qemu/target/i386/kvm.c
<<
>>
Prefs
   1/*
   2 * QEMU KVM support
   3 *
   4 * Copyright (C) 2006-2008 Qumranet Technologies
   5 * Copyright IBM, Corp. 2008
   6 *
   7 * Authors:
   8 *  Anthony Liguori   <aliguori@us.ibm.com>
   9 *
  10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
  11 * See the COPYING file in the top-level directory.
  12 *
  13 */
  14
  15#include "qemu/osdep.h"
  16#include "qapi/error.h"
  17#include <sys/ioctl.h>
  18#include <sys/utsname.h>
  19
  20#include <linux/kvm.h>
  21#include "standard-headers/asm-x86/kvm_para.h"
  22
  23#include "cpu.h"
  24#include "sysemu/sysemu.h"
  25#include "sysemu/hw_accel.h"
  26#include "sysemu/kvm_int.h"
  27#include "kvm_i386.h"
  28#include "hyperv.h"
  29#include "hyperv-proto.h"
  30
  31#include "exec/gdbstub.h"
  32#include "qemu/host-utils.h"
  33#include "qemu/config-file.h"
  34#include "qemu/error-report.h"
  35#include "hw/i386/pc.h"
  36#include "hw/i386/apic.h"
  37#include "hw/i386/apic_internal.h"
  38#include "hw/i386/apic-msidef.h"
  39#include "hw/i386/intel_iommu.h"
  40#include "hw/i386/x86-iommu.h"
  41
  42#include "hw/pci/pci.h"
  43#include "hw/pci/msi.h"
  44#include "hw/pci/msix.h"
  45#include "migration/blocker.h"
  46#include "exec/memattrs.h"
  47#include "trace.h"
  48
  49//#define DEBUG_KVM
  50
  51#ifdef DEBUG_KVM
  52#define DPRINTF(fmt, ...) \
  53    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
  54#else
  55#define DPRINTF(fmt, ...) \
  56    do { } while (0)
  57#endif
  58
  59#define MSR_KVM_WALL_CLOCK  0x11
  60#define MSR_KVM_SYSTEM_TIME 0x12
  61
  62/* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
  63 * 255 kvm_msr_entry structs */
  64#define MSR_BUF_SIZE 4096
  65
  66const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
  67    KVM_CAP_INFO(SET_TSS_ADDR),
  68    KVM_CAP_INFO(EXT_CPUID),
  69    KVM_CAP_INFO(MP_STATE),
  70    KVM_CAP_LAST_INFO
  71};
  72
  73static bool has_msr_star;
  74static bool has_msr_hsave_pa;
  75static bool has_msr_tsc_aux;
  76static bool has_msr_tsc_adjust;
  77static bool has_msr_tsc_deadline;
  78static bool has_msr_feature_control;
  79static bool has_msr_misc_enable;
  80static bool has_msr_smbase;
  81static bool has_msr_bndcfgs;
  82static int lm_capable_kernel;
  83static bool has_msr_hv_hypercall;
  84static bool has_msr_hv_crash;
  85static bool has_msr_hv_reset;
  86static bool has_msr_hv_vpindex;
  87static bool hv_vpindex_settable;
  88static bool has_msr_hv_runtime;
  89static bool has_msr_hv_synic;
  90static bool has_msr_hv_stimer;
  91static bool has_msr_hv_frequencies;
  92static bool has_msr_hv_reenlightenment;
  93static bool has_msr_xss;
  94static bool has_msr_spec_ctrl;
  95static bool has_msr_virt_ssbd;
  96static bool has_msr_smi_count;
  97static bool has_msr_arch_capabs;
  98static bool has_msr_core_capabs;
  99
 100static uint32_t has_architectural_pmu_version;
 101static uint32_t num_architectural_pmu_gp_counters;
 102static uint32_t num_architectural_pmu_fixed_counters;
 103
 104static int has_xsave;
 105static int has_xcrs;
 106static int has_pit_state2;
 107static int has_exception_payload;
 108
 109static bool has_msr_mcg_ext_ctl;
 110
 111static struct kvm_cpuid2 *cpuid_cache;
 112static struct kvm_msr_list *kvm_feature_msrs;
 113
 114int kvm_has_pit_state2(void)
 115{
 116    return has_pit_state2;
 117}
 118
 119bool kvm_has_smm(void)
 120{
 121    return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
 122}
 123
 124bool kvm_has_adjust_clock_stable(void)
 125{
 126    int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
 127
 128    return (ret == KVM_CLOCK_TSC_STABLE);
 129}
 130
 131bool kvm_has_exception_payload(void)
 132{
 133    return has_exception_payload;
 134}
 135
 136bool kvm_allows_irq0_override(void)
 137{
 138    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
 139}
 140
 141static bool kvm_x2apic_api_set_flags(uint64_t flags)
 142{
 143    KVMState *s = KVM_STATE(current_machine->accelerator);
 144
 145    return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
 146}
 147
 148#define MEMORIZE(fn, _result) \
 149    ({ \
 150        static bool _memorized; \
 151        \
 152        if (_memorized) { \
 153            return _result; \
 154        } \
 155        _memorized = true; \
 156        _result = fn; \
 157    })
 158
 159static bool has_x2apic_api;
 160
 161bool kvm_has_x2apic_api(void)
 162{
 163    return has_x2apic_api;
 164}
 165
 166bool kvm_enable_x2apic(void)
 167{
 168    return MEMORIZE(
 169             kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
 170                                      KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
 171             has_x2apic_api);
 172}
 173
 174bool kvm_hv_vpindex_settable(void)
 175{
 176    return hv_vpindex_settable;
 177}
 178
 179static int kvm_get_tsc(CPUState *cs)
 180{
 181    X86CPU *cpu = X86_CPU(cs);
 182    CPUX86State *env = &cpu->env;
 183    struct {
 184        struct kvm_msrs info;
 185        struct kvm_msr_entry entries[1];
 186    } msr_data;
 187    int ret;
 188
 189    if (env->tsc_valid) {
 190        return 0;
 191    }
 192
 193    msr_data.info.nmsrs = 1;
 194    msr_data.entries[0].index = MSR_IA32_TSC;
 195    env->tsc_valid = !runstate_is_running();
 196
 197    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
 198    if (ret < 0) {
 199        return ret;
 200    }
 201
 202    assert(ret == 1);
 203    env->tsc = msr_data.entries[0].data;
 204    return 0;
 205}
 206
 207static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
 208{
 209    kvm_get_tsc(cpu);
 210}
 211
 212void kvm_synchronize_all_tsc(void)
 213{
 214    CPUState *cpu;
 215
 216    if (kvm_enabled()) {
 217        CPU_FOREACH(cpu) {
 218            run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
 219        }
 220    }
 221}
 222
 223static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
 224{
 225    struct kvm_cpuid2 *cpuid;
 226    int r, size;
 227
 228    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 229    cpuid = g_malloc0(size);
 230    cpuid->nent = max;
 231    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
 232    if (r == 0 && cpuid->nent >= max) {
 233        r = -E2BIG;
 234    }
 235    if (r < 0) {
 236        if (r == -E2BIG) {
 237            g_free(cpuid);
 238            return NULL;
 239        } else {
 240            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
 241                    strerror(-r));
 242            exit(1);
 243        }
 244    }
 245    return cpuid;
 246}
 247
 248/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
 249 * for all entries.
 250 */
 251static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
 252{
 253    struct kvm_cpuid2 *cpuid;
 254    int max = 1;
 255
 256    if (cpuid_cache != NULL) {
 257        return cpuid_cache;
 258    }
 259    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
 260        max *= 2;
 261    }
 262    cpuid_cache = cpuid;
 263    return cpuid;
 264}
 265
 266static const struct kvm_para_features {
 267    int cap;
 268    int feature;
 269} para_features[] = {
 270    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
 271    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
 272    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
 273    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
 274};
 275
 276static int get_para_features(KVMState *s)
 277{
 278    int i, features = 0;
 279
 280    for (i = 0; i < ARRAY_SIZE(para_features); i++) {
 281        if (kvm_check_extension(s, para_features[i].cap)) {
 282            features |= (1 << para_features[i].feature);
 283        }
 284    }
 285
 286    return features;
 287}
 288
 289static bool host_tsx_blacklisted(void)
 290{
 291    int family, model, stepping;\
 292    char vendor[CPUID_VENDOR_SZ + 1];
 293
 294    host_vendor_fms(vendor, &family, &model, &stepping);
 295
 296    /* Check if we are running on a Haswell host known to have broken TSX */
 297    return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
 298           (family == 6) &&
 299           ((model == 63 && stepping < 4) ||
 300            model == 60 || model == 69 || model == 70);
 301}
 302
 303/* Returns the value for a specific register on the cpuid entry
 304 */
 305static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
 306{
 307    uint32_t ret = 0;
 308    switch (reg) {
 309    case R_EAX:
 310        ret = entry->eax;
 311        break;
 312    case R_EBX:
 313        ret = entry->ebx;
 314        break;
 315    case R_ECX:
 316        ret = entry->ecx;
 317        break;
 318    case R_EDX:
 319        ret = entry->edx;
 320        break;
 321    }
 322    return ret;
 323}
 324
 325/* Find matching entry for function/index on kvm_cpuid2 struct
 326 */
 327static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
 328                                                 uint32_t function,
 329                                                 uint32_t index)
 330{
 331    int i;
 332    for (i = 0; i < cpuid->nent; ++i) {
 333        if (cpuid->entries[i].function == function &&
 334            cpuid->entries[i].index == index) {
 335            return &cpuid->entries[i];
 336        }
 337    }
 338    /* not found: */
 339    return NULL;
 340}
 341
 342uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
 343                                      uint32_t index, int reg)
 344{
 345    struct kvm_cpuid2 *cpuid;
 346    uint32_t ret = 0;
 347    uint32_t cpuid_1_edx;
 348    bool found = false;
 349
 350    cpuid = get_supported_cpuid(s);
 351
 352    struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
 353    if (entry) {
 354        found = true;
 355        ret = cpuid_entry_get_reg(entry, reg);
 356    }
 357
 358    /* Fixups for the data returned by KVM, below */
 359
 360    if (function == 1 && reg == R_EDX) {
 361        /* KVM before 2.6.30 misreports the following features */
 362        ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
 363    } else if (function == 1 && reg == R_ECX) {
 364        /* We can set the hypervisor flag, even if KVM does not return it on
 365         * GET_SUPPORTED_CPUID
 366         */
 367        ret |= CPUID_EXT_HYPERVISOR;
 368        /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
 369         * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
 370         * and the irqchip is in the kernel.
 371         */
 372        if (kvm_irqchip_in_kernel() &&
 373                kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
 374            ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
 375        }
 376
 377        /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
 378         * without the in-kernel irqchip
 379         */
 380        if (!kvm_irqchip_in_kernel()) {
 381            ret &= ~CPUID_EXT_X2APIC;
 382        }
 383
 384        if (enable_cpu_pm) {
 385            int disable_exits = kvm_check_extension(s,
 386                                                    KVM_CAP_X86_DISABLE_EXITS);
 387
 388            if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
 389                ret |= CPUID_EXT_MONITOR;
 390            }
 391        }
 392    } else if (function == 6 && reg == R_EAX) {
 393        ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
 394    } else if (function == 7 && index == 0 && reg == R_EBX) {
 395        if (host_tsx_blacklisted()) {
 396            ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
 397        }
 398    } else if (function == 7 && index == 0 && reg == R_EDX) {
 399        /*
 400         * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
 401         * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
 402         * returned by KVM_GET_MSR_INDEX_LIST.
 403         */
 404        if (!has_msr_arch_capabs) {
 405            ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
 406        }
 407    } else if (function == 0x80000001 && reg == R_ECX) {
 408        /*
 409         * It's safe to enable TOPOEXT even if it's not returned by
 410         * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
 411         * us to keep CPU models including TOPOEXT runnable on older kernels.
 412         */
 413        ret |= CPUID_EXT3_TOPOEXT;
 414    } else if (function == 0x80000001 && reg == R_EDX) {
 415        /* On Intel, kvm returns cpuid according to the Intel spec,
 416         * so add missing bits according to the AMD spec:
 417         */
 418        cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
 419        ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
 420    } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
 421        /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
 422         * be enabled without the in-kernel irqchip
 423         */
 424        if (!kvm_irqchip_in_kernel()) {
 425            ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
 426        }
 427    } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
 428        ret |= 1U << KVM_HINTS_REALTIME;
 429        found = 1;
 430    }
 431
 432    /* fallback for older kernels */
 433    if ((function == KVM_CPUID_FEATURES) && !found) {
 434        ret = get_para_features(s);
 435    }
 436
 437    return ret;
 438}
 439
 440uint32_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
 441{
 442    struct {
 443        struct kvm_msrs info;
 444        struct kvm_msr_entry entries[1];
 445    } msr_data;
 446    uint32_t ret;
 447
 448    if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
 449        return 0;
 450    }
 451
 452    /* Check if requested MSR is supported feature MSR */
 453    int i;
 454    for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
 455        if (kvm_feature_msrs->indices[i] == index) {
 456            break;
 457        }
 458    if (i == kvm_feature_msrs->nmsrs) {
 459        return 0; /* if the feature MSR is not supported, simply return 0 */
 460    }
 461
 462    msr_data.info.nmsrs = 1;
 463    msr_data.entries[0].index = index;
 464
 465    ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
 466    if (ret != 1) {
 467        error_report("KVM get MSR (index=0x%x) feature failed, %s",
 468            index, strerror(-ret));
 469        exit(1);
 470    }
 471
 472    return msr_data.entries[0].data;
 473}
 474
 475
 476typedef struct HWPoisonPage {
 477    ram_addr_t ram_addr;
 478    QLIST_ENTRY(HWPoisonPage) list;
 479} HWPoisonPage;
 480
 481static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
 482    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
 483
 484static void kvm_unpoison_all(void *param)
 485{
 486    HWPoisonPage *page, *next_page;
 487
 488    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
 489        QLIST_REMOVE(page, list);
 490        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
 491        g_free(page);
 492    }
 493}
 494
 495static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
 496{
 497    HWPoisonPage *page;
 498
 499    QLIST_FOREACH(page, &hwpoison_page_list, list) {
 500        if (page->ram_addr == ram_addr) {
 501            return;
 502        }
 503    }
 504    page = g_new(HWPoisonPage, 1);
 505    page->ram_addr = ram_addr;
 506    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
 507}
 508
 509static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
 510                                     int *max_banks)
 511{
 512    int r;
 513
 514    r = kvm_check_extension(s, KVM_CAP_MCE);
 515    if (r > 0) {
 516        *max_banks = r;
 517        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
 518    }
 519    return -ENOSYS;
 520}
 521
 522static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
 523{
 524    CPUState *cs = CPU(cpu);
 525    CPUX86State *env = &cpu->env;
 526    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
 527                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
 528    uint64_t mcg_status = MCG_STATUS_MCIP;
 529    int flags = 0;
 530
 531    if (code == BUS_MCEERR_AR) {
 532        status |= MCI_STATUS_AR | 0x134;
 533        mcg_status |= MCG_STATUS_EIPV;
 534    } else {
 535        status |= 0xc0;
 536        mcg_status |= MCG_STATUS_RIPV;
 537    }
 538
 539    flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
 540    /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
 541     * guest kernel back into env->mcg_ext_ctl.
 542     */
 543    cpu_synchronize_state(cs);
 544    if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
 545        mcg_status |= MCG_STATUS_LMCE;
 546        flags = 0;
 547    }
 548
 549    cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
 550                       (MCM_ADDR_PHYS << 6) | 0xc, flags);
 551}
 552
 553static void hardware_memory_error(void)
 554{
 555    fprintf(stderr, "Hardware memory error!\n");
 556    exit(1);
 557}
 558
 559void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
 560{
 561    X86CPU *cpu = X86_CPU(c);
 562    CPUX86State *env = &cpu->env;
 563    ram_addr_t ram_addr;
 564    hwaddr paddr;
 565
 566    /* If we get an action required MCE, it has been injected by KVM
 567     * while the VM was running.  An action optional MCE instead should
 568     * be coming from the main thread, which qemu_init_sigbus identifies
 569     * as the "early kill" thread.
 570     */
 571    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
 572
 573    if ((env->mcg_cap & MCG_SER_P) && addr) {
 574        ram_addr = qemu_ram_addr_from_host(addr);
 575        if (ram_addr != RAM_ADDR_INVALID &&
 576            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
 577            kvm_hwpoison_page_add(ram_addr);
 578            kvm_mce_inject(cpu, paddr, code);
 579            return;
 580        }
 581
 582        fprintf(stderr, "Hardware memory error for memory used by "
 583                "QEMU itself instead of guest system!\n");
 584    }
 585
 586    if (code == BUS_MCEERR_AR) {
 587        hardware_memory_error();
 588    }
 589
 590    /* Hope we are lucky for AO MCE */
 591}
 592
 593static void kvm_reset_exception(CPUX86State *env)
 594{
 595    env->exception_nr = -1;
 596    env->exception_pending = 0;
 597    env->exception_injected = 0;
 598    env->exception_has_payload = false;
 599    env->exception_payload = 0;
 600}
 601
 602static void kvm_queue_exception(CPUX86State *env,
 603                                int32_t exception_nr,
 604                                uint8_t exception_has_payload,
 605                                uint64_t exception_payload)
 606{
 607    assert(env->exception_nr == -1);
 608    assert(!env->exception_pending);
 609    assert(!env->exception_injected);
 610    assert(!env->exception_has_payload);
 611
 612    env->exception_nr = exception_nr;
 613
 614    if (has_exception_payload) {
 615        env->exception_pending = 1;
 616
 617        env->exception_has_payload = exception_has_payload;
 618        env->exception_payload = exception_payload;
 619    } else {
 620        env->exception_injected = 1;
 621
 622        if (exception_nr == EXCP01_DB) {
 623            assert(exception_has_payload);
 624            env->dr[6] = exception_payload;
 625        } else if (exception_nr == EXCP0E_PAGE) {
 626            assert(exception_has_payload);
 627            env->cr[2] = exception_payload;
 628        } else {
 629            assert(!exception_has_payload);
 630        }
 631    }
 632}
 633
 634static int kvm_inject_mce_oldstyle(X86CPU *cpu)
 635{
 636    CPUX86State *env = &cpu->env;
 637
 638    if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
 639        unsigned int bank, bank_num = env->mcg_cap & 0xff;
 640        struct kvm_x86_mce mce;
 641
 642        kvm_reset_exception(env);
 643
 644        /*
 645         * There must be at least one bank in use if an MCE is pending.
 646         * Find it and use its values for the event injection.
 647         */
 648        for (bank = 0; bank < bank_num; bank++) {
 649            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
 650                break;
 651            }
 652        }
 653        assert(bank < bank_num);
 654
 655        mce.bank = bank;
 656        mce.status = env->mce_banks[bank * 4 + 1];
 657        mce.mcg_status = env->mcg_status;
 658        mce.addr = env->mce_banks[bank * 4 + 2];
 659        mce.misc = env->mce_banks[bank * 4 + 3];
 660
 661        return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
 662    }
 663    return 0;
 664}
 665
 666static void cpu_update_state(void *opaque, int running, RunState state)
 667{
 668    CPUX86State *env = opaque;
 669
 670    if (running) {
 671        env->tsc_valid = false;
 672    }
 673}
 674
 675unsigned long kvm_arch_vcpu_id(CPUState *cs)
 676{
 677    X86CPU *cpu = X86_CPU(cs);
 678    return cpu->apic_id;
 679}
 680
 681#ifndef KVM_CPUID_SIGNATURE_NEXT
 682#define KVM_CPUID_SIGNATURE_NEXT                0x40000100
 683#endif
 684
 685static bool hyperv_enabled(X86CPU *cpu)
 686{
 687    CPUState *cs = CPU(cpu);
 688    return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
 689        ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
 690         cpu->hyperv_features || cpu->hyperv_passthrough);
 691}
 692
 693static int kvm_arch_set_tsc_khz(CPUState *cs)
 694{
 695    X86CPU *cpu = X86_CPU(cs);
 696    CPUX86State *env = &cpu->env;
 697    int r;
 698
 699    if (!env->tsc_khz) {
 700        return 0;
 701    }
 702
 703    r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
 704        kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
 705        -ENOTSUP;
 706    if (r < 0) {
 707        /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
 708         * TSC frequency doesn't match the one we want.
 709         */
 710        int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
 711                       kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
 712                       -ENOTSUP;
 713        if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
 714            warn_report("TSC frequency mismatch between "
 715                        "VM (%" PRId64 " kHz) and host (%d kHz), "
 716                        "and TSC scaling unavailable",
 717                        env->tsc_khz, cur_freq);
 718            return r;
 719        }
 720    }
 721
 722    return 0;
 723}
 724
 725static bool tsc_is_stable_and_known(CPUX86State *env)
 726{
 727    if (!env->tsc_khz) {
 728        return false;
 729    }
 730    return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
 731        || env->user_tsc_khz;
 732}
 733
 734static struct {
 735    const char *desc;
 736    struct {
 737        uint32_t fw;
 738        uint32_t bits;
 739    } flags[2];
 740    uint64_t dependencies;
 741} kvm_hyperv_properties[] = {
 742    [HYPERV_FEAT_RELAXED] = {
 743        .desc = "relaxed timing (hv-relaxed)",
 744        .flags = {
 745            {.fw = FEAT_HYPERV_EAX,
 746             .bits = HV_HYPERCALL_AVAILABLE},
 747            {.fw = FEAT_HV_RECOMM_EAX,
 748             .bits = HV_RELAXED_TIMING_RECOMMENDED}
 749        }
 750    },
 751    [HYPERV_FEAT_VAPIC] = {
 752        .desc = "virtual APIC (hv-vapic)",
 753        .flags = {
 754            {.fw = FEAT_HYPERV_EAX,
 755             .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
 756            {.fw = FEAT_HV_RECOMM_EAX,
 757             .bits = HV_APIC_ACCESS_RECOMMENDED}
 758        }
 759    },
 760    [HYPERV_FEAT_TIME] = {
 761        .desc = "clocksources (hv-time)",
 762        .flags = {
 763            {.fw = FEAT_HYPERV_EAX,
 764             .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
 765             HV_REFERENCE_TSC_AVAILABLE}
 766        }
 767    },
 768    [HYPERV_FEAT_CRASH] = {
 769        .desc = "crash MSRs (hv-crash)",
 770        .flags = {
 771            {.fw = FEAT_HYPERV_EDX,
 772             .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
 773        }
 774    },
 775    [HYPERV_FEAT_RESET] = {
 776        .desc = "reset MSR (hv-reset)",
 777        .flags = {
 778            {.fw = FEAT_HYPERV_EAX,
 779             .bits = HV_RESET_AVAILABLE}
 780        }
 781    },
 782    [HYPERV_FEAT_VPINDEX] = {
 783        .desc = "VP_INDEX MSR (hv-vpindex)",
 784        .flags = {
 785            {.fw = FEAT_HYPERV_EAX,
 786             .bits = HV_VP_INDEX_AVAILABLE}
 787        }
 788    },
 789    [HYPERV_FEAT_RUNTIME] = {
 790        .desc = "VP_RUNTIME MSR (hv-runtime)",
 791        .flags = {
 792            {.fw = FEAT_HYPERV_EAX,
 793             .bits = HV_VP_RUNTIME_AVAILABLE}
 794        }
 795    },
 796    [HYPERV_FEAT_SYNIC] = {
 797        .desc = "synthetic interrupt controller (hv-synic)",
 798        .flags = {
 799            {.fw = FEAT_HYPERV_EAX,
 800             .bits = HV_SYNIC_AVAILABLE}
 801        }
 802    },
 803    [HYPERV_FEAT_STIMER] = {
 804        .desc = "synthetic timers (hv-stimer)",
 805        .flags = {
 806            {.fw = FEAT_HYPERV_EAX,
 807             .bits = HV_SYNTIMERS_AVAILABLE}
 808        },
 809        .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
 810    },
 811    [HYPERV_FEAT_FREQUENCIES] = {
 812        .desc = "frequency MSRs (hv-frequencies)",
 813        .flags = {
 814            {.fw = FEAT_HYPERV_EAX,
 815             .bits = HV_ACCESS_FREQUENCY_MSRS},
 816            {.fw = FEAT_HYPERV_EDX,
 817             .bits = HV_FREQUENCY_MSRS_AVAILABLE}
 818        }
 819    },
 820    [HYPERV_FEAT_REENLIGHTENMENT] = {
 821        .desc = "reenlightenment MSRs (hv-reenlightenment)",
 822        .flags = {
 823            {.fw = FEAT_HYPERV_EAX,
 824             .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
 825        }
 826    },
 827    [HYPERV_FEAT_TLBFLUSH] = {
 828        .desc = "paravirtualized TLB flush (hv-tlbflush)",
 829        .flags = {
 830            {.fw = FEAT_HV_RECOMM_EAX,
 831             .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
 832             HV_EX_PROCESSOR_MASKS_RECOMMENDED}
 833        },
 834        .dependencies = BIT(HYPERV_FEAT_VPINDEX)
 835    },
 836    [HYPERV_FEAT_EVMCS] = {
 837        .desc = "enlightened VMCS (hv-evmcs)",
 838        .flags = {
 839            {.fw = FEAT_HV_RECOMM_EAX,
 840             .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
 841        },
 842        .dependencies = BIT(HYPERV_FEAT_VAPIC)
 843    },
 844    [HYPERV_FEAT_IPI] = {
 845        .desc = "paravirtualized IPI (hv-ipi)",
 846        .flags = {
 847            {.fw = FEAT_HV_RECOMM_EAX,
 848             .bits = HV_CLUSTER_IPI_RECOMMENDED |
 849             HV_EX_PROCESSOR_MASKS_RECOMMENDED}
 850        },
 851        .dependencies = BIT(HYPERV_FEAT_VPINDEX)
 852    },
 853    [HYPERV_FEAT_STIMER_DIRECT] = {
 854        .desc = "direct mode synthetic timers (hv-stimer-direct)",
 855        .flags = {
 856            {.fw = FEAT_HYPERV_EDX,
 857             .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
 858        },
 859        .dependencies = BIT(HYPERV_FEAT_STIMER)
 860    },
 861};
 862
 863static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
 864{
 865    struct kvm_cpuid2 *cpuid;
 866    int r, size;
 867
 868    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
 869    cpuid = g_malloc0(size);
 870    cpuid->nent = max;
 871
 872    r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
 873    if (r == 0 && cpuid->nent >= max) {
 874        r = -E2BIG;
 875    }
 876    if (r < 0) {
 877        if (r == -E2BIG) {
 878            g_free(cpuid);
 879            return NULL;
 880        } else {
 881            fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
 882                    strerror(-r));
 883            exit(1);
 884        }
 885    }
 886    return cpuid;
 887}
 888
 889/*
 890 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
 891 * for all entries.
 892 */
 893static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
 894{
 895    struct kvm_cpuid2 *cpuid;
 896    int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
 897
 898    /*
 899     * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
 900     * -E2BIG, however, it doesn't report back the right size. Keep increasing
 901     * it and re-trying until we succeed.
 902     */
 903    while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
 904        max++;
 905    }
 906    return cpuid;
 907}
 908
 909/*
 910 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
 911 * leaves from KVM_CAP_HYPERV* and present MSRs data.
 912 */
 913static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
 914{
 915    X86CPU *cpu = X86_CPU(cs);
 916    struct kvm_cpuid2 *cpuid;
 917    struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
 918
 919    /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
 920    cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
 921    cpuid->nent = 2;
 922
 923    /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
 924    entry_feat = &cpuid->entries[0];
 925    entry_feat->function = HV_CPUID_FEATURES;
 926
 927    entry_recomm = &cpuid->entries[1];
 928    entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
 929    entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
 930
 931    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
 932        entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
 933        entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
 934        entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
 935        entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
 936        entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
 937    }
 938
 939    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
 940        entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
 941        entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
 942    }
 943
 944    if (has_msr_hv_frequencies) {
 945        entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
 946        entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
 947    }
 948
 949    if (has_msr_hv_crash) {
 950        entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
 951    }
 952
 953    if (has_msr_hv_reenlightenment) {
 954        entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
 955    }
 956
 957    if (has_msr_hv_reset) {
 958        entry_feat->eax |= HV_RESET_AVAILABLE;
 959    }
 960
 961    if (has_msr_hv_vpindex) {
 962        entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
 963    }
 964
 965    if (has_msr_hv_runtime) {
 966        entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
 967    }
 968
 969    if (has_msr_hv_synic) {
 970        unsigned int cap = cpu->hyperv_synic_kvm_only ?
 971            KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
 972
 973        if (kvm_check_extension(cs->kvm_state, cap) > 0) {
 974            entry_feat->eax |= HV_SYNIC_AVAILABLE;
 975        }
 976    }
 977
 978    if (has_msr_hv_stimer) {
 979        entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
 980    }
 981
 982    if (kvm_check_extension(cs->kvm_state,
 983                            KVM_CAP_HYPERV_TLBFLUSH) > 0) {
 984        entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
 985        entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
 986    }
 987
 988    if (kvm_check_extension(cs->kvm_state,
 989                            KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
 990        entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
 991    }
 992
 993    if (kvm_check_extension(cs->kvm_state,
 994                            KVM_CAP_HYPERV_SEND_IPI) > 0) {
 995        entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
 996        entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
 997    }
 998
 999    return cpuid;
1000}
1001
1002static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1003{
1004    struct kvm_cpuid_entry2 *entry;
1005    uint32_t func;
1006    int reg;
1007
1008    switch (fw) {
1009    case FEAT_HYPERV_EAX:
1010        reg = R_EAX;
1011        func = HV_CPUID_FEATURES;
1012        break;
1013    case FEAT_HYPERV_EDX:
1014        reg = R_EDX;
1015        func = HV_CPUID_FEATURES;
1016        break;
1017    case FEAT_HV_RECOMM_EAX:
1018        reg = R_EAX;
1019        func = HV_CPUID_ENLIGHTMENT_INFO;
1020        break;
1021    default:
1022        return -EINVAL;
1023    }
1024
1025    entry = cpuid_find_entry(cpuid, func, 0);
1026    if (!entry) {
1027        return -ENOENT;
1028    }
1029
1030    switch (reg) {
1031    case R_EAX:
1032        *r = entry->eax;
1033        break;
1034    case R_EDX:
1035        *r = entry->edx;
1036        break;
1037    default:
1038        return -EINVAL;
1039    }
1040
1041    return 0;
1042}
1043
1044static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1045                                  int feature)
1046{
1047    X86CPU *cpu = X86_CPU(cs);
1048    CPUX86State *env = &cpu->env;
1049    uint32_t r, fw, bits;
1050    uint64_t deps;
1051    int i, dep_feat;
1052
1053    if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1054        return 0;
1055    }
1056
1057    deps = kvm_hyperv_properties[feature].dependencies;
1058    while (deps) {
1059        dep_feat = ctz64(deps);
1060        if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1061                fprintf(stderr,
1062                        "Hyper-V %s requires Hyper-V %s\n",
1063                        kvm_hyperv_properties[feature].desc,
1064                        kvm_hyperv_properties[dep_feat].desc);
1065                return 1;
1066        }
1067        deps &= ~(1ull << dep_feat);
1068    }
1069
1070    for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1071        fw = kvm_hyperv_properties[feature].flags[i].fw;
1072        bits = kvm_hyperv_properties[feature].flags[i].bits;
1073
1074        if (!fw) {
1075            continue;
1076        }
1077
1078        if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1079            if (hyperv_feat_enabled(cpu, feature)) {
1080                fprintf(stderr,
1081                        "Hyper-V %s is not supported by kernel\n",
1082                        kvm_hyperv_properties[feature].desc);
1083                return 1;
1084            } else {
1085                return 0;
1086            }
1087        }
1088
1089        env->features[fw] |= bits;
1090    }
1091
1092    if (cpu->hyperv_passthrough) {
1093        cpu->hyperv_features |= BIT(feature);
1094    }
1095
1096    return 0;
1097}
1098
1099/*
1100 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1101 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1102 * extentions are enabled.
1103 */
1104static int hyperv_handle_properties(CPUState *cs,
1105                                    struct kvm_cpuid_entry2 *cpuid_ent)
1106{
1107    X86CPU *cpu = X86_CPU(cs);
1108    CPUX86State *env = &cpu->env;
1109    struct kvm_cpuid2 *cpuid;
1110    struct kvm_cpuid_entry2 *c;
1111    uint32_t signature[3];
1112    uint32_t cpuid_i = 0;
1113    int r;
1114
1115    if (!hyperv_enabled(cpu))
1116        return 0;
1117
1118    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1119        cpu->hyperv_passthrough) {
1120        uint16_t evmcs_version;
1121
1122        r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1123                                (uintptr_t)&evmcs_version);
1124
1125        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1126            fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1127                    kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1128            return -ENOSYS;
1129        }
1130
1131        if (!r) {
1132            env->features[FEAT_HV_RECOMM_EAX] |=
1133                HV_ENLIGHTENED_VMCS_RECOMMENDED;
1134            env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1135        }
1136    }
1137
1138    if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1139        cpuid = get_supported_hv_cpuid(cs);
1140    } else {
1141        cpuid = get_supported_hv_cpuid_legacy(cs);
1142    }
1143
1144    if (cpu->hyperv_passthrough) {
1145        memcpy(cpuid_ent, &cpuid->entries[0],
1146               cpuid->nent * sizeof(cpuid->entries[0]));
1147
1148        c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1149        if (c) {
1150            env->features[FEAT_HYPERV_EAX] = c->eax;
1151            env->features[FEAT_HYPERV_EBX] = c->ebx;
1152            env->features[FEAT_HYPERV_EDX] = c->eax;
1153        }
1154        c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1155        if (c) {
1156            env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1157
1158            /* hv-spinlocks may have been overriden */
1159            if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
1160                c->ebx = cpu->hyperv_spinlock_attempts;
1161            }
1162        }
1163        c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1164        if (c) {
1165            env->features[FEAT_HV_NESTED_EAX] = c->eax;
1166        }
1167    }
1168
1169    /* Features */
1170    r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1171    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1172    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1173    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1174    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1175    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1176    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1177    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1178    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1179    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1180    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1181    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1182    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1183    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1184    r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1185
1186    /* Additional dependencies not covered by kvm_hyperv_properties[] */
1187    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1188        !cpu->hyperv_synic_kvm_only &&
1189        !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1190        fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1191                kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1192                kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1193        r |= 1;
1194    }
1195
1196    /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1197    env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1198
1199    if (r) {
1200        r = -ENOSYS;
1201        goto free;
1202    }
1203
1204    if (cpu->hyperv_passthrough) {
1205        /* We already copied all feature words from KVM as is */
1206        r = cpuid->nent;
1207        goto free;
1208    }
1209
1210    c = &cpuid_ent[cpuid_i++];
1211    c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1212    if (!cpu->hyperv_vendor_id) {
1213        memcpy(signature, "Microsoft Hv", 12);
1214    } else {
1215        size_t len = strlen(cpu->hyperv_vendor_id);
1216
1217        if (len > 12) {
1218            error_report("hv-vendor-id truncated to 12 characters");
1219            len = 12;
1220        }
1221        memset(signature, 0, 12);
1222        memcpy(signature, cpu->hyperv_vendor_id, len);
1223    }
1224    c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1225        HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1226    c->ebx = signature[0];
1227    c->ecx = signature[1];
1228    c->edx = signature[2];
1229
1230    c = &cpuid_ent[cpuid_i++];
1231    c->function = HV_CPUID_INTERFACE;
1232    memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1233    c->eax = signature[0];
1234    c->ebx = 0;
1235    c->ecx = 0;
1236    c->edx = 0;
1237
1238    c = &cpuid_ent[cpuid_i++];
1239    c->function = HV_CPUID_VERSION;
1240    c->eax = 0x00001bbc;
1241    c->ebx = 0x00060001;
1242
1243    c = &cpuid_ent[cpuid_i++];
1244    c->function = HV_CPUID_FEATURES;
1245    c->eax = env->features[FEAT_HYPERV_EAX];
1246    c->ebx = env->features[FEAT_HYPERV_EBX];
1247    c->edx = env->features[FEAT_HYPERV_EDX];
1248
1249    c = &cpuid_ent[cpuid_i++];
1250    c->function = HV_CPUID_ENLIGHTMENT_INFO;
1251    c->eax = env->features[FEAT_HV_RECOMM_EAX];
1252    c->ebx = cpu->hyperv_spinlock_attempts;
1253
1254    c = &cpuid_ent[cpuid_i++];
1255    c->function = HV_CPUID_IMPLEMENT_LIMITS;
1256    c->eax = cpu->hv_max_vps;
1257    c->ebx = 0x40;
1258
1259    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1260        __u32 function;
1261
1262        /* Create zeroed 0x40000006..0x40000009 leaves */
1263        for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1264             function < HV_CPUID_NESTED_FEATURES; function++) {
1265            c = &cpuid_ent[cpuid_i++];
1266            c->function = function;
1267        }
1268
1269        c = &cpuid_ent[cpuid_i++];
1270        c->function = HV_CPUID_NESTED_FEATURES;
1271        c->eax = env->features[FEAT_HV_NESTED_EAX];
1272    }
1273    r = cpuid_i;
1274
1275free:
1276    g_free(cpuid);
1277
1278    return r;
1279}
1280
1281static Error *hv_passthrough_mig_blocker;
1282
1283static int hyperv_init_vcpu(X86CPU *cpu)
1284{
1285    CPUState *cs = CPU(cpu);
1286    Error *local_err = NULL;
1287    int ret;
1288
1289    if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1290        error_setg(&hv_passthrough_mig_blocker,
1291                   "'hv-passthrough' CPU flag prevents migration, use explicit"
1292                   " set of hv-* flags instead");
1293        ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1294        if (local_err) {
1295            error_report_err(local_err);
1296            error_free(hv_passthrough_mig_blocker);
1297            return ret;
1298        }
1299    }
1300
1301    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1302        /*
1303         * the kernel doesn't support setting vp_index; assert that its value
1304         * is in sync
1305         */
1306        struct {
1307            struct kvm_msrs info;
1308            struct kvm_msr_entry entries[1];
1309        } msr_data = {
1310            .info.nmsrs = 1,
1311            .entries[0].index = HV_X64_MSR_VP_INDEX,
1312        };
1313
1314        ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1315        if (ret < 0) {
1316            return ret;
1317        }
1318        assert(ret == 1);
1319
1320        if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1321            error_report("kernel's vp_index != QEMU's vp_index");
1322            return -ENXIO;
1323        }
1324    }
1325
1326    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1327        uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1328            KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1329        ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1330        if (ret < 0) {
1331            error_report("failed to turn on HyperV SynIC in KVM: %s",
1332                         strerror(-ret));
1333            return ret;
1334        }
1335
1336        if (!cpu->hyperv_synic_kvm_only) {
1337            ret = hyperv_x86_synic_add(cpu);
1338            if (ret < 0) {
1339                error_report("failed to create HyperV SynIC: %s",
1340                             strerror(-ret));
1341                return ret;
1342            }
1343        }
1344    }
1345
1346    return 0;
1347}
1348
1349static Error *invtsc_mig_blocker;
1350
1351#define KVM_MAX_CPUID_ENTRIES  100
1352
1353int kvm_arch_init_vcpu(CPUState *cs)
1354{
1355    struct {
1356        struct kvm_cpuid2 cpuid;
1357        struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1358    } cpuid_data;
1359    /*
1360     * The kernel defines these structs with padding fields so there
1361     * should be no extra padding in our cpuid_data struct.
1362     */
1363    QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1364                      sizeof(struct kvm_cpuid2) +
1365                      sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1366
1367    X86CPU *cpu = X86_CPU(cs);
1368    CPUX86State *env = &cpu->env;
1369    uint32_t limit, i, j, cpuid_i;
1370    uint32_t unused;
1371    struct kvm_cpuid_entry2 *c;
1372    uint32_t signature[3];
1373    int kvm_base = KVM_CPUID_SIGNATURE;
1374    int max_nested_state_len;
1375    int r;
1376    Error *local_err = NULL;
1377
1378    memset(&cpuid_data, 0, sizeof(cpuid_data));
1379
1380    cpuid_i = 0;
1381
1382    r = kvm_arch_set_tsc_khz(cs);
1383    if (r < 0) {
1384        return r;
1385    }
1386
1387    /* vcpu's TSC frequency is either specified by user, or following
1388     * the value used by KVM if the former is not present. In the
1389     * latter case, we query it from KVM and record in env->tsc_khz,
1390     * so that vcpu's TSC frequency can be migrated later via this field.
1391     */
1392    if (!env->tsc_khz) {
1393        r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1394            kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1395            -ENOTSUP;
1396        if (r > 0) {
1397            env->tsc_khz = r;
1398        }
1399    }
1400
1401    /* Paravirtualization CPUIDs */
1402    r = hyperv_handle_properties(cs, cpuid_data.entries);
1403    if (r < 0) {
1404        return r;
1405    } else if (r > 0) {
1406        cpuid_i = r;
1407        kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1408        has_msr_hv_hypercall = true;
1409    }
1410
1411    if (cpu->expose_kvm) {
1412        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1413        c = &cpuid_data.entries[cpuid_i++];
1414        c->function = KVM_CPUID_SIGNATURE | kvm_base;
1415        c->eax = KVM_CPUID_FEATURES | kvm_base;
1416        c->ebx = signature[0];
1417        c->ecx = signature[1];
1418        c->edx = signature[2];
1419
1420        c = &cpuid_data.entries[cpuid_i++];
1421        c->function = KVM_CPUID_FEATURES | kvm_base;
1422        c->eax = env->features[FEAT_KVM];
1423        c->edx = env->features[FEAT_KVM_HINTS];
1424    }
1425
1426    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1427
1428    for (i = 0; i <= limit; i++) {
1429        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1430            fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1431            abort();
1432        }
1433        c = &cpuid_data.entries[cpuid_i++];
1434
1435        switch (i) {
1436        case 2: {
1437            /* Keep reading function 2 till all the input is received */
1438            int times;
1439
1440            c->function = i;
1441            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1442                       KVM_CPUID_FLAG_STATE_READ_NEXT;
1443            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1444            times = c->eax & 0xff;
1445
1446            for (j = 1; j < times; ++j) {
1447                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1448                    fprintf(stderr, "cpuid_data is full, no space for "
1449                            "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1450                    abort();
1451                }
1452                c = &cpuid_data.entries[cpuid_i++];
1453                c->function = i;
1454                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1455                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1456            }
1457            break;
1458        }
1459        case 0x1f:
1460            if (env->nr_dies < 2) {
1461                break;
1462            }
1463        case 4:
1464        case 0xb:
1465        case 0xd:
1466            for (j = 0; ; j++) {
1467                if (i == 0xd && j == 64) {
1468                    break;
1469                }
1470
1471                if (i == 0x1f && j == 64) {
1472                    break;
1473                }
1474
1475                c->function = i;
1476                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1477                c->index = j;
1478                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1479
1480                if (i == 4 && c->eax == 0) {
1481                    break;
1482                }
1483                if (i == 0xb && !(c->ecx & 0xff00)) {
1484                    break;
1485                }
1486                if (i == 0x1f && !(c->ecx & 0xff00)) {
1487                    break;
1488                }
1489                if (i == 0xd && c->eax == 0) {
1490                    continue;
1491                }
1492                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1493                    fprintf(stderr, "cpuid_data is full, no space for "
1494                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1495                    abort();
1496                }
1497                c = &cpuid_data.entries[cpuid_i++];
1498            }
1499            break;
1500        case 0x14: {
1501            uint32_t times;
1502
1503            c->function = i;
1504            c->index = 0;
1505            c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1506            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1507            times = c->eax;
1508
1509            for (j = 1; j <= times; ++j) {
1510                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1511                    fprintf(stderr, "cpuid_data is full, no space for "
1512                                "cpuid(eax:0x14,ecx:0x%x)\n", j);
1513                    abort();
1514                }
1515                c = &cpuid_data.entries[cpuid_i++];
1516                c->function = i;
1517                c->index = j;
1518                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1519                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1520            }
1521            break;
1522        }
1523        default:
1524            c->function = i;
1525            c->flags = 0;
1526            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1527            break;
1528        }
1529    }
1530
1531    if (limit >= 0x0a) {
1532        uint32_t eax, edx;
1533
1534        cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1535
1536        has_architectural_pmu_version = eax & 0xff;
1537        if (has_architectural_pmu_version > 0) {
1538            num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1539
1540            /* Shouldn't be more than 32, since that's the number of bits
1541             * available in EBX to tell us _which_ counters are available.
1542             * Play it safe.
1543             */
1544            if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1545                num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1546            }
1547
1548            if (has_architectural_pmu_version > 1) {
1549                num_architectural_pmu_fixed_counters = edx & 0x1f;
1550
1551                if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1552                    num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1553                }
1554            }
1555        }
1556    }
1557
1558    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1559
1560    for (i = 0x80000000; i <= limit; i++) {
1561        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1562            fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1563            abort();
1564        }
1565        c = &cpuid_data.entries[cpuid_i++];
1566
1567        switch (i) {
1568        case 0x8000001d:
1569            /* Query for all AMD cache information leaves */
1570            for (j = 0; ; j++) {
1571                c->function = i;
1572                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1573                c->index = j;
1574                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1575
1576                if (c->eax == 0) {
1577                    break;
1578                }
1579                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1580                    fprintf(stderr, "cpuid_data is full, no space for "
1581                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1582                    abort();
1583                }
1584                c = &cpuid_data.entries[cpuid_i++];
1585            }
1586            break;
1587        default:
1588            c->function = i;
1589            c->flags = 0;
1590            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1591            break;
1592        }
1593    }
1594
1595    /* Call Centaur's CPUID instructions they are supported. */
1596    if (env->cpuid_xlevel2 > 0) {
1597        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1598
1599        for (i = 0xC0000000; i <= limit; i++) {
1600            if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1601                fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1602                abort();
1603            }
1604            c = &cpuid_data.entries[cpuid_i++];
1605
1606            c->function = i;
1607            c->flags = 0;
1608            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1609        }
1610    }
1611
1612    cpuid_data.cpuid.nent = cpuid_i;
1613
1614    if (((env->cpuid_version >> 8)&0xF) >= 6
1615        && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1616           (CPUID_MCE | CPUID_MCA)
1617        && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1618        uint64_t mcg_cap, unsupported_caps;
1619        int banks;
1620        int ret;
1621
1622        ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1623        if (ret < 0) {
1624            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1625            return ret;
1626        }
1627
1628        if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1629            error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1630                         (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1631            return -ENOTSUP;
1632        }
1633
1634        unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1635        if (unsupported_caps) {
1636            if (unsupported_caps & MCG_LMCE_P) {
1637                error_report("kvm: LMCE not supported");
1638                return -ENOTSUP;
1639            }
1640            warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1641                        unsupported_caps);
1642        }
1643
1644        env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1645        ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1646        if (ret < 0) {
1647            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1648            return ret;
1649        }
1650    }
1651
1652    qemu_add_vm_change_state_handler(cpu_update_state, env);
1653
1654    c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1655    if (c) {
1656        has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1657                                  !!(c->ecx & CPUID_EXT_SMX);
1658    }
1659
1660    if (env->mcg_cap & MCG_LMCE_P) {
1661        has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1662    }
1663
1664    if (!env->user_tsc_khz) {
1665        if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1666            invtsc_mig_blocker == NULL) {
1667            error_setg(&invtsc_mig_blocker,
1668                       "State blocked by non-migratable CPU device"
1669                       " (invtsc flag)");
1670            r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1671            if (local_err) {
1672                error_report_err(local_err);
1673                error_free(invtsc_mig_blocker);
1674                return r;
1675            }
1676        }
1677    }
1678
1679    if (cpu->vmware_cpuid_freq
1680        /* Guests depend on 0x40000000 to detect this feature, so only expose
1681         * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1682        && cpu->expose_kvm
1683        && kvm_base == KVM_CPUID_SIGNATURE
1684        /* TSC clock must be stable and known for this feature. */
1685        && tsc_is_stable_and_known(env)) {
1686
1687        c = &cpuid_data.entries[cpuid_i++];
1688        c->function = KVM_CPUID_SIGNATURE | 0x10;
1689        c->eax = env->tsc_khz;
1690        /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1691         * APIC_BUS_CYCLE_NS */
1692        c->ebx = 1000000;
1693        c->ecx = c->edx = 0;
1694
1695        c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1696        c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1697    }
1698
1699    cpuid_data.cpuid.nent = cpuid_i;
1700
1701    cpuid_data.cpuid.padding = 0;
1702    r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1703    if (r) {
1704        goto fail;
1705    }
1706
1707    if (has_xsave) {
1708        env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1709    }
1710
1711    max_nested_state_len = kvm_max_nested_state_length();
1712    if (max_nested_state_len > 0) {
1713        assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1714
1715        if (cpu_has_vmx(env)) {
1716            struct kvm_vmx_nested_state_hdr *vmx_hdr;
1717
1718            env->nested_state = g_malloc0(max_nested_state_len);
1719            env->nested_state->size = max_nested_state_len;
1720            env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1721
1722            vmx_hdr = &env->nested_state->hdr.vmx;
1723            vmx_hdr->vmxon_pa = -1ull;
1724            vmx_hdr->vmcs12_pa = -1ull;
1725        }
1726    }
1727
1728    cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1729
1730    if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1731        has_msr_tsc_aux = false;
1732    }
1733
1734    r = hyperv_init_vcpu(cpu);
1735    if (r) {
1736        goto fail;
1737    }
1738
1739    return 0;
1740
1741 fail:
1742    migrate_del_blocker(invtsc_mig_blocker);
1743
1744    return r;
1745}
1746
1747int kvm_arch_destroy_vcpu(CPUState *cs)
1748{
1749    X86CPU *cpu = X86_CPU(cs);
1750    CPUX86State *env = &cpu->env;
1751
1752    if (cpu->kvm_msr_buf) {
1753        g_free(cpu->kvm_msr_buf);
1754        cpu->kvm_msr_buf = NULL;
1755    }
1756
1757    if (env->nested_state) {
1758        g_free(env->nested_state);
1759        env->nested_state = NULL;
1760    }
1761
1762    return 0;
1763}
1764
1765void kvm_arch_reset_vcpu(X86CPU *cpu)
1766{
1767    CPUX86State *env = &cpu->env;
1768
1769    env->xcr0 = 1;
1770    if (kvm_irqchip_in_kernel()) {
1771        env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1772                                          KVM_MP_STATE_UNINITIALIZED;
1773    } else {
1774        env->mp_state = KVM_MP_STATE_RUNNABLE;
1775    }
1776
1777    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1778        int i;
1779        for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1780            env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1781        }
1782
1783        hyperv_x86_synic_reset(cpu);
1784    }
1785}
1786
1787void kvm_arch_do_init_vcpu(X86CPU *cpu)
1788{
1789    CPUX86State *env = &cpu->env;
1790
1791    /* APs get directly into wait-for-SIPI state.  */
1792    if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1793        env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1794    }
1795}
1796
1797static int kvm_get_supported_feature_msrs(KVMState *s)
1798{
1799    int ret = 0;
1800
1801    if (kvm_feature_msrs != NULL) {
1802        return 0;
1803    }
1804
1805    if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1806        return 0;
1807    }
1808
1809    struct kvm_msr_list msr_list;
1810
1811    msr_list.nmsrs = 0;
1812    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1813    if (ret < 0 && ret != -E2BIG) {
1814        error_report("Fetch KVM feature MSR list failed: %s",
1815            strerror(-ret));
1816        return ret;
1817    }
1818
1819    assert(msr_list.nmsrs > 0);
1820    kvm_feature_msrs = (struct kvm_msr_list *) \
1821        g_malloc0(sizeof(msr_list) +
1822                 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1823
1824    kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1825    ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1826
1827    if (ret < 0) {
1828        error_report("Fetch KVM feature MSR list failed: %s",
1829            strerror(-ret));
1830        g_free(kvm_feature_msrs);
1831        kvm_feature_msrs = NULL;
1832        return ret;
1833    }
1834
1835    return 0;
1836}
1837
1838static int kvm_get_supported_msrs(KVMState *s)
1839{
1840    static int kvm_supported_msrs;
1841    int ret = 0;
1842
1843    /* first time */
1844    if (kvm_supported_msrs == 0) {
1845        struct kvm_msr_list msr_list, *kvm_msr_list;
1846
1847        kvm_supported_msrs = -1;
1848
1849        /* Obtain MSR list from KVM.  These are the MSRs that we must
1850         * save/restore */
1851        msr_list.nmsrs = 0;
1852        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1853        if (ret < 0 && ret != -E2BIG) {
1854            return ret;
1855        }
1856        /* Old kernel modules had a bug and could write beyond the provided
1857           memory. Allocate at least a safe amount of 1K. */
1858        kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1859                                              msr_list.nmsrs *
1860                                              sizeof(msr_list.indices[0])));
1861
1862        kvm_msr_list->nmsrs = msr_list.nmsrs;
1863        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1864        if (ret >= 0) {
1865            int i;
1866
1867            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1868                switch (kvm_msr_list->indices[i]) {
1869                case MSR_STAR:
1870                    has_msr_star = true;
1871                    break;
1872                case MSR_VM_HSAVE_PA:
1873                    has_msr_hsave_pa = true;
1874                    break;
1875                case MSR_TSC_AUX:
1876                    has_msr_tsc_aux = true;
1877                    break;
1878                case MSR_TSC_ADJUST:
1879                    has_msr_tsc_adjust = true;
1880                    break;
1881                case MSR_IA32_TSCDEADLINE:
1882                    has_msr_tsc_deadline = true;
1883                    break;
1884                case MSR_IA32_SMBASE:
1885                    has_msr_smbase = true;
1886                    break;
1887                case MSR_SMI_COUNT:
1888                    has_msr_smi_count = true;
1889                    break;
1890                case MSR_IA32_MISC_ENABLE:
1891                    has_msr_misc_enable = true;
1892                    break;
1893                case MSR_IA32_BNDCFGS:
1894                    has_msr_bndcfgs = true;
1895                    break;
1896                case MSR_IA32_XSS:
1897                    has_msr_xss = true;
1898                    break;
1899                case HV_X64_MSR_CRASH_CTL:
1900                    has_msr_hv_crash = true;
1901                    break;
1902                case HV_X64_MSR_RESET:
1903                    has_msr_hv_reset = true;
1904                    break;
1905                case HV_X64_MSR_VP_INDEX:
1906                    has_msr_hv_vpindex = true;
1907                    break;
1908                case HV_X64_MSR_VP_RUNTIME:
1909                    has_msr_hv_runtime = true;
1910                    break;
1911                case HV_X64_MSR_SCONTROL:
1912                    has_msr_hv_synic = true;
1913                    break;
1914                case HV_X64_MSR_STIMER0_CONFIG:
1915                    has_msr_hv_stimer = true;
1916                    break;
1917                case HV_X64_MSR_TSC_FREQUENCY:
1918                    has_msr_hv_frequencies = true;
1919                    break;
1920                case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1921                    has_msr_hv_reenlightenment = true;
1922                    break;
1923                case MSR_IA32_SPEC_CTRL:
1924                    has_msr_spec_ctrl = true;
1925                    break;
1926                case MSR_VIRT_SSBD:
1927                    has_msr_virt_ssbd = true;
1928                    break;
1929                case MSR_IA32_ARCH_CAPABILITIES:
1930                    has_msr_arch_capabs = true;
1931                    break;
1932                case MSR_IA32_CORE_CAPABILITY:
1933                    has_msr_core_capabs = true;
1934                    break;
1935                }
1936            }
1937        }
1938
1939        g_free(kvm_msr_list);
1940    }
1941
1942    return ret;
1943}
1944
1945static Notifier smram_machine_done;
1946static KVMMemoryListener smram_listener;
1947static AddressSpace smram_address_space;
1948static MemoryRegion smram_as_root;
1949static MemoryRegion smram_as_mem;
1950
1951static void register_smram_listener(Notifier *n, void *unused)
1952{
1953    MemoryRegion *smram =
1954        (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1955
1956    /* Outer container... */
1957    memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1958    memory_region_set_enabled(&smram_as_root, true);
1959
1960    /* ... with two regions inside: normal system memory with low
1961     * priority, and...
1962     */
1963    memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1964                             get_system_memory(), 0, ~0ull);
1965    memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1966    memory_region_set_enabled(&smram_as_mem, true);
1967
1968    if (smram) {
1969        /* ... SMRAM with higher priority */
1970        memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1971        memory_region_set_enabled(smram, true);
1972    }
1973
1974    address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1975    kvm_memory_listener_register(kvm_state, &smram_listener,
1976                                 &smram_address_space, 1);
1977}
1978
1979int kvm_arch_init(MachineState *ms, KVMState *s)
1980{
1981    uint64_t identity_base = 0xfffbc000;
1982    uint64_t shadow_mem;
1983    int ret;
1984    struct utsname utsname;
1985
1986    has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1987    has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1988    has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1989
1990    hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
1991
1992    has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
1993    if (has_exception_payload) {
1994        ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
1995        if (ret < 0) {
1996            error_report("kvm: Failed to enable exception payload cap: %s",
1997                         strerror(-ret));
1998            return ret;
1999        }
2000    }
2001
2002    ret = kvm_get_supported_msrs(s);
2003    if (ret < 0) {
2004        return ret;
2005    }
2006
2007    kvm_get_supported_feature_msrs(s);
2008
2009    uname(&utsname);
2010    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2011
2012    /*
2013     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2014     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2015     * Since these must be part of guest physical memory, we need to allocate
2016     * them, both by setting their start addresses in the kernel and by
2017     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2018     *
2019     * Older KVM versions may not support setting the identity map base. In
2020     * that case we need to stick with the default, i.e. a 256K maximum BIOS
2021     * size.
2022     */
2023    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2024        /* Allows up to 16M BIOSes. */
2025        identity_base = 0xfeffc000;
2026
2027        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2028        if (ret < 0) {
2029            return ret;
2030        }
2031    }
2032
2033    /* Set TSS base one page after EPT identity map. */
2034    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2035    if (ret < 0) {
2036        return ret;
2037    }
2038
2039    /* Tell fw_cfg to notify the BIOS to reserve the range. */
2040    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2041    if (ret < 0) {
2042        fprintf(stderr, "e820_add_entry() table is full\n");
2043        return ret;
2044    }
2045    qemu_register_reset(kvm_unpoison_all, NULL);
2046
2047    shadow_mem = machine_kvm_shadow_mem(ms);
2048    if (shadow_mem != -1) {
2049        shadow_mem /= 4096;
2050        ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2051        if (ret < 0) {
2052            return ret;
2053        }
2054    }
2055
2056    if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2057        object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
2058        pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
2059        smram_machine_done.notify = register_smram_listener;
2060        qemu_add_machine_init_done_notifier(&smram_machine_done);
2061    }
2062
2063    if (enable_cpu_pm) {
2064        int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2065        int ret;
2066
2067/* Work around for kernel header with a typo. TODO: fix header and drop. */
2068#if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2069#define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2070#endif
2071        if (disable_exits) {
2072            disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2073                              KVM_X86_DISABLE_EXITS_HLT |
2074                              KVM_X86_DISABLE_EXITS_PAUSE);
2075        }
2076
2077        ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2078                                disable_exits);
2079        if (ret < 0) {
2080            error_report("kvm: guest stopping CPU not supported: %s",
2081                         strerror(-ret));
2082        }
2083    }
2084
2085    return 0;
2086}
2087
2088static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2089{
2090    lhs->selector = rhs->selector;
2091    lhs->base = rhs->base;
2092    lhs->limit = rhs->limit;
2093    lhs->type = 3;
2094    lhs->present = 1;
2095    lhs->dpl = 3;
2096    lhs->db = 0;
2097    lhs->s = 1;
2098    lhs->l = 0;
2099    lhs->g = 0;
2100    lhs->avl = 0;
2101    lhs->unusable = 0;
2102}
2103
2104static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2105{
2106    unsigned flags = rhs->flags;
2107    lhs->selector = rhs->selector;
2108    lhs->base = rhs->base;
2109    lhs->limit = rhs->limit;
2110    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2111    lhs->present = (flags & DESC_P_MASK) != 0;
2112    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2113    lhs->db = (flags >> DESC_B_SHIFT) & 1;
2114    lhs->s = (flags & DESC_S_MASK) != 0;
2115    lhs->l = (flags >> DESC_L_SHIFT) & 1;
2116    lhs->g = (flags & DESC_G_MASK) != 0;
2117    lhs->avl = (flags & DESC_AVL_MASK) != 0;
2118    lhs->unusable = !lhs->present;
2119    lhs->padding = 0;
2120}
2121
2122static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2123{
2124    lhs->selector = rhs->selector;
2125    lhs->base = rhs->base;
2126    lhs->limit = rhs->limit;
2127    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2128                 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2129                 (rhs->dpl << DESC_DPL_SHIFT) |
2130                 (rhs->db << DESC_B_SHIFT) |
2131                 (rhs->s * DESC_S_MASK) |
2132                 (rhs->l << DESC_L_SHIFT) |
2133                 (rhs->g * DESC_G_MASK) |
2134                 (rhs->avl * DESC_AVL_MASK);
2135}
2136
2137static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2138{
2139    if (set) {
2140        *kvm_reg = *qemu_reg;
2141    } else {
2142        *qemu_reg = *kvm_reg;
2143    }
2144}
2145
2146static int kvm_getput_regs(X86CPU *cpu, int set)
2147{
2148    CPUX86State *env = &cpu->env;
2149    struct kvm_regs regs;
2150    int ret = 0;
2151
2152    if (!set) {
2153        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2154        if (ret < 0) {
2155            return ret;
2156        }
2157    }
2158
2159    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2160    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2161    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2162    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2163    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2164    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2165    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2166    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2167#ifdef TARGET_X86_64
2168    kvm_getput_reg(&regs.r8, &env->regs[8], set);
2169    kvm_getput_reg(&regs.r9, &env->regs[9], set);
2170    kvm_getput_reg(&regs.r10, &env->regs[10], set);
2171    kvm_getput_reg(&regs.r11, &env->regs[11], set);
2172    kvm_getput_reg(&regs.r12, &env->regs[12], set);
2173    kvm_getput_reg(&regs.r13, &env->regs[13], set);
2174    kvm_getput_reg(&regs.r14, &env->regs[14], set);
2175    kvm_getput_reg(&regs.r15, &env->regs[15], set);
2176#endif
2177
2178    kvm_getput_reg(&regs.rflags, &env->eflags, set);
2179    kvm_getput_reg(&regs.rip, &env->eip, set);
2180
2181    if (set) {
2182        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2183    }
2184
2185    return ret;
2186}
2187
2188static int kvm_put_fpu(X86CPU *cpu)
2189{
2190    CPUX86State *env = &cpu->env;
2191    struct kvm_fpu fpu;
2192    int i;
2193
2194    memset(&fpu, 0, sizeof fpu);
2195    fpu.fsw = env->fpus & ~(7 << 11);
2196    fpu.fsw |= (env->fpstt & 7) << 11;
2197    fpu.fcw = env->fpuc;
2198    fpu.last_opcode = env->fpop;
2199    fpu.last_ip = env->fpip;
2200    fpu.last_dp = env->fpdp;
2201    for (i = 0; i < 8; ++i) {
2202        fpu.ftwx |= (!env->fptags[i]) << i;
2203    }
2204    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2205    for (i = 0; i < CPU_NB_REGS; i++) {
2206        stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2207        stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2208    }
2209    fpu.mxcsr = env->mxcsr;
2210
2211    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2212}
2213
2214#define XSAVE_FCW_FSW     0
2215#define XSAVE_FTW_FOP     1
2216#define XSAVE_CWD_RIP     2
2217#define XSAVE_CWD_RDP     4
2218#define XSAVE_MXCSR       6
2219#define XSAVE_ST_SPACE    8
2220#define XSAVE_XMM_SPACE   40
2221#define XSAVE_XSTATE_BV   128
2222#define XSAVE_YMMH_SPACE  144
2223#define XSAVE_BNDREGS     240
2224#define XSAVE_BNDCSR      256
2225#define XSAVE_OPMASK      272
2226#define XSAVE_ZMM_Hi256   288
2227#define XSAVE_Hi16_ZMM    416
2228#define XSAVE_PKRU        672
2229
2230#define XSAVE_BYTE_OFFSET(word_offset) \
2231    ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2232
2233#define ASSERT_OFFSET(word_offset, field) \
2234    QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2235                      offsetof(X86XSaveArea, field))
2236
2237ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2238ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2239ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2240ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2241ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2242ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2243ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2244ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2245ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2246ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2247ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2248ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2249ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2250ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2251ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2252
2253static int kvm_put_xsave(X86CPU *cpu)
2254{
2255    CPUX86State *env = &cpu->env;
2256    X86XSaveArea *xsave = env->xsave_buf;
2257
2258    if (!has_xsave) {
2259        return kvm_put_fpu(cpu);
2260    }
2261    x86_cpu_xsave_all_areas(cpu, xsave);
2262
2263    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2264}
2265
2266static int kvm_put_xcrs(X86CPU *cpu)
2267{
2268    CPUX86State *env = &cpu->env;
2269    struct kvm_xcrs xcrs = {};
2270
2271    if (!has_xcrs) {
2272        return 0;
2273    }
2274
2275    xcrs.nr_xcrs = 1;
2276    xcrs.flags = 0;
2277    xcrs.xcrs[0].xcr = 0;
2278    xcrs.xcrs[0].value = env->xcr0;
2279    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2280}
2281
2282static int kvm_put_sregs(X86CPU *cpu)
2283{
2284    CPUX86State *env = &cpu->env;
2285    struct kvm_sregs sregs;
2286
2287    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2288    if (env->interrupt_injected >= 0) {
2289        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2290                (uint64_t)1 << (env->interrupt_injected % 64);
2291    }
2292
2293    if ((env->eflags & VM_MASK)) {
2294        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2295        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2296        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2297        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2298        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2299        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2300    } else {
2301        set_seg(&sregs.cs, &env->segs[R_CS]);
2302        set_seg(&sregs.ds, &env->segs[R_DS]);
2303        set_seg(&sregs.es, &env->segs[R_ES]);
2304        set_seg(&sregs.fs, &env->segs[R_FS]);
2305        set_seg(&sregs.gs, &env->segs[R_GS]);
2306        set_seg(&sregs.ss, &env->segs[R_SS]);
2307    }
2308
2309    set_seg(&sregs.tr, &env->tr);
2310    set_seg(&sregs.ldt, &env->ldt);
2311
2312    sregs.idt.limit = env->idt.limit;
2313    sregs.idt.base = env->idt.base;
2314    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2315    sregs.gdt.limit = env->gdt.limit;
2316    sregs.gdt.base = env->gdt.base;
2317    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2318
2319    sregs.cr0 = env->cr[0];
2320    sregs.cr2 = env->cr[2];
2321    sregs.cr3 = env->cr[3];
2322    sregs.cr4 = env->cr[4];
2323
2324    sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2325    sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2326
2327    sregs.efer = env->efer;
2328
2329    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2330}
2331
2332static void kvm_msr_buf_reset(X86CPU *cpu)
2333{
2334    memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2335}
2336
2337static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2338{
2339    struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2340    void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2341    struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2342
2343    assert((void *)(entry + 1) <= limit);
2344
2345    entry->index = index;
2346    entry->reserved = 0;
2347    entry->data = value;
2348    msrs->nmsrs++;
2349}
2350
2351static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2352{
2353    kvm_msr_buf_reset(cpu);
2354    kvm_msr_entry_add(cpu, index, value);
2355
2356    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2357}
2358
2359void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2360{
2361    int ret;
2362
2363    ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2364    assert(ret == 1);
2365}
2366
2367static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2368{
2369    CPUX86State *env = &cpu->env;
2370    int ret;
2371
2372    if (!has_msr_tsc_deadline) {
2373        return 0;
2374    }
2375
2376    ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2377    if (ret < 0) {
2378        return ret;
2379    }
2380
2381    assert(ret == 1);
2382    return 0;
2383}
2384
2385/*
2386 * Provide a separate write service for the feature control MSR in order to
2387 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2388 * before writing any other state because forcibly leaving nested mode
2389 * invalidates the VCPU state.
2390 */
2391static int kvm_put_msr_feature_control(X86CPU *cpu)
2392{
2393    int ret;
2394
2395    if (!has_msr_feature_control) {
2396        return 0;
2397    }
2398
2399    ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2400                          cpu->env.msr_ia32_feature_control);
2401    if (ret < 0) {
2402        return ret;
2403    }
2404
2405    assert(ret == 1);
2406    return 0;
2407}
2408
2409static int kvm_put_msrs(X86CPU *cpu, int level)
2410{
2411    CPUX86State *env = &cpu->env;
2412    int i;
2413    int ret;
2414
2415    kvm_msr_buf_reset(cpu);
2416
2417    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2418    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2419    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2420    kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2421    if (has_msr_star) {
2422        kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2423    }
2424    if (has_msr_hsave_pa) {
2425        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2426    }
2427    if (has_msr_tsc_aux) {
2428        kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2429    }
2430    if (has_msr_tsc_adjust) {
2431        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2432    }
2433    if (has_msr_misc_enable) {
2434        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2435                          env->msr_ia32_misc_enable);
2436    }
2437    if (has_msr_smbase) {
2438        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2439    }
2440    if (has_msr_smi_count) {
2441        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2442    }
2443    if (has_msr_bndcfgs) {
2444        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2445    }
2446    if (has_msr_xss) {
2447        kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2448    }
2449    if (has_msr_spec_ctrl) {
2450        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2451    }
2452    if (has_msr_virt_ssbd) {
2453        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2454    }
2455
2456#ifdef TARGET_X86_64
2457    if (lm_capable_kernel) {
2458        kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2459        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2460        kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2461        kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2462    }
2463#endif
2464
2465    /* If host supports feature MSR, write down. */
2466    if (has_msr_arch_capabs) {
2467        kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2468                          env->features[FEAT_ARCH_CAPABILITIES]);
2469    }
2470
2471    if (has_msr_core_capabs) {
2472        kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2473                          env->features[FEAT_CORE_CAPABILITY]);
2474    }
2475
2476    /*
2477     * The following MSRs have side effects on the guest or are too heavy
2478     * for normal writeback. Limit them to reset or full state updates.
2479     */
2480    if (level >= KVM_PUT_RESET_STATE) {
2481        kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2482        kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2483        kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2484        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2485            kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2486        }
2487        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2488            kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2489        }
2490        if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2491            kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2492        }
2493        if (has_architectural_pmu_version > 0) {
2494            if (has_architectural_pmu_version > 1) {
2495                /* Stop the counter.  */
2496                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2497                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2498            }
2499
2500            /* Set the counter values.  */
2501            for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2502                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2503                                  env->msr_fixed_counters[i]);
2504            }
2505            for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2506                kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2507                                  env->msr_gp_counters[i]);
2508                kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2509                                  env->msr_gp_evtsel[i]);
2510            }
2511            if (has_architectural_pmu_version > 1) {
2512                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2513                                  env->msr_global_status);
2514                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2515                                  env->msr_global_ovf_ctrl);
2516
2517                /* Now start the PMU.  */
2518                kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2519                                  env->msr_fixed_ctr_ctrl);
2520                kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2521                                  env->msr_global_ctrl);
2522            }
2523        }
2524        /*
2525         * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2526         * only sync them to KVM on the first cpu
2527         */
2528        if (current_cpu == first_cpu) {
2529            if (has_msr_hv_hypercall) {
2530                kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2531                                  env->msr_hv_guest_os_id);
2532                kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2533                                  env->msr_hv_hypercall);
2534            }
2535            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2536                kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2537                                  env->msr_hv_tsc);
2538            }
2539            if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2540                kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2541                                  env->msr_hv_reenlightenment_control);
2542                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2543                                  env->msr_hv_tsc_emulation_control);
2544                kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2545                                  env->msr_hv_tsc_emulation_status);
2546            }
2547        }
2548        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2549            kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2550                              env->msr_hv_vapic);
2551        }
2552        if (has_msr_hv_crash) {
2553            int j;
2554
2555            for (j = 0; j < HV_CRASH_PARAMS; j++)
2556                kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2557                                  env->msr_hv_crash_params[j]);
2558
2559            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2560        }
2561        if (has_msr_hv_runtime) {
2562            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2563        }
2564        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2565            && hv_vpindex_settable) {
2566            kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2567                              hyperv_vp_index(CPU(cpu)));
2568        }
2569        if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2570            int j;
2571
2572            kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2573
2574            kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2575                              env->msr_hv_synic_control);
2576            kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2577                              env->msr_hv_synic_evt_page);
2578            kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2579                              env->msr_hv_synic_msg_page);
2580
2581            for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2582                kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2583                                  env->msr_hv_synic_sint[j]);
2584            }
2585        }
2586        if (has_msr_hv_stimer) {
2587            int j;
2588
2589            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2590                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2591                                env->msr_hv_stimer_config[j]);
2592            }
2593
2594            for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2595                kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2596                                env->msr_hv_stimer_count[j]);
2597            }
2598        }
2599        if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2600            uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2601
2602            kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2603            kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2604            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2605            kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2606            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2607            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2608            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2609            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2610            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2611            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2612            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2613            kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2614            for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2615                /* The CPU GPs if we write to a bit above the physical limit of
2616                 * the host CPU (and KVM emulates that)
2617                 */
2618                uint64_t mask = env->mtrr_var[i].mask;
2619                mask &= phys_mask;
2620
2621                kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2622                                  env->mtrr_var[i].base);
2623                kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2624            }
2625        }
2626        if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2627            int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2628                                                    0x14, 1, R_EAX) & 0x7;
2629
2630            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2631                            env->msr_rtit_ctrl);
2632            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2633                            env->msr_rtit_status);
2634            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2635                            env->msr_rtit_output_base);
2636            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2637                            env->msr_rtit_output_mask);
2638            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2639                            env->msr_rtit_cr3_match);
2640            for (i = 0; i < addr_num; i++) {
2641                kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2642                            env->msr_rtit_addrs[i]);
2643            }
2644        }
2645
2646        /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2647         *       kvm_put_msr_feature_control. */
2648    }
2649    if (env->mcg_cap) {
2650        int i;
2651
2652        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2653        kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2654        if (has_msr_mcg_ext_ctl) {
2655            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2656        }
2657        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2658            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2659        }
2660    }
2661
2662    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2663    if (ret < 0) {
2664        return ret;
2665    }
2666
2667    if (ret < cpu->kvm_msr_buf->nmsrs) {
2668        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2669        error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2670                     (uint32_t)e->index, (uint64_t)e->data);
2671    }
2672
2673    assert(ret == cpu->kvm_msr_buf->nmsrs);
2674    return 0;
2675}
2676
2677
2678static int kvm_get_fpu(X86CPU *cpu)
2679{
2680    CPUX86State *env = &cpu->env;
2681    struct kvm_fpu fpu;
2682    int i, ret;
2683
2684    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
2685    if (ret < 0) {
2686        return ret;
2687    }
2688
2689    env->fpstt = (fpu.fsw >> 11) & 7;
2690    env->fpus = fpu.fsw;
2691    env->fpuc = fpu.fcw;
2692    env->fpop = fpu.last_opcode;
2693    env->fpip = fpu.last_ip;
2694    env->fpdp = fpu.last_dp;
2695    for (i = 0; i < 8; ++i) {
2696        env->fptags[i] = !((fpu.ftwx >> i) & 1);
2697    }
2698    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
2699    for (i = 0; i < CPU_NB_REGS; i++) {
2700        env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2701        env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
2702    }
2703    env->mxcsr = fpu.mxcsr;
2704
2705    return 0;
2706}
2707
2708static int kvm_get_xsave(X86CPU *cpu)
2709{
2710    CPUX86State *env = &cpu->env;
2711    X86XSaveArea *xsave = env->xsave_buf;
2712    int ret;
2713
2714    if (!has_xsave) {
2715        return kvm_get_fpu(cpu);
2716    }
2717
2718    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
2719    if (ret < 0) {
2720        return ret;
2721    }
2722    x86_cpu_xrstor_all_areas(cpu, xsave);
2723
2724    return 0;
2725}
2726
2727static int kvm_get_xcrs(X86CPU *cpu)
2728{
2729    CPUX86State *env = &cpu->env;
2730    int i, ret;
2731    struct kvm_xcrs xcrs;
2732
2733    if (!has_xcrs) {
2734        return 0;
2735    }
2736
2737    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
2738    if (ret < 0) {
2739        return ret;
2740    }
2741
2742    for (i = 0; i < xcrs.nr_xcrs; i++) {
2743        /* Only support xcr0 now */
2744        if (xcrs.xcrs[i].xcr == 0) {
2745            env->xcr0 = xcrs.xcrs[i].value;
2746            break;
2747        }
2748    }
2749    return 0;
2750}
2751
2752static int kvm_get_sregs(X86CPU *cpu)
2753{
2754    CPUX86State *env = &cpu->env;
2755    struct kvm_sregs sregs;
2756    int bit, i, ret;
2757
2758    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
2759    if (ret < 0) {
2760        return ret;
2761    }
2762
2763    /* There can only be one pending IRQ set in the bitmap at a time, so try
2764       to find it and save its number instead (-1 for none). */
2765    env->interrupt_injected = -1;
2766    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
2767        if (sregs.interrupt_bitmap[i]) {
2768            bit = ctz64(sregs.interrupt_bitmap[i]);
2769            env->interrupt_injected = i * 64 + bit;
2770            break;
2771        }
2772    }
2773
2774    get_seg(&env->segs[R_CS], &sregs.cs);
2775    get_seg(&env->segs[R_DS], &sregs.ds);
2776    get_seg(&env->segs[R_ES], &sregs.es);
2777    get_seg(&env->segs[R_FS], &sregs.fs);
2778    get_seg(&env->segs[R_GS], &sregs.gs);
2779    get_seg(&env->segs[R_SS], &sregs.ss);
2780
2781    get_seg(&env->tr, &sregs.tr);
2782    get_seg(&env->ldt, &sregs.ldt);
2783
2784    env->idt.limit = sregs.idt.limit;
2785    env->idt.base = sregs.idt.base;
2786    env->gdt.limit = sregs.gdt.limit;
2787    env->gdt.base = sregs.gdt.base;
2788
2789    env->cr[0] = sregs.cr0;
2790    env->cr[2] = sregs.cr2;
2791    env->cr[3] = sregs.cr3;
2792    env->cr[4] = sregs.cr4;
2793
2794    env->efer = sregs.efer;
2795
2796    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
2797    x86_update_hflags(env);
2798
2799    return 0;
2800}
2801
2802static int kvm_get_msrs(X86CPU *cpu)
2803{
2804    CPUX86State *env = &cpu->env;
2805    struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
2806    int ret, i;
2807    uint64_t mtrr_top_bits;
2808
2809    kvm_msr_buf_reset(cpu);
2810
2811    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
2812    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
2813    kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
2814    kvm_msr_entry_add(cpu, MSR_PAT, 0);
2815    if (has_msr_star) {
2816        kvm_msr_entry_add(cpu, MSR_STAR, 0);
2817    }
2818    if (has_msr_hsave_pa) {
2819        kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
2820    }
2821    if (has_msr_tsc_aux) {
2822        kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
2823    }
2824    if (has_msr_tsc_adjust) {
2825        kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
2826    }
2827    if (has_msr_tsc_deadline) {
2828        kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
2829    }
2830    if (has_msr_misc_enable) {
2831        kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
2832    }
2833    if (has_msr_smbase) {
2834        kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
2835    }
2836    if (has_msr_smi_count) {
2837        kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
2838    }
2839    if (has_msr_feature_control) {
2840        kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
2841    }
2842    if (has_msr_bndcfgs) {
2843        kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
2844    }
2845    if (has_msr_xss) {
2846        kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
2847    }
2848    if (has_msr_spec_ctrl) {
2849        kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
2850    }
2851    if (has_msr_virt_ssbd) {
2852        kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
2853    }
2854    if (!env->tsc_valid) {
2855        kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
2856        env->tsc_valid = !runstate_is_running();
2857    }
2858
2859#ifdef TARGET_X86_64
2860    if (lm_capable_kernel) {
2861        kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
2862        kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
2863        kvm_msr_entry_add(cpu, MSR_FMASK, 0);
2864        kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
2865    }
2866#endif
2867    kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
2868    kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
2869    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2870        kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
2871    }
2872    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2873        kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
2874    }
2875    if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2876        kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
2877    }
2878    if (has_architectural_pmu_version > 0) {
2879        if (has_architectural_pmu_version > 1) {
2880            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2881            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2882            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
2883            kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
2884        }
2885        for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2886            kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
2887        }
2888        for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2889            kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
2890            kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
2891        }
2892    }
2893
2894    if (env->mcg_cap) {
2895        kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
2896        kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
2897        if (has_msr_mcg_ext_ctl) {
2898            kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
2899        }
2900        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2901            kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
2902        }
2903    }
2904
2905    if (has_msr_hv_hypercall) {
2906        kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
2907        kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
2908    }
2909    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2910        kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
2911    }
2912    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2913        kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
2914    }
2915    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2916        kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
2917        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
2918        kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
2919    }
2920    if (has_msr_hv_crash) {
2921        int j;
2922
2923        for (j = 0; j < HV_CRASH_PARAMS; j++) {
2924            kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
2925        }
2926    }
2927    if (has_msr_hv_runtime) {
2928        kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
2929    }
2930    if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2931        uint32_t msr;
2932
2933        kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
2934        kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
2935        kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
2936        for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
2937            kvm_msr_entry_add(cpu, msr, 0);
2938        }
2939    }
2940    if (has_msr_hv_stimer) {
2941        uint32_t msr;
2942
2943        for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2944             msr++) {
2945            kvm_msr_entry_add(cpu, msr, 0);
2946        }
2947    }
2948    if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2949        kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
2950        kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
2951        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
2952        kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
2953        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
2954        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
2955        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
2956        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
2957        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
2958        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
2959        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
2960        kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
2961        for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2962            kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
2963            kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
2964        }
2965    }
2966
2967    if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2968        int addr_num =
2969            kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
2970
2971        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
2972        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
2973        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
2974        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
2975        kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
2976        for (i = 0; i < addr_num; i++) {
2977            kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
2978        }
2979    }
2980
2981    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
2982    if (ret < 0) {
2983        return ret;
2984    }
2985
2986    if (ret < cpu->kvm_msr_buf->nmsrs) {
2987        struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2988        error_report("error: failed to get MSR 0x%" PRIx32,
2989                     (uint32_t)e->index);
2990    }
2991
2992    assert(ret == cpu->kvm_msr_buf->nmsrs);
2993    /*
2994     * MTRR masks: Each mask consists of 5 parts
2995     * a  10..0: must be zero
2996     * b  11   : valid bit
2997     * c n-1.12: actual mask bits
2998     * d  51..n: reserved must be zero
2999     * e  63.52: reserved must be zero
3000     *
3001     * 'n' is the number of physical bits supported by the CPU and is
3002     * apparently always <= 52.   We know our 'n' but don't know what
3003     * the destinations 'n' is; it might be smaller, in which case
3004     * it masks (c) on loading. It might be larger, in which case
3005     * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3006     * we're migrating to.
3007     */
3008
3009    if (cpu->fill_mtrr_mask) {
3010        QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3011        assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3012        mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3013    } else {
3014        mtrr_top_bits = 0;
3015    }
3016
3017    for (i = 0; i < ret; i++) {
3018        uint32_t index = msrs[i].index;
3019        switch (index) {
3020        case MSR_IA32_SYSENTER_CS:
3021            env->sysenter_cs = msrs[i].data;
3022            break;
3023        case MSR_IA32_SYSENTER_ESP:
3024            env->sysenter_esp = msrs[i].data;
3025            break;
3026        case MSR_IA32_SYSENTER_EIP:
3027            env->sysenter_eip = msrs[i].data;
3028            break;
3029        case MSR_PAT:
3030            env->pat = msrs[i].data;
3031            break;
3032        case MSR_STAR:
3033            env->star = msrs[i].data;
3034            break;
3035#ifdef TARGET_X86_64
3036        case MSR_CSTAR:
3037            env->cstar = msrs[i].data;
3038            break;
3039        case MSR_KERNELGSBASE:
3040            env->kernelgsbase = msrs[i].data;
3041            break;
3042        case MSR_FMASK:
3043            env->fmask = msrs[i].data;
3044            break;
3045        case MSR_LSTAR:
3046            env->lstar = msrs[i].data;
3047            break;
3048#endif
3049        case MSR_IA32_TSC:
3050            env->tsc = msrs[i].data;
3051            break;
3052        case MSR_TSC_AUX:
3053            env->tsc_aux = msrs[i].data;
3054            break;
3055        case MSR_TSC_ADJUST:
3056            env->tsc_adjust = msrs[i].data;
3057            break;
3058        case MSR_IA32_TSCDEADLINE:
3059            env->tsc_deadline = msrs[i].data;
3060            break;
3061        case MSR_VM_HSAVE_PA:
3062            env->vm_hsave = msrs[i].data;
3063            break;
3064        case MSR_KVM_SYSTEM_TIME:
3065            env->system_time_msr = msrs[i].data;
3066            break;
3067        case MSR_KVM_WALL_CLOCK:
3068            env->wall_clock_msr = msrs[i].data;
3069            break;
3070        case MSR_MCG_STATUS:
3071            env->mcg_status = msrs[i].data;
3072            break;
3073        case MSR_MCG_CTL:
3074            env->mcg_ctl = msrs[i].data;
3075            break;
3076        case MSR_MCG_EXT_CTL:
3077            env->mcg_ext_ctl = msrs[i].data;
3078            break;
3079        case MSR_IA32_MISC_ENABLE:
3080            env->msr_ia32_misc_enable = msrs[i].data;
3081            break;
3082        case MSR_IA32_SMBASE:
3083            env->smbase = msrs[i].data;
3084            break;
3085        case MSR_SMI_COUNT:
3086            env->msr_smi_count = msrs[i].data;
3087            break;
3088        case MSR_IA32_FEATURE_CONTROL:
3089            env->msr_ia32_feature_control = msrs[i].data;
3090            break;
3091        case MSR_IA32_BNDCFGS:
3092            env->msr_bndcfgs = msrs[i].data;
3093            break;
3094        case MSR_IA32_XSS:
3095            env->xss = msrs[i].data;
3096            break;
3097        default:
3098            if (msrs[i].index >= MSR_MC0_CTL &&
3099                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3100                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3101            }
3102            break;
3103        case MSR_KVM_ASYNC_PF_EN:
3104            env->async_pf_en_msr = msrs[i].data;
3105            break;
3106        case MSR_KVM_PV_EOI_EN:
3107            env->pv_eoi_en_msr = msrs[i].data;
3108            break;
3109        case MSR_KVM_STEAL_TIME:
3110            env->steal_time_msr = msrs[i].data;
3111            break;
3112        case MSR_CORE_PERF_FIXED_CTR_CTRL:
3113            env->msr_fixed_ctr_ctrl = msrs[i].data;
3114            break;
3115        case MSR_CORE_PERF_GLOBAL_CTRL:
3116            env->msr_global_ctrl = msrs[i].data;
3117            break;
3118        case MSR_CORE_PERF_GLOBAL_STATUS:
3119            env->msr_global_status = msrs[i].data;
3120            break;
3121        case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3122            env->msr_global_ovf_ctrl = msrs[i].data;
3123            break;
3124        case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3125            env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3126            break;
3127        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3128            env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3129            break;
3130        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3131            env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3132            break;
3133        case HV_X64_MSR_HYPERCALL:
3134            env->msr_hv_hypercall = msrs[i].data;
3135            break;
3136        case HV_X64_MSR_GUEST_OS_ID:
3137            env->msr_hv_guest_os_id = msrs[i].data;
3138            break;
3139        case HV_X64_MSR_APIC_ASSIST_PAGE:
3140            env->msr_hv_vapic = msrs[i].data;
3141            break;
3142        case HV_X64_MSR_REFERENCE_TSC:
3143            env->msr_hv_tsc = msrs[i].data;
3144            break;
3145        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3146            env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3147            break;
3148        case HV_X64_MSR_VP_RUNTIME:
3149            env->msr_hv_runtime = msrs[i].data;
3150            break;
3151        case HV_X64_MSR_SCONTROL:
3152            env->msr_hv_synic_control = msrs[i].data;
3153            break;
3154        case HV_X64_MSR_SIEFP:
3155            env->msr_hv_synic_evt_page = msrs[i].data;
3156            break;
3157        case HV_X64_MSR_SIMP:
3158            env->msr_hv_synic_msg_page = msrs[i].data;
3159            break;
3160        case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3161            env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3162            break;
3163        case HV_X64_MSR_STIMER0_CONFIG:
3164        case HV_X64_MSR_STIMER1_CONFIG:
3165        case HV_X64_MSR_STIMER2_CONFIG:
3166        case HV_X64_MSR_STIMER3_CONFIG:
3167            env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3168                                msrs[i].data;
3169            break;
3170        case HV_X64_MSR_STIMER0_COUNT:
3171        case HV_X64_MSR_STIMER1_COUNT:
3172        case HV_X64_MSR_STIMER2_COUNT:
3173        case HV_X64_MSR_STIMER3_COUNT:
3174            env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3175                                msrs[i].data;
3176            break;
3177        case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3178            env->msr_hv_reenlightenment_control = msrs[i].data;
3179            break;
3180        case HV_X64_MSR_TSC_EMULATION_CONTROL:
3181            env->msr_hv_tsc_emulation_control = msrs[i].data;
3182            break;
3183        case HV_X64_MSR_TSC_EMULATION_STATUS:
3184            env->msr_hv_tsc_emulation_status = msrs[i].data;
3185            break;
3186        case MSR_MTRRdefType:
3187            env->mtrr_deftype = msrs[i].data;
3188            break;
3189        case MSR_MTRRfix64K_00000:
3190            env->mtrr_fixed[0] = msrs[i].data;
3191            break;
3192        case MSR_MTRRfix16K_80000:
3193            env->mtrr_fixed[1] = msrs[i].data;
3194            break;
3195        case MSR_MTRRfix16K_A0000:
3196            env->mtrr_fixed[2] = msrs[i].data;
3197            break;
3198        case MSR_MTRRfix4K_C0000:
3199            env->mtrr_fixed[3] = msrs[i].data;
3200            break;
3201        case MSR_MTRRfix4K_C8000:
3202            env->mtrr_fixed[4] = msrs[i].data;
3203            break;
3204        case MSR_MTRRfix4K_D0000:
3205            env->mtrr_fixed[5] = msrs[i].data;
3206            break;
3207        case MSR_MTRRfix4K_D8000:
3208            env->mtrr_fixed[6] = msrs[i].data;
3209            break;
3210        case MSR_MTRRfix4K_E0000:
3211            env->mtrr_fixed[7] = msrs[i].data;
3212            break;
3213        case MSR_MTRRfix4K_E8000:
3214            env->mtrr_fixed[8] = msrs[i].data;
3215            break;
3216        case MSR_MTRRfix4K_F0000:
3217            env->mtrr_fixed[9] = msrs[i].data;
3218            break;
3219        case MSR_MTRRfix4K_F8000:
3220            env->mtrr_fixed[10] = msrs[i].data;
3221            break;
3222        case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3223            if (index & 1) {
3224                env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3225                                                               mtrr_top_bits;
3226            } else {
3227                env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3228            }
3229            break;
3230        case MSR_IA32_SPEC_CTRL:
3231            env->spec_ctrl = msrs[i].data;
3232            break;
3233        case MSR_VIRT_SSBD:
3234            env->virt_ssbd = msrs[i].data;
3235            break;
3236        case MSR_IA32_RTIT_CTL:
3237            env->msr_rtit_ctrl = msrs[i].data;
3238            break;
3239        case MSR_IA32_RTIT_STATUS:
3240            env->msr_rtit_status = msrs[i].data;
3241            break;
3242        case MSR_IA32_RTIT_OUTPUT_BASE:
3243            env->msr_rtit_output_base = msrs[i].data;
3244            break;
3245        case MSR_IA32_RTIT_OUTPUT_MASK:
3246            env->msr_rtit_output_mask = msrs[i].data;
3247            break;
3248        case MSR_IA32_RTIT_CR3_MATCH:
3249            env->msr_rtit_cr3_match = msrs[i].data;
3250            break;
3251        case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3252            env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3253            break;
3254        }
3255    }
3256
3257    return 0;
3258}
3259
3260static int kvm_put_mp_state(X86CPU *cpu)
3261{
3262    struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3263
3264    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3265}
3266
3267static int kvm_get_mp_state(X86CPU *cpu)
3268{
3269    CPUState *cs = CPU(cpu);
3270    CPUX86State *env = &cpu->env;
3271    struct kvm_mp_state mp_state;
3272    int ret;
3273
3274    ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3275    if (ret < 0) {
3276        return ret;
3277    }
3278    env->mp_state = mp_state.mp_state;
3279    if (kvm_irqchip_in_kernel()) {
3280        cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3281    }
3282    return 0;
3283}
3284
3285static int kvm_get_apic(X86CPU *cpu)
3286{
3287    DeviceState *apic = cpu->apic_state;
3288    struct kvm_lapic_state kapic;
3289    int ret;
3290
3291    if (apic && kvm_irqchip_in_kernel()) {
3292        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3293        if (ret < 0) {
3294            return ret;
3295        }
3296
3297        kvm_get_apic_state(apic, &kapic);
3298    }
3299    return 0;
3300}
3301
3302static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3303{
3304    CPUState *cs = CPU(cpu);
3305    CPUX86State *env = &cpu->env;
3306    struct kvm_vcpu_events events = {};
3307
3308    if (!kvm_has_vcpu_events()) {
3309        return 0;
3310    }
3311
3312    events.flags = 0;
3313
3314    if (has_exception_payload) {
3315        events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3316        events.exception.pending = env->exception_pending;
3317        events.exception_has_payload = env->exception_has_payload;
3318        events.exception_payload = env->exception_payload;
3319    }
3320    events.exception.nr = env->exception_nr;
3321    events.exception.injected = env->exception_injected;
3322    events.exception.has_error_code = env->has_error_code;
3323    events.exception.error_code = env->error_code;
3324
3325    events.interrupt.injected = (env->interrupt_injected >= 0);
3326    events.interrupt.nr = env->interrupt_injected;
3327    events.interrupt.soft = env->soft_interrupt;
3328
3329    events.nmi.injected = env->nmi_injected;
3330    events.nmi.pending = env->nmi_pending;
3331    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3332
3333    events.sipi_vector = env->sipi_vector;
3334
3335    if (has_msr_smbase) {
3336        events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3337        events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3338        if (kvm_irqchip_in_kernel()) {
3339            /* As soon as these are moved to the kernel, remove them
3340             * from cs->interrupt_request.
3341             */
3342            events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3343            events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3344            cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3345        } else {
3346            /* Keep these in cs->interrupt_request.  */
3347            events.smi.pending = 0;
3348            events.smi.latched_init = 0;
3349        }
3350        /* Stop SMI delivery on old machine types to avoid a reboot
3351         * on an inward migration of an old VM.
3352         */
3353        if (!cpu->kvm_no_smi_migration) {
3354            events.flags |= KVM_VCPUEVENT_VALID_SMM;
3355        }
3356    }
3357
3358    if (level >= KVM_PUT_RESET_STATE) {
3359        events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3360        if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3361            events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3362        }
3363    }
3364
3365    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3366}
3367
3368static int kvm_get_vcpu_events(X86CPU *cpu)
3369{
3370    CPUX86State *env = &cpu->env;
3371    struct kvm_vcpu_events events;
3372    int ret;
3373
3374    if (!kvm_has_vcpu_events()) {
3375        return 0;
3376    }
3377
3378    memset(&events, 0, sizeof(events));
3379    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3380    if (ret < 0) {
3381       return ret;
3382    }
3383
3384    if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3385        env->exception_pending = events.exception.pending;
3386        env->exception_has_payload = events.exception_has_payload;
3387        env->exception_payload = events.exception_payload;
3388    } else {
3389        env->exception_pending = 0;
3390        env->exception_has_payload = false;
3391    }
3392    env->exception_injected = events.exception.injected;
3393    env->exception_nr =
3394        (env->exception_pending || env->exception_injected) ?
3395        events.exception.nr : -1;
3396    env->has_error_code = events.exception.has_error_code;
3397    env->error_code = events.exception.error_code;
3398
3399    env->interrupt_injected =
3400        events.interrupt.injected ? events.interrupt.nr : -1;
3401    env->soft_interrupt = events.interrupt.soft;
3402
3403    env->nmi_injected = events.nmi.injected;
3404    env->nmi_pending = events.nmi.pending;
3405    if (events.nmi.masked) {
3406        env->hflags2 |= HF2_NMI_MASK;
3407    } else {
3408        env->hflags2 &= ~HF2_NMI_MASK;
3409    }
3410
3411    if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3412        if (events.smi.smm) {
3413            env->hflags |= HF_SMM_MASK;
3414        } else {
3415            env->hflags &= ~HF_SMM_MASK;
3416        }
3417        if (events.smi.pending) {
3418            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3419        } else {
3420            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3421        }
3422        if (events.smi.smm_inside_nmi) {
3423            env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3424        } else {
3425            env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3426        }
3427        if (events.smi.latched_init) {
3428            cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3429        } else {
3430            cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3431        }
3432    }
3433
3434    env->sipi_vector = events.sipi_vector;
3435
3436    return 0;
3437}
3438
3439static int kvm_guest_debug_workarounds(X86CPU *cpu)
3440{
3441    CPUState *cs = CPU(cpu);
3442    CPUX86State *env = &cpu->env;
3443    int ret = 0;
3444    unsigned long reinject_trap = 0;
3445
3446    if (!kvm_has_vcpu_events()) {
3447        if (env->exception_nr == EXCP01_DB) {
3448            reinject_trap = KVM_GUESTDBG_INJECT_DB;
3449        } else if (env->exception_injected == EXCP03_INT3) {
3450            reinject_trap = KVM_GUESTDBG_INJECT_BP;
3451        }
3452        kvm_reset_exception(env);
3453    }
3454
3455    /*
3456     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3457     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3458     * by updating the debug state once again if single-stepping is on.
3459     * Another reason to call kvm_update_guest_debug here is a pending debug
3460     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3461     * reinject them via SET_GUEST_DEBUG.
3462     */
3463    if (reinject_trap ||
3464        (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3465        ret = kvm_update_guest_debug(cs, reinject_trap);
3466    }
3467    return ret;
3468}
3469
3470static int kvm_put_debugregs(X86CPU *cpu)
3471{
3472    CPUX86State *env = &cpu->env;
3473    struct kvm_debugregs dbgregs;
3474    int i;
3475
3476    if (!kvm_has_debugregs()) {
3477        return 0;
3478    }
3479
3480    for (i = 0; i < 4; i++) {
3481        dbgregs.db[i] = env->dr[i];
3482    }
3483    dbgregs.dr6 = env->dr[6];
3484    dbgregs.dr7 = env->dr[7];
3485    dbgregs.flags = 0;
3486
3487    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3488}
3489
3490static int kvm_get_debugregs(X86CPU *cpu)
3491{
3492    CPUX86State *env = &cpu->env;
3493    struct kvm_debugregs dbgregs;
3494    int i, ret;
3495
3496    if (!kvm_has_debugregs()) {
3497        return 0;
3498    }
3499
3500    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3501    if (ret < 0) {
3502        return ret;
3503    }
3504    for (i = 0; i < 4; i++) {
3505        env->dr[i] = dbgregs.db[i];
3506    }
3507    env->dr[4] = env->dr[6] = dbgregs.dr6;
3508    env->dr[5] = env->dr[7] = dbgregs.dr7;
3509
3510    return 0;
3511}
3512
3513static int kvm_put_nested_state(X86CPU *cpu)
3514{
3515    CPUX86State *env = &cpu->env;
3516    int max_nested_state_len = kvm_max_nested_state_length();
3517
3518    if (!env->nested_state) {
3519        return 0;
3520    }
3521
3522    assert(env->nested_state->size <= max_nested_state_len);
3523    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3524}
3525
3526static int kvm_get_nested_state(X86CPU *cpu)
3527{
3528    CPUX86State *env = &cpu->env;
3529    int max_nested_state_len = kvm_max_nested_state_length();
3530    int ret;
3531
3532    if (!env->nested_state) {
3533        return 0;
3534    }
3535
3536    /*
3537     * It is possible that migration restored a smaller size into
3538     * nested_state->hdr.size than what our kernel support.
3539     * We preserve migration origin nested_state->hdr.size for
3540     * call to KVM_SET_NESTED_STATE but wish that our next call
3541     * to KVM_GET_NESTED_STATE will use max size our kernel support.
3542     */
3543    env->nested_state->size = max_nested_state_len;
3544
3545    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3546    if (ret < 0) {
3547        return ret;
3548    }
3549
3550    if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3551        env->hflags |= HF_GUEST_MASK;
3552    } else {
3553        env->hflags &= ~HF_GUEST_MASK;
3554    }
3555
3556    return ret;
3557}
3558
3559int kvm_arch_put_registers(CPUState *cpu, int level)
3560{
3561    X86CPU *x86_cpu = X86_CPU(cpu);
3562    int ret;
3563
3564    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3565
3566    if (level >= KVM_PUT_RESET_STATE) {
3567        ret = kvm_put_nested_state(x86_cpu);
3568        if (ret < 0) {
3569            return ret;
3570        }
3571
3572        ret = kvm_put_msr_feature_control(x86_cpu);
3573        if (ret < 0) {
3574            return ret;
3575        }
3576    }
3577
3578    if (level == KVM_PUT_FULL_STATE) {
3579        /* We don't check for kvm_arch_set_tsc_khz() errors here,
3580         * because TSC frequency mismatch shouldn't abort migration,
3581         * unless the user explicitly asked for a more strict TSC
3582         * setting (e.g. using an explicit "tsc-freq" option).
3583         */
3584        kvm_arch_set_tsc_khz(cpu);
3585    }
3586
3587    ret = kvm_getput_regs(x86_cpu, 1);
3588    if (ret < 0) {
3589        return ret;
3590    }
3591    ret = kvm_put_xsave(x86_cpu);
3592    if (ret < 0) {
3593        return ret;
3594    }
3595    ret = kvm_put_xcrs(x86_cpu);
3596    if (ret < 0) {
3597        return ret;
3598    }
3599    ret = kvm_put_sregs(x86_cpu);
3600    if (ret < 0) {
3601        return ret;
3602    }
3603    /* must be before kvm_put_msrs */
3604    ret = kvm_inject_mce_oldstyle(x86_cpu);
3605    if (ret < 0) {
3606        return ret;
3607    }
3608    ret = kvm_put_msrs(x86_cpu, level);
3609    if (ret < 0) {
3610        return ret;
3611    }
3612    ret = kvm_put_vcpu_events(x86_cpu, level);
3613    if (ret < 0) {
3614        return ret;
3615    }
3616    if (level >= KVM_PUT_RESET_STATE) {
3617        ret = kvm_put_mp_state(x86_cpu);
3618        if (ret < 0) {
3619            return ret;
3620        }
3621    }
3622
3623    ret = kvm_put_tscdeadline_msr(x86_cpu);
3624    if (ret < 0) {
3625        return ret;
3626    }
3627    ret = kvm_put_debugregs(x86_cpu);
3628    if (ret < 0) {
3629        return ret;
3630    }
3631    /* must be last */
3632    ret = kvm_guest_debug_workarounds(x86_cpu);
3633    if (ret < 0) {
3634        return ret;
3635    }
3636    return 0;
3637}
3638
3639int kvm_arch_get_registers(CPUState *cs)
3640{
3641    X86CPU *cpu = X86_CPU(cs);
3642    int ret;
3643
3644    assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
3645
3646    ret = kvm_get_vcpu_events(cpu);
3647    if (ret < 0) {
3648        goto out;
3649    }
3650    /*
3651     * KVM_GET_MPSTATE can modify CS and RIP, call it before
3652     * KVM_GET_REGS and KVM_GET_SREGS.
3653     */
3654    ret = kvm_get_mp_state(cpu);
3655    if (ret < 0) {
3656        goto out;
3657    }
3658    ret = kvm_getput_regs(cpu, 0);
3659    if (ret < 0) {
3660        goto out;
3661    }
3662    ret = kvm_get_xsave(cpu);
3663    if (ret < 0) {
3664        goto out;
3665    }
3666    ret = kvm_get_xcrs(cpu);
3667    if (ret < 0) {
3668        goto out;
3669    }
3670    ret = kvm_get_sregs(cpu);
3671    if (ret < 0) {
3672        goto out;
3673    }
3674    ret = kvm_get_msrs(cpu);
3675    if (ret < 0) {
3676        goto out;
3677    }
3678    ret = kvm_get_apic(cpu);
3679    if (ret < 0) {
3680        goto out;
3681    }
3682    ret = kvm_get_debugregs(cpu);
3683    if (ret < 0) {
3684        goto out;
3685    }
3686    ret = kvm_get_nested_state(cpu);
3687    if (ret < 0) {
3688        goto out;
3689    }
3690    ret = 0;
3691 out:
3692    cpu_sync_bndcs_hflags(&cpu->env);
3693    return ret;
3694}
3695
3696void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
3697{
3698    X86CPU *x86_cpu = X86_CPU(cpu);
3699    CPUX86State *env = &x86_cpu->env;
3700    int ret;
3701
3702    /* Inject NMI */
3703    if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3704        if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3705            qemu_mutex_lock_iothread();
3706            cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3707            qemu_mutex_unlock_iothread();
3708            DPRINTF("injected NMI\n");
3709            ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
3710            if (ret < 0) {
3711                fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
3712                        strerror(-ret));
3713            }
3714        }
3715        if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
3716            qemu_mutex_lock_iothread();
3717            cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
3718            qemu_mutex_unlock_iothread();
3719            DPRINTF("injected SMI\n");
3720            ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
3721            if (ret < 0) {
3722                fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
3723                        strerror(-ret));
3724            }
3725        }
3726    }
3727
3728    if (!kvm_pic_in_kernel()) {
3729        qemu_mutex_lock_iothread();
3730    }
3731
3732    /* Force the VCPU out of its inner loop to process any INIT requests
3733     * or (for userspace APIC, but it is cheap to combine the checks here)
3734     * pending TPR access reports.
3735     */
3736    if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
3737        if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
3738            !(env->hflags & HF_SMM_MASK)) {
3739            cpu->exit_request = 1;
3740        }
3741        if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
3742            cpu->exit_request = 1;
3743        }
3744    }
3745
3746    if (!kvm_pic_in_kernel()) {
3747        /* Try to inject an interrupt if the guest can accept it */
3748        if (run->ready_for_interrupt_injection &&
3749            (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
3750            (env->eflags & IF_MASK)) {
3751            int irq;
3752
3753            cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
3754            irq = cpu_get_pic_interrupt(env);
3755            if (irq >= 0) {
3756                struct kvm_interrupt intr;
3757
3758                intr.irq = irq;
3759                DPRINTF("injected interrupt %d\n", irq);
3760                ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
3761                if (ret < 0) {
3762                    fprintf(stderr,
3763                            "KVM: injection failed, interrupt lost (%s)\n",
3764                            strerror(-ret));
3765                }
3766            }
3767        }
3768
3769        /* If we have an interrupt but the guest is not ready to receive an
3770         * interrupt, request an interrupt window exit.  This will
3771         * cause a return to userspace as soon as the guest is ready to
3772         * receive interrupts. */
3773        if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
3774            run->request_interrupt_window = 1;
3775        } else {
3776            run->request_interrupt_window = 0;
3777        }
3778
3779        DPRINTF("setting tpr\n");
3780        run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
3781
3782        qemu_mutex_unlock_iothread();
3783    }
3784}
3785
3786MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
3787{
3788    X86CPU *x86_cpu = X86_CPU(cpu);
3789    CPUX86State *env = &x86_cpu->env;
3790
3791    if (run->flags & KVM_RUN_X86_SMM) {
3792        env->hflags |= HF_SMM_MASK;
3793    } else {
3794        env->hflags &= ~HF_SMM_MASK;
3795    }
3796    if (run->if_flag) {
3797        env->eflags |= IF_MASK;
3798    } else {
3799        env->eflags &= ~IF_MASK;
3800    }
3801
3802    /* We need to protect the apic state against concurrent accesses from
3803     * different threads in case the userspace irqchip is used. */
3804    if (!kvm_irqchip_in_kernel()) {
3805        qemu_mutex_lock_iothread();
3806    }
3807    cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
3808    cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
3809    if (!kvm_irqchip_in_kernel()) {
3810        qemu_mutex_unlock_iothread();
3811    }
3812    return cpu_get_mem_attrs(env);
3813}
3814
3815int kvm_arch_process_async_events(CPUState *cs)
3816{
3817    X86CPU *cpu = X86_CPU(cs);
3818    CPUX86State *env = &cpu->env;
3819
3820    if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
3821        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
3822        assert(env->mcg_cap);
3823
3824        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
3825
3826        kvm_cpu_synchronize_state(cs);
3827
3828        if (env->exception_nr == EXCP08_DBLE) {
3829            /* this means triple fault */
3830            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3831            cs->exit_request = 1;
3832            return 0;
3833        }
3834        kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
3835        env->has_error_code = 0;
3836
3837        cs->halted = 0;
3838        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
3839            env->mp_state = KVM_MP_STATE_RUNNABLE;
3840        }
3841    }
3842
3843    if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
3844        !(env->hflags & HF_SMM_MASK)) {
3845        kvm_cpu_synchronize_state(cs);
3846        do_cpu_init(cpu);
3847    }
3848
3849    if (kvm_irqchip_in_kernel()) {
3850        return 0;
3851    }
3852
3853    if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
3854        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
3855        apic_poll_irq(cpu->apic_state);
3856    }
3857    if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3858         (env->eflags & IF_MASK)) ||
3859        (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3860        cs->halted = 0;
3861    }
3862    if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
3863        kvm_cpu_synchronize_state(cs);
3864        do_cpu_sipi(cpu);
3865    }
3866    if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
3867        cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
3868        kvm_cpu_synchronize_state(cs);
3869        apic_handle_tpr_access_report(cpu->apic_state, env->eip,
3870                                      env->tpr_access_type);
3871    }
3872
3873    return cs->halted;
3874}
3875
3876static int kvm_handle_halt(X86CPU *cpu)
3877{
3878    CPUState *cs = CPU(cpu);
3879    CPUX86State *env = &cpu->env;
3880
3881    if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3882          (env->eflags & IF_MASK)) &&
3883        !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3884        cs->halted = 1;
3885        return EXCP_HLT;
3886    }
3887
3888    return 0;
3889}
3890
3891static int kvm_handle_tpr_access(X86CPU *cpu)
3892{
3893    CPUState *cs = CPU(cpu);
3894    struct kvm_run *run = cs->kvm_run;
3895
3896    apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
3897                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
3898                                                           : TPR_ACCESS_READ);
3899    return 1;
3900}
3901
3902int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3903{
3904    static const uint8_t int3 = 0xcc;
3905
3906    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
3907        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
3908        return -EINVAL;
3909    }
3910    return 0;
3911}
3912
3913int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3914{
3915    uint8_t int3;
3916
3917    if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
3918        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
3919        return -EINVAL;
3920    }
3921    return 0;
3922}
3923
3924static struct {
3925    target_ulong addr;
3926    int len;
3927    int type;
3928} hw_breakpoint[4];
3929
3930static int nb_hw_breakpoint;
3931
3932static int find_hw_breakpoint(target_ulong addr, int len, int type)
3933{
3934    int n;
3935
3936    for (n = 0; n < nb_hw_breakpoint; n++) {
3937        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
3938            (hw_breakpoint[n].len == len || len == -1)) {
3939            return n;
3940        }
3941    }
3942    return -1;
3943}
3944
3945int kvm_arch_insert_hw_breakpoint(target_ulong addr,
3946                                  target_ulong len, int type)
3947{
3948    switch (type) {
3949    case GDB_BREAKPOINT_HW:
3950        len = 1;
3951        break;
3952    case GDB_WATCHPOINT_WRITE:
3953    case GDB_WATCHPOINT_ACCESS:
3954        switch (len) {
3955        case 1:
3956            break;
3957        case 2:
3958        case 4:
3959        case 8:
3960            if (addr & (len - 1)) {
3961                return -EINVAL;
3962            }
3963            break;
3964        default:
3965            return -EINVAL;
3966        }
3967        break;
3968    default:
3969        return -ENOSYS;
3970    }
3971
3972    if (nb_hw_breakpoint == 4) {
3973        return -ENOBUFS;
3974    }
3975    if (find_hw_breakpoint(addr, len, type) >= 0) {
3976        return -EEXIST;
3977    }
3978    hw_breakpoint[nb_hw_breakpoint].addr = addr;
3979    hw_breakpoint[nb_hw_breakpoint].len = len;
3980    hw_breakpoint[nb_hw_breakpoint].type = type;
3981    nb_hw_breakpoint++;
3982
3983    return 0;
3984}
3985
3986int kvm_arch_remove_hw_breakpoint(target_ulong addr,
3987                                  target_ulong len, int type)
3988{
3989    int n;
3990
3991    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
3992    if (n < 0) {
3993        return -ENOENT;
3994    }
3995    nb_hw_breakpoint--;
3996    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
3997
3998    return 0;
3999}
4000
4001void kvm_arch_remove_all_hw_breakpoints(void)
4002{
4003    nb_hw_breakpoint = 0;
4004}
4005
4006static CPUWatchpoint hw_watchpoint;
4007
4008static int kvm_handle_debug(X86CPU *cpu,
4009                            struct kvm_debug_exit_arch *arch_info)
4010{
4011    CPUState *cs = CPU(cpu);
4012    CPUX86State *env = &cpu->env;
4013    int ret = 0;
4014    int n;
4015
4016    if (arch_info->exception == EXCP01_DB) {
4017        if (arch_info->dr6 & DR6_BS) {
4018            if (cs->singlestep_enabled) {
4019                ret = EXCP_DEBUG;
4020            }
4021        } else {
4022            for (n = 0; n < 4; n++) {
4023                if (arch_info->dr6 & (1 << n)) {
4024                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4025                    case 0x0:
4026                        ret = EXCP_DEBUG;
4027                        break;
4028                    case 0x1:
4029                        ret = EXCP_DEBUG;
4030                        cs->watchpoint_hit = &hw_watchpoint;
4031                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4032                        hw_watchpoint.flags = BP_MEM_WRITE;
4033                        break;
4034                    case 0x3:
4035                        ret = EXCP_DEBUG;
4036                        cs->watchpoint_hit = &hw_watchpoint;
4037                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4038                        hw_watchpoint.flags = BP_MEM_ACCESS;
4039                        break;
4040                    }
4041                }
4042            }
4043        }
4044    } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4045        ret = EXCP_DEBUG;
4046    }
4047    if (ret == 0) {
4048        cpu_synchronize_state(cs);
4049        assert(env->exception_nr == -1);
4050
4051        /* pass to guest */
4052        kvm_queue_exception(env, arch_info->exception,
4053                            arch_info->exception == EXCP01_DB,
4054                            arch_info->dr6);
4055        env->has_error_code = 0;
4056    }
4057
4058    return ret;
4059}
4060
4061void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4062{
4063    const uint8_t type_code[] = {
4064        [GDB_BREAKPOINT_HW] = 0x0,
4065        [GDB_WATCHPOINT_WRITE] = 0x1,
4066        [GDB_WATCHPOINT_ACCESS] = 0x3
4067    };
4068    const uint8_t len_code[] = {
4069        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4070    };
4071    int n;
4072
4073    if (kvm_sw_breakpoints_active(cpu)) {
4074        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4075    }
4076    if (nb_hw_breakpoint > 0) {
4077        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4078        dbg->arch.debugreg[7] = 0x0600;
4079        for (n = 0; n < nb_hw_breakpoint; n++) {
4080            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4081            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4082                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4083                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4084        }
4085    }
4086}
4087
4088static bool host_supports_vmx(void)
4089{
4090    uint32_t ecx, unused;
4091
4092    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4093    return ecx & CPUID_EXT_VMX;
4094}
4095
4096#define VMX_INVALID_GUEST_STATE 0x80000021
4097
4098int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4099{
4100    X86CPU *cpu = X86_CPU(cs);
4101    uint64_t code;
4102    int ret;
4103
4104    switch (run->exit_reason) {
4105    case KVM_EXIT_HLT:
4106        DPRINTF("handle_hlt\n");
4107        qemu_mutex_lock_iothread();
4108        ret = kvm_handle_halt(cpu);
4109        qemu_mutex_unlock_iothread();
4110        break;
4111    case KVM_EXIT_SET_TPR:
4112        ret = 0;
4113        break;
4114    case KVM_EXIT_TPR_ACCESS:
4115        qemu_mutex_lock_iothread();
4116        ret = kvm_handle_tpr_access(cpu);
4117        qemu_mutex_unlock_iothread();
4118        break;
4119    case KVM_EXIT_FAIL_ENTRY:
4120        code = run->fail_entry.hardware_entry_failure_reason;
4121        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4122                code);
4123        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4124            fprintf(stderr,
4125                    "\nIf you're running a guest on an Intel machine without "
4126                        "unrestricted mode\n"
4127                    "support, the failure can be most likely due to the guest "
4128                        "entering an invalid\n"
4129                    "state for Intel VT. For example, the guest maybe running "
4130                        "in big real mode\n"
4131                    "which is not supported on less recent Intel processors."
4132                        "\n\n");
4133        }
4134        ret = -1;
4135        break;
4136    case KVM_EXIT_EXCEPTION:
4137        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4138                run->ex.exception, run->ex.error_code);
4139        ret = -1;
4140        break;
4141    case KVM_EXIT_DEBUG:
4142        DPRINTF("kvm_exit_debug\n");
4143        qemu_mutex_lock_iothread();
4144        ret = kvm_handle_debug(cpu, &run->debug.arch);
4145        qemu_mutex_unlock_iothread();
4146        break;
4147    case KVM_EXIT_HYPERV:
4148        ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4149        break;
4150    case KVM_EXIT_IOAPIC_EOI:
4151        ioapic_eoi_broadcast(run->eoi.vector);
4152        ret = 0;
4153        break;
4154    default:
4155        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4156        ret = -1;
4157        break;
4158    }
4159
4160    return ret;
4161}
4162
4163bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4164{
4165    X86CPU *cpu = X86_CPU(cs);
4166    CPUX86State *env = &cpu->env;
4167
4168    kvm_cpu_synchronize_state(cs);
4169    return !(env->cr[0] & CR0_PE_MASK) ||
4170           ((env->segs[R_CS].selector  & 3) != 3);
4171}
4172
4173void kvm_arch_init_irq_routing(KVMState *s)
4174{
4175    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
4176        /* If kernel can't do irq routing, interrupt source
4177         * override 0->2 cannot be set up as required by HPET.
4178         * So we have to disable it.
4179         */
4180        no_hpet = 1;
4181    }
4182    /* We know at this point that we're using the in-kernel
4183     * irqchip, so we can use irqfds, and on x86 we know
4184     * we can use msi via irqfd and GSI routing.
4185     */
4186    kvm_msi_via_irqfd_allowed = true;
4187    kvm_gsi_routing_allowed = true;
4188
4189    if (kvm_irqchip_is_split()) {
4190        int i;
4191
4192        /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4193           MSI routes for signaling interrupts to the local apics. */
4194        for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4195            if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4196                error_report("Could not enable split IRQ mode.");
4197                exit(1);
4198            }
4199        }
4200    }
4201}
4202
4203int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
4204{
4205    int ret;
4206    if (machine_kernel_irqchip_split(ms)) {
4207        ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4208        if (ret) {
4209            error_report("Could not enable split irqchip mode: %s",
4210                         strerror(-ret));
4211            exit(1);
4212        } else {
4213            DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4214            kvm_split_irqchip = true;
4215            return 1;
4216        }
4217    } else {
4218        return 0;
4219    }
4220}
4221
4222/* Classic KVM device assignment interface. Will remain x86 only. */
4223int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
4224                          uint32_t flags, uint32_t *dev_id)
4225{
4226    struct kvm_assigned_pci_dev dev_data = {
4227        .segnr = dev_addr->domain,
4228        .busnr = dev_addr->bus,
4229        .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
4230        .flags = flags,
4231    };
4232    int ret;
4233
4234    dev_data.assigned_dev_id =
4235        (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
4236
4237    ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
4238    if (ret < 0) {
4239        return ret;
4240    }
4241
4242    *dev_id = dev_data.assigned_dev_id;
4243
4244    return 0;
4245}
4246
4247int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
4248{
4249    struct kvm_assigned_pci_dev dev_data = {
4250        .assigned_dev_id = dev_id,
4251    };
4252
4253    return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
4254}
4255
4256static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
4257                                   uint32_t irq_type, uint32_t guest_irq)
4258{
4259    struct kvm_assigned_irq assigned_irq = {
4260        .assigned_dev_id = dev_id,
4261        .guest_irq = guest_irq,
4262        .flags = irq_type,
4263    };
4264
4265    if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
4266        return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
4267    } else {
4268        return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
4269    }
4270}
4271
4272int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
4273                           uint32_t guest_irq)
4274{
4275    uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
4276        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
4277
4278    return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
4279}
4280
4281int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
4282{
4283    struct kvm_assigned_pci_dev dev_data = {
4284        .assigned_dev_id = dev_id,
4285        .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
4286    };
4287
4288    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
4289}
4290
4291static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
4292                                     uint32_t type)
4293{
4294    struct kvm_assigned_irq assigned_irq = {
4295        .assigned_dev_id = dev_id,
4296        .flags = type,
4297    };
4298
4299    return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
4300}
4301
4302int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
4303{
4304    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
4305        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
4306}
4307
4308int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
4309{
4310    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
4311                                              KVM_DEV_IRQ_GUEST_MSI, virq);
4312}
4313
4314int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
4315{
4316    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
4317                                                KVM_DEV_IRQ_HOST_MSI);
4318}
4319
4320bool kvm_device_msix_supported(KVMState *s)
4321{
4322    /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
4323     * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
4324    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
4325}
4326
4327int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
4328                                 uint32_t nr_vectors)
4329{
4330    struct kvm_assigned_msix_nr msix_nr = {
4331        .assigned_dev_id = dev_id,
4332        .entry_nr = nr_vectors,
4333    };
4334
4335    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
4336}
4337
4338int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
4339                               int virq)
4340{
4341    struct kvm_assigned_msix_entry msix_entry = {
4342        .assigned_dev_id = dev_id,
4343        .gsi = virq,
4344        .entry = vector,
4345    };
4346
4347    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
4348}
4349
4350int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
4351{
4352    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
4353                                              KVM_DEV_IRQ_GUEST_MSIX, 0);
4354}
4355
4356int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
4357{
4358    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
4359                                                KVM_DEV_IRQ_HOST_MSIX);
4360}
4361
4362int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4363                             uint64_t address, uint32_t data, PCIDevice *dev)
4364{
4365    X86IOMMUState *iommu = x86_iommu_get_default();
4366
4367    if (iommu) {
4368        int ret;
4369        MSIMessage src, dst;
4370        X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
4371
4372        if (!class->int_remap) {
4373            return 0;
4374        }
4375
4376        src.address = route->u.msi.address_hi;
4377        src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4378        src.address |= route->u.msi.address_lo;
4379        src.data = route->u.msi.data;
4380
4381        ret = class->int_remap(iommu, &src, &dst, dev ? \
4382                               pci_requester_id(dev) : \
4383                               X86_IOMMU_SID_INVALID);
4384        if (ret) {
4385            trace_kvm_x86_fixup_msi_error(route->gsi);
4386            return 1;
4387        }
4388
4389        route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4390        route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4391        route->u.msi.data = dst.data;
4392    }
4393
4394    return 0;
4395}
4396
4397typedef struct MSIRouteEntry MSIRouteEntry;
4398
4399struct MSIRouteEntry {
4400    PCIDevice *dev;             /* Device pointer */
4401    int vector;                 /* MSI/MSIX vector index */
4402    int virq;                   /* Virtual IRQ index */
4403    QLIST_ENTRY(MSIRouteEntry) list;
4404};
4405
4406/* List of used GSI routes */
4407static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4408    QLIST_HEAD_INITIALIZER(msi_route_list);
4409
4410static void kvm_update_msi_routes_all(void *private, bool global,
4411                                      uint32_t index, uint32_t mask)
4412{
4413    int cnt = 0, vector;
4414    MSIRouteEntry *entry;
4415    MSIMessage msg;
4416    PCIDevice *dev;
4417
4418    /* TODO: explicit route update */
4419    QLIST_FOREACH(entry, &msi_route_list, list) {
4420        cnt++;
4421        vector = entry->vector;
4422        dev = entry->dev;
4423        if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4424            msg = msix_get_message(dev, vector);
4425        } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4426            msg = msi_get_message(dev, vector);
4427        } else {
4428            /*
4429             * Either MSI/MSIX is disabled for the device, or the
4430             * specific message was masked out.  Skip this one.
4431             */
4432            continue;
4433        }
4434        kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4435    }
4436    kvm_irqchip_commit_routes(kvm_state);
4437    trace_kvm_x86_update_msi_routes(cnt);
4438}
4439
4440int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4441                                int vector, PCIDevice *dev)
4442{
4443    static bool notify_list_inited = false;
4444    MSIRouteEntry *entry;
4445
4446    if (!dev) {
4447        /* These are (possibly) IOAPIC routes only used for split
4448         * kernel irqchip mode, while what we are housekeeping are
4449         * PCI devices only. */
4450        return 0;
4451    }
4452
4453    entry = g_new0(MSIRouteEntry, 1);
4454    entry->dev = dev;
4455    entry->vector = vector;
4456    entry->virq = route->gsi;
4457    QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4458
4459    trace_kvm_x86_add_msi_route(route->gsi);
4460
4461    if (!notify_list_inited) {
4462        /* For the first time we do add route, add ourselves into
4463         * IOMMU's IEC notify list if needed. */
4464        X86IOMMUState *iommu = x86_iommu_get_default();
4465        if (iommu) {
4466            x86_iommu_iec_register_notifier(iommu,
4467                                            kvm_update_msi_routes_all,
4468                                            NULL);
4469        }
4470        notify_list_inited = true;
4471    }
4472    return 0;
4473}
4474
4475int kvm_arch_release_virq_post(int virq)
4476{
4477    MSIRouteEntry *entry, *next;
4478    QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4479        if (entry->virq == virq) {
4480            trace_kvm_x86_remove_msi_route(virq);
4481            QLIST_REMOVE(entry, list);
4482            g_free(entry);
4483            break;
4484        }
4485    }
4486    return 0;
4487}
4488
4489int kvm_arch_msi_data_to_gsi(uint32_t data)
4490{
4491    abort();
4492}
4493