qemu/target/riscv/fpu_helper.c
<<
>>
Prefs
   1/*
   2 * RISC-V FPU Emulation Helpers for QEMU.
   3 *
   4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2 or later, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program.  If not, see <http://www.gnu.org/licenses/>.
  17 */
  18
  19#include "qemu/osdep.h"
  20#include "cpu.h"
  21#include "qemu/host-utils.h"
  22#include "exec/exec-all.h"
  23#include "exec/helper-proto.h"
  24
  25target_ulong riscv_cpu_get_fflags(CPURISCVState *env)
  26{
  27    int soft = get_float_exception_flags(&env->fp_status);
  28    target_ulong hard = 0;
  29
  30    hard |= (soft & float_flag_inexact) ? FPEXC_NX : 0;
  31    hard |= (soft & float_flag_underflow) ? FPEXC_UF : 0;
  32    hard |= (soft & float_flag_overflow) ? FPEXC_OF : 0;
  33    hard |= (soft & float_flag_divbyzero) ? FPEXC_DZ : 0;
  34    hard |= (soft & float_flag_invalid) ? FPEXC_NV : 0;
  35
  36    return hard;
  37}
  38
  39void riscv_cpu_set_fflags(CPURISCVState *env, target_ulong hard)
  40{
  41    int soft = 0;
  42
  43    soft |= (hard & FPEXC_NX) ? float_flag_inexact : 0;
  44    soft |= (hard & FPEXC_UF) ? float_flag_underflow : 0;
  45    soft |= (hard & FPEXC_OF) ? float_flag_overflow : 0;
  46    soft |= (hard & FPEXC_DZ) ? float_flag_divbyzero : 0;
  47    soft |= (hard & FPEXC_NV) ? float_flag_invalid : 0;
  48
  49    set_float_exception_flags(soft, &env->fp_status);
  50}
  51
  52void helper_set_rounding_mode(CPURISCVState *env, uint32_t rm)
  53{
  54    int softrm;
  55
  56    if (rm == 7) {
  57        rm = env->frm;
  58    }
  59    switch (rm) {
  60    case 0:
  61        softrm = float_round_nearest_even;
  62        break;
  63    case 1:
  64        softrm = float_round_to_zero;
  65        break;
  66    case 2:
  67        softrm = float_round_down;
  68        break;
  69    case 3:
  70        softrm = float_round_up;
  71        break;
  72    case 4:
  73        softrm = float_round_ties_away;
  74        break;
  75    default:
  76        riscv_raise_exception(env, RISCV_EXCP_ILLEGAL_INST, GETPC());
  77    }
  78
  79    set_float_rounding_mode(softrm, &env->fp_status);
  80}
  81
  82uint64_t helper_fmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
  83                        uint64_t frs3)
  84{
  85    return float32_muladd(frs1, frs2, frs3, 0, &env->fp_status);
  86}
  87
  88uint64_t helper_fmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
  89                        uint64_t frs3)
  90{
  91    return float64_muladd(frs1, frs2, frs3, 0, &env->fp_status);
  92}
  93
  94uint64_t helper_fmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
  95                        uint64_t frs3)
  96{
  97    return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c,
  98                          &env->fp_status);
  99}
 100
 101uint64_t helper_fmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
 102                        uint64_t frs3)
 103{
 104    return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c,
 105                          &env->fp_status);
 106}
 107
 108uint64_t helper_fnmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
 109                         uint64_t frs3)
 110{
 111    return float32_muladd(frs1, frs2, frs3, float_muladd_negate_product,
 112                          &env->fp_status);
 113}
 114
 115uint64_t helper_fnmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
 116                         uint64_t frs3)
 117{
 118    return float64_muladd(frs1, frs2, frs3, float_muladd_negate_product,
 119                          &env->fp_status);
 120}
 121
 122uint64_t helper_fnmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
 123                         uint64_t frs3)
 124{
 125    return float32_muladd(frs1, frs2, frs3, float_muladd_negate_c |
 126                          float_muladd_negate_product, &env->fp_status);
 127}
 128
 129uint64_t helper_fnmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
 130                         uint64_t frs3)
 131{
 132    return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c |
 133                          float_muladd_negate_product, &env->fp_status);
 134}
 135
 136uint64_t helper_fadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 137{
 138    return float32_add(frs1, frs2, &env->fp_status);
 139}
 140
 141uint64_t helper_fsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 142{
 143    return float32_sub(frs1, frs2, &env->fp_status);
 144}
 145
 146uint64_t helper_fmul_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 147{
 148    return float32_mul(frs1, frs2, &env->fp_status);
 149}
 150
 151uint64_t helper_fdiv_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 152{
 153    return float32_div(frs1, frs2, &env->fp_status);
 154}
 155
 156uint64_t helper_fmin_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 157{
 158    return float32_minnum(frs1, frs2, &env->fp_status);
 159}
 160
 161uint64_t helper_fmax_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 162{
 163    return float32_maxnum(frs1, frs2, &env->fp_status);
 164}
 165
 166uint64_t helper_fsqrt_s(CPURISCVState *env, uint64_t frs1)
 167{
 168    return float32_sqrt(frs1, &env->fp_status);
 169}
 170
 171target_ulong helper_fle_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 172{
 173    return float32_le(frs1, frs2, &env->fp_status);
 174}
 175
 176target_ulong helper_flt_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 177{
 178    return float32_lt(frs1, frs2, &env->fp_status);
 179}
 180
 181target_ulong helper_feq_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 182{
 183    return float32_eq_quiet(frs1, frs2, &env->fp_status);
 184}
 185
 186target_ulong helper_fcvt_w_s(CPURISCVState *env, uint64_t frs1)
 187{
 188    return float32_to_int32(frs1, &env->fp_status);
 189}
 190
 191target_ulong helper_fcvt_wu_s(CPURISCVState *env, uint64_t frs1)
 192{
 193    return (int32_t)float32_to_uint32(frs1, &env->fp_status);
 194}
 195
 196#if defined(TARGET_RISCV64)
 197uint64_t helper_fcvt_l_s(CPURISCVState *env, uint64_t frs1)
 198{
 199    return float32_to_int64(frs1, &env->fp_status);
 200}
 201
 202uint64_t helper_fcvt_lu_s(CPURISCVState *env, uint64_t frs1)
 203{
 204    return float32_to_uint64(frs1, &env->fp_status);
 205}
 206#endif
 207
 208uint64_t helper_fcvt_s_w(CPURISCVState *env, target_ulong rs1)
 209{
 210    return int32_to_float32((int32_t)rs1, &env->fp_status);
 211}
 212
 213uint64_t helper_fcvt_s_wu(CPURISCVState *env, target_ulong rs1)
 214{
 215    return uint32_to_float32((uint32_t)rs1, &env->fp_status);
 216}
 217
 218#if defined(TARGET_RISCV64)
 219uint64_t helper_fcvt_s_l(CPURISCVState *env, uint64_t rs1)
 220{
 221    return int64_to_float32(rs1, &env->fp_status);
 222}
 223
 224uint64_t helper_fcvt_s_lu(CPURISCVState *env, uint64_t rs1)
 225{
 226    return uint64_to_float32(rs1, &env->fp_status);
 227}
 228#endif
 229
 230target_ulong helper_fclass_s(uint64_t frs1)
 231{
 232    float32 f = frs1;
 233    bool sign = float32_is_neg(f);
 234
 235    if (float32_is_infinity(f)) {
 236        return sign ? 1 << 0 : 1 << 7;
 237    } else if (float32_is_zero(f)) {
 238        return sign ? 1 << 3 : 1 << 4;
 239    } else if (float32_is_zero_or_denormal(f)) {
 240        return sign ? 1 << 2 : 1 << 5;
 241    } else if (float32_is_any_nan(f)) {
 242        float_status s = { }; /* for snan_bit_is_one */
 243        return float32_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
 244    } else {
 245        return sign ? 1 << 1 : 1 << 6;
 246    }
 247}
 248
 249uint64_t helper_fadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 250{
 251    return float64_add(frs1, frs2, &env->fp_status);
 252}
 253
 254uint64_t helper_fsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 255{
 256    return float64_sub(frs1, frs2, &env->fp_status);
 257}
 258
 259uint64_t helper_fmul_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 260{
 261    return float64_mul(frs1, frs2, &env->fp_status);
 262}
 263
 264uint64_t helper_fdiv_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 265{
 266    return float64_div(frs1, frs2, &env->fp_status);
 267}
 268
 269uint64_t helper_fmin_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 270{
 271    return float64_minnum(frs1, frs2, &env->fp_status);
 272}
 273
 274uint64_t helper_fmax_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 275{
 276    return float64_maxnum(frs1, frs2, &env->fp_status);
 277}
 278
 279uint64_t helper_fcvt_s_d(CPURISCVState *env, uint64_t rs1)
 280{
 281    return float64_to_float32(rs1, &env->fp_status);
 282}
 283
 284uint64_t helper_fcvt_d_s(CPURISCVState *env, uint64_t rs1)
 285{
 286    return float32_to_float64(rs1, &env->fp_status);
 287}
 288
 289uint64_t helper_fsqrt_d(CPURISCVState *env, uint64_t frs1)
 290{
 291    return float64_sqrt(frs1, &env->fp_status);
 292}
 293
 294target_ulong helper_fle_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 295{
 296    return float64_le(frs1, frs2, &env->fp_status);
 297}
 298
 299target_ulong helper_flt_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 300{
 301    return float64_lt(frs1, frs2, &env->fp_status);
 302}
 303
 304target_ulong helper_feq_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
 305{
 306    return float64_eq_quiet(frs1, frs2, &env->fp_status);
 307}
 308
 309target_ulong helper_fcvt_w_d(CPURISCVState *env, uint64_t frs1)
 310{
 311    return float64_to_int32(frs1, &env->fp_status);
 312}
 313
 314target_ulong helper_fcvt_wu_d(CPURISCVState *env, uint64_t frs1)
 315{
 316    return (int32_t)float64_to_uint32(frs1, &env->fp_status);
 317}
 318
 319#if defined(TARGET_RISCV64)
 320uint64_t helper_fcvt_l_d(CPURISCVState *env, uint64_t frs1)
 321{
 322    return float64_to_int64(frs1, &env->fp_status);
 323}
 324
 325uint64_t helper_fcvt_lu_d(CPURISCVState *env, uint64_t frs1)
 326{
 327    return float64_to_uint64(frs1, &env->fp_status);
 328}
 329#endif
 330
 331uint64_t helper_fcvt_d_w(CPURISCVState *env, target_ulong rs1)
 332{
 333    return int32_to_float64((int32_t)rs1, &env->fp_status);
 334}
 335
 336uint64_t helper_fcvt_d_wu(CPURISCVState *env, target_ulong rs1)
 337{
 338    return uint32_to_float64((uint32_t)rs1, &env->fp_status);
 339}
 340
 341#if defined(TARGET_RISCV64)
 342uint64_t helper_fcvt_d_l(CPURISCVState *env, uint64_t rs1)
 343{
 344    return int64_to_float64(rs1, &env->fp_status);
 345}
 346
 347uint64_t helper_fcvt_d_lu(CPURISCVState *env, uint64_t rs1)
 348{
 349    return uint64_to_float64(rs1, &env->fp_status);
 350}
 351#endif
 352
 353target_ulong helper_fclass_d(uint64_t frs1)
 354{
 355    float64 f = frs1;
 356    bool sign = float64_is_neg(f);
 357
 358    if (float64_is_infinity(f)) {
 359        return sign ? 1 << 0 : 1 << 7;
 360    } else if (float64_is_zero(f)) {
 361        return sign ? 1 << 3 : 1 << 4;
 362    } else if (float64_is_zero_or_denormal(f)) {
 363        return sign ? 1 << 2 : 1 << 5;
 364    } else if (float64_is_any_nan(f)) {
 365        float_status s = { }; /* for snan_bit_is_one */
 366        return float64_is_quiet_nan(f, &s) ? 1 << 9 : 1 << 8;
 367    } else {
 368        return sign ? 1 << 1 : 1 << 6;
 369    }
 370}
 371