qemu/target/xtensa/mmu_helper.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2011 - 2019, Max Filippov, Open Source and Linux Lab.
   3 * All rights reserved.
   4 *
   5 * Redistribution and use in source and binary forms, with or without
   6 * modification, are permitted provided that the following conditions are met:
   7 *     * Redistributions of source code must retain the above copyright
   8 *       notice, this list of conditions and the following disclaimer.
   9 *     * Redistributions in binary form must reproduce the above copyright
  10 *       notice, this list of conditions and the following disclaimer in the
  11 *       documentation and/or other materials provided with the distribution.
  12 *     * Neither the name of the Open Source and Linux Lab nor the
  13 *       names of its contributors may be used to endorse or promote products
  14 *       derived from this software without specific prior written permission.
  15 *
  16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
  21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26 */
  27
  28#include "qemu/osdep.h"
  29#include "qemu/main-loop.h"
  30#include "qemu/qemu-print.h"
  31#include "qemu/units.h"
  32#include "cpu.h"
  33#include "exec/helper-proto.h"
  34#include "qemu/host-utils.h"
  35#include "exec/exec-all.h"
  36#include "exec/cpu_ldst.h"
  37
  38#define XTENSA_MPU_SEGMENT_MASK 0x0000001f
  39#define XTENSA_MPU_ACC_RIGHTS_MASK 0x00000f00
  40#define XTENSA_MPU_ACC_RIGHTS_SHIFT 8
  41#define XTENSA_MPU_MEM_TYPE_MASK 0x001ff000
  42#define XTENSA_MPU_MEM_TYPE_SHIFT 12
  43#define XTENSA_MPU_ATTR_MASK 0x001fff00
  44
  45#define XTENSA_MPU_PROBE_B 0x40000000
  46#define XTENSA_MPU_PROBE_V 0x80000000
  47
  48#define XTENSA_MPU_SYSTEM_TYPE_DEVICE 0x0001
  49#define XTENSA_MPU_SYSTEM_TYPE_NC     0x0002
  50#define XTENSA_MPU_SYSTEM_TYPE_C      0x0003
  51#define XTENSA_MPU_SYSTEM_TYPE_MASK   0x0003
  52
  53#define XTENSA_MPU_TYPE_SYS_C     0x0010
  54#define XTENSA_MPU_TYPE_SYS_W     0x0020
  55#define XTENSA_MPU_TYPE_SYS_R     0x0040
  56#define XTENSA_MPU_TYPE_CPU_C     0x0100
  57#define XTENSA_MPU_TYPE_CPU_W     0x0200
  58#define XTENSA_MPU_TYPE_CPU_R     0x0400
  59#define XTENSA_MPU_TYPE_CPU_CACHE 0x0800
  60#define XTENSA_MPU_TYPE_B         0x1000
  61#define XTENSA_MPU_TYPE_INT       0x2000
  62
  63void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
  64{
  65    /*
  66     * Attempt the memory load; we don't care about the result but
  67     * only the side-effects (ie any MMU or other exception)
  68     */
  69    cpu_ldub_code_ra(env, vaddr, GETPC());
  70}
  71
  72void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
  73{
  74    v = (v & 0xffffff00) | 0x1;
  75    if (v != env->sregs[RASID]) {
  76        env->sregs[RASID] = v;
  77        tlb_flush(env_cpu(env));
  78    }
  79}
  80
  81static uint32_t get_page_size(const CPUXtensaState *env,
  82                              bool dtlb, uint32_t way)
  83{
  84    uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
  85
  86    switch (way) {
  87    case 4:
  88        return (tlbcfg >> 16) & 0x3;
  89
  90    case 5:
  91        return (tlbcfg >> 20) & 0x1;
  92
  93    case 6:
  94        return (tlbcfg >> 24) & 0x1;
  95
  96    default:
  97        return 0;
  98    }
  99}
 100
 101/*!
 102 * Get bit mask for the virtual address bits translated by the TLB way
 103 */
 104static uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env,
 105                                         bool dtlb, uint32_t way)
 106{
 107    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 108        bool varway56 = dtlb ?
 109            env->config->dtlb.varway56 :
 110            env->config->itlb.varway56;
 111
 112        switch (way) {
 113        case 4:
 114            return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
 115
 116        case 5:
 117            if (varway56) {
 118                return 0xf8000000 << get_page_size(env, dtlb, way);
 119            } else {
 120                return 0xf8000000;
 121            }
 122
 123        case 6:
 124            if (varway56) {
 125                return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
 126            } else {
 127                return 0xf0000000;
 128            }
 129
 130        default:
 131            return 0xfffff000;
 132        }
 133    } else {
 134        return REGION_PAGE_MASK;
 135    }
 136}
 137
 138/*!
 139 * Get bit mask for the 'VPN without index' field.
 140 * See ISA, 4.6.5.6, data format for RxTLB0
 141 */
 142static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
 143{
 144    if (way < 4) {
 145        bool is32 = (dtlb ?
 146                env->config->dtlb.nrefillentries :
 147                env->config->itlb.nrefillentries) == 32;
 148        return is32 ? 0xffff8000 : 0xffffc000;
 149    } else if (way == 4) {
 150        return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
 151    } else if (way <= 6) {
 152        uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
 153        bool varway56 = dtlb ?
 154            env->config->dtlb.varway56 :
 155            env->config->itlb.varway56;
 156
 157        if (varway56) {
 158            return mask << (way == 5 ? 2 : 3);
 159        } else {
 160            return mask << 1;
 161        }
 162    } else {
 163        return 0xfffff000;
 164    }
 165}
 166
 167/*!
 168 * Split virtual address into VPN (with index) and entry index
 169 * for the given TLB way
 170 */
 171static void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v,
 172                                     bool dtlb, uint32_t *vpn,
 173                                     uint32_t wi, uint32_t *ei)
 174{
 175    bool varway56 = dtlb ?
 176        env->config->dtlb.varway56 :
 177        env->config->itlb.varway56;
 178
 179    if (!dtlb) {
 180        wi &= 7;
 181    }
 182
 183    if (wi < 4) {
 184        bool is32 = (dtlb ?
 185                env->config->dtlb.nrefillentries :
 186                env->config->itlb.nrefillentries) == 32;
 187        *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
 188    } else {
 189        switch (wi) {
 190        case 4:
 191            {
 192                uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
 193                *ei = (v >> eibase) & 0x3;
 194            }
 195            break;
 196
 197        case 5:
 198            if (varway56) {
 199                uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
 200                *ei = (v >> eibase) & 0x3;
 201            } else {
 202                *ei = (v >> 27) & 0x1;
 203            }
 204            break;
 205
 206        case 6:
 207            if (varway56) {
 208                uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
 209                *ei = (v >> eibase) & 0x7;
 210            } else {
 211                *ei = (v >> 28) & 0x1;
 212            }
 213            break;
 214
 215        default:
 216            *ei = 0;
 217            break;
 218        }
 219    }
 220    *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
 221}
 222
 223/*!
 224 * Split TLB address into TLB way, entry index and VPN (with index).
 225 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
 226 */
 227static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
 228        uint32_t *vpn, uint32_t *wi, uint32_t *ei)
 229{
 230    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 231        *wi = v & (dtlb ? 0xf : 0x7);
 232        split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
 233    } else {
 234        *vpn = v & REGION_PAGE_MASK;
 235        *wi = 0;
 236        *ei = (v >> 29) & 0x7;
 237    }
 238}
 239
 240static xtensa_tlb_entry *xtensa_tlb_get_entry(CPUXtensaState *env, bool dtlb,
 241                                              unsigned wi, unsigned ei)
 242{
 243    return dtlb ?
 244        env->dtlb[wi] + ei :
 245        env->itlb[wi] + ei;
 246}
 247
 248static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
 249        uint32_t v, bool dtlb, uint32_t *pwi)
 250{
 251    uint32_t vpn;
 252    uint32_t wi;
 253    uint32_t ei;
 254
 255    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
 256    if (pwi) {
 257        *pwi = wi;
 258    }
 259    return xtensa_tlb_get_entry(env, dtlb, wi, ei);
 260}
 261
 262static void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
 263                                     xtensa_tlb_entry *entry, bool dtlb,
 264                                     unsigned wi, unsigned ei, uint32_t vpn,
 265                                     uint32_t pte)
 266{
 267    entry->vaddr = vpn;
 268    entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
 269    entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
 270    entry->attr = pte & 0xf;
 271}
 272
 273static void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
 274                                 unsigned wi, unsigned ei,
 275                                 uint32_t vpn, uint32_t pte)
 276{
 277    CPUState *cs = env_cpu(env);
 278    xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
 279
 280    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 281        if (entry->variable) {
 282            if (entry->asid) {
 283                tlb_flush_page(cs, entry->vaddr);
 284            }
 285            xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
 286            tlb_flush_page(cs, entry->vaddr);
 287        } else {
 288            qemu_log_mask(LOG_GUEST_ERROR,
 289                          "%s %d, %d, %d trying to set immutable entry\n",
 290                          __func__, dtlb, wi, ei);
 291        }
 292    } else {
 293        tlb_flush_page(cs, entry->vaddr);
 294        if (xtensa_option_enabled(env->config,
 295                    XTENSA_OPTION_REGION_TRANSLATION)) {
 296            entry->paddr = pte & REGION_PAGE_MASK;
 297        }
 298        entry->attr = pte & 0xf;
 299    }
 300}
 301
 302hwaddr xtensa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 303{
 304    XtensaCPU *cpu = XTENSA_CPU(cs);
 305    uint32_t paddr;
 306    uint32_t page_size;
 307    unsigned access;
 308
 309    if (xtensa_get_physical_addr(&cpu->env, false, addr, 0, 0,
 310                &paddr, &page_size, &access) == 0) {
 311        return paddr;
 312    }
 313    if (xtensa_get_physical_addr(&cpu->env, false, addr, 2, 0,
 314                &paddr, &page_size, &access) == 0) {
 315        return paddr;
 316    }
 317    return ~0;
 318}
 319
 320static void reset_tlb_mmu_all_ways(CPUXtensaState *env,
 321                                   const xtensa_tlb *tlb,
 322                                   xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
 323{
 324    unsigned wi, ei;
 325
 326    for (wi = 0; wi < tlb->nways; ++wi) {
 327        for (ei = 0; ei < tlb->way_size[wi]; ++ei) {
 328            entry[wi][ei].asid = 0;
 329            entry[wi][ei].variable = true;
 330        }
 331    }
 332}
 333
 334static void reset_tlb_mmu_ways56(CPUXtensaState *env,
 335                                 const xtensa_tlb *tlb,
 336                                 xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
 337{
 338    if (!tlb->varway56) {
 339        static const xtensa_tlb_entry way5[] = {
 340            {
 341                .vaddr = 0xd0000000,
 342                .paddr = 0,
 343                .asid = 1,
 344                .attr = 7,
 345                .variable = false,
 346            }, {
 347                .vaddr = 0xd8000000,
 348                .paddr = 0,
 349                .asid = 1,
 350                .attr = 3,
 351                .variable = false,
 352            }
 353        };
 354        static const xtensa_tlb_entry way6[] = {
 355            {
 356                .vaddr = 0xe0000000,
 357                .paddr = 0xf0000000,
 358                .asid = 1,
 359                .attr = 7,
 360                .variable = false,
 361            }, {
 362                .vaddr = 0xf0000000,
 363                .paddr = 0xf0000000,
 364                .asid = 1,
 365                .attr = 3,
 366                .variable = false,
 367            }
 368        };
 369        memcpy(entry[5], way5, sizeof(way5));
 370        memcpy(entry[6], way6, sizeof(way6));
 371    } else {
 372        uint32_t ei;
 373        for (ei = 0; ei < 8; ++ei) {
 374            entry[6][ei].vaddr = ei << 29;
 375            entry[6][ei].paddr = ei << 29;
 376            entry[6][ei].asid = 1;
 377            entry[6][ei].attr = 3;
 378        }
 379    }
 380}
 381
 382static void reset_tlb_region_way0(CPUXtensaState *env,
 383                                  xtensa_tlb_entry entry[][MAX_TLB_WAY_SIZE])
 384{
 385    unsigned ei;
 386
 387    for (ei = 0; ei < 8; ++ei) {
 388        entry[0][ei].vaddr = ei << 29;
 389        entry[0][ei].paddr = ei << 29;
 390        entry[0][ei].asid = 1;
 391        entry[0][ei].attr = 2;
 392        entry[0][ei].variable = true;
 393    }
 394}
 395
 396void reset_mmu(CPUXtensaState *env)
 397{
 398    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 399        env->sregs[RASID] = 0x04030201;
 400        env->sregs[ITLBCFG] = 0;
 401        env->sregs[DTLBCFG] = 0;
 402        env->autorefill_idx = 0;
 403        reset_tlb_mmu_all_ways(env, &env->config->itlb, env->itlb);
 404        reset_tlb_mmu_all_ways(env, &env->config->dtlb, env->dtlb);
 405        reset_tlb_mmu_ways56(env, &env->config->itlb, env->itlb);
 406        reset_tlb_mmu_ways56(env, &env->config->dtlb, env->dtlb);
 407    } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
 408        unsigned i;
 409
 410        env->sregs[MPUENB] = 0;
 411        env->sregs[MPUCFG] = env->config->n_mpu_fg_segments;
 412        env->sregs[CACHEADRDIS] = 0;
 413        assert(env->config->n_mpu_bg_segments > 0 &&
 414               env->config->mpu_bg[0].vaddr == 0);
 415        for (i = 1; i < env->config->n_mpu_bg_segments; ++i) {
 416            assert(env->config->mpu_bg[i].vaddr >=
 417                   env->config->mpu_bg[i - 1].vaddr);
 418        }
 419    } else {
 420        env->sregs[CACHEATTR] = 0x22222222;
 421        reset_tlb_region_way0(env, env->itlb);
 422        reset_tlb_region_way0(env, env->dtlb);
 423    }
 424}
 425
 426static unsigned get_ring(const CPUXtensaState *env, uint8_t asid)
 427{
 428    unsigned i;
 429    for (i = 0; i < 4; ++i) {
 430        if (((env->sregs[RASID] >> i * 8) & 0xff) == asid) {
 431            return i;
 432        }
 433    }
 434    return 0xff;
 435}
 436
 437/*!
 438 * Lookup xtensa TLB for the given virtual address.
 439 * See ISA, 4.6.2.2
 440 *
 441 * \param pwi: [out] way index
 442 * \param pei: [out] entry index
 443 * \param pring: [out] access ring
 444 * \return 0 if ok, exception cause code otherwise
 445 */
 446static int xtensa_tlb_lookup(const CPUXtensaState *env,
 447                             uint32_t addr, bool dtlb,
 448                             uint32_t *pwi, uint32_t *pei, uint8_t *pring)
 449{
 450    const xtensa_tlb *tlb = dtlb ?
 451        &env->config->dtlb : &env->config->itlb;
 452    const xtensa_tlb_entry (*entry)[MAX_TLB_WAY_SIZE] = dtlb ?
 453        env->dtlb : env->itlb;
 454
 455    int nhits = 0;
 456    unsigned wi;
 457
 458    for (wi = 0; wi < tlb->nways; ++wi) {
 459        uint32_t vpn;
 460        uint32_t ei;
 461        split_tlb_entry_spec_way(env, addr, dtlb, &vpn, wi, &ei);
 462        if (entry[wi][ei].vaddr == vpn && entry[wi][ei].asid) {
 463            unsigned ring = get_ring(env, entry[wi][ei].asid);
 464            if (ring < 4) {
 465                if (++nhits > 1) {
 466                    return dtlb ?
 467                        LOAD_STORE_TLB_MULTI_HIT_CAUSE :
 468                        INST_TLB_MULTI_HIT_CAUSE;
 469                }
 470                *pwi = wi;
 471                *pei = ei;
 472                *pring = ring;
 473            }
 474        }
 475    }
 476    return nhits ? 0 :
 477        (dtlb ? LOAD_STORE_TLB_MISS_CAUSE : INST_TLB_MISS_CAUSE);
 478}
 479
 480uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 481{
 482    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 483        uint32_t wi;
 484        const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
 485        return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
 486    } else {
 487        return v & REGION_PAGE_MASK;
 488    }
 489}
 490
 491uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 492{
 493    const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
 494    return entry->paddr | entry->attr;
 495}
 496
 497void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 498{
 499    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 500        uint32_t wi;
 501        xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
 502        if (entry->variable && entry->asid) {
 503            tlb_flush_page(env_cpu(env), entry->vaddr);
 504            entry->asid = 0;
 505        }
 506    }
 507}
 508
 509uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
 510{
 511    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
 512        uint32_t wi;
 513        uint32_t ei;
 514        uint8_t ring;
 515        int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
 516
 517        switch (res) {
 518        case 0:
 519            if (ring >= xtensa_get_ring(env)) {
 520                return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
 521            }
 522            break;
 523
 524        case INST_TLB_MULTI_HIT_CAUSE:
 525        case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
 526            HELPER(exception_cause_vaddr)(env, env->pc, res, v);
 527            break;
 528        }
 529        return 0;
 530    } else {
 531        return (v & REGION_PAGE_MASK) | 0x1;
 532    }
 533}
 534
 535void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
 536{
 537    uint32_t vpn;
 538    uint32_t wi;
 539    uint32_t ei;
 540    split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
 541    xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
 542}
 543
 544/*!
 545 * Convert MMU ATTR to PAGE_{READ,WRITE,EXEC} mask.
 546 * See ISA, 4.6.5.10
 547 */
 548static unsigned mmu_attr_to_access(uint32_t attr)
 549{
 550    unsigned access = 0;
 551
 552    if (attr < 12) {
 553        access |= PAGE_READ;
 554        if (attr & 0x1) {
 555            access |= PAGE_EXEC;
 556        }
 557        if (attr & 0x2) {
 558            access |= PAGE_WRITE;
 559        }
 560
 561        switch (attr & 0xc) {
 562        case 0:
 563            access |= PAGE_CACHE_BYPASS;
 564            break;
 565
 566        case 4:
 567            access |= PAGE_CACHE_WB;
 568            break;
 569
 570        case 8:
 571            access |= PAGE_CACHE_WT;
 572            break;
 573        }
 574    } else if (attr == 13) {
 575        access |= PAGE_READ | PAGE_WRITE | PAGE_CACHE_ISOLATE;
 576    }
 577    return access;
 578}
 579
 580/*!
 581 * Convert region protection ATTR to PAGE_{READ,WRITE,EXEC} mask.
 582 * See ISA, 4.6.3.3
 583 */
 584static unsigned region_attr_to_access(uint32_t attr)
 585{
 586    static const unsigned access[16] = {
 587         [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
 588         [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
 589         [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
 590         [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
 591         [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
 592         [5] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
 593        [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
 594    };
 595
 596    return access[attr & 0xf];
 597}
 598
 599/*!
 600 * Convert cacheattr to PAGE_{READ,WRITE,EXEC} mask.
 601 * See ISA, A.2.14 The Cache Attribute Register
 602 */
 603static unsigned cacheattr_attr_to_access(uint32_t attr)
 604{
 605    static const unsigned access[16] = {
 606         [0] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_WT,
 607         [1] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WT,
 608         [2] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_BYPASS,
 609         [3] =                          PAGE_EXEC | PAGE_CACHE_WB,
 610         [4] = PAGE_READ | PAGE_WRITE | PAGE_EXEC | PAGE_CACHE_WB,
 611        [14] = PAGE_READ | PAGE_WRITE             | PAGE_CACHE_ISOLATE,
 612    };
 613
 614    return access[attr & 0xf];
 615}
 616
 617struct attr_pattern {
 618    uint32_t mask;
 619    uint32_t value;
 620};
 621
 622static int attr_pattern_match(uint32_t attr,
 623                              const struct attr_pattern *pattern,
 624                              size_t n)
 625{
 626    size_t i;
 627
 628    for (i = 0; i < n; ++i) {
 629        if ((attr & pattern[i].mask) == pattern[i].value) {
 630            return 1;
 631        }
 632    }
 633    return 0;
 634}
 635
 636static unsigned mpu_attr_to_cpu_cache(uint32_t attr)
 637{
 638    static const struct attr_pattern cpu_c[] = {
 639        { .mask = 0x18f, .value = 0x089 },
 640        { .mask = 0x188, .value = 0x080 },
 641        { .mask = 0x180, .value = 0x180 },
 642    };
 643
 644    unsigned type = 0;
 645
 646    if (attr_pattern_match(attr, cpu_c, ARRAY_SIZE(cpu_c))) {
 647        type |= XTENSA_MPU_TYPE_CPU_CACHE;
 648        if (attr & 0x10) {
 649            type |= XTENSA_MPU_TYPE_CPU_C;
 650        }
 651        if (attr & 0x20) {
 652            type |= XTENSA_MPU_TYPE_CPU_W;
 653        }
 654        if (attr & 0x40) {
 655            type |= XTENSA_MPU_TYPE_CPU_R;
 656        }
 657    }
 658    return type;
 659}
 660
 661static unsigned mpu_attr_to_type(uint32_t attr)
 662{
 663    static const struct attr_pattern device_type[] = {
 664        { .mask = 0x1f6, .value = 0x000 },
 665        { .mask = 0x1f6, .value = 0x006 },
 666    };
 667    static const struct attr_pattern sys_nc_type[] = {
 668        { .mask = 0x1fe, .value = 0x018 },
 669        { .mask = 0x1fe, .value = 0x01e },
 670        { .mask = 0x18f, .value = 0x089 },
 671    };
 672    static const struct attr_pattern sys_c_type[] = {
 673        { .mask = 0x1f8, .value = 0x010 },
 674        { .mask = 0x188, .value = 0x080 },
 675        { .mask = 0x1f0, .value = 0x030 },
 676        { .mask = 0x180, .value = 0x180 },
 677    };
 678    static const struct attr_pattern b[] = {
 679        { .mask = 0x1f7, .value = 0x001 },
 680        { .mask = 0x1f7, .value = 0x007 },
 681        { .mask = 0x1ff, .value = 0x019 },
 682        { .mask = 0x1ff, .value = 0x01f },
 683    };
 684
 685    unsigned type = 0;
 686
 687    attr = (attr & XTENSA_MPU_MEM_TYPE_MASK) >> XTENSA_MPU_MEM_TYPE_SHIFT;
 688    if (attr_pattern_match(attr, device_type, ARRAY_SIZE(device_type))) {
 689        type |= XTENSA_MPU_SYSTEM_TYPE_DEVICE;
 690        if (attr & 0x80) {
 691            type |= XTENSA_MPU_TYPE_INT;
 692        }
 693    }
 694    if (attr_pattern_match(attr, sys_nc_type, ARRAY_SIZE(sys_nc_type))) {
 695        type |= XTENSA_MPU_SYSTEM_TYPE_NC;
 696    }
 697    if (attr_pattern_match(attr, sys_c_type, ARRAY_SIZE(sys_c_type))) {
 698        type |= XTENSA_MPU_SYSTEM_TYPE_C;
 699        if (attr & 0x1) {
 700            type |= XTENSA_MPU_TYPE_SYS_C;
 701        }
 702        if (attr & 0x2) {
 703            type |= XTENSA_MPU_TYPE_SYS_W;
 704        }
 705        if (attr & 0x4) {
 706            type |= XTENSA_MPU_TYPE_SYS_R;
 707        }
 708    }
 709    if (attr_pattern_match(attr, b, ARRAY_SIZE(b))) {
 710        type |= XTENSA_MPU_TYPE_B;
 711    }
 712    type |= mpu_attr_to_cpu_cache(attr);
 713
 714    return type;
 715}
 716
 717static unsigned mpu_attr_to_access(uint32_t attr, unsigned ring)
 718{
 719    static const unsigned access[2][16] = {
 720        [0] = {
 721             [4] = PAGE_READ,
 722             [5] = PAGE_READ              | PAGE_EXEC,
 723             [6] = PAGE_READ | PAGE_WRITE,
 724             [7] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
 725             [8] =             PAGE_WRITE,
 726             [9] = PAGE_READ | PAGE_WRITE,
 727            [10] = PAGE_READ | PAGE_WRITE,
 728            [11] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
 729            [12] = PAGE_READ,
 730            [13] = PAGE_READ              | PAGE_EXEC,
 731            [14] = PAGE_READ | PAGE_WRITE,
 732            [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
 733        },
 734        [1] = {
 735             [8] =             PAGE_WRITE,
 736             [9] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
 737            [10] = PAGE_READ,
 738            [11] = PAGE_READ              | PAGE_EXEC,
 739            [12] = PAGE_READ,
 740            [13] = PAGE_READ              | PAGE_EXEC,
 741            [14] = PAGE_READ | PAGE_WRITE,
 742            [15] = PAGE_READ | PAGE_WRITE | PAGE_EXEC,
 743        },
 744    };
 745    unsigned rv;
 746    unsigned type;
 747
 748    type = mpu_attr_to_cpu_cache(attr);
 749    rv = access[ring != 0][(attr & XTENSA_MPU_ACC_RIGHTS_MASK) >>
 750        XTENSA_MPU_ACC_RIGHTS_SHIFT];
 751
 752    if (type & XTENSA_MPU_TYPE_CPU_CACHE) {
 753        rv |= (type & XTENSA_MPU_TYPE_CPU_C) ? PAGE_CACHE_WB : PAGE_CACHE_WT;
 754    } else {
 755        rv |= PAGE_CACHE_BYPASS;
 756    }
 757    return rv;
 758}
 759
 760static bool is_access_granted(unsigned access, int is_write)
 761{
 762    switch (is_write) {
 763    case 0:
 764        return access & PAGE_READ;
 765
 766    case 1:
 767        return access & PAGE_WRITE;
 768
 769    case 2:
 770        return access & PAGE_EXEC;
 771
 772    default:
 773        return 0;
 774    }
 775}
 776
 777static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte);
 778
 779static int get_physical_addr_mmu(CPUXtensaState *env, bool update_tlb,
 780                                 uint32_t vaddr, int is_write, int mmu_idx,
 781                                 uint32_t *paddr, uint32_t *page_size,
 782                                 unsigned *access, bool may_lookup_pt)
 783{
 784    bool dtlb = is_write != 2;
 785    uint32_t wi;
 786    uint32_t ei;
 787    uint8_t ring;
 788    uint32_t vpn;
 789    uint32_t pte;
 790    const xtensa_tlb_entry *entry = NULL;
 791    xtensa_tlb_entry tmp_entry;
 792    int ret = xtensa_tlb_lookup(env, vaddr, dtlb, &wi, &ei, &ring);
 793
 794    if ((ret == INST_TLB_MISS_CAUSE || ret == LOAD_STORE_TLB_MISS_CAUSE) &&
 795        may_lookup_pt && get_pte(env, vaddr, &pte)) {
 796        ring = (pte >> 4) & 0x3;
 797        wi = 0;
 798        split_tlb_entry_spec_way(env, vaddr, dtlb, &vpn, wi, &ei);
 799
 800        if (update_tlb) {
 801            wi = ++env->autorefill_idx & 0x3;
 802            xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, pte);
 803            env->sregs[EXCVADDR] = vaddr;
 804            qemu_log_mask(CPU_LOG_MMU, "%s: autorefill(%08x): %08x -> %08x\n",
 805                          __func__, vaddr, vpn, pte);
 806        } else {
 807            xtensa_tlb_set_entry_mmu(env, &tmp_entry, dtlb, wi, ei, vpn, pte);
 808            entry = &tmp_entry;
 809        }
 810        ret = 0;
 811    }
 812    if (ret != 0) {
 813        return ret;
 814    }
 815
 816    if (entry == NULL) {
 817        entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
 818    }
 819
 820    if (ring < mmu_idx) {
 821        return dtlb ?
 822            LOAD_STORE_PRIVILEGE_CAUSE :
 823            INST_FETCH_PRIVILEGE_CAUSE;
 824    }
 825
 826    *access = mmu_attr_to_access(entry->attr) &
 827        ~(dtlb ? PAGE_EXEC : PAGE_READ | PAGE_WRITE);
 828    if (!is_access_granted(*access, is_write)) {
 829        return dtlb ?
 830            (is_write ?
 831             STORE_PROHIBITED_CAUSE :
 832             LOAD_PROHIBITED_CAUSE) :
 833            INST_FETCH_PROHIBITED_CAUSE;
 834    }
 835
 836    *paddr = entry->paddr | (vaddr & ~xtensa_tlb_get_addr_mask(env, dtlb, wi));
 837    *page_size = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
 838
 839    return 0;
 840}
 841
 842static bool get_pte(CPUXtensaState *env, uint32_t vaddr, uint32_t *pte)
 843{
 844    CPUState *cs = env_cpu(env);
 845    uint32_t paddr;
 846    uint32_t page_size;
 847    unsigned access;
 848    uint32_t pt_vaddr =
 849        (env->sregs[PTEVADDR] | (vaddr >> 10)) & 0xfffffffc;
 850    int ret = get_physical_addr_mmu(env, false, pt_vaddr, 0, 0,
 851                                    &paddr, &page_size, &access, false);
 852
 853    if (ret == 0) {
 854        qemu_log_mask(CPU_LOG_MMU,
 855                      "%s: autorefill(%08x): PTE va = %08x, pa = %08x\n",
 856                      __func__, vaddr, pt_vaddr, paddr);
 857    } else {
 858        qemu_log_mask(CPU_LOG_MMU,
 859                      "%s: autorefill(%08x): PTE va = %08x, failed (%d)\n",
 860                      __func__, vaddr, pt_vaddr, ret);
 861    }
 862
 863    if (ret == 0) {
 864        MemTxResult result;
 865
 866        *pte = address_space_ldl(cs->as, paddr, MEMTXATTRS_UNSPECIFIED,
 867                                 &result);
 868        if (result != MEMTX_OK) {
 869            qemu_log_mask(CPU_LOG_MMU,
 870                          "%s: couldn't load PTE: transaction failed (%u)\n",
 871                          __func__, (unsigned)result);
 872            ret = 1;
 873        }
 874    }
 875    return ret == 0;
 876}
 877
 878static int get_physical_addr_region(CPUXtensaState *env,
 879                                    uint32_t vaddr, int is_write, int mmu_idx,
 880                                    uint32_t *paddr, uint32_t *page_size,
 881                                    unsigned *access)
 882{
 883    bool dtlb = is_write != 2;
 884    uint32_t wi = 0;
 885    uint32_t ei = (vaddr >> 29) & 0x7;
 886    const xtensa_tlb_entry *entry =
 887        xtensa_tlb_get_entry(env, dtlb, wi, ei);
 888
 889    *access = region_attr_to_access(entry->attr);
 890    if (!is_access_granted(*access, is_write)) {
 891        return dtlb ?
 892            (is_write ?
 893             STORE_PROHIBITED_CAUSE :
 894             LOAD_PROHIBITED_CAUSE) :
 895            INST_FETCH_PROHIBITED_CAUSE;
 896    }
 897
 898    *paddr = entry->paddr | (vaddr & ~REGION_PAGE_MASK);
 899    *page_size = ~REGION_PAGE_MASK + 1;
 900
 901    return 0;
 902}
 903
 904static int xtensa_mpu_lookup(const xtensa_mpu_entry *entry, unsigned n,
 905                             uint32_t vaddr, unsigned *segment)
 906{
 907    unsigned nhits = 0;
 908    unsigned i;
 909
 910    for (i = 0; i < n; ++i) {
 911        if (vaddr >= entry[i].vaddr &&
 912            (i == n - 1 || vaddr < entry[i + 1].vaddr)) {
 913            if (nhits++) {
 914                break;
 915            }
 916            *segment = i;
 917        }
 918    }
 919    return nhits;
 920}
 921
 922void HELPER(wsr_mpuenb)(CPUXtensaState *env, uint32_t v)
 923{
 924    v &= (2u << (env->config->n_mpu_fg_segments - 1)) - 1;
 925
 926    if (v != env->sregs[MPUENB]) {
 927        env->sregs[MPUENB] = v;
 928        tlb_flush(env_cpu(env));
 929    }
 930}
 931
 932void HELPER(wptlb)(CPUXtensaState *env, uint32_t p, uint32_t v)
 933{
 934    unsigned segment = p & XTENSA_MPU_SEGMENT_MASK;
 935
 936    if (segment < env->config->n_mpu_fg_segments) {
 937        env->mpu_fg[segment].vaddr = v & -env->config->mpu_align;
 938        env->mpu_fg[segment].attr = p & XTENSA_MPU_ATTR_MASK;
 939        env->sregs[MPUENB] = deposit32(env->sregs[MPUENB], segment, 1, v);
 940        tlb_flush(env_cpu(env));
 941    }
 942}
 943
 944uint32_t HELPER(rptlb0)(CPUXtensaState *env, uint32_t s)
 945{
 946    unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
 947
 948    if (segment < env->config->n_mpu_fg_segments) {
 949        return env->mpu_fg[segment].vaddr |
 950            extract32(env->sregs[MPUENB], segment, 1);
 951    } else {
 952        return 0;
 953    }
 954}
 955
 956uint32_t HELPER(rptlb1)(CPUXtensaState *env, uint32_t s)
 957{
 958    unsigned segment = s & XTENSA_MPU_SEGMENT_MASK;
 959
 960    if (segment < env->config->n_mpu_fg_segments) {
 961        return env->mpu_fg[segment].attr;
 962    } else {
 963        return 0;
 964    }
 965}
 966
 967uint32_t HELPER(pptlb)(CPUXtensaState *env, uint32_t v)
 968{
 969    unsigned nhits;
 970    unsigned segment = XTENSA_MPU_PROBE_B;
 971    unsigned bg_segment;
 972
 973    nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
 974                              v, &segment);
 975    if (nhits > 1) {
 976        HELPER(exception_cause_vaddr)(env, env->pc,
 977                                      LOAD_STORE_TLB_MULTI_HIT_CAUSE, v);
 978    } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
 979        return env->mpu_fg[segment].attr | segment | XTENSA_MPU_PROBE_V;
 980    } else {
 981        xtensa_mpu_lookup(env->config->mpu_bg,
 982                          env->config->n_mpu_bg_segments,
 983                          v, &bg_segment);
 984        return env->config->mpu_bg[bg_segment].attr | segment;
 985    }
 986}
 987
 988static int get_physical_addr_mpu(CPUXtensaState *env,
 989                                 uint32_t vaddr, int is_write, int mmu_idx,
 990                                 uint32_t *paddr, uint32_t *page_size,
 991                                 unsigned *access)
 992{
 993    unsigned nhits;
 994    unsigned segment;
 995    uint32_t attr;
 996
 997    nhits = xtensa_mpu_lookup(env->mpu_fg, env->config->n_mpu_fg_segments,
 998                              vaddr, &segment);
 999    if (nhits > 1) {
1000        return is_write < 2 ?
1001            LOAD_STORE_TLB_MULTI_HIT_CAUSE :
1002            INST_TLB_MULTI_HIT_CAUSE;
1003    } else if (nhits == 1 && (env->sregs[MPUENB] & (1u << segment))) {
1004        attr = env->mpu_fg[segment].attr;
1005    } else {
1006        xtensa_mpu_lookup(env->config->mpu_bg,
1007                          env->config->n_mpu_bg_segments,
1008                          vaddr, &segment);
1009        attr = env->config->mpu_bg[segment].attr;
1010    }
1011
1012    *access = mpu_attr_to_access(attr, mmu_idx);
1013    if (!is_access_granted(*access, is_write)) {
1014        return is_write < 2 ?
1015            (is_write ?
1016             STORE_PROHIBITED_CAUSE :
1017             LOAD_PROHIBITED_CAUSE) :
1018            INST_FETCH_PROHIBITED_CAUSE;
1019    }
1020    *paddr = vaddr;
1021    *page_size = env->config->mpu_align;
1022    return 0;
1023}
1024
1025/*!
1026 * Convert virtual address to physical addr.
1027 * MMU may issue pagewalk and change xtensa autorefill TLB way entry.
1028 *
1029 * \return 0 if ok, exception cause code otherwise
1030 */
1031int xtensa_get_physical_addr(CPUXtensaState *env, bool update_tlb,
1032                             uint32_t vaddr, int is_write, int mmu_idx,
1033                             uint32_t *paddr, uint32_t *page_size,
1034                             unsigned *access)
1035{
1036    if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
1037        return get_physical_addr_mmu(env, update_tlb,
1038                                     vaddr, is_write, mmu_idx, paddr,
1039                                     page_size, access, true);
1040    } else if (xtensa_option_bits_enabled(env->config,
1041                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1042                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION))) {
1043        return get_physical_addr_region(env, vaddr, is_write, mmu_idx,
1044                                        paddr, page_size, access);
1045    } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1046        return get_physical_addr_mpu(env, vaddr, is_write, mmu_idx,
1047                                     paddr, page_size, access);
1048    } else {
1049        *paddr = vaddr;
1050        *page_size = TARGET_PAGE_SIZE;
1051        *access = cacheattr_attr_to_access(env->sregs[CACHEATTR] >>
1052                                           ((vaddr & 0xe0000000) >> 27));
1053        return 0;
1054    }
1055}
1056
1057static void dump_tlb(CPUXtensaState *env, bool dtlb)
1058{
1059    unsigned wi, ei;
1060    const xtensa_tlb *conf =
1061        dtlb ? &env->config->dtlb : &env->config->itlb;
1062    unsigned (*attr_to_access)(uint32_t) =
1063        xtensa_option_enabled(env->config, XTENSA_OPTION_MMU) ?
1064        mmu_attr_to_access : region_attr_to_access;
1065
1066    for (wi = 0; wi < conf->nways; ++wi) {
1067        uint32_t sz = ~xtensa_tlb_get_addr_mask(env, dtlb, wi) + 1;
1068        const char *sz_text;
1069        bool print_header = true;
1070
1071        if (sz >= 0x100000) {
1072            sz /= MiB;
1073            sz_text = "MB";
1074        } else {
1075            sz /= KiB;
1076            sz_text = "KB";
1077        }
1078
1079        for (ei = 0; ei < conf->way_size[wi]; ++ei) {
1080            const xtensa_tlb_entry *entry =
1081                xtensa_tlb_get_entry(env, dtlb, wi, ei);
1082
1083            if (entry->asid) {
1084                static const char * const cache_text[8] = {
1085                    [PAGE_CACHE_BYPASS >> PAGE_CACHE_SHIFT] = "Bypass",
1086                    [PAGE_CACHE_WT >> PAGE_CACHE_SHIFT] = "WT",
1087                    [PAGE_CACHE_WB >> PAGE_CACHE_SHIFT] = "WB",
1088                    [PAGE_CACHE_ISOLATE >> PAGE_CACHE_SHIFT] = "Isolate",
1089                };
1090                unsigned access = attr_to_access(entry->attr);
1091                unsigned cache_idx = (access & PAGE_CACHE_MASK) >>
1092                    PAGE_CACHE_SHIFT;
1093
1094                if (print_header) {
1095                    print_header = false;
1096                    qemu_printf("Way %u (%d %s)\n", wi, sz, sz_text);
1097                    qemu_printf("\tVaddr       Paddr       ASID  Attr RWX Cache\n"
1098                                "\t----------  ----------  ----  ---- --- -------\n");
1099                }
1100                qemu_printf("\t0x%08x  0x%08x  0x%02x  0x%02x %c%c%c %-7s\n",
1101                            entry->vaddr,
1102                            entry->paddr,
1103                            entry->asid,
1104                            entry->attr,
1105                            (access & PAGE_READ) ? 'R' : '-',
1106                            (access & PAGE_WRITE) ? 'W' : '-',
1107                            (access & PAGE_EXEC) ? 'X' : '-',
1108                            cache_text[cache_idx] ?
1109                            cache_text[cache_idx] : "Invalid");
1110            }
1111        }
1112    }
1113}
1114
1115static void dump_mpu(CPUXtensaState *env,
1116                     const xtensa_mpu_entry *entry, unsigned n)
1117{
1118    unsigned i;
1119
1120    qemu_printf("\t%s  Vaddr       Attr        Ring0  Ring1  System Type    CPU cache\n"
1121                "\t%s  ----------  ----------  -----  -----  -------------  ---------\n",
1122                env ? "En" : "  ",
1123                env ? "--" : "  ");
1124
1125    for (i = 0; i < n; ++i) {
1126        uint32_t attr = entry[i].attr;
1127        unsigned access0 = mpu_attr_to_access(attr, 0);
1128        unsigned access1 = mpu_attr_to_access(attr, 1);
1129        unsigned type = mpu_attr_to_type(attr);
1130        char cpu_cache = (type & XTENSA_MPU_TYPE_CPU_CACHE) ? '-' : ' ';
1131
1132        qemu_printf("\t %c  0x%08x  0x%08x   %c%c%c    %c%c%c   ",
1133                    env ?
1134                    ((env->sregs[MPUENB] & (1u << i)) ? '+' : '-') : ' ',
1135                    entry[i].vaddr, attr,
1136                    (access0 & PAGE_READ) ? 'R' : '-',
1137                    (access0 & PAGE_WRITE) ? 'W' : '-',
1138                    (access0 & PAGE_EXEC) ? 'X' : '-',
1139                    (access1 & PAGE_READ) ? 'R' : '-',
1140                    (access1 & PAGE_WRITE) ? 'W' : '-',
1141                    (access1 & PAGE_EXEC) ? 'X' : '-');
1142
1143        switch (type & XTENSA_MPU_SYSTEM_TYPE_MASK) {
1144        case XTENSA_MPU_SYSTEM_TYPE_DEVICE:
1145            qemu_printf("Device %cB %3s\n",
1146                        (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1147                        (type & XTENSA_MPU_TYPE_INT) ? "int" : "");
1148            break;
1149        case XTENSA_MPU_SYSTEM_TYPE_NC:
1150            qemu_printf("Sys NC %cB      %c%c%c\n",
1151                        (type & XTENSA_MPU_TYPE_B) ? ' ' : 'n',
1152                        (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1153                        (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1154                        (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1155            break;
1156        case XTENSA_MPU_SYSTEM_TYPE_C:
1157            qemu_printf("Sys  C %c%c%c     %c%c%c\n",
1158                        (type & XTENSA_MPU_TYPE_SYS_R) ? 'R' : '-',
1159                        (type & XTENSA_MPU_TYPE_SYS_W) ? 'W' : '-',
1160                        (type & XTENSA_MPU_TYPE_SYS_C) ? 'C' : '-',
1161                        (type & XTENSA_MPU_TYPE_CPU_R) ? 'r' : cpu_cache,
1162                        (type & XTENSA_MPU_TYPE_CPU_W) ? 'w' : cpu_cache,
1163                        (type & XTENSA_MPU_TYPE_CPU_C) ? 'c' : cpu_cache);
1164            break;
1165        default:
1166            qemu_printf("Unknown\n");
1167            break;
1168        }
1169    }
1170}
1171
1172void dump_mmu(CPUXtensaState *env)
1173{
1174    if (xtensa_option_bits_enabled(env->config,
1175                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_PROTECTION) |
1176                XTENSA_OPTION_BIT(XTENSA_OPTION_REGION_TRANSLATION) |
1177                XTENSA_OPTION_BIT(XTENSA_OPTION_MMU))) {
1178
1179        qemu_printf("ITLB:\n");
1180        dump_tlb(env, false);
1181        qemu_printf("\nDTLB:\n");
1182        dump_tlb(env, true);
1183    } else if (xtensa_option_enabled(env->config, XTENSA_OPTION_MPU)) {
1184        qemu_printf("Foreground map:\n");
1185        dump_mpu(env, env->mpu_fg, env->config->n_mpu_fg_segments);
1186        qemu_printf("\nBackground map:\n");
1187        dump_mpu(NULL, env->config->mpu_bg, env->config->n_mpu_bg_segments);
1188    } else {
1189        qemu_printf("No TLB for this CPU core\n");
1190    }
1191}
1192