whole auxv vector and copy it to memelfnote */
3280    ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3281    if (ptr != NULL) {
3282        fill_note(note, "CORE", NT_AUXV, len, ptr);
3283        unlock_user(ptr, auxv, len);
3284    }
3285}
3286
3287/*
3288 * Constructs name of coredump file.  We have following convention
3289 * for the name:
3290 *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3291 *
3292 * Returns 0 in case of success, -1 otherwise (errno is set).
3293 */
3294static int core_dump_filename(const TaskState *ts, char *buf,
3295                              size_t bufsize)
3296{
3297    char timestamp[64];
3298    char *base_filename = NULL;
3299    struct timeval tv;
3300    struct tm tm;
3301
3302    assert(bufsize >= PATH_MAX);
3303
3304    if (gettimeofday(&tv, NULL) < 0) {
3305        (void) fprintf(stderr, "unable to get current timestamp: %s",
3306                       strerror(errno));
3307        return (-1);
3308    }
3309
3310    base_filename = g_path_get_basename(ts->bprm->filename);
3311    (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3312                    localtime_r(&tv.tv_sec, &tm));
3313    (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3314                    base_filename, timestamp, (int)getpid());
3315    g_free(base_filename);
3316
3317    return (0);
3318}
3319
3320static int dump_write(int fd, const void *ptr, size_t size)
3321{
3322    const char *bufp = (const char *)ptr;
3323    ssize_t bytes_written, bytes_left;
3324    struct rlimit dumpsize;
3325    off_t pos;
3326
3327    bytes_written = 0;
3328    getrlimit(RLIMIT_CORE, &dumpsize);
3329    if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3330        if (errno == ESPIPE) { /* not a seekable stream */
3331            bytes_left = size;
3332        } else {
3333            return pos;
3334        }
3335    } else {
3336        if (dumpsize.rlim_cur <= pos) {
3337            return -1;
3338        } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3339            bytes_left = size;
3340        } else {
3341            size_t limit_left=dumpsize.rlim_cur - pos;
3342            bytes_left = limit_left >= size ? size : limit_left ;
3343        }
3344    }
3345
3346    /*
3347     * In normal conditions, single write(2) should do but
3348     * in case of socket etc. this mechanism is more portable.
3349     */
3350    do {
3351        bytes_written = write(fd, bufp, bytes_left);
3352        if (bytes_written < 0) {
3353            if (errno == EINTR)
3354                continue;
3355            return (-1);
3356        } else if (bytes_written == 0) { /* eof */
3357            return (-1);
3358        }
3359        bufp += bytes_written;
3360        bytes_left -= bytes_written;
3361    } while (bytes_left > 0);
3362
3363    return (0);
3364}
3365
3366static int write_note(struct memelfnote *men, int fd)
3367{
3368    struct elf_note en;
3369
3370    en.n_namesz = men->namesz;
3371    en.n_type = men->type;
3372    en.n_descsz = men->datasz;
3373
3374    bswap_note(&en);
3375
3376    if (dump_write(fd, &en, sizeof(en)) != 0)
3377        return (-1);
3378    if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3379        return (-1);
3380    if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3381        return (-1);
3382
3383    return (0);
3384}
3385
3386static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3387{
3388    CPUState *cpu = env_cpu((CPUArchState *)env);
3389    TaskState *ts = (TaskState *)cpu->opaque;
3390    struct elf_thread_status *ets;
3391
3392    ets = g_malloc0(sizeof (*ets));
3393    ets->num_notes = 1; /* only prstatus is dumped */
3394    fill_prstatus(&ets->prstatus, ts, 0);
3395    elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3396    fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3397              &ets->prstatus);
3398
3399    QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3400
3401    info->notes_size += note_size(&ets->notes[0]);
3402}
3403
3404static void init_note_info(struct elf_note_info *info)
3405{
3406    /* Initialize the elf_note_info structure so that it is at
3407     * least safe to call free_note_info() on it. Must be
3408     * called before calling fill_note_info().
3409     */
3410    memset(info, 0, sizeof (*info));
3411    QTAILQ_INIT(&info->thread_list);
3412}
3413
3414static int fill_note_info(struct elf_note_info *info,
3415                          long signr, const CPUArchState *env)
3416{
3417#define NUMNOTES 3
3418    CPUState *cpu = env_cpu((CPUArchState *)env);
3419    TaskState *ts = (TaskState *)cpu->opaque;
3420    int i;
3421
3422    info->notes = g_new0(struct memelfnote, NUMNOTES);
3423    if (info->notes == NULL)
3424        return (-ENOMEM);
3425    info->prstatus = g_malloc0(sizeof (*info->prstatus));
3426    if (info->prstatus == NULL)
3427        return (-ENOMEM);
3428    info->psinfo = g_malloc0(sizeof (*info->psinfo));
3429    if (info->prstatus == NULL)
3430        return (-ENOMEM);
3431
3432    /*
3433     * First fill in status (and registers) of current thread
3434     * including process info & aux vector.
3435     */
3436    fill_prstatus(info->prstatus, ts, signr);
3437    elf_core_copy_regs(&info->prstatus->pr_reg, env);
3438    fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3439              sizeof (*info->prstatus), info->prstatus);
3440    fill_psinfo(info->psinfo, ts);
3441    fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3442              sizeof (*info->psinfo), info->psinfo);
3443    fill_auxv_note(&info->notes[2], ts);
3444    info->numnote = 3;
3445
3446    info->notes_size = 0;
3447    for (i = 0; i < info->numnote; i++)
3448        info->notes_size += note_size(&info->notes[i]);
3449
3450    /* read and fill status of all threads */
3451    cpu_list_lock();
3452    CPU_FOREACH(cpu) {
3453        if (cpu == thread_cpu) {
3454            continue;
3455        }
3456        fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3457    }
3458    cpu_list_unlock();
3459
3460    return (0);
3461}
3462
3463static void free_note_info(struct elf_note_info *info)
3464{
3465    struct elf_thread_status *ets;
3466
3467    while (!QTAILQ_EMPTY(&info->thread_list)) {
3468        ets = QTAILQ_FIRST(&info->thread_list);
3469        QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3470        g_free(ets);
3471    }
3472
3473    g_free(info->prstatus);
3474    g_free(info->psinfo);
3475    g_free(info->notes);
3476}
3477
3478static int write_note_info(struct elf_note_info *info, int fd)
3479{
3480    struct elf_thread_status *ets;
3481    int i, error = 0;
3482
3483    /* write prstatus, psinfo and auxv for current thread */
3484    for (i = 0; i < info->numnote; i++)
3485        if ((error = write_note(&info->notes[i], fd)) != 0)
3486            return (error);
3487
3488    /* write prstatus for each thread */
3489    QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3490        if ((error = write_note(&ets->notes[0], fd)) != 0)
3491            return (error);
3492    }
3493
3494    return (0);
3495}
3496
3497/*
3498 * Write out ELF coredump.
3499 *
3500 * See documentation of ELF object file format in:
3501 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3502 *
3503 * Coredump format in linux is following:
3504 *
3505 * 0   +----------------------+         \
3506 *     | ELF header           | ET_CORE  |
3507 *     +----------------------+          |
3508 *     | ELF program headers  |          |--- headers
3509 *     | - NOTE section       |          |
3510 *     | - PT_LOAD sections   |          |
3511 *     +----------------------+         /
3512 *     | NOTEs:               |
3513 *     | - NT_PRSTATUS        |
3514 *     | - NT_PRSINFO         |
3515 *     | - NT_AUXV            |
3516 *     +----------------------+ <-- aligned to target page
3517 *     | Process memory dump  |
3518 *     :                      :
3519 *     .                      .
3520 *     :                      :
3521 *     |                      |
3522 *     +----------------------+
3523 *
3524 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3525 * NT_PRSINFO  -> struct elf_prpsinfo
3526 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3527 *
3528 * Format follows System V format as close as possible.  Current
3529 * version limitations are as follows:
3530 *     - no floating point registers are dumped
3531 *
3532 * Function returns 0 in case of success, negative errno otherwise.
3533 *
3534 * TODO: make this work also during runtime: it should be
3535 * possible to force coredump from running process and then
3536 * continue processing.  For example qemu could set up SIGUSR2
3537 * handler (provided that target process haven't registered
3538 * handler for that) that does the dump when signal is received.
3539 */
3540static int elf_core_dump(int signr, const CPUArchState *env)
3541{
3542    const CPUState *cpu = env_cpu((CPUArchState *)env);
3543    const TaskState *ts = (const TaskState *)cpu->opaque;
3544    struct vm_area_struct *vma = NULL;
3545    char corefile[PATH_MAX];
3546    struct elf_note_info info;
3547    struct elfhdr elf;
3548    struct elf_phdr phdr;
3549    struct rlimit dumpsize;
3550    struct mm_struct *mm = NULL;
3551    off_t offset = 0, data_offset = 0;
3552    int segs = 0;
3553    int fd = -1;
3554
3555    init_note_info(&info);
3556
3557    errno = 0;
3558    getrlimit(RLIMIT_CORE, &dumpsize);
3559    if (dumpsize.rlim_cur == 0)
3560        return 0;
3561
3562    if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3563        return (-errno);
3564
3565    if ((fd = open(corefile, O_WRONLY | O_CREAT,
3566                   S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3567        return (-errno);
3568
3569    /*
3570     * Walk through target process memory mappings and
3571     * set up structure containing this information.  After
3572     * this point vma_xxx functions can be used.
3573     */
3574    if ((mm = vma_init()) == NULL)
3575        goto out;
3576
3577    walk_memory_regions(mm, vma_walker);
3578    segs = vma_get_mapping_count(mm);
3579
3580    /*
3581     * Construct valid coredump ELF header.  We also
3582     * add one more segment for notes.
3583     */
3584    fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3585    if (dump_write(fd, &elf, sizeof (elf)) != 0)
3586        goto out;
3587
3588    /* fill in the in-memory version of notes */
3589    if (fill_note_info(&info, signr, env) < 0)
3590        goto out;
3591
3592    offset += sizeof (elf);                             /* elf header */
3593    offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3594
3595    /* write out notes program header */
3596    fill_elf_note_phdr(&phdr, info.notes_size, offset);
3597
3598    offset += info.notes_size;
3599    if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3600        goto out;
3601
3602    /*
3603     * ELF specification wants data to start at page boundary so
3604     * we align it here.
3605     */
3606    data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3607
3608    /*
3609     * Write program headers for memory regions mapped in
3610     * the target process.
3611     */
3612    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3613        (void) memset(&phdr, 0, sizeof (phdr));
3614
3615        phdr.p_type = PT_LOAD;
3616        phdr.p_offset = offset;
3617        phdr.p_vaddr = vma->vma_start;
3618        phdr.p_paddr = 0;
3619        phdr.p_filesz = vma_dump_size(vma);
3620        offset += phdr.p_filesz;
3621        phdr.p_memsz = vma->vma_end - vma->vma_start;
3622        phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3623        if (vma->vma_flags & PROT_WRITE)
3624            phdr.p_flags |= PF_W;
3625        if (vma->vma_flags & PROT_EXEC)
3626            phdr.p_flags |= PF_X;
3627        phdr.p_align = ELF_EXEC_PAGESIZE;
3628
3629        bswap_phdr(&phdr, 1);
3630        if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3631            goto out;
3632        }
3633    }
3634
3635    /*
3636     * Next we write notes just after program headers.  No
3637     * alignment needed here.
3638     */
3639    if (write_note_info(&info, fd) < 0)
3640        goto out;
3641
3642    /* align data to page boundary */
3643    if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3644        goto out;
3645
3646    /*
3647     * Finally we can dump process memory into corefile as well.
3648     */
3649    for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3650        abi_ulong addr;
3651        abi_ulong end;
3652
3653        end = vma->vma_start + vma_dump_size(vma);
3654
3655        for (addr = vma->vma_start; addr < end;
3656             addr += TARGET_PAGE_SIZE) {
3657            char page[TARGET_PAGE_SIZE];
3658            int error;
3659
3660            /*
3661             *  Read in page from target process memory and
3662             *  write it to coredump file.
3663             */
3664            error = copy_from_user(page, addr, sizeof (page));
3665            if (error != 0) {
3666                (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3667                               addr);
3668                errno = -error;
3669                goto out;
3670            }
3671            if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3672                goto out;
3673        }
3674    }
3675
3676 out:
3677    free_note_info(&info);
3678    if (mm != NULL)
3679        vma_delete(mm);
3680    (void) close(fd);
3681
3682    if (errno != 0)
3683        return (-errno);
3684    return (0);
3685}
3686#endif /* USE_ELF_CORE_DUMP */
3687
3688void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3689{
3690    init_thread(regs, infop);
3691}
3692